1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/mtd/nand/raw/nand_util.c
4 *
5 * Copyright (C) 2006 by Weiss-Electronic GmbH.
6 * All rights reserved.
7 *
8 * @author: Guido Classen <clagix@gmail.com>
9 * @descr: NAND Flash support
10 * @references: borrowed heavily from Linux mtd-utils code:
11 * flash_eraseall.c by Arcom Control System Ltd
12 * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
13 * and Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
16 * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
17 *
18 * Copyright 2010 Freescale Semiconductor
19 */
20
21 #include <common.h>
22 #include <command.h>
23 #include <log.h>
24 #include <watchdog.h>
25 #include <malloc.h>
26 #include <memalign.h>
27 #include <div64.h>
28 #include <asm/cache.h>
29 #include <dm/devres.h>
30
31 #include <linux/errno.h>
32 #include <linux/mtd/mtd.h>
33 #include <nand.h>
34 #include <jffs2/jffs2.h>
35
36 typedef struct erase_info erase_info_t;
37 typedef struct mtd_info mtd_info_t;
38
39 /* support only for native endian JFFS2 */
40 #define cpu_to_je16(x) (x)
41 #define cpu_to_je32(x) (x)
42
43 /**
44 * nand_erase_opts: - erase NAND flash with support for various options
45 * (jffs2 formatting)
46 *
47 * @param mtd nand mtd instance to erase
48 * @param opts options, @see struct nand_erase_options
49 * @return 0 in case of success
50 *
51 * This code is ported from flash_eraseall.c from Linux mtd utils by
52 * Arcom Control System Ltd.
53 */
nand_erase_opts(struct mtd_info * mtd,const nand_erase_options_t * opts)54 int nand_erase_opts(struct mtd_info *mtd,
55 const nand_erase_options_t *opts)
56 {
57 struct jffs2_unknown_node cleanmarker;
58 erase_info_t erase;
59 unsigned long erase_length, erased_length; /* in blocks */
60 int result;
61 int percent_complete = -1;
62 const char *mtd_device = mtd->name;
63 struct mtd_oob_ops oob_opts;
64 struct nand_chip *chip = mtd_to_nand(mtd);
65
66 if ((opts->offset & (mtd->erasesize - 1)) != 0) {
67 printf("Attempt to erase non block-aligned data\n");
68 return -1;
69 }
70
71 memset(&erase, 0, sizeof(erase));
72 memset(&oob_opts, 0, sizeof(oob_opts));
73
74 erase.mtd = mtd;
75 erase.len = mtd->erasesize;
76 erase.addr = opts->offset;
77 erase_length = lldiv(opts->length + mtd->erasesize - 1,
78 mtd->erasesize);
79
80 cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
81 cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
82 cleanmarker.totlen = cpu_to_je32(8);
83
84 /* scrub option allows to erase badblock. To prevent internal
85 * check from erase() method, set block check method to dummy
86 * and disable bad block table while erasing.
87 */
88 if (opts->scrub) {
89 erase.scrub = opts->scrub;
90 /*
91 * We don't need the bad block table anymore...
92 * after scrub, there are no bad blocks left!
93 */
94 if (chip->bbt) {
95 kfree(chip->bbt);
96 }
97 chip->bbt = NULL;
98 chip->options &= ~NAND_BBT_SCANNED;
99 }
100
101 for (erased_length = 0;
102 erased_length < erase_length;
103 erase.addr += mtd->erasesize) {
104
105 WATCHDOG_RESET();
106
107 if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
108 puts("Size of erase exceeds limit\n");
109 return -EFBIG;
110 }
111 if (!opts->scrub) {
112 int ret = mtd_block_isbad(mtd, erase.addr);
113 if (ret > 0) {
114 if (!opts->quiet)
115 printf("\rSkipping bad block at "
116 "0x%08llx "
117 " \n",
118 erase.addr);
119
120 if (!opts->spread)
121 erased_length++;
122
123 continue;
124
125 } else if (ret < 0) {
126 printf("\n%s: MTD get bad block failed: %d\n",
127 mtd_device,
128 ret);
129 return -1;
130 }
131 }
132
133 erased_length++;
134
135 result = mtd_erase(mtd, &erase);
136 if (result != 0) {
137 printf("\n%s: MTD Erase failure: %d\n",
138 mtd_device, result);
139 continue;
140 }
141
142 /* format for JFFS2 ? */
143 if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
144 struct mtd_oob_ops ops;
145 ops.ooblen = 8;
146 ops.datbuf = NULL;
147 ops.oobbuf = (uint8_t *)&cleanmarker;
148 ops.ooboffs = 0;
149 ops.mode = MTD_OPS_AUTO_OOB;
150
151 result = mtd_write_oob(mtd, erase.addr, &ops);
152 if (result != 0) {
153 printf("\n%s: MTD writeoob failure: %d\n",
154 mtd_device, result);
155 continue;
156 }
157 }
158
159 if (!opts->quiet) {
160 unsigned long long n = erased_length * 100ULL;
161 int percent;
162
163 do_div(n, erase_length);
164 percent = (int)n;
165
166 /* output progress message only at whole percent
167 * steps to reduce the number of messages printed
168 * on (slow) serial consoles
169 */
170 if (percent != percent_complete) {
171 percent_complete = percent;
172
173 printf("\rErasing at 0x%llx -- %3d%% complete.",
174 erase.addr, percent);
175
176 if (opts->jffs2 && result == 0)
177 printf(" Cleanmarker written at 0x%llx.",
178 erase.addr);
179 }
180 }
181 }
182 if (!opts->quiet)
183 printf("\n");
184
185 return 0;
186 }
187
188 #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
189
190 #define NAND_CMD_LOCK_TIGHT 0x2c
191 #define NAND_CMD_LOCK_STATUS 0x7a
192
193 /******************************************************************************
194 * Support for locking / unlocking operations of some NAND devices
195 *****************************************************************************/
196
197 /**
198 * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
199 * state
200 *
201 * @param mtd nand mtd instance
202 * @param tight bring device in lock tight mode
203 *
204 * @return 0 on success, -1 in case of error
205 *
206 * The lock / lock-tight command only applies to the whole chip. To get some
207 * parts of the chip lock and others unlocked use the following sequence:
208 *
209 * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
210 * - Call nand_unlock() once for each consecutive area to be unlocked
211 * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
212 *
213 * If the device is in lock-tight state software can't change the
214 * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
215 * calls will fail. It is only posible to leave lock-tight state by
216 * an hardware signal (low pulse on _WP pin) or by power down.
217 */
nand_lock(struct mtd_info * mtd,int tight)218 int nand_lock(struct mtd_info *mtd, int tight)
219 {
220 int ret = 0;
221 int status;
222 struct nand_chip *chip = mtd_to_nand(mtd);
223
224 /* select the NAND device */
225 chip->select_chip(mtd, 0);
226
227 /* check the Lock Tight Status */
228 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
229 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
230 printf("nand_lock: Device is locked tight!\n");
231 ret = -1;
232 goto out;
233 }
234
235 chip->cmdfunc(mtd,
236 (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
237 -1, -1);
238
239 /* call wait ready function */
240 status = chip->waitfunc(mtd, chip);
241
242 /* see if device thinks it succeeded */
243 if (status & 0x01) {
244 ret = -1;
245 }
246
247 out:
248 /* de-select the NAND device */
249 chip->select_chip(mtd, -1);
250 return ret;
251 }
252
253 /**
254 * nand_get_lock_status: - query current lock state from one page of NAND
255 * flash
256 *
257 * @param mtd nand mtd instance
258 * @param offset page address to query (must be page-aligned!)
259 *
260 * @return -1 in case of error
261 * >0 lock status:
262 * bitfield with the following combinations:
263 * NAND_LOCK_STATUS_TIGHT: page in tight state
264 * NAND_LOCK_STATUS_UNLOCK: page unlocked
265 *
266 */
nand_get_lock_status(struct mtd_info * mtd,loff_t offset)267 int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
268 {
269 int ret = 0;
270 int chipnr;
271 int page;
272 struct nand_chip *chip = mtd_to_nand(mtd);
273
274 /* select the NAND device */
275 chipnr = (int)(offset >> chip->chip_shift);
276 chip->select_chip(mtd, chipnr);
277
278
279 if ((offset & (mtd->writesize - 1)) != 0) {
280 printf("nand_get_lock_status: "
281 "Start address must be beginning of "
282 "nand page!\n");
283 ret = -1;
284 goto out;
285 }
286
287 /* check the Lock Status */
288 page = (int)(offset >> chip->page_shift);
289 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
290
291 ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
292 | NAND_LOCK_STATUS_UNLOCK);
293
294 out:
295 /* de-select the NAND device */
296 chip->select_chip(mtd, -1);
297 return ret;
298 }
299
300 /**
301 * nand_unlock: - Unlock area of NAND pages
302 * only one consecutive area can be unlocked at one time!
303 *
304 * @param mtd nand mtd instance
305 * @param start start byte address
306 * @param length number of bytes to unlock (must be a multiple of
307 * page size mtd->writesize)
308 * @param allexcept if set, unlock everything not selected
309 *
310 * @return 0 on success, -1 in case of error
311 */
nand_unlock(struct mtd_info * mtd,loff_t start,size_t length,int allexcept)312 int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
313 int allexcept)
314 {
315 int ret = 0;
316 int chipnr;
317 int status;
318 int page;
319 struct nand_chip *chip = mtd_to_nand(mtd);
320
321 debug("nand_unlock%s: start: %08llx, length: %zd!\n",
322 allexcept ? " (allexcept)" : "", start, length);
323
324 /* select the NAND device */
325 chipnr = (int)(start >> chip->chip_shift);
326 chip->select_chip(mtd, chipnr);
327
328 /* check the WP bit */
329 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
330 if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
331 printf("nand_unlock: Device is write protected!\n");
332 ret = -1;
333 goto out;
334 }
335
336 /* check the Lock Tight Status */
337 page = (int)(start >> chip->page_shift);
338 chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
339 if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
340 printf("nand_unlock: Device is locked tight!\n");
341 ret = -1;
342 goto out;
343 }
344
345 if ((start & (mtd->erasesize - 1)) != 0) {
346 printf("nand_unlock: Start address must be beginning of "
347 "nand block!\n");
348 ret = -1;
349 goto out;
350 }
351
352 if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
353 printf("nand_unlock: Length must be a multiple of nand block "
354 "size %08x!\n", mtd->erasesize);
355 ret = -1;
356 goto out;
357 }
358
359 /*
360 * Set length so that the last address is set to the
361 * starting address of the last block
362 */
363 length -= mtd->erasesize;
364
365 /* submit address of first page to unlock */
366 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
367
368 /* submit ADDRESS of LAST page to unlock */
369 page += (int)(length >> chip->page_shift);
370
371 /*
372 * Page addresses for unlocking are supposed to be block-aligned.
373 * At least some NAND chips use the low bit to indicate that the
374 * page range should be inverted.
375 */
376 if (allexcept)
377 page |= 1;
378
379 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
380
381 /* call wait ready function */
382 status = chip->waitfunc(mtd, chip);
383 /* see if device thinks it succeeded */
384 if (status & 0x01) {
385 /* there was an error */
386 ret = -1;
387 goto out;
388 }
389
390 out:
391 /* de-select the NAND device */
392 chip->select_chip(mtd, -1);
393 return ret;
394 }
395 #endif
396
397 /**
398 * check_skip_len
399 *
400 * Check if there are any bad blocks, and whether length including bad
401 * blocks fits into device
402 *
403 * @param mtd nand mtd instance
404 * @param offset offset in flash
405 * @param length image length
406 * @param used length of flash needed for the requested length
407 * @return 0 if the image fits and there are no bad blocks
408 * 1 if the image fits, but there are bad blocks
409 * -1 if the image does not fit
410 */
check_skip_len(struct mtd_info * mtd,loff_t offset,size_t length,size_t * used)411 static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
412 size_t *used)
413 {
414 size_t len_excl_bad = 0;
415 int ret = 0;
416
417 while (len_excl_bad < length) {
418 size_t block_len, block_off;
419 loff_t block_start;
420
421 if (offset >= mtd->size)
422 return -1;
423
424 block_start = offset & ~(loff_t)(mtd->erasesize - 1);
425 block_off = offset & (mtd->erasesize - 1);
426 block_len = mtd->erasesize - block_off;
427
428 if (!nand_block_isbad(mtd, block_start))
429 len_excl_bad += block_len;
430 else
431 ret = 1;
432
433 offset += block_len;
434 *used += block_len;
435 }
436
437 /* If the length is not a multiple of block_len, adjust. */
438 if (len_excl_bad > length)
439 *used -= (len_excl_bad - length);
440
441 return ret;
442 }
443
444 #ifdef CONFIG_CMD_NAND_TRIMFFS
drop_ffs(const struct mtd_info * mtd,const u_char * buf,const size_t * len)445 static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
446 const size_t *len)
447 {
448 size_t l = *len;
449 ssize_t i;
450
451 for (i = l - 1; i >= 0; i--)
452 if (buf[i] != 0xFF)
453 break;
454
455 /* The resulting length must be aligned to the minimum flash I/O size */
456 l = i + 1;
457 l = (l + mtd->writesize - 1) / mtd->writesize;
458 l *= mtd->writesize;
459
460 /*
461 * since the input length may be unaligned, prevent access past the end
462 * of the buffer
463 */
464 return min(l, *len);
465 }
466 #endif
467
468 /**
469 * nand_verify_page_oob:
470 *
471 * Verify a page of NAND flash, including the OOB.
472 * Reads page of NAND and verifies the contents and OOB against the
473 * values in ops.
474 *
475 * @param mtd nand mtd instance
476 * @param ops MTD operations, including data to verify
477 * @param ofs offset in flash
478 * @return 0 in case of success
479 */
nand_verify_page_oob(struct mtd_info * mtd,struct mtd_oob_ops * ops,loff_t ofs)480 int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
481 loff_t ofs)
482 {
483 int rval;
484 struct mtd_oob_ops vops;
485 size_t verlen = mtd->writesize + mtd->oobsize;
486
487 memcpy(&vops, ops, sizeof(vops));
488
489 vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
490
491 if (!vops.datbuf)
492 return -ENOMEM;
493
494 vops.oobbuf = vops.datbuf + mtd->writesize;
495
496 rval = mtd_read_oob(mtd, ofs, &vops);
497 if (!rval)
498 rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
499 if (!rval)
500 rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
501
502 free(vops.datbuf);
503
504 return rval ? -EIO : 0;
505 }
506
507 /**
508 * nand_verify:
509 *
510 * Verify a region of NAND flash.
511 * Reads NAND in page-sized chunks and verifies the contents against
512 * the contents of a buffer. The offset into the NAND must be
513 * page-aligned, and the function doesn't handle skipping bad blocks.
514 *
515 * @param mtd nand mtd instance
516 * @param ofs offset in flash
517 * @param len buffer length
518 * @param buf buffer to read from
519 * @return 0 in case of success
520 */
nand_verify(struct mtd_info * mtd,loff_t ofs,size_t len,u_char * buf)521 int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
522 {
523 int rval = 0;
524 size_t verofs;
525 size_t verlen = mtd->writesize;
526 uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
527
528 if (!verbuf)
529 return -ENOMEM;
530
531 /* Read the NAND back in page-size groups to limit malloc size */
532 for (verofs = ofs; verofs < ofs + len;
533 verofs += verlen, buf += verlen) {
534 verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
535 rval = nand_read(mtd, verofs, &verlen, verbuf);
536 if (!rval || (rval == -EUCLEAN))
537 rval = memcmp(buf, verbuf, verlen);
538
539 if (rval)
540 break;
541 }
542
543 free(verbuf);
544
545 return rval ? -EIO : 0;
546 }
547
548
549
550 /**
551 * nand_write_skip_bad:
552 *
553 * Write image to NAND flash.
554 * Blocks that are marked bad are skipped and the is written to the next
555 * block instead as long as the image is short enough to fit even after
556 * skipping the bad blocks. Due to bad blocks we may not be able to
557 * perform the requested write. In the case where the write would
558 * extend beyond the end of the NAND device, both length and actual (if
559 * not NULL) are set to 0. In the case where the write would extend
560 * beyond the limit we are passed, length is set to 0 and actual is set
561 * to the required length.
562 *
563 * @param mtd nand mtd instance
564 * @param offset offset in flash
565 * @param length buffer length
566 * @param actual set to size required to write length worth of
567 * buffer or 0 on error, if not NULL
568 * @param lim maximum size that actual may be in order to not
569 * exceed the buffer
570 * @param buffer buffer to read from
571 * @param flags flags modifying the behaviour of the write to NAND
572 * @return 0 in case of success
573 */
nand_write_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer,int flags)574 int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
575 size_t *actual, loff_t lim, u_char *buffer, int flags)
576 {
577 int rval = 0, blocksize;
578 size_t left_to_write = *length;
579 size_t used_for_write = 0;
580 u_char *p_buffer = buffer;
581 int need_skip;
582
583 if (actual)
584 *actual = 0;
585
586 blocksize = mtd->erasesize;
587
588 /*
589 * nand_write() handles unaligned, partial page writes.
590 *
591 * We allow length to be unaligned, for convenience in
592 * using the $filesize variable.
593 *
594 * However, starting at an unaligned offset makes the
595 * semantics of bad block skipping ambiguous (really,
596 * you should only start a block skipping access at a
597 * partition boundary). So don't try to handle that.
598 */
599 if ((offset & (mtd->writesize - 1)) != 0) {
600 printf("Attempt to write non page-aligned data\n");
601 *length = 0;
602 return -EINVAL;
603 }
604
605 need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
606
607 if (actual)
608 *actual = used_for_write;
609
610 if (need_skip < 0) {
611 printf("Attempt to write outside the flash area\n");
612 *length = 0;
613 return -EINVAL;
614 }
615
616 if (used_for_write > lim) {
617 puts("Size of write exceeds partition or device limit\n");
618 *length = 0;
619 return -EFBIG;
620 }
621
622 if (!need_skip && !(flags & WITH_DROP_FFS)) {
623 rval = nand_write(mtd, offset, length, buffer);
624
625 if ((flags & WITH_WR_VERIFY) && !rval)
626 rval = nand_verify(mtd, offset, *length, buffer);
627
628 if (rval == 0)
629 return 0;
630
631 *length = 0;
632 printf("NAND write to offset %llx failed %d\n",
633 offset, rval);
634 return rval;
635 }
636
637 while (left_to_write > 0) {
638 loff_t block_start = offset & ~(loff_t)(mtd->erasesize - 1);
639 size_t block_offset = offset & (mtd->erasesize - 1);
640 size_t write_size, truncated_write_size;
641
642 WATCHDOG_RESET();
643
644 if (nand_block_isbad(mtd, block_start)) {
645 printf("Skip bad block 0x%08llx\n", block_start);
646 offset += mtd->erasesize - block_offset;
647 continue;
648 }
649
650 if (left_to_write < (blocksize - block_offset))
651 write_size = left_to_write;
652 else
653 write_size = blocksize - block_offset;
654
655 truncated_write_size = write_size;
656 #ifdef CONFIG_CMD_NAND_TRIMFFS
657 if (flags & WITH_DROP_FFS)
658 truncated_write_size = drop_ffs(mtd, p_buffer,
659 &write_size);
660 #endif
661
662 rval = nand_write(mtd, offset, &truncated_write_size,
663 p_buffer);
664
665 if ((flags & WITH_WR_VERIFY) && !rval)
666 rval = nand_verify(mtd, offset,
667 truncated_write_size, p_buffer);
668
669 offset += write_size;
670 p_buffer += write_size;
671
672 if (rval != 0) {
673 printf("NAND write to offset %llx failed %d\n",
674 offset, rval);
675 *length -= left_to_write;
676 return rval;
677 }
678
679 left_to_write -= write_size;
680 }
681
682 return 0;
683 }
684
685 /**
686 * nand_read_skip_bad:
687 *
688 * Read image from NAND flash.
689 * Blocks that are marked bad are skipped and the next block is read
690 * instead as long as the image is short enough to fit even after
691 * skipping the bad blocks. Due to bad blocks we may not be able to
692 * perform the requested read. In the case where the read would extend
693 * beyond the end of the NAND device, both length and actual (if not
694 * NULL) are set to 0. In the case where the read would extend beyond
695 * the limit we are passed, length is set to 0 and actual is set to the
696 * required length.
697 *
698 * @param mtd nand mtd instance
699 * @param offset offset in flash
700 * @param length buffer length, on return holds number of read bytes
701 * @param actual set to size required to read length worth of buffer or 0
702 * on error, if not NULL
703 * @param lim maximum size that actual may be in order to not exceed the
704 * buffer
705 * @param buffer buffer to write to
706 * @return 0 in case of success
707 */
nand_read_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer)708 int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
709 size_t *actual, loff_t lim, u_char *buffer)
710 {
711 int rval;
712 size_t left_to_read = *length;
713 size_t used_for_read = 0;
714 u_char *p_buffer = buffer;
715 int need_skip;
716
717 if ((offset & (mtd->writesize - 1)) != 0) {
718 printf("Attempt to read non page-aligned data\n");
719 *length = 0;
720 if (actual)
721 *actual = 0;
722 return -EINVAL;
723 }
724
725 need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
726
727 if (actual)
728 *actual = used_for_read;
729
730 if (need_skip < 0) {
731 printf("Attempt to read outside the flash area\n");
732 *length = 0;
733 return -EINVAL;
734 }
735
736 if (used_for_read > lim) {
737 puts("Size of read exceeds partition or device limit\n");
738 *length = 0;
739 return -EFBIG;
740 }
741
742 if (!need_skip) {
743 rval = nand_read(mtd, offset, length, buffer);
744 if (!rval || rval == -EUCLEAN)
745 return 0;
746
747 *length = 0;
748 printf("NAND read from offset %llx failed %d\n",
749 offset, rval);
750 return rval;
751 }
752
753 while (left_to_read > 0) {
754 size_t block_offset = offset & (mtd->erasesize - 1);
755 size_t read_length;
756
757 WATCHDOG_RESET();
758
759 if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
760 printf("Skipping bad block 0x%08llx\n",
761 offset & ~(mtd->erasesize - 1));
762 offset += mtd->erasesize - block_offset;
763 continue;
764 }
765
766 if (left_to_read < (mtd->erasesize - block_offset))
767 read_length = left_to_read;
768 else
769 read_length = mtd->erasesize - block_offset;
770
771 rval = nand_read(mtd, offset, &read_length, p_buffer);
772 if (rval && rval != -EUCLEAN) {
773 printf("NAND read from offset %llx failed %d\n",
774 offset, rval);
775 *length -= left_to_read;
776 return rval;
777 }
778
779 left_to_read -= read_length;
780 offset += read_length;
781 p_buffer += read_length;
782 }
783
784 return 0;
785 }
786
787 #ifdef CONFIG_CMD_NAND_TORTURE
788
789 /**
790 * check_pattern:
791 *
792 * Check if buffer contains only a certain byte pattern.
793 *
794 * @param buf buffer to check
795 * @param patt the pattern to check
796 * @param size buffer size in bytes
797 * @return 1 if there are only patt bytes in buf
798 * 0 if something else was found
799 */
check_pattern(const u_char * buf,u_char patt,int size)800 static int check_pattern(const u_char *buf, u_char patt, int size)
801 {
802 int i;
803
804 for (i = 0; i < size; i++)
805 if (buf[i] != patt)
806 return 0;
807 return 1;
808 }
809
810 /**
811 * nand_torture:
812 *
813 * Torture a block of NAND flash.
814 * This is useful to determine if a block that caused a write error is still
815 * good or should be marked as bad.
816 *
817 * @param mtd nand mtd instance
818 * @param offset offset in flash
819 * @return 0 if the block is still good
820 */
nand_torture(struct mtd_info * mtd,loff_t offset)821 int nand_torture(struct mtd_info *mtd, loff_t offset)
822 {
823 u_char patterns[] = {0xa5, 0x5a, 0x00};
824 struct erase_info instr = {
825 .mtd = mtd,
826 .addr = offset,
827 .len = mtd->erasesize,
828 };
829 size_t retlen;
830 int err, ret = -1, i, patt_count;
831 u_char *buf;
832
833 if ((offset & (mtd->erasesize - 1)) != 0) {
834 puts("Attempt to torture a block at a non block-aligned offset\n");
835 return -EINVAL;
836 }
837
838 if (offset + mtd->erasesize > mtd->size) {
839 puts("Attempt to torture a block outside the flash area\n");
840 return -EINVAL;
841 }
842
843 patt_count = ARRAY_SIZE(patterns);
844
845 buf = malloc_cache_aligned(mtd->erasesize);
846 if (buf == NULL) {
847 puts("Out of memory for erase block buffer\n");
848 return -ENOMEM;
849 }
850
851 for (i = 0; i < patt_count; i++) {
852 err = mtd_erase(mtd, &instr);
853 if (err) {
854 printf("%s: erase() failed for block at 0x%llx: %d\n",
855 mtd->name, instr.addr, err);
856 goto out;
857 }
858
859 /* Make sure the block contains only 0xff bytes */
860 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
861 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
862 printf("%s: read() failed for block at 0x%llx: %d\n",
863 mtd->name, instr.addr, err);
864 goto out;
865 }
866
867 err = check_pattern(buf, 0xff, mtd->erasesize);
868 if (!err) {
869 printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
870 offset);
871 ret = -EIO;
872 goto out;
873 }
874
875 /* Write a pattern and check it */
876 memset(buf, patterns[i], mtd->erasesize);
877 err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
878 if (err || retlen != mtd->erasesize) {
879 printf("%s: write() failed for block at 0x%llx: %d\n",
880 mtd->name, instr.addr, err);
881 goto out;
882 }
883
884 err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
885 if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
886 printf("%s: read() failed for block at 0x%llx: %d\n",
887 mtd->name, instr.addr, err);
888 goto out;
889 }
890
891 err = check_pattern(buf, patterns[i], mtd->erasesize);
892 if (!err) {
893 printf("Pattern 0x%.2x checking failed for block at "
894 "0x%llx\n", patterns[i], offset);
895 ret = -EIO;
896 goto out;
897 }
898 }
899
900 ret = 0;
901
902 out:
903 free(buf);
904 return ret;
905 }
906
907 #endif
908