1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
4  * by Doug Lea and released to the public domain, as explained at
5  * http://creativecommons.org/publicdomain/zero/1.0/-
6  *
7  * The original code is available at http://gee.cs.oswego.edu/pub/misc/
8  * as file malloc-2.6.6.c.
9  */
10 
11 #include <common.h>
12 #include <log.h>
13 #include <asm/global_data.h>
14 
15 #if CONFIG_IS_ENABLED(UNIT_TEST)
16 #define DEBUG
17 #endif
18 
19 #include <malloc.h>
20 #include <asm/io.h>
21 
22 #ifdef DEBUG
23 #if __STD_C
24 static void malloc_update_mallinfo (void);
25 void malloc_stats (void);
26 #else
27 static void malloc_update_mallinfo ();
28 void malloc_stats();
29 #endif
30 #endif	/* DEBUG */
31 
32 DECLARE_GLOBAL_DATA_PTR;
33 
34 /*
35   Emulation of sbrk for WIN32
36   All code within the ifdef WIN32 is untested by me.
37 
38   Thanks to Martin Fong and others for supplying this.
39 */
40 
41 
42 #ifdef WIN32
43 
44 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
45 ~(malloc_getpagesize-1))
46 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
47 
48 /* resrve 64MB to insure large contiguous space */
49 #define RESERVED_SIZE (1024*1024*64)
50 #define NEXT_SIZE (2048*1024)
51 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
52 
53 struct GmListElement;
54 typedef struct GmListElement GmListElement;
55 
56 struct GmListElement
57 {
58 	GmListElement* next;
59 	void* base;
60 };
61 
62 static GmListElement* head = 0;
63 static unsigned int gNextAddress = 0;
64 static unsigned int gAddressBase = 0;
65 static unsigned int gAllocatedSize = 0;
66 
67 static
makeGmListElement(void * bas)68 GmListElement* makeGmListElement (void* bas)
69 {
70 	GmListElement* this;
71 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
72 	assert (this);
73 	if (this)
74 	{
75 		this->base = bas;
76 		this->next = head;
77 		head = this;
78 	}
79 	return this;
80 }
81 
gcleanup()82 void gcleanup ()
83 {
84 	BOOL rval;
85 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
86 	if (gAddressBase && (gNextAddress - gAddressBase))
87 	{
88 		rval = VirtualFree ((void*)gAddressBase,
89 							gNextAddress - gAddressBase,
90 							MEM_DECOMMIT);
91 	assert (rval);
92 	}
93 	while (head)
94 	{
95 		GmListElement* next = head->next;
96 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
97 		assert (rval);
98 		LocalFree (head);
99 		head = next;
100 	}
101 }
102 
103 static
findRegion(void * start_address,unsigned long size)104 void* findRegion (void* start_address, unsigned long size)
105 {
106 	MEMORY_BASIC_INFORMATION info;
107 	if (size >= TOP_MEMORY) return NULL;
108 
109 	while ((unsigned long)start_address + size < TOP_MEMORY)
110 	{
111 		VirtualQuery (start_address, &info, sizeof (info));
112 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
113 			return start_address;
114 		else
115 		{
116 			/* Requested region is not available so see if the */
117 			/* next region is available.  Set 'start_address' */
118 			/* to the next region and call 'VirtualQuery()' */
119 			/* again. */
120 
121 			start_address = (char*)info.BaseAddress + info.RegionSize;
122 
123 			/* Make sure we start looking for the next region */
124 			/* on the *next* 64K boundary.  Otherwise, even if */
125 			/* the new region is free according to */
126 			/* 'VirtualQuery()', the subsequent call to */
127 			/* 'VirtualAlloc()' (which follows the call to */
128 			/* this routine in 'wsbrk()') will round *down* */
129 			/* the requested address to a 64K boundary which */
130 			/* we already know is an address in the */
131 			/* unavailable region.  Thus, the subsequent call */
132 			/* to 'VirtualAlloc()' will fail and bring us back */
133 			/* here, causing us to go into an infinite loop. */
134 
135 			start_address =
136 				(void *) AlignPage64K((unsigned long) start_address);
137 		}
138 	}
139 	return NULL;
140 
141 }
142 
143 
wsbrk(long size)144 void* wsbrk (long size)
145 {
146 	void* tmp;
147 	if (size > 0)
148 	{
149 		if (gAddressBase == 0)
150 		{
151 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
152 			gNextAddress = gAddressBase =
153 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
154 											MEM_RESERVE, PAGE_NOACCESS);
155 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
156 gAllocatedSize))
157 		{
158 			long new_size = max (NEXT_SIZE, AlignPage (size));
159 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
160 			do
161 			{
162 				new_address = findRegion (new_address, new_size);
163 
164 				if (!new_address)
165 					return (void*)-1;
166 
167 				gAddressBase = gNextAddress =
168 					(unsigned int)VirtualAlloc (new_address, new_size,
169 												MEM_RESERVE, PAGE_NOACCESS);
170 				/* repeat in case of race condition */
171 				/* The region that we found has been snagged */
172 				/* by another thread */
173 			}
174 			while (gAddressBase == 0);
175 
176 			assert (new_address == (void*)gAddressBase);
177 
178 			gAllocatedSize = new_size;
179 
180 			if (!makeGmListElement ((void*)gAddressBase))
181 				return (void*)-1;
182 		}
183 		if ((size + gNextAddress) > AlignPage (gNextAddress))
184 		{
185 			void* res;
186 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
187 								(size + gNextAddress -
188 								 AlignPage (gNextAddress)),
189 								MEM_COMMIT, PAGE_READWRITE);
190 			if (!res)
191 				return (void*)-1;
192 		}
193 		tmp = (void*)gNextAddress;
194 		gNextAddress = (unsigned int)tmp + size;
195 		return tmp;
196 	}
197 	else if (size < 0)
198 	{
199 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
200 		/* Trim by releasing the virtual memory */
201 		if (alignedGoal >= gAddressBase)
202 		{
203 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
204 						 MEM_DECOMMIT);
205 			gNextAddress = gNextAddress + size;
206 			return (void*)gNextAddress;
207 		}
208 		else
209 		{
210 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
211 						 MEM_DECOMMIT);
212 			gNextAddress = gAddressBase;
213 			return (void*)-1;
214 		}
215 	}
216 	else
217 	{
218 		return (void*)gNextAddress;
219 	}
220 }
221 
222 #endif
223 
224 
225 
226 /*
227   Type declarations
228 */
229 
230 
231 struct malloc_chunk
232 {
233   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
234   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
235   struct malloc_chunk* fd;   /* double links -- used only if free. */
236   struct malloc_chunk* bk;
237 } __attribute__((__may_alias__)) ;
238 
239 typedef struct malloc_chunk* mchunkptr;
240 
241 /*
242 
243    malloc_chunk details:
244 
245     (The following includes lightly edited explanations by Colin Plumb.)
246 
247     Chunks of memory are maintained using a `boundary tag' method as
248     described in e.g., Knuth or Standish.  (See the paper by Paul
249     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
250     survey of such techniques.)  Sizes of free chunks are stored both
251     in the front of each chunk and at the end.  This makes
252     consolidating fragmented chunks into bigger chunks very fast.  The
253     size fields also hold bits representing whether chunks are free or
254     in use.
255 
256     An allocated chunk looks like this:
257 
258 
259     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
260 	    |             Size of previous chunk, if allocated            | |
261 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
262 	    |             Size of chunk, in bytes                         |P|
263       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
264 	    |             User data starts here...                          .
265 	    .                                                               .
266 	    .             (malloc_usable_space() bytes)                     .
267 	    .                                                               |
268 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
269 	    |             Size of chunk                                     |
270 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
271 
272 
273     Where "chunk" is the front of the chunk for the purpose of most of
274     the malloc code, but "mem" is the pointer that is returned to the
275     user.  "Nextchunk" is the beginning of the next contiguous chunk.
276 
277     Chunks always begin on even word boundries, so the mem portion
278     (which is returned to the user) is also on an even word boundary, and
279     thus double-word aligned.
280 
281     Free chunks are stored in circular doubly-linked lists, and look like this:
282 
283     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
284 	    |             Size of previous chunk                            |
285 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
286     `head:' |             Size of chunk, in bytes                         |P|
287       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
288 	    |             Forward pointer to next chunk in list             |
289 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
290 	    |             Back pointer to previous chunk in list            |
291 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
292 	    |             Unused space (may be 0 bytes long)                .
293 	    .                                                               .
294 	    .                                                               |
295 
296 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
297     `foot:' |             Size of chunk, in bytes                           |
298 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
299 
300     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
301     chunk size (which is always a multiple of two words), is an in-use
302     bit for the *previous* chunk.  If that bit is *clear*, then the
303     word before the current chunk size contains the previous chunk
304     size, and can be used to find the front of the previous chunk.
305     (The very first chunk allocated always has this bit set,
306     preventing access to non-existent (or non-owned) memory.)
307 
308     Note that the `foot' of the current chunk is actually represented
309     as the prev_size of the NEXT chunk. (This makes it easier to
310     deal with alignments etc).
311 
312     The two exceptions to all this are
313 
314      1. The special chunk `top', which doesn't bother using the
315 	trailing size field since there is no
316 	next contiguous chunk that would have to index off it. (After
317 	initialization, `top' is forced to always exist.  If it would
318 	become less than MINSIZE bytes long, it is replenished via
319 	malloc_extend_top.)
320 
321      2. Chunks allocated via mmap, which have the second-lowest-order
322 	bit (IS_MMAPPED) set in their size fields.  Because they are
323 	never merged or traversed from any other chunk, they have no
324 	foot size or inuse information.
325 
326     Available chunks are kept in any of several places (all declared below):
327 
328     * `av': An array of chunks serving as bin headers for consolidated
329        chunks. Each bin is doubly linked.  The bins are approximately
330        proportionally (log) spaced.  There are a lot of these bins
331        (128). This may look excessive, but works very well in
332        practice.  All procedures maintain the invariant that no
333        consolidated chunk physically borders another one. Chunks in
334        bins are kept in size order, with ties going to the
335        approximately least recently used chunk.
336 
337        The chunks in each bin are maintained in decreasing sorted order by
338        size.  This is irrelevant for the small bins, which all contain
339        the same-sized chunks, but facilitates best-fit allocation for
340        larger chunks. (These lists are just sequential. Keeping them in
341        order almost never requires enough traversal to warrant using
342        fancier ordered data structures.)  Chunks of the same size are
343        linked with the most recently freed at the front, and allocations
344        are taken from the back.  This results in LRU or FIFO allocation
345        order, which tends to give each chunk an equal opportunity to be
346        consolidated with adjacent freed chunks, resulting in larger free
347        chunks and less fragmentation.
348 
349     * `top': The top-most available chunk (i.e., the one bordering the
350        end of available memory) is treated specially. It is never
351        included in any bin, is used only if no other chunk is
352        available, and is released back to the system if it is very
353        large (see M_TRIM_THRESHOLD).
354 
355     * `last_remainder': A bin holding only the remainder of the
356        most recently split (non-top) chunk. This bin is checked
357        before other non-fitting chunks, so as to provide better
358        locality for runs of sequentially allocated chunks.
359 
360     *  Implicitly, through the host system's memory mapping tables.
361        If supported, requests greater than a threshold are usually
362        serviced via calls to mmap, and then later released via munmap.
363 
364 */
365 
366 /*  sizes, alignments */
367 
368 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
369 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
370 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
371 #define MINSIZE                (sizeof(struct malloc_chunk))
372 
373 /* conversion from malloc headers to user pointers, and back */
374 
375 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
376 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
377 
378 /* pad request bytes into a usable size */
379 
380 #define request2size(req) \
381  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
382   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
383    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
384 
385 /* Check if m has acceptable alignment */
386 
387 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
388 
389 
390 
391 
392 /*
393   Physical chunk operations
394 */
395 
396 
397 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
398 
399 #define PREV_INUSE 0x1
400 
401 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
402 
403 #define IS_MMAPPED 0x2
404 
405 /* Bits to mask off when extracting size */
406 
407 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
408 
409 
410 /* Ptr to next physical malloc_chunk. */
411 
412 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
413 
414 /* Ptr to previous physical malloc_chunk */
415 
416 #define prev_chunk(p)\
417    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
418 
419 
420 /* Treat space at ptr + offset as a chunk */
421 
422 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
423 
424 
425 
426 
427 /*
428   Dealing with use bits
429 */
430 
431 /* extract p's inuse bit */
432 
433 #define inuse(p)\
434 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
435 
436 /* extract inuse bit of previous chunk */
437 
438 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
439 
440 /* check for mmap()'ed chunk */
441 
442 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
443 
444 /* set/clear chunk as in use without otherwise disturbing */
445 
446 #define set_inuse(p)\
447 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
448 
449 #define clear_inuse(p)\
450 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
451 
452 /* check/set/clear inuse bits in known places */
453 
454 #define inuse_bit_at_offset(p, s)\
455  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
456 
457 #define set_inuse_bit_at_offset(p, s)\
458  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
459 
460 #define clear_inuse_bit_at_offset(p, s)\
461  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
462 
463 
464 
465 
466 /*
467   Dealing with size fields
468 */
469 
470 /* Get size, ignoring use bits */
471 
472 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
473 
474 /* Set size at head, without disturbing its use bit */
475 
476 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
477 
478 /* Set size/use ignoring previous bits in header */
479 
480 #define set_head(p, s)        ((p)->size = (s))
481 
482 /* Set size at footer (only when chunk is not in use) */
483 
484 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
485 
486 
487 
488 
489 
490 /*
491    Bins
492 
493     The bins, `av_' are an array of pairs of pointers serving as the
494     heads of (initially empty) doubly-linked lists of chunks, laid out
495     in a way so that each pair can be treated as if it were in a
496     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
497     and chunks are the same).
498 
499     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
500     8 bytes apart. Larger bins are approximately logarithmically
501     spaced. (See the table below.) The `av_' array is never mentioned
502     directly in the code, but instead via bin access macros.
503 
504     Bin layout:
505 
506     64 bins of size       8
507     32 bins of size      64
508     16 bins of size     512
509      8 bins of size    4096
510      4 bins of size   32768
511      2 bins of size  262144
512      1 bin  of size what's left
513 
514     There is actually a little bit of slop in the numbers in bin_index
515     for the sake of speed. This makes no difference elsewhere.
516 
517     The special chunks `top' and `last_remainder' get their own bins,
518     (this is implemented via yet more trickery with the av_ array),
519     although `top' is never properly linked to its bin since it is
520     always handled specially.
521 
522 */
523 
524 #define NAV             128   /* number of bins */
525 
526 typedef struct malloc_chunk* mbinptr;
527 
528 /* access macros */
529 
530 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
531 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
532 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
533 
534 /*
535    The first 2 bins are never indexed. The corresponding av_ cells are instead
536    used for bookkeeping. This is not to save space, but to simplify
537    indexing, maintain locality, and avoid some initialization tests.
538 */
539 
540 #define top            (av_[2])          /* The topmost chunk */
541 #define last_remainder (bin_at(1))       /* remainder from last split */
542 
543 
544 /*
545    Because top initially points to its own bin with initial
546    zero size, thus forcing extension on the first malloc request,
547    we avoid having any special code in malloc to check whether
548    it even exists yet. But we still need to in malloc_extend_top.
549 */
550 
551 #define initial_top    ((mchunkptr)(bin_at(0)))
552 
553 /* Helper macro to initialize bins */
554 
555 #define IAV(i)  bin_at(i), bin_at(i)
556 
557 static mbinptr av_[NAV * 2 + 2] = {
558  NULL, NULL,
559  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
560  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
561  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
562  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
563  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
564  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
565  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
566  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
567  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
568  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
569  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
570  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
571  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
572  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
573  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
574  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
575 };
576 
577 #ifdef CONFIG_NEEDS_MANUAL_RELOC
malloc_bin_reloc(void)578 static void malloc_bin_reloc(void)
579 {
580 	mbinptr *p = &av_[2];
581 	size_t i;
582 
583 	for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
584 		*p = (mbinptr)((ulong)*p + gd->reloc_off);
585 }
586 #else
malloc_bin_reloc(void)587 static inline void malloc_bin_reloc(void) {}
588 #endif
589 
590 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
591 static void malloc_init(void);
592 #endif
593 
594 ulong mem_malloc_start = 0;
595 ulong mem_malloc_end = 0;
596 ulong mem_malloc_brk = 0;
597 
sbrk(ptrdiff_t increment)598 void *sbrk(ptrdiff_t increment)
599 {
600 	ulong old = mem_malloc_brk;
601 	ulong new = old + increment;
602 
603 	/*
604 	 * if we are giving memory back make sure we clear it out since
605 	 * we set MORECORE_CLEARS to 1
606 	 */
607 	if (increment < 0)
608 		memset((void *)new, 0, -increment);
609 
610 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
611 		return (void *)MORECORE_FAILURE;
612 
613 	mem_malloc_brk = new;
614 
615 	return (void *)old;
616 }
617 
mem_malloc_init(ulong start,ulong size)618 void mem_malloc_init(ulong start, ulong size)
619 {
620 	mem_malloc_start = start;
621 	mem_malloc_end = start + size;
622 	mem_malloc_brk = start;
623 
624 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
625 	malloc_init();
626 #endif
627 
628 	debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
629 	      mem_malloc_end);
630 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
631 	memset((void *)mem_malloc_start, 0x0, size);
632 #endif
633 	malloc_bin_reloc();
634 }
635 
636 /* field-extraction macros */
637 
638 #define first(b) ((b)->fd)
639 #define last(b)  ((b)->bk)
640 
641 /*
642   Indexing into bins
643 */
644 
645 #define bin_index(sz)                                                          \
646 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
647  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
648  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
649  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
650  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
651  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
652 					  126)
653 /*
654   bins for chunks < 512 are all spaced 8 bytes apart, and hold
655   identically sized chunks. This is exploited in malloc.
656 */
657 
658 #define MAX_SMALLBIN         63
659 #define MAX_SMALLBIN_SIZE   512
660 #define SMALLBIN_WIDTH        8
661 
662 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
663 
664 /*
665    Requests are `small' if both the corresponding and the next bin are small
666 */
667 
668 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
669 
670 
671 
672 /*
673     To help compensate for the large number of bins, a one-level index
674     structure is used for bin-by-bin searching.  `binblocks' is a
675     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
676     have any (possibly) non-empty bins, so they can be skipped over
677     all at once during during traversals. The bits are NOT always
678     cleared as soon as all bins in a block are empty, but instead only
679     when all are noticed to be empty during traversal in malloc.
680 */
681 
682 #define BINBLOCKWIDTH     4   /* bins per block */
683 
684 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
685 #define binblocks_w     (av_[1])
686 
687 /* bin<->block macros */
688 
689 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
690 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
691 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
692 
693 
694 
695 
696 
697 /*  Other static bookkeeping data */
698 
699 /* variables holding tunable values */
700 
701 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
702 static unsigned long top_pad          = DEFAULT_TOP_PAD;
703 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
704 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
705 
706 /* The first value returned from sbrk */
707 static char* sbrk_base = (char*)(-1);
708 
709 /* The maximum memory obtained from system via sbrk */
710 static unsigned long max_sbrked_mem = 0;
711 
712 /* The maximum via either sbrk or mmap */
713 static unsigned long max_total_mem = 0;
714 
715 /* internal working copy of mallinfo */
716 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
717 
718 /* The total memory obtained from system via sbrk */
719 #define sbrked_mem  (current_mallinfo.arena)
720 
721 /* Tracking mmaps */
722 
723 #ifdef DEBUG
724 static unsigned int n_mmaps = 0;
725 #endif	/* DEBUG */
726 static unsigned long mmapped_mem = 0;
727 #if HAVE_MMAP
728 static unsigned int max_n_mmaps = 0;
729 static unsigned long max_mmapped_mem = 0;
730 #endif
731 
732 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
malloc_init(void)733 static void malloc_init(void)
734 {
735 	int i, j;
736 
737 	debug("bins (av_ array) are at %p\n", (void *)av_);
738 
739 	av_[0] = NULL; av_[1] = NULL;
740 	for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
741 		av_[i] = bin_at(j - 2);
742 		av_[i + 1] = bin_at(j - 2);
743 
744 		/* Just print the first few bins so that
745 		 * we can see there are alright.
746 		 */
747 		if (i < 10)
748 			debug("av_[%d]=%lx av_[%d]=%lx\n",
749 			      i, (ulong)av_[i],
750 			      i + 1, (ulong)av_[i + 1]);
751 	}
752 
753 	/* Init the static bookkeeping as well */
754 	sbrk_base = (char *)(-1);
755 	max_sbrked_mem = 0;
756 	max_total_mem = 0;
757 #ifdef DEBUG
758 	memset((void *)&current_mallinfo, 0, sizeof(struct mallinfo));
759 #endif
760 }
761 #endif
762 
763 /*
764   Debugging support
765 */
766 
767 #ifdef DEBUG
768 
769 
770 /*
771   These routines make a number of assertions about the states
772   of data structures that should be true at all times. If any
773   are not true, it's very likely that a user program has somehow
774   trashed memory. (It's also possible that there is a coding error
775   in malloc. In which case, please report it!)
776 */
777 
778 #if __STD_C
do_check_chunk(mchunkptr p)779 static void do_check_chunk(mchunkptr p)
780 #else
781 static void do_check_chunk(p) mchunkptr p;
782 #endif
783 {
784   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
785 
786   /* No checkable chunk is mmapped */
787   assert(!chunk_is_mmapped(p));
788 
789   /* Check for legal address ... */
790   assert((char*)p >= sbrk_base);
791   if (p != top)
792     assert((char*)p + sz <= (char*)top);
793   else
794     assert((char*)p + sz <= sbrk_base + sbrked_mem);
795 
796 }
797 
798 
799 #if __STD_C
do_check_free_chunk(mchunkptr p)800 static void do_check_free_chunk(mchunkptr p)
801 #else
802 static void do_check_free_chunk(p) mchunkptr p;
803 #endif
804 {
805   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
806   mchunkptr next = chunk_at_offset(p, sz);
807 
808   do_check_chunk(p);
809 
810   /* Check whether it claims to be free ... */
811   assert(!inuse(p));
812 
813   /* Unless a special marker, must have OK fields */
814   if ((long)sz >= (long)MINSIZE)
815   {
816     assert((sz & MALLOC_ALIGN_MASK) == 0);
817     assert(aligned_OK(chunk2mem(p)));
818     /* ... matching footer field */
819     assert(next->prev_size == sz);
820     /* ... and is fully consolidated */
821     assert(prev_inuse(p));
822     assert (next == top || inuse(next));
823 
824     /* ... and has minimally sane links */
825     assert(p->fd->bk == p);
826     assert(p->bk->fd == p);
827   }
828   else /* markers are always of size SIZE_SZ */
829     assert(sz == SIZE_SZ);
830 }
831 
832 #if __STD_C
do_check_inuse_chunk(mchunkptr p)833 static void do_check_inuse_chunk(mchunkptr p)
834 #else
835 static void do_check_inuse_chunk(p) mchunkptr p;
836 #endif
837 {
838   mchunkptr next = next_chunk(p);
839   do_check_chunk(p);
840 
841   /* Check whether it claims to be in use ... */
842   assert(inuse(p));
843 
844   /* ... and is surrounded by OK chunks.
845     Since more things can be checked with free chunks than inuse ones,
846     if an inuse chunk borders them and debug is on, it's worth doing them.
847   */
848   if (!prev_inuse(p))
849   {
850     mchunkptr prv = prev_chunk(p);
851     assert(next_chunk(prv) == p);
852     do_check_free_chunk(prv);
853   }
854   if (next == top)
855   {
856     assert(prev_inuse(next));
857     assert(chunksize(next) >= MINSIZE);
858   }
859   else if (!inuse(next))
860     do_check_free_chunk(next);
861 
862 }
863 
864 #if __STD_C
do_check_malloced_chunk(mchunkptr p,INTERNAL_SIZE_T s)865 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
866 #else
867 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
868 #endif
869 {
870   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
871   long room = sz - s;
872 
873   do_check_inuse_chunk(p);
874 
875   /* Legal size ... */
876   assert((long)sz >= (long)MINSIZE);
877   assert((sz & MALLOC_ALIGN_MASK) == 0);
878   assert(room >= 0);
879   assert(room < (long)MINSIZE);
880 
881   /* ... and alignment */
882   assert(aligned_OK(chunk2mem(p)));
883 
884 
885   /* ... and was allocated at front of an available chunk */
886   assert(prev_inuse(p));
887 
888 }
889 
890 
891 #define check_free_chunk(P)  do_check_free_chunk(P)
892 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
893 #define check_chunk(P) do_check_chunk(P)
894 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
895 #else
896 #define check_free_chunk(P)
897 #define check_inuse_chunk(P)
898 #define check_chunk(P)
899 #define check_malloced_chunk(P,N)
900 #endif
901 
902 
903 
904 /*
905   Macro-based internal utilities
906 */
907 
908 
909 /*
910   Linking chunks in bin lists.
911   Call these only with variables, not arbitrary expressions, as arguments.
912 */
913 
914 /*
915   Place chunk p of size s in its bin, in size order,
916   putting it ahead of others of same size.
917 */
918 
919 
920 #define frontlink(P, S, IDX, BK, FD)                                          \
921 {                                                                             \
922   if (S < MAX_SMALLBIN_SIZE)                                                  \
923   {                                                                           \
924     IDX = smallbin_index(S);                                                  \
925     mark_binblock(IDX);                                                       \
926     BK = bin_at(IDX);                                                         \
927     FD = BK->fd;                                                              \
928     P->bk = BK;                                                               \
929     P->fd = FD;                                                               \
930     FD->bk = BK->fd = P;                                                      \
931   }                                                                           \
932   else                                                                        \
933   {                                                                           \
934     IDX = bin_index(S);                                                       \
935     BK = bin_at(IDX);                                                         \
936     FD = BK->fd;                                                              \
937     if (FD == BK) mark_binblock(IDX);                                         \
938     else                                                                      \
939     {                                                                         \
940       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
941       BK = FD->bk;                                                            \
942     }                                                                         \
943     P->bk = BK;                                                               \
944     P->fd = FD;                                                               \
945     FD->bk = BK->fd = P;                                                      \
946   }                                                                           \
947 }
948 
949 
950 /* take a chunk off a list */
951 
952 #define unlink(P, BK, FD)                                                     \
953 {                                                                             \
954   BK = P->bk;                                                                 \
955   FD = P->fd;                                                                 \
956   FD->bk = BK;                                                                \
957   BK->fd = FD;                                                                \
958 }                                                                             \
959 
960 /* Place p as the last remainder */
961 
962 #define link_last_remainder(P)                                                \
963 {                                                                             \
964   last_remainder->fd = last_remainder->bk =  P;                               \
965   P->fd = P->bk = last_remainder;                                             \
966 }
967 
968 /* Clear the last_remainder bin */
969 
970 #define clear_last_remainder \
971   (last_remainder->fd = last_remainder->bk = last_remainder)
972 
973 
974 
975 
976 
977 /* Routines dealing with mmap(). */
978 
979 #if HAVE_MMAP
980 
981 #if __STD_C
mmap_chunk(size_t size)982 static mchunkptr mmap_chunk(size_t size)
983 #else
984 static mchunkptr mmap_chunk(size) size_t size;
985 #endif
986 {
987   size_t page_mask = malloc_getpagesize - 1;
988   mchunkptr p;
989 
990 #ifndef MAP_ANONYMOUS
991   static int fd = -1;
992 #endif
993 
994   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
995 
996   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
997    * there is no following chunk whose prev_size field could be used.
998    */
999   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1000 
1001 #ifdef MAP_ANONYMOUS
1002   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1003 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1004 #else /* !MAP_ANONYMOUS */
1005   if (fd < 0)
1006   {
1007     fd = open("/dev/zero", O_RDWR);
1008     if(fd < 0) return 0;
1009   }
1010   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1011 #endif
1012 
1013   if(p == (mchunkptr)-1) return 0;
1014 
1015   n_mmaps++;
1016   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1017 
1018   /* We demand that eight bytes into a page must be 8-byte aligned. */
1019   assert(aligned_OK(chunk2mem(p)));
1020 
1021   /* The offset to the start of the mmapped region is stored
1022    * in the prev_size field of the chunk; normally it is zero,
1023    * but that can be changed in memalign().
1024    */
1025   p->prev_size = 0;
1026   set_head(p, size|IS_MMAPPED);
1027 
1028   mmapped_mem += size;
1029   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1030     max_mmapped_mem = mmapped_mem;
1031   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1032     max_total_mem = mmapped_mem + sbrked_mem;
1033   return p;
1034 }
1035 
1036 #if __STD_C
munmap_chunk(mchunkptr p)1037 static void munmap_chunk(mchunkptr p)
1038 #else
1039 static void munmap_chunk(p) mchunkptr p;
1040 #endif
1041 {
1042   INTERNAL_SIZE_T size = chunksize(p);
1043   int ret;
1044 
1045   assert (chunk_is_mmapped(p));
1046   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1047   assert((n_mmaps > 0));
1048   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1049 
1050   n_mmaps--;
1051   mmapped_mem -= (size + p->prev_size);
1052 
1053   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1054 
1055   /* munmap returns non-zero on failure */
1056   assert(ret == 0);
1057 }
1058 
1059 #if HAVE_MREMAP
1060 
1061 #if __STD_C
mremap_chunk(mchunkptr p,size_t new_size)1062 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1063 #else
1064 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1065 #endif
1066 {
1067   size_t page_mask = malloc_getpagesize - 1;
1068   INTERNAL_SIZE_T offset = p->prev_size;
1069   INTERNAL_SIZE_T size = chunksize(p);
1070   char *cp;
1071 
1072   assert (chunk_is_mmapped(p));
1073   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1074   assert((n_mmaps > 0));
1075   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1076 
1077   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1078   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1079 
1080   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1081 
1082   if (cp == (char *)-1) return 0;
1083 
1084   p = (mchunkptr)(cp + offset);
1085 
1086   assert(aligned_OK(chunk2mem(p)));
1087 
1088   assert((p->prev_size == offset));
1089   set_head(p, (new_size - offset)|IS_MMAPPED);
1090 
1091   mmapped_mem -= size + offset;
1092   mmapped_mem += new_size;
1093   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1094     max_mmapped_mem = mmapped_mem;
1095   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1096     max_total_mem = mmapped_mem + sbrked_mem;
1097   return p;
1098 }
1099 
1100 #endif /* HAVE_MREMAP */
1101 
1102 #endif /* HAVE_MMAP */
1103 
1104 /*
1105   Extend the top-most chunk by obtaining memory from system.
1106   Main interface to sbrk (but see also malloc_trim).
1107 */
1108 
1109 #if __STD_C
malloc_extend_top(INTERNAL_SIZE_T nb)1110 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1111 #else
1112 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1113 #endif
1114 {
1115   char*     brk;                  /* return value from sbrk */
1116   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1117   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1118   char*     new_brk;              /* return of 2nd sbrk call */
1119   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1120 
1121   mchunkptr old_top     = top;  /* Record state of old top */
1122   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1123   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1124 
1125   /* Pad request with top_pad plus minimal overhead */
1126 
1127   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1128   unsigned long pagesz    = malloc_getpagesize;
1129 
1130   /* If not the first time through, round to preserve page boundary */
1131   /* Otherwise, we need to correct to a page size below anyway. */
1132   /* (We also correct below if an intervening foreign sbrk call.) */
1133 
1134   if (sbrk_base != (char*)(-1))
1135     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1136 
1137   brk = (char*)(MORECORE (sbrk_size));
1138 
1139   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1140   if (brk == (char*)(MORECORE_FAILURE) ||
1141       (brk < old_end && old_top != initial_top))
1142     return;
1143 
1144   sbrked_mem += sbrk_size;
1145 
1146   if (brk == old_end) /* can just add bytes to current top */
1147   {
1148     top_size = sbrk_size + old_top_size;
1149     set_head(top, top_size | PREV_INUSE);
1150   }
1151   else
1152   {
1153     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
1154       sbrk_base = brk;
1155     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
1156       sbrked_mem += brk - (char*)old_end;
1157 
1158     /* Guarantee alignment of first new chunk made from this space */
1159     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1160     if (front_misalign > 0)
1161     {
1162       correction = (MALLOC_ALIGNMENT) - front_misalign;
1163       brk += correction;
1164     }
1165     else
1166       correction = 0;
1167 
1168     /* Guarantee the next brk will be at a page boundary */
1169 
1170     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1171 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1172 
1173     /* Allocate correction */
1174     new_brk = (char*)(MORECORE (correction));
1175     if (new_brk == (char*)(MORECORE_FAILURE)) return;
1176 
1177     sbrked_mem += correction;
1178 
1179     top = (mchunkptr)brk;
1180     top_size = new_brk - brk + correction;
1181     set_head(top, top_size | PREV_INUSE);
1182 
1183     if (old_top != initial_top)
1184     {
1185 
1186       /* There must have been an intervening foreign sbrk call. */
1187       /* A double fencepost is necessary to prevent consolidation */
1188 
1189       /* If not enough space to do this, then user did something very wrong */
1190       if (old_top_size < MINSIZE)
1191       {
1192 	set_head(top, PREV_INUSE); /* will force null return from malloc */
1193 	return;
1194       }
1195 
1196       /* Also keep size a multiple of MALLOC_ALIGNMENT */
1197       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1198       set_head_size(old_top, old_top_size);
1199       chunk_at_offset(old_top, old_top_size          )->size =
1200 	SIZE_SZ|PREV_INUSE;
1201       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1202 	SIZE_SZ|PREV_INUSE;
1203       /* If possible, release the rest. */
1204       if (old_top_size >= MINSIZE)
1205 	fREe(chunk2mem(old_top));
1206     }
1207   }
1208 
1209   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1210     max_sbrked_mem = sbrked_mem;
1211   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1212     max_total_mem = mmapped_mem + sbrked_mem;
1213 
1214   /* We always land on a page boundary */
1215   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1216 }
1217 
1218 
1219 
1220 
1221 /* Main public routines */
1222 
1223 
1224 /*
1225   Malloc Algorthim:
1226 
1227     The requested size is first converted into a usable form, `nb'.
1228     This currently means to add 4 bytes overhead plus possibly more to
1229     obtain 8-byte alignment and/or to obtain a size of at least
1230     MINSIZE (currently 16 bytes), the smallest allocatable size.
1231     (All fits are considered `exact' if they are within MINSIZE bytes.)
1232 
1233     From there, the first successful of the following steps is taken:
1234 
1235       1. The bin corresponding to the request size is scanned, and if
1236 	 a chunk of exactly the right size is found, it is taken.
1237 
1238       2. The most recently remaindered chunk is used if it is big
1239 	 enough.  This is a form of (roving) first fit, used only in
1240 	 the absence of exact fits. Runs of consecutive requests use
1241 	 the remainder of the chunk used for the previous such request
1242 	 whenever possible. This limited use of a first-fit style
1243 	 allocation strategy tends to give contiguous chunks
1244 	 coextensive lifetimes, which improves locality and can reduce
1245 	 fragmentation in the long run.
1246 
1247       3. Other bins are scanned in increasing size order, using a
1248 	 chunk big enough to fulfill the request, and splitting off
1249 	 any remainder.  This search is strictly by best-fit; i.e.,
1250 	 the smallest (with ties going to approximately the least
1251 	 recently used) chunk that fits is selected.
1252 
1253       4. If large enough, the chunk bordering the end of memory
1254 	 (`top') is split off. (This use of `top' is in accord with
1255 	 the best-fit search rule.  In effect, `top' is treated as
1256 	 larger (and thus less well fitting) than any other available
1257 	 chunk since it can be extended to be as large as necessary
1258 	 (up to system limitations).
1259 
1260       5. If the request size meets the mmap threshold and the
1261 	 system supports mmap, and there are few enough currently
1262 	 allocated mmapped regions, and a call to mmap succeeds,
1263 	 the request is allocated via direct memory mapping.
1264 
1265       6. Otherwise, the top of memory is extended by
1266 	 obtaining more space from the system (normally using sbrk,
1267 	 but definable to anything else via the MORECORE macro).
1268 	 Memory is gathered from the system (in system page-sized
1269 	 units) in a way that allows chunks obtained across different
1270 	 sbrk calls to be consolidated, but does not require
1271 	 contiguous memory. Thus, it should be safe to intersperse
1272 	 mallocs with other sbrk calls.
1273 
1274 
1275       All allocations are made from the the `lowest' part of any found
1276       chunk. (The implementation invariant is that prev_inuse is
1277       always true of any allocated chunk; i.e., that each allocated
1278       chunk borders either a previously allocated and still in-use chunk,
1279       or the base of its memory arena.)
1280 
1281 */
1282 
1283 #if __STD_C
mALLOc(size_t bytes)1284 Void_t* mALLOc(size_t bytes)
1285 #else
1286 Void_t* mALLOc(bytes) size_t bytes;
1287 #endif
1288 {
1289   mchunkptr victim;                  /* inspected/selected chunk */
1290   INTERNAL_SIZE_T victim_size;       /* its size */
1291   int       idx;                     /* index for bin traversal */
1292   mbinptr   bin;                     /* associated bin */
1293   mchunkptr remainder;               /* remainder from a split */
1294   long      remainder_size;          /* its size */
1295   int       remainder_index;         /* its bin index */
1296   unsigned long block;               /* block traverser bit */
1297   int       startidx;                /* first bin of a traversed block */
1298   mchunkptr fwd;                     /* misc temp for linking */
1299   mchunkptr bck;                     /* misc temp for linking */
1300   mbinptr q;                         /* misc temp */
1301 
1302   INTERNAL_SIZE_T nb;
1303 
1304 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1305 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1306 		return malloc_simple(bytes);
1307 #endif
1308 
1309   /* check if mem_malloc_init() was run */
1310   if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1311     /* not initialized yet */
1312     return NULL;
1313   }
1314 
1315   if ((long)bytes < 0) return NULL;
1316 
1317   nb = request2size(bytes);  /* padded request size; */
1318 
1319   /* Check for exact match in a bin */
1320 
1321   if (is_small_request(nb))  /* Faster version for small requests */
1322   {
1323     idx = smallbin_index(nb);
1324 
1325     /* No traversal or size check necessary for small bins.  */
1326 
1327     q = bin_at(idx);
1328     victim = last(q);
1329 
1330     /* Also scan the next one, since it would have a remainder < MINSIZE */
1331     if (victim == q)
1332     {
1333       q = next_bin(q);
1334       victim = last(q);
1335     }
1336     if (victim != q)
1337     {
1338       victim_size = chunksize(victim);
1339       unlink(victim, bck, fwd);
1340       set_inuse_bit_at_offset(victim, victim_size);
1341       check_malloced_chunk(victim, nb);
1342       return chunk2mem(victim);
1343     }
1344 
1345     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1346 
1347   }
1348   else
1349   {
1350     idx = bin_index(nb);
1351     bin = bin_at(idx);
1352 
1353     for (victim = last(bin); victim != bin; victim = victim->bk)
1354     {
1355       victim_size = chunksize(victim);
1356       remainder_size = victim_size - nb;
1357 
1358       if (remainder_size >= (long)MINSIZE) /* too big */
1359       {
1360 	--idx; /* adjust to rescan below after checking last remainder */
1361 	break;
1362       }
1363 
1364       else if (remainder_size >= 0) /* exact fit */
1365       {
1366 	unlink(victim, bck, fwd);
1367 	set_inuse_bit_at_offset(victim, victim_size);
1368 	check_malloced_chunk(victim, nb);
1369 	return chunk2mem(victim);
1370       }
1371     }
1372 
1373     ++idx;
1374 
1375   }
1376 
1377   /* Try to use the last split-off remainder */
1378 
1379   if ( (victim = last_remainder->fd) != last_remainder)
1380   {
1381     victim_size = chunksize(victim);
1382     remainder_size = victim_size - nb;
1383 
1384     if (remainder_size >= (long)MINSIZE) /* re-split */
1385     {
1386       remainder = chunk_at_offset(victim, nb);
1387       set_head(victim, nb | PREV_INUSE);
1388       link_last_remainder(remainder);
1389       set_head(remainder, remainder_size | PREV_INUSE);
1390       set_foot(remainder, remainder_size);
1391       check_malloced_chunk(victim, nb);
1392       return chunk2mem(victim);
1393     }
1394 
1395     clear_last_remainder;
1396 
1397     if (remainder_size >= 0)  /* exhaust */
1398     {
1399       set_inuse_bit_at_offset(victim, victim_size);
1400       check_malloced_chunk(victim, nb);
1401       return chunk2mem(victim);
1402     }
1403 
1404     /* Else place in bin */
1405 
1406     frontlink(victim, victim_size, remainder_index, bck, fwd);
1407   }
1408 
1409   /*
1410      If there are any possibly nonempty big-enough blocks,
1411      search for best fitting chunk by scanning bins in blockwidth units.
1412   */
1413 
1414   if ( (block = idx2binblock(idx)) <= binblocks_r)
1415   {
1416 
1417     /* Get to the first marked block */
1418 
1419     if ( (block & binblocks_r) == 0)
1420     {
1421       /* force to an even block boundary */
1422       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1423       block <<= 1;
1424       while ((block & binblocks_r) == 0)
1425       {
1426 	idx += BINBLOCKWIDTH;
1427 	block <<= 1;
1428       }
1429     }
1430 
1431     /* For each possibly nonempty block ... */
1432     for (;;)
1433     {
1434       startidx = idx;          /* (track incomplete blocks) */
1435       q = bin = bin_at(idx);
1436 
1437       /* For each bin in this block ... */
1438       do
1439       {
1440 	/* Find and use first big enough chunk ... */
1441 
1442 	for (victim = last(bin); victim != bin; victim = victim->bk)
1443 	{
1444 	  victim_size = chunksize(victim);
1445 	  remainder_size = victim_size - nb;
1446 
1447 	  if (remainder_size >= (long)MINSIZE) /* split */
1448 	  {
1449 	    remainder = chunk_at_offset(victim, nb);
1450 	    set_head(victim, nb | PREV_INUSE);
1451 	    unlink(victim, bck, fwd);
1452 	    link_last_remainder(remainder);
1453 	    set_head(remainder, remainder_size | PREV_INUSE);
1454 	    set_foot(remainder, remainder_size);
1455 	    check_malloced_chunk(victim, nb);
1456 	    return chunk2mem(victim);
1457 	  }
1458 
1459 	  else if (remainder_size >= 0)  /* take */
1460 	  {
1461 	    set_inuse_bit_at_offset(victim, victim_size);
1462 	    unlink(victim, bck, fwd);
1463 	    check_malloced_chunk(victim, nb);
1464 	    return chunk2mem(victim);
1465 	  }
1466 
1467 	}
1468 
1469        bin = next_bin(bin);
1470 
1471       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1472 
1473       /* Clear out the block bit. */
1474 
1475       do   /* Possibly backtrack to try to clear a partial block */
1476       {
1477 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1478 	{
1479 	  av_[1] = (mbinptr)(binblocks_r & ~block);
1480 	  break;
1481 	}
1482 	--startidx;
1483        q = prev_bin(q);
1484       } while (first(q) == q);
1485 
1486       /* Get to the next possibly nonempty block */
1487 
1488       if ( (block <<= 1) <= binblocks_r && (block != 0) )
1489       {
1490 	while ((block & binblocks_r) == 0)
1491 	{
1492 	  idx += BINBLOCKWIDTH;
1493 	  block <<= 1;
1494 	}
1495       }
1496       else
1497 	break;
1498     }
1499   }
1500 
1501 
1502   /* Try to use top chunk */
1503 
1504   /* Require that there be a remainder, ensuring top always exists  */
1505   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1506   {
1507 
1508 #if HAVE_MMAP
1509     /* If big and would otherwise need to extend, try to use mmap instead */
1510     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1511 	(victim = mmap_chunk(nb)))
1512       return chunk2mem(victim);
1513 #endif
1514 
1515     /* Try to extend */
1516     malloc_extend_top(nb);
1517     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1518       return NULL; /* propagate failure */
1519   }
1520 
1521   victim = top;
1522   set_head(victim, nb | PREV_INUSE);
1523   top = chunk_at_offset(victim, nb);
1524   set_head(top, remainder_size | PREV_INUSE);
1525   check_malloced_chunk(victim, nb);
1526   return chunk2mem(victim);
1527 
1528 }
1529 
1530 
1531 
1532 
1533 /*
1534 
1535   free() algorithm :
1536 
1537     cases:
1538 
1539        1. free(0) has no effect.
1540 
1541        2. If the chunk was allocated via mmap, it is release via munmap().
1542 
1543        3. If a returned chunk borders the current high end of memory,
1544 	  it is consolidated into the top, and if the total unused
1545 	  topmost memory exceeds the trim threshold, malloc_trim is
1546 	  called.
1547 
1548        4. Other chunks are consolidated as they arrive, and
1549 	  placed in corresponding bins. (This includes the case of
1550 	  consolidating with the current `last_remainder').
1551 
1552 */
1553 
1554 
1555 #if __STD_C
fREe(Void_t * mem)1556 void fREe(Void_t* mem)
1557 #else
1558 void fREe(mem) Void_t* mem;
1559 #endif
1560 {
1561   mchunkptr p;         /* chunk corresponding to mem */
1562   INTERNAL_SIZE_T hd;  /* its head field */
1563   INTERNAL_SIZE_T sz;  /* its size */
1564   int       idx;       /* its bin index */
1565   mchunkptr next;      /* next contiguous chunk */
1566   INTERNAL_SIZE_T nextsz; /* its size */
1567   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1568   mchunkptr bck;       /* misc temp for linking */
1569   mchunkptr fwd;       /* misc temp for linking */
1570   int       islr;      /* track whether merging with last_remainder */
1571 
1572 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1573 	/* free() is a no-op - all the memory will be freed on relocation */
1574 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1575 		return;
1576 #endif
1577 
1578   if (mem == NULL)                              /* free(0) has no effect */
1579     return;
1580 
1581   p = mem2chunk(mem);
1582   hd = p->size;
1583 
1584 #if HAVE_MMAP
1585   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
1586   {
1587     munmap_chunk(p);
1588     return;
1589   }
1590 #endif
1591 
1592   check_inuse_chunk(p);
1593 
1594   sz = hd & ~PREV_INUSE;
1595   next = chunk_at_offset(p, sz);
1596   nextsz = chunksize(next);
1597 
1598   if (next == top)                            /* merge with top */
1599   {
1600     sz += nextsz;
1601 
1602     if (!(hd & PREV_INUSE))                    /* consolidate backward */
1603     {
1604       prevsz = p->prev_size;
1605       p = chunk_at_offset(p, -((long) prevsz));
1606       sz += prevsz;
1607       unlink(p, bck, fwd);
1608     }
1609 
1610     set_head(p, sz | PREV_INUSE);
1611     top = p;
1612     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1613       malloc_trim(top_pad);
1614     return;
1615   }
1616 
1617   set_head(next, nextsz);                    /* clear inuse bit */
1618 
1619   islr = 0;
1620 
1621   if (!(hd & PREV_INUSE))                    /* consolidate backward */
1622   {
1623     prevsz = p->prev_size;
1624     p = chunk_at_offset(p, -((long) prevsz));
1625     sz += prevsz;
1626 
1627     if (p->fd == last_remainder)             /* keep as last_remainder */
1628       islr = 1;
1629     else
1630       unlink(p, bck, fwd);
1631   }
1632 
1633   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
1634   {
1635     sz += nextsz;
1636 
1637     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
1638     {
1639       islr = 1;
1640       link_last_remainder(p);
1641     }
1642     else
1643       unlink(next, bck, fwd);
1644   }
1645 
1646 
1647   set_head(p, sz | PREV_INUSE);
1648   set_foot(p, sz);
1649   if (!islr)
1650     frontlink(p, sz, idx, bck, fwd);
1651 }
1652 
1653 
1654 
1655 
1656 
1657 /*
1658 
1659   Realloc algorithm:
1660 
1661     Chunks that were obtained via mmap cannot be extended or shrunk
1662     unless HAVE_MREMAP is defined, in which case mremap is used.
1663     Otherwise, if their reallocation is for additional space, they are
1664     copied.  If for less, they are just left alone.
1665 
1666     Otherwise, if the reallocation is for additional space, and the
1667     chunk can be extended, it is, else a malloc-copy-free sequence is
1668     taken.  There are several different ways that a chunk could be
1669     extended. All are tried:
1670 
1671        * Extending forward into following adjacent free chunk.
1672        * Shifting backwards, joining preceding adjacent space
1673        * Both shifting backwards and extending forward.
1674        * Extending into newly sbrked space
1675 
1676     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1677     size argument of zero (re)allocates a minimum-sized chunk.
1678 
1679     If the reallocation is for less space, and the new request is for
1680     a `small' (<512 bytes) size, then the newly unused space is lopped
1681     off and freed.
1682 
1683     The old unix realloc convention of allowing the last-free'd chunk
1684     to be used as an argument to realloc is no longer supported.
1685     I don't know of any programs still relying on this feature,
1686     and allowing it would also allow too many other incorrect
1687     usages of realloc to be sensible.
1688 
1689 
1690 */
1691 
1692 
1693 #if __STD_C
rEALLOc(Void_t * oldmem,size_t bytes)1694 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1695 #else
1696 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1697 #endif
1698 {
1699   INTERNAL_SIZE_T    nb;      /* padded request size */
1700 
1701   mchunkptr oldp;             /* chunk corresponding to oldmem */
1702   INTERNAL_SIZE_T    oldsize; /* its size */
1703 
1704   mchunkptr newp;             /* chunk to return */
1705   INTERNAL_SIZE_T    newsize; /* its size */
1706   Void_t*   newmem;           /* corresponding user mem */
1707 
1708   mchunkptr next;             /* next contiguous chunk after oldp */
1709   INTERNAL_SIZE_T  nextsize;  /* its size */
1710 
1711   mchunkptr prev;             /* previous contiguous chunk before oldp */
1712   INTERNAL_SIZE_T  prevsize;  /* its size */
1713 
1714   mchunkptr remainder;        /* holds split off extra space from newp */
1715   INTERNAL_SIZE_T  remainder_size;   /* its size */
1716 
1717   mchunkptr bck;              /* misc temp for linking */
1718   mchunkptr fwd;              /* misc temp for linking */
1719 
1720 #ifdef REALLOC_ZERO_BYTES_FREES
1721   if (!bytes) {
1722 	fREe(oldmem);
1723 	return NULL;
1724   }
1725 #endif
1726 
1727   if ((long)bytes < 0) return NULL;
1728 
1729   /* realloc of null is supposed to be same as malloc */
1730   if (oldmem == NULL) return mALLOc(bytes);
1731 
1732 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1733 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1734 		/* This is harder to support and should not be needed */
1735 		panic("pre-reloc realloc() is not supported");
1736 	}
1737 #endif
1738 
1739   newp    = oldp    = mem2chunk(oldmem);
1740   newsize = oldsize = chunksize(oldp);
1741 
1742 
1743   nb = request2size(bytes);
1744 
1745 #if HAVE_MMAP
1746   if (chunk_is_mmapped(oldp))
1747   {
1748 #if HAVE_MREMAP
1749     newp = mremap_chunk(oldp, nb);
1750     if(newp) return chunk2mem(newp);
1751 #endif
1752     /* Note the extra SIZE_SZ overhead. */
1753     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1754     /* Must alloc, copy, free. */
1755     newmem = mALLOc(bytes);
1756     if (!newmem)
1757 	return NULL; /* propagate failure */
1758     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1759     munmap_chunk(oldp);
1760     return newmem;
1761   }
1762 #endif
1763 
1764   check_inuse_chunk(oldp);
1765 
1766   if ((long)(oldsize) < (long)(nb))
1767   {
1768 
1769     /* Try expanding forward */
1770 
1771     next = chunk_at_offset(oldp, oldsize);
1772     if (next == top || !inuse(next))
1773     {
1774       nextsize = chunksize(next);
1775 
1776       /* Forward into top only if a remainder */
1777       if (next == top)
1778       {
1779 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1780 	{
1781 	  newsize += nextsize;
1782 	  top = chunk_at_offset(oldp, nb);
1783 	  set_head(top, (newsize - nb) | PREV_INUSE);
1784 	  set_head_size(oldp, nb);
1785 	  return chunk2mem(oldp);
1786 	}
1787       }
1788 
1789       /* Forward into next chunk */
1790       else if (((long)(nextsize + newsize) >= (long)(nb)))
1791       {
1792 	unlink(next, bck, fwd);
1793 	newsize  += nextsize;
1794 	goto split;
1795       }
1796     }
1797     else
1798     {
1799       next = NULL;
1800       nextsize = 0;
1801     }
1802 
1803     /* Try shifting backwards. */
1804 
1805     if (!prev_inuse(oldp))
1806     {
1807       prev = prev_chunk(oldp);
1808       prevsize = chunksize(prev);
1809 
1810       /* try forward + backward first to save a later consolidation */
1811 
1812       if (next != NULL)
1813       {
1814 	/* into top */
1815 	if (next == top)
1816 	{
1817 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1818 	  {
1819 	    unlink(prev, bck, fwd);
1820 	    newp = prev;
1821 	    newsize += prevsize + nextsize;
1822 	    newmem = chunk2mem(newp);
1823 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1824 	    top = chunk_at_offset(newp, nb);
1825 	    set_head(top, (newsize - nb) | PREV_INUSE);
1826 	    set_head_size(newp, nb);
1827 	    return newmem;
1828 	  }
1829 	}
1830 
1831 	/* into next chunk */
1832 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1833 	{
1834 	  unlink(next, bck, fwd);
1835 	  unlink(prev, bck, fwd);
1836 	  newp = prev;
1837 	  newsize += nextsize + prevsize;
1838 	  newmem = chunk2mem(newp);
1839 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1840 	  goto split;
1841 	}
1842       }
1843 
1844       /* backward only */
1845       if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1846       {
1847 	unlink(prev, bck, fwd);
1848 	newp = prev;
1849 	newsize += prevsize;
1850 	newmem = chunk2mem(newp);
1851 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1852 	goto split;
1853       }
1854     }
1855 
1856     /* Must allocate */
1857 
1858     newmem = mALLOc (bytes);
1859 
1860     if (newmem == NULL)  /* propagate failure */
1861       return NULL;
1862 
1863     /* Avoid copy if newp is next chunk after oldp. */
1864     /* (This can only happen when new chunk is sbrk'ed.) */
1865 
1866     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1867     {
1868       newsize += chunksize(newp);
1869       newp = oldp;
1870       goto split;
1871     }
1872 
1873     /* Otherwise copy, free, and exit */
1874     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1875     fREe(oldmem);
1876     return newmem;
1877   }
1878 
1879 
1880  split:  /* split off extra room in old or expanded chunk */
1881 
1882   if (newsize - nb >= MINSIZE) /* split off remainder */
1883   {
1884     remainder = chunk_at_offset(newp, nb);
1885     remainder_size = newsize - nb;
1886     set_head_size(newp, nb);
1887     set_head(remainder, remainder_size | PREV_INUSE);
1888     set_inuse_bit_at_offset(remainder, remainder_size);
1889     fREe(chunk2mem(remainder)); /* let free() deal with it */
1890   }
1891   else
1892   {
1893     set_head_size(newp, newsize);
1894     set_inuse_bit_at_offset(newp, newsize);
1895   }
1896 
1897   check_inuse_chunk(newp);
1898   return chunk2mem(newp);
1899 }
1900 
1901 
1902 
1903 
1904 /*
1905 
1906   memalign algorithm:
1907 
1908     memalign requests more than enough space from malloc, finds a spot
1909     within that chunk that meets the alignment request, and then
1910     possibly frees the leading and trailing space.
1911 
1912     The alignment argument must be a power of two. This property is not
1913     checked by memalign, so misuse may result in random runtime errors.
1914 
1915     8-byte alignment is guaranteed by normal malloc calls, so don't
1916     bother calling memalign with an argument of 8 or less.
1917 
1918     Overreliance on memalign is a sure way to fragment space.
1919 
1920 */
1921 
1922 
1923 #if __STD_C
mEMALIGn(size_t alignment,size_t bytes)1924 Void_t* mEMALIGn(size_t alignment, size_t bytes)
1925 #else
1926 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1927 #endif
1928 {
1929   INTERNAL_SIZE_T    nb;      /* padded  request size */
1930   char*     m;                /* memory returned by malloc call */
1931   mchunkptr p;                /* corresponding chunk */
1932   char*     brk;              /* alignment point within p */
1933   mchunkptr newp;             /* chunk to return */
1934   INTERNAL_SIZE_T  newsize;   /* its size */
1935   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
1936   mchunkptr remainder;        /* spare room at end to split off */
1937   long      remainder_size;   /* its size */
1938 
1939   if ((long)bytes < 0) return NULL;
1940 
1941 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1942 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1943 		return memalign_simple(alignment, bytes);
1944 	}
1945 #endif
1946 
1947   /* If need less alignment than we give anyway, just relay to malloc */
1948 
1949   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1950 
1951   /* Otherwise, ensure that it is at least a minimum chunk size */
1952 
1953   if (alignment <  MINSIZE) alignment = MINSIZE;
1954 
1955   /* Call malloc with worst case padding to hit alignment. */
1956 
1957   nb = request2size(bytes);
1958   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
1959 
1960   /*
1961   * The attempt to over-allocate (with a size large enough to guarantee the
1962   * ability to find an aligned region within allocated memory) failed.
1963   *
1964   * Try again, this time only allocating exactly the size the user wants. If
1965   * the allocation now succeeds and just happens to be aligned, we can still
1966   * fulfill the user's request.
1967   */
1968   if (m == NULL) {
1969     size_t extra, extra2;
1970     /*
1971      * Use bytes not nb, since mALLOc internally calls request2size too, and
1972      * each call increases the size to allocate, to account for the header.
1973      */
1974     m  = (char*)(mALLOc(bytes));
1975     /* Aligned -> return it */
1976     if ((((unsigned long)(m)) % alignment) == 0)
1977       return m;
1978     /*
1979      * Otherwise, try again, requesting enough extra space to be able to
1980      * acquire alignment.
1981      */
1982     fREe(m);
1983     /* Add in extra bytes to match misalignment of unexpanded allocation */
1984     extra = alignment - (((unsigned long)(m)) % alignment);
1985     m  = (char*)(mALLOc(bytes + extra));
1986     /*
1987      * m might not be the same as before. Validate that the previous value of
1988      * extra still works for the current value of m.
1989      * If (!m), extra2=alignment so
1990      */
1991     if (m) {
1992       extra2 = alignment - (((unsigned long)(m)) % alignment);
1993       if (extra2 > extra) {
1994         fREe(m);
1995         m = NULL;
1996       }
1997     }
1998     /* Fall through to original NULL check and chunk splitting logic */
1999   }
2000 
2001   if (m == NULL) return NULL; /* propagate failure */
2002 
2003   p = mem2chunk(m);
2004 
2005   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2006   {
2007 #if HAVE_MMAP
2008     if(chunk_is_mmapped(p))
2009       return chunk2mem(p); /* nothing more to do */
2010 #endif
2011   }
2012   else /* misaligned */
2013   {
2014     /*
2015       Find an aligned spot inside chunk.
2016       Since we need to give back leading space in a chunk of at
2017       least MINSIZE, if the first calculation places us at
2018       a spot with less than MINSIZE leader, we can move to the
2019       next aligned spot -- we've allocated enough total room so that
2020       this is always possible.
2021     */
2022 
2023     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2024     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2025 
2026     newp = (mchunkptr)brk;
2027     leadsize = brk - (char*)(p);
2028     newsize = chunksize(p) - leadsize;
2029 
2030 #if HAVE_MMAP
2031     if(chunk_is_mmapped(p))
2032     {
2033       newp->prev_size = p->prev_size + leadsize;
2034       set_head(newp, newsize|IS_MMAPPED);
2035       return chunk2mem(newp);
2036     }
2037 #endif
2038 
2039     /* give back leader, use the rest */
2040 
2041     set_head(newp, newsize | PREV_INUSE);
2042     set_inuse_bit_at_offset(newp, newsize);
2043     set_head_size(p, leadsize);
2044     fREe(chunk2mem(p));
2045     p = newp;
2046 
2047     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2048   }
2049 
2050   /* Also give back spare room at the end */
2051 
2052   remainder_size = chunksize(p) - nb;
2053 
2054   if (remainder_size >= (long)MINSIZE)
2055   {
2056     remainder = chunk_at_offset(p, nb);
2057     set_head(remainder, remainder_size | PREV_INUSE);
2058     set_head_size(p, nb);
2059     fREe(chunk2mem(remainder));
2060   }
2061 
2062   check_inuse_chunk(p);
2063   return chunk2mem(p);
2064 
2065 }
2066 
2067 
2068 
2069 
2070 /*
2071     valloc just invokes memalign with alignment argument equal
2072     to the page size of the system (or as near to this as can
2073     be figured out from all the includes/defines above.)
2074 */
2075 
2076 #if __STD_C
vALLOc(size_t bytes)2077 Void_t* vALLOc(size_t bytes)
2078 #else
2079 Void_t* vALLOc(bytes) size_t bytes;
2080 #endif
2081 {
2082   return mEMALIGn (malloc_getpagesize, bytes);
2083 }
2084 
2085 /*
2086   pvalloc just invokes valloc for the nearest pagesize
2087   that will accommodate request
2088 */
2089 
2090 
2091 #if __STD_C
pvALLOc(size_t bytes)2092 Void_t* pvALLOc(size_t bytes)
2093 #else
2094 Void_t* pvALLOc(bytes) size_t bytes;
2095 #endif
2096 {
2097   size_t pagesize = malloc_getpagesize;
2098   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2099 }
2100 
2101 /*
2102 
2103   calloc calls malloc, then zeroes out the allocated chunk.
2104 
2105 */
2106 
2107 #if __STD_C
cALLOc(size_t n,size_t elem_size)2108 Void_t* cALLOc(size_t n, size_t elem_size)
2109 #else
2110 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2111 #endif
2112 {
2113   mchunkptr p;
2114   INTERNAL_SIZE_T csz;
2115 
2116   INTERNAL_SIZE_T sz = n * elem_size;
2117 
2118 
2119   /* check if expand_top called, in which case don't need to clear */
2120 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2121 #if MORECORE_CLEARS
2122   mchunkptr oldtop = top;
2123   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2124 #endif
2125 #endif
2126   Void_t* mem = mALLOc (sz);
2127 
2128   if ((long)n < 0) return NULL;
2129 
2130   if (mem == NULL)
2131     return NULL;
2132   else
2133   {
2134 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2135 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2136 		memset(mem, 0, sz);
2137 		return mem;
2138 	}
2139 #endif
2140     p = mem2chunk(mem);
2141 
2142     /* Two optional cases in which clearing not necessary */
2143 
2144 
2145 #if HAVE_MMAP
2146     if (chunk_is_mmapped(p)) return mem;
2147 #endif
2148 
2149     csz = chunksize(p);
2150 
2151 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2152 #if MORECORE_CLEARS
2153     if (p == oldtop && csz > oldtopsize)
2154     {
2155       /* clear only the bytes from non-freshly-sbrked memory */
2156       csz = oldtopsize;
2157     }
2158 #endif
2159 #endif
2160 
2161     MALLOC_ZERO(mem, csz - SIZE_SZ);
2162     return mem;
2163   }
2164 }
2165 
2166 /*
2167 
2168   cfree just calls free. It is needed/defined on some systems
2169   that pair it with calloc, presumably for odd historical reasons.
2170 
2171 */
2172 
2173 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2174 #if __STD_C
cfree(Void_t * mem)2175 void cfree(Void_t *mem)
2176 #else
2177 void cfree(mem) Void_t *mem;
2178 #endif
2179 {
2180   fREe(mem);
2181 }
2182 #endif
2183 
2184 
2185 
2186 /*
2187 
2188     Malloc_trim gives memory back to the system (via negative
2189     arguments to sbrk) if there is unused memory at the `high' end of
2190     the malloc pool. You can call this after freeing large blocks of
2191     memory to potentially reduce the system-level memory requirements
2192     of a program. However, it cannot guarantee to reduce memory. Under
2193     some allocation patterns, some large free blocks of memory will be
2194     locked between two used chunks, so they cannot be given back to
2195     the system.
2196 
2197     The `pad' argument to malloc_trim represents the amount of free
2198     trailing space to leave untrimmed. If this argument is zero,
2199     only the minimum amount of memory to maintain internal data
2200     structures will be left (one page or less). Non-zero arguments
2201     can be supplied to maintain enough trailing space to service
2202     future expected allocations without having to re-obtain memory
2203     from the system.
2204 
2205     Malloc_trim returns 1 if it actually released any memory, else 0.
2206 
2207 */
2208 
2209 #if __STD_C
malloc_trim(size_t pad)2210 int malloc_trim(size_t pad)
2211 #else
2212 int malloc_trim(pad) size_t pad;
2213 #endif
2214 {
2215   long  top_size;        /* Amount of top-most memory */
2216   long  extra;           /* Amount to release */
2217   char* current_brk;     /* address returned by pre-check sbrk call */
2218   char* new_brk;         /* address returned by negative sbrk call */
2219 
2220   unsigned long pagesz = malloc_getpagesize;
2221 
2222   top_size = chunksize(top);
2223   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2224 
2225   if (extra < (long)pagesz)  /* Not enough memory to release */
2226     return 0;
2227 
2228   else
2229   {
2230     /* Test to make sure no one else called sbrk */
2231     current_brk = (char*)(MORECORE (0));
2232     if (current_brk != (char*)(top) + top_size)
2233       return 0;     /* Apparently we don't own memory; must fail */
2234 
2235     else
2236     {
2237       new_brk = (char*)(MORECORE (-extra));
2238 
2239       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2240       {
2241 	/* Try to figure out what we have */
2242 	current_brk = (char*)(MORECORE (0));
2243 	top_size = current_brk - (char*)top;
2244 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2245 	{
2246 	  sbrked_mem = current_brk - sbrk_base;
2247 	  set_head(top, top_size | PREV_INUSE);
2248 	}
2249 	check_chunk(top);
2250 	return 0;
2251       }
2252 
2253       else
2254       {
2255 	/* Success. Adjust top accordingly. */
2256 	set_head(top, (top_size - extra) | PREV_INUSE);
2257 	sbrked_mem -= extra;
2258 	check_chunk(top);
2259 	return 1;
2260       }
2261     }
2262   }
2263 }
2264 
2265 
2266 
2267 /*
2268   malloc_usable_size:
2269 
2270     This routine tells you how many bytes you can actually use in an
2271     allocated chunk, which may be more than you requested (although
2272     often not). You can use this many bytes without worrying about
2273     overwriting other allocated objects. Not a particularly great
2274     programming practice, but still sometimes useful.
2275 
2276 */
2277 
2278 #if __STD_C
malloc_usable_size(Void_t * mem)2279 size_t malloc_usable_size(Void_t* mem)
2280 #else
2281 size_t malloc_usable_size(mem) Void_t* mem;
2282 #endif
2283 {
2284   mchunkptr p;
2285   if (mem == NULL)
2286     return 0;
2287   else
2288   {
2289     p = mem2chunk(mem);
2290     if(!chunk_is_mmapped(p))
2291     {
2292       if (!inuse(p)) return 0;
2293       check_inuse_chunk(p);
2294       return chunksize(p) - SIZE_SZ;
2295     }
2296     return chunksize(p) - 2*SIZE_SZ;
2297   }
2298 }
2299 
2300 
2301 
2302 
2303 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2304 
2305 #ifdef DEBUG
malloc_update_mallinfo()2306 static void malloc_update_mallinfo()
2307 {
2308   int i;
2309   mbinptr b;
2310   mchunkptr p;
2311 #ifdef DEBUG
2312   mchunkptr q;
2313 #endif
2314 
2315   INTERNAL_SIZE_T avail = chunksize(top);
2316   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2317 
2318   for (i = 1; i < NAV; ++i)
2319   {
2320     b = bin_at(i);
2321     for (p = last(b); p != b; p = p->bk)
2322     {
2323 #ifdef DEBUG
2324       check_free_chunk(p);
2325       for (q = next_chunk(p);
2326 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2327 	   q = next_chunk(q))
2328 	check_inuse_chunk(q);
2329 #endif
2330       avail += chunksize(p);
2331       navail++;
2332     }
2333   }
2334 
2335   current_mallinfo.ordblks = navail;
2336   current_mallinfo.uordblks = sbrked_mem - avail;
2337   current_mallinfo.fordblks = avail;
2338   current_mallinfo.hblks = n_mmaps;
2339   current_mallinfo.hblkhd = mmapped_mem;
2340   current_mallinfo.keepcost = chunksize(top);
2341 
2342 }
2343 #endif	/* DEBUG */
2344 
2345 
2346 
2347 /*
2348 
2349   malloc_stats:
2350 
2351     Prints on the amount of space obtain from the system (both
2352     via sbrk and mmap), the maximum amount (which may be more than
2353     current if malloc_trim and/or munmap got called), the maximum
2354     number of simultaneous mmap regions used, and the current number
2355     of bytes allocated via malloc (or realloc, etc) but not yet
2356     freed. (Note that this is the number of bytes allocated, not the
2357     number requested. It will be larger than the number requested
2358     because of alignment and bookkeeping overhead.)
2359 
2360 */
2361 
2362 #ifdef DEBUG
malloc_stats()2363 void malloc_stats()
2364 {
2365   malloc_update_mallinfo();
2366   printf("max system bytes = %10u\n",
2367 	  (unsigned int)(max_total_mem));
2368   printf("system bytes     = %10u\n",
2369 	  (unsigned int)(sbrked_mem + mmapped_mem));
2370   printf("in use bytes     = %10u\n",
2371 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2372 #if HAVE_MMAP
2373   printf("max mmap regions = %10u\n",
2374 	  (unsigned int)max_n_mmaps);
2375 #endif
2376 }
2377 #endif	/* DEBUG */
2378 
2379 /*
2380   mallinfo returns a copy of updated current mallinfo.
2381 */
2382 
2383 #ifdef DEBUG
mALLINFo()2384 struct mallinfo mALLINFo()
2385 {
2386   malloc_update_mallinfo();
2387   return current_mallinfo;
2388 }
2389 #endif	/* DEBUG */
2390 
2391 
2392 
2393 
2394 /*
2395   mallopt:
2396 
2397     mallopt is the general SVID/XPG interface to tunable parameters.
2398     The format is to provide a (parameter-number, parameter-value) pair.
2399     mallopt then sets the corresponding parameter to the argument
2400     value if it can (i.e., so long as the value is meaningful),
2401     and returns 1 if successful else 0.
2402 
2403     See descriptions of tunable parameters above.
2404 
2405 */
2406 
2407 #if __STD_C
mALLOPt(int param_number,int value)2408 int mALLOPt(int param_number, int value)
2409 #else
2410 int mALLOPt(param_number, value) int param_number; int value;
2411 #endif
2412 {
2413   switch(param_number)
2414   {
2415     case M_TRIM_THRESHOLD:
2416       trim_threshold = value; return 1;
2417     case M_TOP_PAD:
2418       top_pad = value; return 1;
2419     case M_MMAP_THRESHOLD:
2420       mmap_threshold = value; return 1;
2421     case M_MMAP_MAX:
2422 #if HAVE_MMAP
2423       n_mmaps_max = value; return 1;
2424 #else
2425       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
2426 #endif
2427 
2428     default:
2429       return 0;
2430   }
2431 }
2432 
initf_malloc(void)2433 int initf_malloc(void)
2434 {
2435 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2436 	assert(gd->malloc_base);	/* Set up by crt0.S */
2437 	gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2438 	gd->malloc_ptr = 0;
2439 #endif
2440 
2441 	return 0;
2442 }
2443 
2444 /*
2445 
2446 History:
2447 
2448     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
2449       * return null for negative arguments
2450       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2451 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2452 	  (e.g. WIN32 platforms)
2453 	 * Cleanup up header file inclusion for WIN32 platforms
2454 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2455 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2456 	   memory allocation routines
2457 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2458 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2459 	   usage of 'assert' in non-WIN32 code
2460 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2461 	   avoid infinite loop
2462       * Always call 'fREe()' rather than 'free()'
2463 
2464     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
2465       * Fixed ordering problem with boundary-stamping
2466 
2467     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
2468       * Added pvalloc, as recommended by H.J. Liu
2469       * Added 64bit pointer support mainly from Wolfram Gloger
2470       * Added anonymously donated WIN32 sbrk emulation
2471       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2472       * malloc_extend_top: fix mask error that caused wastage after
2473 	foreign sbrks
2474       * Add linux mremap support code from HJ Liu
2475 
2476     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
2477       * Integrated most documentation with the code.
2478       * Add support for mmap, with help from
2479 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2480       * Use last_remainder in more cases.
2481       * Pack bins using idea from  colin@nyx10.cs.du.edu
2482       * Use ordered bins instead of best-fit threshhold
2483       * Eliminate block-local decls to simplify tracing and debugging.
2484       * Support another case of realloc via move into top
2485       * Fix error occuring when initial sbrk_base not word-aligned.
2486       * Rely on page size for units instead of SBRK_UNIT to
2487 	avoid surprises about sbrk alignment conventions.
2488       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2489 	(raymond@es.ele.tue.nl) for the suggestion.
2490       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2491       * More precautions for cases where other routines call sbrk,
2492 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2493       * Added macros etc., allowing use in linux libc from
2494 	H.J. Lu (hjl@gnu.ai.mit.edu)
2495       * Inverted this history list
2496 
2497     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
2498       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2499       * Removed all preallocation code since under current scheme
2500 	the work required to undo bad preallocations exceeds
2501 	the work saved in good cases for most test programs.
2502       * No longer use return list or unconsolidated bins since
2503 	no scheme using them consistently outperforms those that don't
2504 	given above changes.
2505       * Use best fit for very large chunks to prevent some worst-cases.
2506       * Added some support for debugging
2507 
2508     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
2509       * Removed footers when chunks are in use. Thanks to
2510 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2511 
2512     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
2513       * Added malloc_trim, with help from Wolfram Gloger
2514 	(wmglo@Dent.MED.Uni-Muenchen.DE).
2515 
2516     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
2517 
2518     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
2519       * realloc: try to expand in both directions
2520       * malloc: swap order of clean-bin strategy;
2521       * realloc: only conditionally expand backwards
2522       * Try not to scavenge used bins
2523       * Use bin counts as a guide to preallocation
2524       * Occasionally bin return list chunks in first scan
2525       * Add a few optimizations from colin@nyx10.cs.du.edu
2526 
2527     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
2528       * faster bin computation & slightly different binning
2529       * merged all consolidations to one part of malloc proper
2530 	 (eliminating old malloc_find_space & malloc_clean_bin)
2531       * Scan 2 returns chunks (not just 1)
2532       * Propagate failure in realloc if malloc returns 0
2533       * Add stuff to allow compilation on non-ANSI compilers
2534 	  from kpv@research.att.com
2535 
2536     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
2537       * removed potential for odd address access in prev_chunk
2538       * removed dependency on getpagesize.h
2539       * misc cosmetics and a bit more internal documentation
2540       * anticosmetics: mangled names in macros to evade debugger strangeness
2541       * tested on sparc, hp-700, dec-mips, rs6000
2542 	  with gcc & native cc (hp, dec only) allowing
2543 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2544 
2545     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
2546       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2547 	 structure of old version,  but most details differ.)
2548 
2549 */
2550