1 // SPDX-License-Identifier: GPL-2.0+ and MIT
2 /*
3  * RSA library - generate parameters for a public key
4  *
5  * Copyright (c) 2019 Linaro Limited
6  * Author: AKASHI Takahiro
7  *
8  * Big number routines in this file come from BearSSL:
9  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
10  */
11 
12 #include <common.h>
13 #include <image.h>
14 #include <malloc.h>
15 #include <crypto/internal/rsa.h>
16 #include <u-boot/rsa-mod-exp.h>
17 #include <asm/unaligned.h>
18 
19 /**
20  * br_dec16be() - Convert 16-bit big-endian integer to native
21  * @src:	Pointer to data
22  * Return:	Native-endian integer
23  */
br_dec16be(const void * src)24 static unsigned br_dec16be(const void *src)
25 {
26 	return get_unaligned_be16(src);
27 }
28 
29 /**
30  * br_dec32be() - Convert 32-bit big-endian integer to native
31  * @src:	Pointer to data
32  * Return:	Native-endian integer
33  */
br_dec32be(const void * src)34 static uint32_t br_dec32be(const void *src)
35 {
36 	return get_unaligned_be32(src);
37 }
38 
39 /**
40  * br_enc32be() - Convert native 32-bit integer to big-endian
41  * @dst:	Pointer to buffer to store big-endian integer in
42  * @x:		Native 32-bit integer
43  */
br_enc32be(void * dst,uint32_t x)44 static void br_enc32be(void *dst, uint32_t x)
45 {
46 	__be32 tmp;
47 
48 	tmp = cpu_to_be32(x);
49 	memcpy(dst, &tmp, sizeof(tmp));
50 }
51 
52 /* from BearSSL's src/inner.h */
53 
54 /*
55  * Negate a boolean.
56  */
NOT(uint32_t ctl)57 static uint32_t NOT(uint32_t ctl)
58 {
59 	return ctl ^ 1;
60 }
61 
62 /*
63  * Multiplexer: returns x if ctl == 1, y if ctl == 0.
64  */
MUX(uint32_t ctl,uint32_t x,uint32_t y)65 static uint32_t MUX(uint32_t ctl, uint32_t x, uint32_t y)
66 {
67 	return y ^ (-ctl & (x ^ y));
68 }
69 
70 /*
71  * Equality check: returns 1 if x == y, 0 otherwise.
72  */
EQ(uint32_t x,uint32_t y)73 static uint32_t EQ(uint32_t x, uint32_t y)
74 {
75 	uint32_t q;
76 
77 	q = x ^ y;
78 	return NOT((q | -q) >> 31);
79 }
80 
81 /*
82  * Inequality check: returns 1 if x != y, 0 otherwise.
83  */
NEQ(uint32_t x,uint32_t y)84 static uint32_t NEQ(uint32_t x, uint32_t y)
85 {
86 	uint32_t q;
87 
88 	q = x ^ y;
89 	return (q | -q) >> 31;
90 }
91 
92 /*
93  * Comparison: returns 1 if x > y, 0 otherwise.
94  */
GT(uint32_t x,uint32_t y)95 static uint32_t GT(uint32_t x, uint32_t y)
96 {
97 	/*
98 	 * If both x < 2^31 and y < 2^31, then y-x will have its high
99 	 * bit set if x > y, cleared otherwise.
100 	 *
101 	 * If either x >= 2^31 or y >= 2^31 (but not both), then the
102 	 * result is the high bit of x.
103 	 *
104 	 * If both x >= 2^31 and y >= 2^31, then we can virtually
105 	 * subtract 2^31 from both, and we are back to the first case.
106 	 * Since (y-2^31)-(x-2^31) = y-x, the subtraction is already
107 	 * fine.
108 	 */
109 	uint32_t z;
110 
111 	z = y - x;
112 	return (z ^ ((x ^ y) & (x ^ z))) >> 31;
113 }
114 
115 /*
116  * Compute the bit length of a 32-bit integer. Returned value is between 0
117  * and 32 (inclusive).
118  */
BIT_LENGTH(uint32_t x)119 static uint32_t BIT_LENGTH(uint32_t x)
120 {
121 	uint32_t k, c;
122 
123 	k = NEQ(x, 0);
124 	c = GT(x, 0xFFFF); x = MUX(c, x >> 16, x); k += c << 4;
125 	c = GT(x, 0x00FF); x = MUX(c, x >>  8, x); k += c << 3;
126 	c = GT(x, 0x000F); x = MUX(c, x >>  4, x); k += c << 2;
127 	c = GT(x, 0x0003); x = MUX(c, x >>  2, x); k += c << 1;
128 	k += GT(x, 0x0001);
129 	return k;
130 }
131 
132 #define GE(x, y)   NOT(GT(y, x))
133 #define LT(x, y)   GT(y, x)
134 #define MUL(x, y)   ((uint64_t)(x) * (uint64_t)(y))
135 
136 /*
137  * Integers 'i32'
138  * --------------
139  *
140  * The 'i32' functions implement computations on big integers using
141  * an internal representation as an array of 32-bit integers. For
142  * an array x[]:
143  *  -- x[0] contains the "announced bit length" of the integer
144  *  -- x[1], x[2]... contain the value in little-endian order (x[1]
145  *     contains the least significant 32 bits)
146  *
147  * Multiplications rely on the elementary 32x32->64 multiplication.
148  *
149  * The announced bit length specifies the number of bits that are
150  * significant in the subsequent 32-bit words. Unused bits in the
151  * last (most significant) word are set to 0; subsequent words are
152  * uninitialized and need not exist at all.
153  *
154  * The execution time and memory access patterns of all computations
155  * depend on the announced bit length, but not on the actual word
156  * values. For modular integers, the announced bit length of any integer
157  * modulo n is equal to the actual bit length of n; thus, computations
158  * on modular integers are "constant-time" (only the modulus length may
159  * leak).
160  */
161 
162 /*
163  * Extract one word from an integer. The offset is counted in bits.
164  * The word MUST entirely fit within the word elements corresponding
165  * to the announced bit length of a[].
166  */
br_i32_word(const uint32_t * a,uint32_t off)167 static uint32_t br_i32_word(const uint32_t *a, uint32_t off)
168 {
169 	size_t u;
170 	unsigned j;
171 
172 	u = (size_t)(off >> 5) + 1;
173 	j = (unsigned)off & 31;
174 	if (j == 0) {
175 		return a[u];
176 	} else {
177 		return (a[u] >> j) | (a[u + 1] << (32 - j));
178 	}
179 }
180 
181 /* from BearSSL's src/int/i32_bitlen.c */
182 
183 /*
184  * Compute the actual bit length of an integer. The argument x should
185  * point to the first (least significant) value word of the integer.
186  * The len 'xlen' contains the number of 32-bit words to access.
187  *
188  * CT: value or length of x does not leak.
189  */
br_i32_bit_length(uint32_t * x,size_t xlen)190 static uint32_t br_i32_bit_length(uint32_t *x, size_t xlen)
191 {
192 	uint32_t tw, twk;
193 
194 	tw = 0;
195 	twk = 0;
196 	while (xlen -- > 0) {
197 		uint32_t w, c;
198 
199 		c = EQ(tw, 0);
200 		w = x[xlen];
201 		tw = MUX(c, w, tw);
202 		twk = MUX(c, (uint32_t)xlen, twk);
203 	}
204 	return (twk << 5) + BIT_LENGTH(tw);
205 }
206 
207 /* from BearSSL's src/int/i32_decode.c */
208 
209 /*
210  * Decode an integer from its big-endian unsigned representation. The
211  * "true" bit length of the integer is computed, but all words of x[]
212  * corresponding to the full 'len' bytes of the source are set.
213  *
214  * CT: value or length of x does not leak.
215  */
br_i32_decode(uint32_t * x,const void * src,size_t len)216 static void br_i32_decode(uint32_t *x, const void *src, size_t len)
217 {
218 	const unsigned char *buf;
219 	size_t u, v;
220 
221 	buf = src;
222 	u = len;
223 	v = 1;
224 	for (;;) {
225 		if (u < 4) {
226 			uint32_t w;
227 
228 			if (u < 2) {
229 				if (u == 0) {
230 					break;
231 				} else {
232 					w = buf[0];
233 				}
234 			} else {
235 				if (u == 2) {
236 					w = br_dec16be(buf);
237 				} else {
238 					w = ((uint32_t)buf[0] << 16)
239 						| br_dec16be(buf + 1);
240 				}
241 			}
242 			x[v ++] = w;
243 			break;
244 		} else {
245 			u -= 4;
246 			x[v ++] = br_dec32be(buf + u);
247 		}
248 	}
249 	x[0] = br_i32_bit_length(x + 1, v - 1);
250 }
251 
252 /* from BearSSL's src/int/i32_encode.c */
253 
254 /*
255  * Encode an integer into its big-endian unsigned representation. The
256  * output length in bytes is provided (parameter 'len'); if the length
257  * is too short then the integer is appropriately truncated; if it is
258  * too long then the extra bytes are set to 0.
259  */
br_i32_encode(void * dst,size_t len,const uint32_t * x)260 static void br_i32_encode(void *dst, size_t len, const uint32_t *x)
261 {
262 	unsigned char *buf;
263 	size_t k;
264 
265 	buf = dst;
266 
267 	/*
268 	 * Compute the announced size of x in bytes; extra bytes are
269 	 * filled with zeros.
270 	 */
271 	k = (x[0] + 7) >> 3;
272 	while (len > k) {
273 		*buf ++ = 0;
274 		len --;
275 	}
276 
277 	/*
278 	 * Now we use k as index within x[]. That index starts at 1;
279 	 * we initialize it to the topmost complete word, and process
280 	 * any remaining incomplete word.
281 	 */
282 	k = (len + 3) >> 2;
283 	switch (len & 3) {
284 	case 3:
285 		*buf ++ = x[k] >> 16;
286 		/* fall through */
287 	case 2:
288 		*buf ++ = x[k] >> 8;
289 		/* fall through */
290 	case 1:
291 		*buf ++ = x[k];
292 		k --;
293 	}
294 
295 	/*
296 	 * Encode all complete words.
297 	 */
298 	while (k > 0) {
299 		br_enc32be(buf, x[k]);
300 		k --;
301 		buf += 4;
302 	}
303 }
304 
305 /* from BearSSL's src/int/i32_ninv32.c */
306 
307 /*
308  * Compute -(1/x) mod 2^32. If x is even, then this function returns 0.
309  */
br_i32_ninv32(uint32_t x)310 static uint32_t br_i32_ninv32(uint32_t x)
311 {
312 	uint32_t y;
313 
314 	y = 2 - x;
315 	y *= 2 - y * x;
316 	y *= 2 - y * x;
317 	y *= 2 - y * x;
318 	y *= 2 - y * x;
319 	return MUX(x & 1, -y, 0);
320 }
321 
322 /* from BearSSL's src/int/i32_add.c */
323 
324 /*
325  * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[]
326  * is unmodified, but the carry is still computed and returned. The
327  * arrays a[] and b[] MUST have the same announced bit length.
328  *
329  * a[] and b[] MAY be the same array, but partial overlap is not allowed.
330  */
br_i32_add(uint32_t * a,const uint32_t * b,uint32_t ctl)331 static uint32_t br_i32_add(uint32_t *a, const uint32_t *b, uint32_t ctl)
332 {
333 	uint32_t cc;
334 	size_t u, m;
335 
336 	cc = 0;
337 	m = (a[0] + 63) >> 5;
338 	for (u = 1; u < m; u ++) {
339 		uint32_t aw, bw, naw;
340 
341 		aw = a[u];
342 		bw = b[u];
343 		naw = aw + bw + cc;
344 
345 		/*
346 		 * Carry is 1 if naw < aw. Carry is also 1 if naw == aw
347 		 * AND the carry was already 1.
348 		 */
349 		cc = (cc & EQ(naw, aw)) | LT(naw, aw);
350 		a[u] = MUX(ctl, naw, aw);
351 	}
352 	return cc;
353 }
354 
355 /* from BearSSL's src/int/i32_sub.c */
356 
357 /*
358  * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0,
359  * then a[] is unmodified, but the carry is still computed and returned.
360  * The arrays a[] and b[] MUST have the same announced bit length.
361  *
362  * a[] and b[] MAY be the same array, but partial overlap is not allowed.
363  */
br_i32_sub(uint32_t * a,const uint32_t * b,uint32_t ctl)364 static uint32_t br_i32_sub(uint32_t *a, const uint32_t *b, uint32_t ctl)
365 {
366 	uint32_t cc;
367 	size_t u, m;
368 
369 	cc = 0;
370 	m = (a[0] + 63) >> 5;
371 	for (u = 1; u < m; u ++) {
372 		uint32_t aw, bw, naw;
373 
374 		aw = a[u];
375 		bw = b[u];
376 		naw = aw - bw - cc;
377 
378 		/*
379 		 * Carry is 1 if naw > aw. Carry is 1 also if naw == aw
380 		 * AND the carry was already 1.
381 		 */
382 		cc = (cc & EQ(naw, aw)) | GT(naw, aw);
383 		a[u] = MUX(ctl, naw, aw);
384 	}
385 	return cc;
386 }
387 
388 /* from BearSSL's src/int/i32_div32.c */
389 
390 /*
391  * Constant-time division. The dividend hi:lo is divided by the
392  * divisor d; the quotient is returned and the remainder is written
393  * in *r. If hi == d, then the quotient does not fit on 32 bits;
394  * returned value is thus truncated. If hi > d, returned values are
395  * indeterminate.
396  */
br_divrem(uint32_t hi,uint32_t lo,uint32_t d,uint32_t * r)397 static uint32_t br_divrem(uint32_t hi, uint32_t lo, uint32_t d, uint32_t *r)
398 {
399 	/* TODO: optimize this */
400 	uint32_t q;
401 	uint32_t ch, cf;
402 	int k;
403 
404 	q = 0;
405 	ch = EQ(hi, d);
406 	hi = MUX(ch, 0, hi);
407 	for (k = 31; k > 0; k --) {
408 		int j;
409 		uint32_t w, ctl, hi2, lo2;
410 
411 		j = 32 - k;
412 		w = (hi << j) | (lo >> k);
413 		ctl = GE(w, d) | (hi >> k);
414 		hi2 = (w - d) >> j;
415 		lo2 = lo - (d << k);
416 		hi = MUX(ctl, hi2, hi);
417 		lo = MUX(ctl, lo2, lo);
418 		q |= ctl << k;
419 	}
420 	cf = GE(lo, d) | hi;
421 	q |= cf;
422 	*r = MUX(cf, lo - d, lo);
423 	return q;
424 }
425 
426 /*
427  * Wrapper for br_divrem(); the remainder is returned, and the quotient
428  * is discarded.
429  */
br_rem(uint32_t hi,uint32_t lo,uint32_t d)430 static uint32_t br_rem(uint32_t hi, uint32_t lo, uint32_t d)
431 {
432 	uint32_t r;
433 
434 	br_divrem(hi, lo, d, &r);
435 	return r;
436 }
437 
438 /*
439  * Wrapper for br_divrem(); the quotient is returned, and the remainder
440  * is discarded.
441  */
br_div(uint32_t hi,uint32_t lo,uint32_t d)442 static uint32_t br_div(uint32_t hi, uint32_t lo, uint32_t d)
443 {
444 	uint32_t r;
445 
446 	return br_divrem(hi, lo, d, &r);
447 }
448 
449 /* from BearSSL's src/int/i32_muladd.c */
450 
451 /*
452  * Multiply x[] by 2^32 and then add integer z, modulo m[]. This
453  * function assumes that x[] and m[] have the same announced bit
454  * length, and the announced bit length of m[] matches its true
455  * bit length.
456  *
457  * x[] and m[] MUST be distinct arrays.
458  *
459  * CT: only the common announced bit length of x and m leaks, not
460  * the values of x, z or m.
461  */
br_i32_muladd_small(uint32_t * x,uint32_t z,const uint32_t * m)462 static void br_i32_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m)
463 {
464 	uint32_t m_bitlen;
465 	size_t u, mlen;
466 	uint32_t a0, a1, b0, hi, g, q, tb;
467 	uint32_t chf, clow, under, over;
468 	uint64_t cc;
469 
470 	/*
471 	 * We can test on the modulus bit length since we accept to
472 	 * leak that length.
473 	 */
474 	m_bitlen = m[0];
475 	if (m_bitlen == 0) {
476 		return;
477 	}
478 	if (m_bitlen <= 32) {
479 		x[1] = br_rem(x[1], z, m[1]);
480 		return;
481 	}
482 	mlen = (m_bitlen + 31) >> 5;
483 
484 	/*
485 	 * Principle: we estimate the quotient (x*2^32+z)/m by
486 	 * doing a 64/32 division with the high words.
487 	 *
488 	 * Let:
489 	 *   w = 2^32
490 	 *   a = (w*a0 + a1) * w^N + a2
491 	 *   b = b0 * w^N + b2
492 	 * such that:
493 	 *   0 <= a0 < w
494 	 *   0 <= a1 < w
495 	 *   0 <= a2 < w^N
496 	 *   w/2 <= b0 < w
497 	 *   0 <= b2 < w^N
498 	 *   a < w*b
499 	 * I.e. the two top words of a are a0:a1, the top word of b is
500 	 * b0, we ensured that b0 is "full" (high bit set), and a is
501 	 * such that the quotient q = a/b fits on one word (0 <= q < w).
502 	 *
503 	 * If a = b*q + r (with 0 <= r < q), we can estimate q by
504 	 * doing an Euclidean division on the top words:
505 	 *   a0*w+a1 = b0*u + v  (with 0 <= v < w)
506 	 * Then the following holds:
507 	 *   0 <= u <= w
508 	 *   u-2 <= q <= u
509 	 */
510 	a0 = br_i32_word(x, m_bitlen - 32);
511 	hi = x[mlen];
512 	memmove(x + 2, x + 1, (mlen - 1) * sizeof *x);
513 	x[1] = z;
514 	a1 = br_i32_word(x, m_bitlen - 32);
515 	b0 = br_i32_word(m, m_bitlen - 32);
516 
517 	/*
518 	 * We estimate a divisor q. If the quotient returned by br_div()
519 	 * is g:
520 	 * -- If a0 == b0 then g == 0; we want q = 0xFFFFFFFF.
521 	 * -- Otherwise:
522 	 *    -- if g == 0 then we set q = 0;
523 	 *    -- otherwise, we set q = g - 1.
524 	 * The properties described above then ensure that the true
525 	 * quotient is q-1, q or q+1.
526 	 */
527 	g = br_div(a0, a1, b0);
528 	q = MUX(EQ(a0, b0), 0xFFFFFFFF, MUX(EQ(g, 0), 0, g - 1));
529 
530 	/*
531 	 * We subtract q*m from x (with the extra high word of value 'hi').
532 	 * Since q may be off by 1 (in either direction), we may have to
533 	 * add or subtract m afterwards.
534 	 *
535 	 * The 'tb' flag will be true (1) at the end of the loop if the
536 	 * result is greater than or equal to the modulus (not counting
537 	 * 'hi' or the carry).
538 	 */
539 	cc = 0;
540 	tb = 1;
541 	for (u = 1; u <= mlen; u ++) {
542 		uint32_t mw, zw, xw, nxw;
543 		uint64_t zl;
544 
545 		mw = m[u];
546 		zl = MUL(mw, q) + cc;
547 		cc = (uint32_t)(zl >> 32);
548 		zw = (uint32_t)zl;
549 		xw = x[u];
550 		nxw = xw - zw;
551 		cc += (uint64_t)GT(nxw, xw);
552 		x[u] = nxw;
553 		tb = MUX(EQ(nxw, mw), tb, GT(nxw, mw));
554 	}
555 
556 	/*
557 	 * If we underestimated q, then either cc < hi (one extra bit
558 	 * beyond the top array word), or cc == hi and tb is true (no
559 	 * extra bit, but the result is not lower than the modulus). In
560 	 * these cases we must subtract m once.
561 	 *
562 	 * Otherwise, we may have overestimated, which will show as
563 	 * cc > hi (thus a negative result). Correction is adding m once.
564 	 */
565 	chf = (uint32_t)(cc >> 32);
566 	clow = (uint32_t)cc;
567 	over = chf | GT(clow, hi);
568 	under = ~over & (tb | (~chf & LT(clow, hi)));
569 	br_i32_add(x, m, over);
570 	br_i32_sub(x, m, under);
571 }
572 
573 /* from BearSSL's src/int/i32_reduce.c */
574 
575 /*
576  * Reduce an integer (a[]) modulo another (m[]). The result is written
577  * in x[] and its announced bit length is set to be equal to that of m[].
578  *
579  * x[] MUST be distinct from a[] and m[].
580  *
581  * CT: only announced bit lengths leak, not values of x, a or m.
582  */
br_i32_reduce(uint32_t * x,const uint32_t * a,const uint32_t * m)583 static void br_i32_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m)
584 {
585 	uint32_t m_bitlen, a_bitlen;
586 	size_t mlen, alen, u;
587 
588 	m_bitlen = m[0];
589 	mlen = (m_bitlen + 31) >> 5;
590 
591 	x[0] = m_bitlen;
592 	if (m_bitlen == 0) {
593 		return;
594 	}
595 
596 	/*
597 	 * If the source is shorter, then simply copy all words from a[]
598 	 * and zero out the upper words.
599 	 */
600 	a_bitlen = a[0];
601 	alen = (a_bitlen + 31) >> 5;
602 	if (a_bitlen < m_bitlen) {
603 		memcpy(x + 1, a + 1, alen * sizeof *a);
604 		for (u = alen; u < mlen; u ++) {
605 			x[u + 1] = 0;
606 		}
607 		return;
608 	}
609 
610 	/*
611 	 * The source length is at least equal to that of the modulus.
612 	 * We must thus copy N-1 words, and input the remaining words
613 	 * one by one.
614 	 */
615 	memcpy(x + 1, a + 2 + (alen - mlen), (mlen - 1) * sizeof *a);
616 	x[mlen] = 0;
617 	for (u = 1 + alen - mlen; u > 0; u --) {
618 		br_i32_muladd_small(x, a[u], m);
619 	}
620 }
621 
622 /**
623  * rsa_free_key_prop() - Free key properties
624  * @prop:	Pointer to struct key_prop
625  *
626  * This function frees all the memories allocated by rsa_gen_key_prop().
627  */
rsa_free_key_prop(struct key_prop * prop)628 void rsa_free_key_prop(struct key_prop *prop)
629 {
630 	if (!prop)
631 		return;
632 
633 	free((void *)prop->modulus);
634 	free((void *)prop->public_exponent);
635 	free((void *)prop->rr);
636 
637 	free(prop);
638 }
639 
640 /**
641  * rsa_gen_key_prop() - Generate key properties of RSA public key
642  * @key:	Specifies key data in DER format
643  * @keylen:	Length of @key
644  * @prop:	Generated key property
645  *
646  * This function takes a blob of encoded RSA public key data in DER
647  * format, parse it and generate all the relevant properties
648  * in key_prop structure.
649  * Return a pointer to struct key_prop in @prop on success.
650  *
651  * Return:	0 on success, negative on error
652  */
rsa_gen_key_prop(const void * key,uint32_t keylen,struct key_prop ** prop)653 int rsa_gen_key_prop(const void *key, uint32_t keylen, struct key_prop **prop)
654 {
655 	struct rsa_key rsa_key;
656 	uint32_t *n = NULL, *rr = NULL, *rrtmp = NULL;
657 	int rlen, i, ret = 0;
658 
659 	*prop = calloc(sizeof(**prop), 1);
660 	if (!(*prop)) {
661 		ret = -ENOMEM;
662 		goto out;
663 	}
664 
665 	ret = rsa_parse_pub_key(&rsa_key, key, keylen);
666 	if (ret)
667 		goto out;
668 
669 	/* modulus */
670 	/* removing leading 0's */
671 	for (i = 0; i < rsa_key.n_sz && !rsa_key.n[i]; i++)
672 		;
673 	(*prop)->num_bits = (rsa_key.n_sz - i) * 8;
674 	(*prop)->modulus = malloc(rsa_key.n_sz - i);
675 	if (!(*prop)->modulus) {
676 		ret = -ENOMEM;
677 		goto out;
678 	}
679 	memcpy((void *)(*prop)->modulus, &rsa_key.n[i], rsa_key.n_sz - i);
680 
681 	n = calloc(sizeof(uint32_t), 1 + ((*prop)->num_bits >> 5));
682 	rr = calloc(sizeof(uint32_t), 1 + (((*prop)->num_bits * 2) >> 5));
683 	rrtmp = calloc(sizeof(uint32_t), 2 + (((*prop)->num_bits * 2) >> 5));
684 	if (!n || !rr || !rrtmp) {
685 		ret = -ENOMEM;
686 		goto out;
687 	}
688 
689 	/* exponent */
690 	(*prop)->public_exponent = calloc(1, sizeof(uint64_t));
691 	if (!(*prop)->public_exponent) {
692 		ret = -ENOMEM;
693 		goto out;
694 	}
695 	memcpy((void *)(*prop)->public_exponent + sizeof(uint64_t)
696 						- rsa_key.e_sz,
697 	       rsa_key.e, rsa_key.e_sz);
698 	(*prop)->exp_len = sizeof(uint64_t);
699 
700 	/* n0 inverse */
701 	br_i32_decode(n, &rsa_key.n[i], rsa_key.n_sz - i);
702 	(*prop)->n0inv = br_i32_ninv32(n[1]);
703 
704 	/* R^2 mod n; R = 2^(num_bits) */
705 	rlen = (*prop)->num_bits * 2; /* #bits of R^2 = (2^num_bits)^2 */
706 	rr[0] = 0;
707 	*(uint8_t *)&rr[0] = (1 << (rlen % 8));
708 	for (i = 1; i < (((rlen + 31) >> 5) + 1); i++)
709 		rr[i] = 0;
710 	br_i32_decode(rrtmp, rr, ((rlen + 7) >> 3) + 1);
711 	br_i32_reduce(rr, rrtmp, n);
712 
713 	rlen = ((*prop)->num_bits + 7) >> 3; /* #bytes of R^2 mod n */
714 	(*prop)->rr = malloc(rlen);
715 	if (!(*prop)->rr) {
716 		ret = -ENOMEM;
717 		goto out;
718 	}
719 	br_i32_encode((void *)(*prop)->rr, rlen, rr);
720 
721 out:
722 	free(n);
723 	free(rr);
724 	free(rrtmp);
725 	if (ret < 0)
726 		rsa_free_key_prop(*prop);
727 	return ret;
728 }
729