1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 /* Tegra SoC common clock control functions */
7 
8 #include <common.h>
9 #include <div64.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <time.h>
14 #include <asm/io.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/tegra.h>
17 #include <asm/arch-tegra/ap.h>
18 #include <asm/arch-tegra/clk_rst.h>
19 #include <asm/arch-tegra/pmc.h>
20 #include <asm/arch-tegra/timer.h>
21 #include <linux/delay.h>
22 
23 /*
24  * This is our record of the current clock rate of each clock. We don't
25  * fill all of these in since we are only really interested in clocks which
26  * we use as parents.
27  */
28 static unsigned pll_rate[CLOCK_ID_COUNT];
29 
30 /*
31  * The oscillator frequency is fixed to one of four set values. Based on this
32  * the other clocks are set up appropriately.
33  */
34 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
35 	13000000,
36 	19200000,
37 	12000000,
38 	26000000,
39 	38400000,
40 	48000000,
41 };
42 
43 /* return 1 if a peripheral ID is in range */
44 #define clock_type_id_isvalid(id) ((id) >= 0 && \
45 		(id) < CLOCK_TYPE_COUNT)
46 
47 char pllp_valid = 1;	/* PLLP is set up correctly */
48 
49 /* return 1 if a periphc_internal_id is in range */
50 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
51 		(id) < PERIPHC_COUNT)
52 
53 /* number of clock outputs of a PLL */
54 static const u8 pll_num_clkouts[] = {
55 	1,	/* PLLC */
56 	1,	/* PLLM */
57 	4,	/* PLLP */
58 	1,	/* PLLA */
59 	0,	/* PLLU */
60 	0,	/* PLLD */
61 };
62 
clock_get_osc_bypass(void)63 int clock_get_osc_bypass(void)
64 {
65 	struct clk_rst_ctlr *clkrst =
66 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
67 	u32 reg;
68 
69 	reg = readl(&clkrst->crc_osc_ctrl);
70 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
71 }
72 
73 /* Returns a pointer to the registers of the given pll */
get_pll(enum clock_id clkid)74 static struct clk_pll *get_pll(enum clock_id clkid)
75 {
76 	struct clk_rst_ctlr *clkrst =
77 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
78 
79 	assert(clock_id_is_pll(clkid));
80 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
81 		debug("%s: Invalid PLL %d\n", __func__, clkid);
82 		return NULL;
83 	}
84 	return &clkrst->crc_pll[clkid];
85 }
86 
clock_get_simple_pll(enum clock_id clkid)87 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
88 {
89 	return NULL;
90 }
91 
clock_ll_read_pll(enum clock_id clkid,u32 * divm,u32 * divn,u32 * divp,u32 * cpcon,u32 * lfcon)92 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
93 		u32 *divp, u32 *cpcon, u32 *lfcon)
94 {
95 	struct clk_pll *pll = get_pll(clkid);
96 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
97 	u32 data;
98 
99 	assert(clkid != CLOCK_ID_USB);
100 
101 	/* Safety check, adds to code size but is small */
102 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
103 		return -1;
104 	data = readl(&pll->pll_base);
105 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
106 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
107 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
108 	data = readl(&pll->pll_misc);
109 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
110 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
111 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
112 
113 	return 0;
114 }
115 
clock_start_pll(enum clock_id clkid,u32 divm,u32 divn,u32 divp,u32 cpcon,u32 lfcon)116 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
117 		u32 divp, u32 cpcon, u32 lfcon)
118 {
119 	struct clk_pll *pll = NULL;
120 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
121 	struct clk_pll_simple *simple_pll = NULL;
122 	u32 misc_data, data;
123 
124 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
125 		pll = get_pll(clkid);
126 	} else {
127 		simple_pll = clock_get_simple_pll(clkid);
128 		if (!simple_pll) {
129 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
130 			return 0;
131 		}
132 	}
133 
134 	/*
135 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
136 	 * values for all of the PLLs used in U-Boot, with any
137 	 * SoC differences accounted for.
138 	 *
139 	 * Preserve EN_LOCKDET, etc.
140 	 */
141 	if (pll)
142 		misc_data = readl(&pll->pll_misc);
143 	else
144 		misc_data = readl(&simple_pll->pll_misc);
145 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
146 	misc_data |= cpcon << pllinfo->kcp_shift;
147 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
148 	misc_data |= lfcon << pllinfo->kvco_shift;
149 
150 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
151 	data |= divp << pllinfo->p_shift;
152 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
153 
154 	if (pll) {
155 		writel(misc_data, &pll->pll_misc);
156 		writel(data, &pll->pll_base);
157 	} else {
158 		writel(misc_data, &simple_pll->pll_misc);
159 		writel(data, &simple_pll->pll_base);
160 	}
161 
162 	/* calculate the stable time */
163 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
164 }
165 
clock_ll_set_source_divisor(enum periph_id periph_id,unsigned source,unsigned divisor)166 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
167 			unsigned divisor)
168 {
169 	u32 *reg = get_periph_source_reg(periph_id);
170 	u32 value;
171 
172 	value = readl(reg);
173 
174 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
175 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
176 
177 	value &= ~OUT_CLK_DIVISOR_MASK;
178 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
179 
180 	writel(value, reg);
181 }
182 
clock_ll_set_source_bits(enum periph_id periph_id,int mux_bits,unsigned source)183 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
184 			     unsigned source)
185 {
186 	u32 *reg = get_periph_source_reg(periph_id);
187 
188 	switch (mux_bits) {
189 	case MASK_BITS_31_30:
190 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
191 				source << OUT_CLK_SOURCE_31_30_SHIFT);
192 		break;
193 
194 	case MASK_BITS_31_29:
195 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
196 				source << OUT_CLK_SOURCE_31_29_SHIFT);
197 		break;
198 
199 	case MASK_BITS_31_28:
200 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
201 				source << OUT_CLK_SOURCE_31_28_SHIFT);
202 		break;
203 
204 	default:
205 		return -1;
206 	}
207 
208 	return 0;
209 }
210 
clock_ll_get_source_bits(enum periph_id periph_id,int mux_bits)211 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
212 {
213 	u32 *reg = get_periph_source_reg(periph_id);
214 	u32 val = readl(reg);
215 
216 	switch (mux_bits) {
217 	case MASK_BITS_31_30:
218 		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
219 		val &= OUT_CLK_SOURCE_31_30_MASK;
220 		return val;
221 	case MASK_BITS_31_29:
222 		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
223 		val &= OUT_CLK_SOURCE_31_29_MASK;
224 		return val;
225 	case MASK_BITS_31_28:
226 		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
227 		val &= OUT_CLK_SOURCE_31_28_MASK;
228 		return val;
229 	default:
230 		return -1;
231 	}
232 }
233 
clock_ll_set_source(enum periph_id periph_id,unsigned source)234 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
235 {
236 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
237 }
238 
239 /**
240  * Given the parent's rate and the required rate for the children, this works
241  * out the peripheral clock divider to use, in 7.1 binary format.
242  *
243  * @param divider_bits	number of divider bits (8 or 16)
244  * @param parent_rate	clock rate of parent clock in Hz
245  * @param rate		required clock rate for this clock
246  * @return divider which should be used
247  */
clk_get_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate)248 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
249 			   unsigned long rate)
250 {
251 	u64 divider = parent_rate * 2;
252 	unsigned max_divider = 1 << divider_bits;
253 
254 	divider += rate - 1;
255 	do_div(divider, rate);
256 
257 	if ((s64)divider - 2 < 0)
258 		return 0;
259 
260 	if ((s64)divider - 2 >= max_divider)
261 		return -1;
262 
263 	return divider - 2;
264 }
265 
clock_set_pllout(enum clock_id clkid,enum pll_out_id pllout,unsigned rate)266 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
267 {
268 	struct clk_pll *pll = get_pll(clkid);
269 	int data = 0, div = 0, offset = 0;
270 
271 	if (!clock_id_is_pll(clkid))
272 		return -1;
273 
274 	if (pllout + 1 > pll_num_clkouts[clkid])
275 		return -1;
276 
277 	div = clk_get_divider(8, pll_rate[clkid], rate);
278 
279 	if (div < 0)
280 		return -1;
281 
282 	/* out2 and out4 are in the high part of the register */
283 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
284 		offset = 16;
285 
286 	data = (div << PLL_OUT_RATIO_SHIFT) |
287 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
288 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
289 			PLL_OUT_RATIO_MASK << offset, data << offset);
290 
291 	return 0;
292 }
293 
294 /**
295  * Given the parent's rate and the divider in 7.1 format, this works out the
296  * resulting peripheral clock rate.
297  *
298  * @param parent_rate	clock rate of parent clock in Hz
299  * @param divider which should be used in 7.1 format
300  * @return effective clock rate of peripheral
301  */
get_rate_from_divider(unsigned long parent_rate,int divider)302 static unsigned long get_rate_from_divider(unsigned long parent_rate,
303 					   int divider)
304 {
305 	u64 rate;
306 
307 	rate = (u64)parent_rate * 2;
308 	do_div(rate, divider + 2);
309 	return rate;
310 }
311 
clock_get_periph_rate(enum periph_id periph_id,enum clock_id parent)312 unsigned long clock_get_periph_rate(enum periph_id periph_id,
313 		enum clock_id parent)
314 {
315 	u32 *reg = get_periph_source_reg(periph_id);
316 	unsigned parent_rate = pll_rate[parent];
317 	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
318 
319 	switch (periph_id) {
320 	case PERIPH_ID_UART1:
321 	case PERIPH_ID_UART2:
322 	case PERIPH_ID_UART3:
323 	case PERIPH_ID_UART4:
324 	case PERIPH_ID_UART5:
325 #ifdef CONFIG_TEGRA20
326 		/* There's no divider for these clocks in this SoC. */
327 		return parent_rate;
328 #else
329 		/*
330 		 * This undoes the +2 in get_rate_from_divider() which I
331 		 * believe is incorrect. Ideally we would fix
332 		 * get_rate_from_divider(), but... Removing the +2 from
333 		 * get_rate_from_divider() would probably require remove the -2
334 		 * from the tail of clk_get_divider() since I believe that's
335 		 * only there to invert get_rate_from_divider()'s +2. Observe
336 		 * how find_best_divider() uses those two functions together.
337 		 * However, doing so breaks other stuff, such as Seaboard's
338 		 * display, likely due to clock_set_pllout()'s call to
339 		 * clk_get_divider(). Attempting to fix that by making
340 		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
341 		 * return value doesn't help. In summary this clock driver is
342 		 * quite broken but I'm afraid I have no idea how to fix it
343 		 * without completely replacing it.
344 		 *
345 		 * Be careful to avoid a divide by zero error.
346 		 */
347 		if (div >= 1)
348 			div -= 2;
349 		break;
350 #endif
351 	default:
352 		break;
353 	}
354 
355 	return get_rate_from_divider(parent_rate, div);
356 }
357 
358 /**
359  * Find the best available 7.1 format divisor given a parent clock rate and
360  * required child clock rate. This function assumes that a second-stage
361  * divisor is available which can divide by powers of 2 from 1 to 256.
362  *
363  * @param divider_bits	number of divider bits (8 or 16)
364  * @param parent_rate	clock rate of parent clock in Hz
365  * @param rate		required clock rate for this clock
366  * @param extra_div	value for the second-stage divisor (not set if this
367  *			function returns -1.
368  * @return divider which should be used, or -1 if nothing is valid
369  *
370  */
find_best_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate,int * extra_div)371 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
372 				unsigned long rate, int *extra_div)
373 {
374 	int shift;
375 	int best_divider = -1;
376 	int best_error = rate;
377 
378 	/* try dividers from 1 to 256 and find closest match */
379 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
380 		unsigned divided_parent = parent_rate >> shift;
381 		int divider = clk_get_divider(divider_bits, divided_parent,
382 						rate);
383 		unsigned effective_rate = get_rate_from_divider(divided_parent,
384 						divider);
385 		int error = rate - effective_rate;
386 
387 		/* Given a valid divider, look for the lowest error */
388 		if (divider != -1 && error < best_error) {
389 			best_error = error;
390 			*extra_div = 1 << shift;
391 			best_divider = divider;
392 		}
393 	}
394 
395 	/* return what we found - *extra_div will already be set */
396 	return best_divider;
397 }
398 
399 /**
400  * Adjust peripheral PLL to use the given divider and source.
401  *
402  * @param periph_id	peripheral to adjust
403  * @param source	Source number (0-3 or 0-7)
404  * @param mux_bits	Number of mux bits (2 or 4)
405  * @param divider	Required divider in 7.1 or 15.1 format
406  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
407  *		for this peripheral)
408  */
adjust_periph_pll(enum periph_id periph_id,int source,int mux_bits,unsigned divider)409 static int adjust_periph_pll(enum periph_id periph_id, int source,
410 				int mux_bits, unsigned divider)
411 {
412 	u32 *reg = get_periph_source_reg(periph_id);
413 
414 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
415 			divider << OUT_CLK_DIVISOR_SHIFT);
416 	udelay(1);
417 
418 	/* work out the source clock and set it */
419 	if (source < 0)
420 		return -1;
421 
422 	clock_ll_set_source_bits(periph_id, mux_bits, source);
423 
424 	udelay(2);
425 	return 0;
426 }
427 
clock_get_periph_parent(enum periph_id periph_id)428 enum clock_id clock_get_periph_parent(enum periph_id periph_id)
429 {
430 	int err, mux_bits, divider_bits, type;
431 	int source;
432 
433 	err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
434 	if (err)
435 		return CLOCK_ID_NONE;
436 
437 	source = clock_ll_get_source_bits(periph_id, mux_bits);
438 
439 	return get_periph_clock_id(periph_id, source);
440 }
441 
clock_adjust_periph_pll_div(enum periph_id periph_id,enum clock_id parent,unsigned rate,int * extra_div)442 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
443 		enum clock_id parent, unsigned rate, int *extra_div)
444 {
445 	unsigned effective_rate;
446 	int mux_bits, divider_bits, source;
447 	int divider;
448 	int xdiv = 0;
449 
450 	/* work out the source clock and set it */
451 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
452 					 &divider_bits);
453 
454 	divider = find_best_divider(divider_bits, pll_rate[parent],
455 				    rate, &xdiv);
456 	if (extra_div)
457 		*extra_div = xdiv;
458 
459 	assert(divider >= 0);
460 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
461 		return -1U;
462 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
463 		get_periph_source_reg(periph_id),
464 		readl(get_periph_source_reg(periph_id)));
465 
466 	/* Check what we ended up with. This shouldn't matter though */
467 	effective_rate = clock_get_periph_rate(periph_id, parent);
468 	if (extra_div)
469 		effective_rate /= *extra_div;
470 	if (rate != effective_rate)
471 		debug("Requested clock rate %u not honored (got %u)\n",
472 			rate, effective_rate);
473 	return effective_rate;
474 }
475 
clock_start_periph_pll(enum periph_id periph_id,enum clock_id parent,unsigned rate)476 unsigned clock_start_periph_pll(enum periph_id periph_id,
477 		enum clock_id parent, unsigned rate)
478 {
479 	unsigned effective_rate;
480 
481 	reset_set_enable(periph_id, 1);
482 	clock_enable(periph_id);
483 	udelay(2);
484 
485 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
486 						 NULL);
487 
488 	reset_set_enable(periph_id, 0);
489 	return effective_rate;
490 }
491 
clock_enable(enum periph_id clkid)492 void clock_enable(enum periph_id clkid)
493 {
494 	clock_set_enable(clkid, 1);
495 }
496 
clock_disable(enum periph_id clkid)497 void clock_disable(enum periph_id clkid)
498 {
499 	clock_set_enable(clkid, 0);
500 }
501 
reset_periph(enum periph_id periph_id,int us_delay)502 void reset_periph(enum periph_id periph_id, int us_delay)
503 {
504 	/* Put peripheral into reset */
505 	reset_set_enable(periph_id, 1);
506 	udelay(us_delay);
507 
508 	/* Remove reset */
509 	reset_set_enable(periph_id, 0);
510 
511 	udelay(us_delay);
512 }
513 
reset_cmplx_set_enable(int cpu,int which,int reset)514 void reset_cmplx_set_enable(int cpu, int which, int reset)
515 {
516 	struct clk_rst_ctlr *clkrst =
517 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
518 	u32 mask;
519 
520 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
521 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
522 	mask = which << cpu;
523 
524 	/* either enable or disable those reset for that CPU */
525 	if (reset)
526 		writel(mask, &clkrst->crc_cpu_cmplx_set);
527 	else
528 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
529 }
530 
clk_m_get_rate(unsigned int parent_rate)531 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
532 {
533 	return parent_rate;
534 }
535 
clock_get_rate(enum clock_id clkid)536 unsigned clock_get_rate(enum clock_id clkid)
537 {
538 	struct clk_pll *pll;
539 	u32 base, divm;
540 	u64 parent_rate, rate;
541 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
542 
543 	parent_rate = osc_freq[clock_get_osc_freq()];
544 	if (clkid == CLOCK_ID_OSC)
545 		return parent_rate;
546 
547 	if (clkid == CLOCK_ID_CLK_M)
548 		return clk_m_get_rate(parent_rate);
549 
550 	pll = get_pll(clkid);
551 	if (!pll)
552 		return 0;
553 	base = readl(&pll->pll_base);
554 
555 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
556 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
557 	/*
558 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
559 	 * T210 uses normal DIVP. Handled in pllinfo table.
560 	 */
561 #ifdef CONFIG_TEGRA210
562 	/*
563 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
564 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
565 	 * are divided down from pllP_out0. We only support pllP_out0 in
566 	 * U-Boot at the time of writing this comment.
567 	 */
568 	if (clkid != CLOCK_ID_PERIPH)
569 #endif
570 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
571 	do_div(rate, divm);
572 	return rate;
573 }
574 
575 /**
576  * Set the output frequency you want for each PLL clock.
577  * PLL output frequencies are programmed by setting their N, M and P values.
578  * The governing equations are:
579  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
580  *     where Fo is the output frequency from the PLL.
581  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
582  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
583  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
584  *
585  * @param n PLL feedback divider(DIVN)
586  * @param m PLL input divider(DIVN)
587  * @param p post divider(DIVP)
588  * @param cpcon base PLL charge pump(CPCON)
589  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
590  *		be overridden), 1 if PLL is already correct
591  */
clock_set_rate(enum clock_id clkid,u32 n,u32 m,u32 p,u32 cpcon)592 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
593 {
594 	u32 base_reg, misc_reg;
595 	struct clk_pll *pll;
596 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
597 
598 	pll = get_pll(clkid);
599 
600 	base_reg = readl(&pll->pll_base);
601 
602 	/* Set BYPASS, m, n and p to PLL_BASE */
603 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
604 	base_reg |= m << pllinfo->m_shift;
605 
606 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
607 	base_reg |= n << pllinfo->n_shift;
608 
609 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
610 	base_reg |= p << pllinfo->p_shift;
611 
612 	if (clkid == CLOCK_ID_PERIPH) {
613 		/*
614 		 * If the PLL is already set up, check that it is correct
615 		 * and record this info for clock_verify() to check.
616 		 */
617 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
618 			base_reg |= PLL_ENABLE_MASK;
619 			if (base_reg != readl(&pll->pll_base))
620 				pllp_valid = 0;
621 			return pllp_valid ? 1 : -1;
622 		}
623 		base_reg |= PLL_BASE_OVRRIDE_MASK;
624 	}
625 
626 	base_reg |= PLL_BYPASS_MASK;
627 	writel(base_reg, &pll->pll_base);
628 
629 	/* Set cpcon (KCP) to PLL_MISC */
630 	misc_reg = readl(&pll->pll_misc);
631 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
632 	misc_reg |= cpcon << pllinfo->kcp_shift;
633 	writel(misc_reg, &pll->pll_misc);
634 
635 	/* Enable PLL */
636 	base_reg |= PLL_ENABLE_MASK;
637 	writel(base_reg, &pll->pll_base);
638 
639 	/* Disable BYPASS */
640 	base_reg &= ~PLL_BYPASS_MASK;
641 	writel(base_reg, &pll->pll_base);
642 
643 	return 0;
644 }
645 
clock_ll_start_uart(enum periph_id periph_id)646 void clock_ll_start_uart(enum periph_id periph_id)
647 {
648 	/* Assert UART reset and enable clock */
649 	reset_set_enable(periph_id, 1);
650 	clock_enable(periph_id);
651 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
652 
653 	/* wait for 2us */
654 	udelay(2);
655 
656 	/* De-assert reset to UART */
657 	reset_set_enable(periph_id, 0);
658 }
659 
660 #if CONFIG_IS_ENABLED(OF_CONTROL)
clock_decode_periph_id(struct udevice * dev)661 int clock_decode_periph_id(struct udevice *dev)
662 {
663 	enum periph_id id;
664 	u32 cell[2];
665 	int err;
666 
667 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
668 	if (err)
669 		return -1;
670 	id = clk_id_to_periph_id(cell[1]);
671 	assert(clock_periph_id_isvalid(id));
672 	return id;
673 }
674 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
675 
clock_verify(void)676 int clock_verify(void)
677 {
678 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
679 	u32 reg = readl(&pll->pll_base);
680 
681 	if (!pllp_valid) {
682 		printf("Warning: PLLP %x is not correct\n", reg);
683 		return -1;
684 	}
685 	debug("PLLP %x is correct\n", reg);
686 	return 0;
687 }
688 
clock_init(void)689 void clock_init(void)
690 {
691 	int i;
692 
693 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
694 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
695 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
696 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
697 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
698 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
699 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
700 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
701 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
702 
703 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
704 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
705 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
706 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
707 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
708 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
709 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
710 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
711 
712 	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
713 		enum periph_id periph_id;
714 		enum clock_id parent;
715 		int source, mux_bits, divider_bits;
716 
717 		periph_id = periph_clk_init_table[i].periph_id;
718 		parent = periph_clk_init_table[i].parent_clock_id;
719 
720 		source = get_periph_clock_source(periph_id, parent, &mux_bits,
721 						 &divider_bits);
722 		clock_ll_set_source_bits(periph_id, mux_bits, source);
723 	}
724 }
725 
set_avp_clock_source(u32 src)726 static void set_avp_clock_source(u32 src)
727 {
728 	struct clk_rst_ctlr *clkrst =
729 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
730 	u32 val;
731 
732 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
733 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
734 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
735 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
736 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
737 	writel(val, &clkrst->crc_sclk_brst_pol);
738 	udelay(3);
739 }
740 
741 /*
742  * This function is useful on Tegra30, and any later SoCs that have compatible
743  * PLLP configuration registers.
744  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
745  */
tegra30_set_up_pllp(void)746 void tegra30_set_up_pllp(void)
747 {
748 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
749 	u32 reg;
750 
751 	/*
752 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
753 	 * run up to 275MHz. On power on, the default sytem clock source is set
754 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
755 	 * 408MHz which is beyond system clock's upper limit.
756 	 *
757 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
758 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
759 	 * configured, after PLLP has been configured
760 	 */
761 	set_avp_clock_source(SCLK_SOURCE_CLKM);
762 
763 	/*
764 	 * PLLP output frequency set to 408Mhz
765 	 * PLLC output frequency set to 228Mhz
766 	 */
767 	switch (clock_get_osc_freq()) {
768 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
769 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
770 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
771 		break;
772 
773 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
774 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
775 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
776 		break;
777 
778 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
779 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
780 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
781 		break;
782 	case CLOCK_OSC_FREQ_19_2:
783 	default:
784 		/*
785 		 * These are not supported. It is too early to print a
786 		 * message and the UART likely won't work anyway due to the
787 		 * oscillator being wrong.
788 		 */
789 		break;
790 	}
791 
792 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
793 
794 	/* OUT1, 2 */
795 	/* Assert RSTN before enable */
796 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
797 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
798 	/* Set divisor and reenable */
799 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
800 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
801 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
802 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
803 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
804 
805 	/* OUT3, 4 */
806 	/* Assert RSTN before enable */
807 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
808 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
809 	/* Set divisor and reenable */
810 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
811 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
812 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
813 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
814 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
815 
816 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
817 }
818 
clock_external_output(int clk_id)819 int clock_external_output(int clk_id)
820 {
821 	u32 val;
822 
823 	if (clk_id >= 1 && clk_id <= 3) {
824 		val = tegra_pmc_readl(offsetof(struct pmc_ctlr,
825 				      pmc_clk_out_cntrl));
826 		val |= 1 << (2 + (clk_id - 1) * 8);
827 		tegra_pmc_writel(val,
828 				 offsetof(struct pmc_ctlr,
829 				 pmc_clk_out_cntrl));
830 
831 	} else {
832 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
833 		return -EINVAL;
834 	}
835 
836 	return 0;
837 }
838 
clock_early_init_done(void)839 __weak bool clock_early_init_done(void)
840 {
841 	return true;
842 }
843