1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2010-2013 NVIDIA Corporation
4  * With help from the mpc8xxx SPI driver
5  * With more help from omap3_spi SPI driver
6  */
7 
8 #include <common.h>
9 #include <dm.h>
10 #include <errno.h>
11 #include <log.h>
12 #include <time.h>
13 #include <asm/global_data.h>
14 #include <asm/io.h>
15 #include <asm/gpio.h>
16 #include <asm/arch/clock.h>
17 #include <asm/arch/pinmux.h>
18 #include <asm/arch-tegra/clk_rst.h>
19 #include <spi.h>
20 #include <fdtdec.h>
21 #include <linux/bitops.h>
22 #include <linux/delay.h>
23 #include "tegra_spi.h"
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 #define SPI_CMD_GO			BIT(30)
28 #define SPI_CMD_ACTIVE_SCLK_SHIFT	26
29 #define SPI_CMD_ACTIVE_SCLK_MASK	(3 << SPI_CMD_ACTIVE_SCLK_SHIFT)
30 #define SPI_CMD_CK_SDA			BIT(21)
31 #define SPI_CMD_ACTIVE_SDA_SHIFT	18
32 #define SPI_CMD_ACTIVE_SDA_MASK		(3 << SPI_CMD_ACTIVE_SDA_SHIFT)
33 #define SPI_CMD_CS_POL			BIT(16)
34 #define SPI_CMD_TXEN			BIT(15)
35 #define SPI_CMD_RXEN			BIT(14)
36 #define SPI_CMD_CS_VAL			BIT(13)
37 #define SPI_CMD_CS_SOFT			BIT(12)
38 #define SPI_CMD_CS_DELAY		BIT(9)
39 #define SPI_CMD_CS3_EN			BIT(8)
40 #define SPI_CMD_CS2_EN			BIT(7)
41 #define SPI_CMD_CS1_EN			BIT(6)
42 #define SPI_CMD_CS0_EN			BIT(5)
43 #define SPI_CMD_BIT_LENGTH		BIT(4)
44 #define SPI_CMD_BIT_LENGTH_MASK		GENMASK(4, 0)
45 
46 #define SPI_STAT_BSY			BIT(31)
47 #define SPI_STAT_RDY			BIT(30)
48 #define SPI_STAT_RXF_FLUSH		BIT(29)
49 #define SPI_STAT_TXF_FLUSH		BIT(28)
50 #define SPI_STAT_RXF_UNR		BIT(27)
51 #define SPI_STAT_TXF_OVF		BIT(26)
52 #define SPI_STAT_RXF_EMPTY		BIT(25)
53 #define SPI_STAT_RXF_FULL		BIT(24)
54 #define SPI_STAT_TXF_EMPTY		BIT(23)
55 #define SPI_STAT_TXF_FULL		BIT(22)
56 #define SPI_STAT_SEL_TXRX_N		BIT(16)
57 #define SPI_STAT_CUR_BLKCNT		BIT(15)
58 
59 #define SPI_TIMEOUT		1000
60 #define TEGRA_SPI_MAX_FREQ	52000000
61 
62 struct spi_regs {
63 	u32 command;	/* SPI_COMMAND_0 register  */
64 	u32 status;	/* SPI_STATUS_0 register */
65 	u32 rx_cmp;	/* SPI_RX_CMP_0 register  */
66 	u32 dma_ctl;	/* SPI_DMA_CTL_0 register */
67 	u32 tx_fifo;	/* SPI_TX_FIFO_0 register */
68 	u32 rsvd[3];	/* offsets 0x14 to 0x1F reserved */
69 	u32 rx_fifo;	/* SPI_RX_FIFO_0 register */
70 };
71 
72 struct tegra20_sflash_priv {
73 	struct spi_regs *regs;
74 	unsigned int freq;
75 	unsigned int mode;
76 	int periph_id;
77 	int valid;
78 	int last_transaction_us;
79 };
80 
tegra20_sflash_cs_info(struct udevice * bus,unsigned int cs,struct spi_cs_info * info)81 int tegra20_sflash_cs_info(struct udevice *bus, unsigned int cs,
82 			   struct spi_cs_info *info)
83 {
84 	/* Tegra20 SPI-Flash - only 1 device ('bus/cs') */
85 	if (cs != 0)
86 		return -EINVAL;
87 	else
88 		return 0;
89 }
90 
tegra20_sflash_of_to_plat(struct udevice * bus)91 static int tegra20_sflash_of_to_plat(struct udevice *bus)
92 {
93 	struct tegra_spi_plat *plat = dev_get_plat(bus);
94 	const void *blob = gd->fdt_blob;
95 	int node = dev_of_offset(bus);
96 
97 	plat->base = dev_read_addr(bus);
98 	plat->periph_id = clock_decode_periph_id(bus);
99 
100 	if (plat->periph_id == PERIPH_ID_NONE) {
101 		debug("%s: could not decode periph id %d\n", __func__,
102 		      plat->periph_id);
103 		return -FDT_ERR_NOTFOUND;
104 	}
105 
106 	/* Use 500KHz as a suitable default */
107 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
108 					500000);
109 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
110 					"spi-deactivate-delay", 0);
111 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
112 	      __func__, plat->base, plat->periph_id, plat->frequency,
113 	      plat->deactivate_delay_us);
114 
115 	return 0;
116 }
117 
tegra20_sflash_probe(struct udevice * bus)118 static int tegra20_sflash_probe(struct udevice *bus)
119 {
120 	struct tegra_spi_plat *plat = dev_get_plat(bus);
121 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
122 
123 	priv->regs = (struct spi_regs *)plat->base;
124 
125 	priv->last_transaction_us = timer_get_us();
126 	priv->freq = plat->frequency;
127 	priv->periph_id = plat->periph_id;
128 
129 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
130 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
131 			       priv->freq);
132 
133 	return 0;
134 }
135 
tegra20_sflash_claim_bus(struct udevice * dev)136 static int tegra20_sflash_claim_bus(struct udevice *dev)
137 {
138 	struct udevice *bus = dev->parent;
139 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
140 	struct spi_regs *regs = priv->regs;
141 	u32 reg;
142 
143 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
144 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
145 			       priv->freq);
146 
147 	/* Clear stale status here */
148 	reg = SPI_STAT_RDY | SPI_STAT_RXF_FLUSH | SPI_STAT_TXF_FLUSH | \
149 		SPI_STAT_RXF_UNR | SPI_STAT_TXF_OVF;
150 	writel(reg, &regs->status);
151 	debug("%s: STATUS = %08x\n", __func__, readl(&regs->status));
152 
153 	/*
154 	 * Use sw-controlled CS, so we can clock in data after ReadID, etc.
155 	 */
156 	reg = (priv->mode & 1) << SPI_CMD_ACTIVE_SDA_SHIFT;
157 	if (priv->mode & 2)
158 		reg |= 1 << SPI_CMD_ACTIVE_SCLK_SHIFT;
159 	clrsetbits_le32(&regs->command, SPI_CMD_ACTIVE_SCLK_MASK |
160 		SPI_CMD_ACTIVE_SDA_MASK, SPI_CMD_CS_SOFT | reg);
161 	debug("%s: COMMAND = %08x\n", __func__, readl(&regs->command));
162 
163 	/*
164 	 * SPI pins on Tegra20 are muxed - change pinmux later due to UART
165 	 * issue.
166 	 */
167 	pinmux_set_func(PMUX_PINGRP_GMD, PMUX_FUNC_SFLASH);
168 	pinmux_tristate_disable(PMUX_PINGRP_LSPI);
169 	pinmux_set_func(PMUX_PINGRP_GMC, PMUX_FUNC_SFLASH);
170 
171 	return 0;
172 }
173 
spi_cs_activate(struct udevice * dev)174 static void spi_cs_activate(struct udevice *dev)
175 {
176 	struct udevice *bus = dev->parent;
177 	struct tegra_spi_plat *pdata = dev_get_plat(bus);
178 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
179 
180 	/* If it's too soon to do another transaction, wait */
181 	if (pdata->deactivate_delay_us &&
182 	    priv->last_transaction_us) {
183 		ulong delay_us;		/* The delay completed so far */
184 		delay_us = timer_get_us() - priv->last_transaction_us;
185 		if (delay_us < pdata->deactivate_delay_us)
186 			udelay(pdata->deactivate_delay_us - delay_us);
187 	}
188 
189 	/* CS is negated on Tegra, so drive a 1 to get a 0 */
190 	setbits_le32(&priv->regs->command, SPI_CMD_CS_VAL);
191 }
192 
spi_cs_deactivate(struct udevice * dev)193 static void spi_cs_deactivate(struct udevice *dev)
194 {
195 	struct udevice *bus = dev->parent;
196 	struct tegra_spi_plat *pdata = dev_get_plat(bus);
197 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
198 
199 	/* CS is negated on Tegra, so drive a 0 to get a 1 */
200 	clrbits_le32(&priv->regs->command, SPI_CMD_CS_VAL);
201 
202 	/* Remember time of this transaction so we can honour the bus delay */
203 	if (pdata->deactivate_delay_us)
204 		priv->last_transaction_us = timer_get_us();
205 }
206 
tegra20_sflash_xfer(struct udevice * dev,unsigned int bitlen,const void * data_out,void * data_in,unsigned long flags)207 static int tegra20_sflash_xfer(struct udevice *dev, unsigned int bitlen,
208 			     const void *data_out, void *data_in,
209 			     unsigned long flags)
210 {
211 	struct udevice *bus = dev->parent;
212 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
213 	struct spi_regs *regs = priv->regs;
214 	u32 reg, tmpdout, tmpdin = 0;
215 	const u8 *dout = data_out;
216 	u8 *din = data_in;
217 	int num_bytes;
218 	int ret;
219 
220 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
221 	      __func__, dev_seq(bus), spi_chip_select(dev), dout, din, bitlen);
222 	if (bitlen % 8)
223 		return -1;
224 	num_bytes = bitlen / 8;
225 
226 	ret = 0;
227 
228 	reg = readl(&regs->status);
229 	writel(reg, &regs->status);	/* Clear all SPI events via R/W */
230 	debug("spi_xfer entry: STATUS = %08x\n", reg);
231 
232 	reg = readl(&regs->command);
233 	reg |= SPI_CMD_TXEN | SPI_CMD_RXEN;
234 	writel(reg, &regs->command);
235 	debug("spi_xfer: COMMAND = %08x\n", readl(&regs->command));
236 
237 	if (flags & SPI_XFER_BEGIN)
238 		spi_cs_activate(dev);
239 
240 	/* handle data in 32-bit chunks */
241 	while (num_bytes > 0) {
242 		int bytes;
243 		int is_read = 0;
244 		int tm, i;
245 
246 		tmpdout = 0;
247 		bytes = (num_bytes > 4) ?  4 : num_bytes;
248 
249 		if (dout != NULL) {
250 			for (i = 0; i < bytes; ++i)
251 				tmpdout = (tmpdout << 8) | dout[i];
252 		}
253 
254 		num_bytes -= bytes;
255 		if (dout)
256 			dout += bytes;
257 
258 		clrsetbits_le32(&regs->command, SPI_CMD_BIT_LENGTH_MASK,
259 				bytes * 8 - 1);
260 		writel(tmpdout, &regs->tx_fifo);
261 		setbits_le32(&regs->command, SPI_CMD_GO);
262 
263 		/*
264 		 * Wait for SPI transmit FIFO to empty, or to time out.
265 		 * The RX FIFO status will be read and cleared last
266 		 */
267 		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
268 			u32 status;
269 
270 			status = readl(&regs->status);
271 
272 			/* We can exit when we've had both RX and TX activity */
273 			if (is_read && (status & SPI_STAT_TXF_EMPTY))
274 				break;
275 
276 			if ((status & (SPI_STAT_BSY | SPI_STAT_RDY)) !=
277 					SPI_STAT_RDY)
278 				tm++;
279 
280 			else if (!(status & SPI_STAT_RXF_EMPTY)) {
281 				tmpdin = readl(&regs->rx_fifo);
282 				is_read = 1;
283 
284 				/* swap bytes read in */
285 				if (din != NULL) {
286 					for (i = bytes - 1; i >= 0; --i) {
287 						din[i] = tmpdin & 0xff;
288 						tmpdin >>= 8;
289 					}
290 					din += bytes;
291 				}
292 			}
293 		}
294 
295 		if (tm >= SPI_TIMEOUT)
296 			ret = tm;
297 
298 		/* clear ACK RDY, etc. bits */
299 		writel(readl(&regs->status), &regs->status);
300 	}
301 
302 	if (flags & SPI_XFER_END)
303 		spi_cs_deactivate(dev);
304 
305 	debug("spi_xfer: transfer ended. Value=%08x, status = %08x\n",
306 		tmpdin, readl(&regs->status));
307 
308 	if (ret) {
309 		printf("spi_xfer: timeout during SPI transfer, tm %d\n", ret);
310 		return -1;
311 	}
312 
313 	return 0;
314 }
315 
tegra20_sflash_set_speed(struct udevice * bus,uint speed)316 static int tegra20_sflash_set_speed(struct udevice *bus, uint speed)
317 {
318 	struct tegra_spi_plat *plat = dev_get_plat(bus);
319 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
320 
321 	if (speed > plat->frequency)
322 		speed = plat->frequency;
323 	priv->freq = speed;
324 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
325 
326 	return 0;
327 }
328 
tegra20_sflash_set_mode(struct udevice * bus,uint mode)329 static int tegra20_sflash_set_mode(struct udevice *bus, uint mode)
330 {
331 	struct tegra20_sflash_priv *priv = dev_get_priv(bus);
332 
333 	priv->mode = mode;
334 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
335 
336 	return 0;
337 }
338 
339 static const struct dm_spi_ops tegra20_sflash_ops = {
340 	.claim_bus	= tegra20_sflash_claim_bus,
341 	.xfer		= tegra20_sflash_xfer,
342 	.set_speed	= tegra20_sflash_set_speed,
343 	.set_mode	= tegra20_sflash_set_mode,
344 	.cs_info	= tegra20_sflash_cs_info,
345 };
346 
347 static const struct udevice_id tegra20_sflash_ids[] = {
348 	{ .compatible = "nvidia,tegra20-sflash" },
349 	{ }
350 };
351 
352 U_BOOT_DRIVER(tegra20_sflash) = {
353 	.name	= "tegra20_sflash",
354 	.id	= UCLASS_SPI,
355 	.of_match = tegra20_sflash_ids,
356 	.ops	= &tegra20_sflash_ops,
357 	.of_to_plat = tegra20_sflash_of_to_plat,
358 	.plat_auto	= sizeof(struct tegra_spi_plat),
359 	.priv_auto	= sizeof(struct tegra20_sflash_priv),
360 	.probe	= tegra20_sflash_probe,
361 };
362