1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ENETC ethernet controller driver
4  * Copyright 2017-2019 NXP
5  */
6 
7 #include <common.h>
8 #include <dm.h>
9 #include <errno.h>
10 #include <fdt_support.h>
11 #include <malloc.h>
12 #include <memalign.h>
13 #include <net.h>
14 #include <asm/cache.h>
15 #include <asm/io.h>
16 #include <pci.h>
17 #include <miiphy.h>
18 #include <linux/bug.h>
19 #include <linux/delay.h>
20 
21 #include "fsl_enetc.h"
22 
23 #define ENETC_DRIVER_NAME	"enetc_eth"
24 
25 /*
26  * sets the MAC address in IERB registers, this setting is persistent and
27  * carried over to Linux.
28  */
enetc_set_ierb_primary_mac(struct udevice * dev,int devfn,const u8 * enetaddr)29 static void enetc_set_ierb_primary_mac(struct udevice *dev, int devfn,
30 				       const u8 *enetaddr)
31 {
32 #ifdef CONFIG_ARCH_LS1028A
33 /*
34  * LS1028A is the only part with IERB at this time and there are plans to change
35  * its structure, keep this LS1028A specific for now
36  */
37 #define IERB_BASE		0x1f0800000ULL
38 #define IERB_PFMAC(pf, vf, n)	(IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \
39 				 + (n) * 4)
40 
41 static int ierb_fn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
42 
43 	u16 lower = *(const u16 *)(enetaddr + 4);
44 	u32 upper = *(const u32 *)enetaddr;
45 
46 	if (ierb_fn_to_pf[devfn] < 0)
47 		return;
48 
49 	out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper);
50 	out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower);
51 #endif
52 }
53 
54 /* sets up primary MAC addresses in DT/IERB */
fdt_fixup_enetc_mac(void * blob)55 void fdt_fixup_enetc_mac(void *blob)
56 {
57 	struct pci_child_plat *ppdata;
58 	struct eth_pdata *pdata;
59 	struct udevice *dev;
60 	struct uclass *uc;
61 	char path[256];
62 	int offset;
63 	int devfn;
64 
65 	uclass_get(UCLASS_ETH, &uc);
66 	uclass_foreach_dev(dev, uc) {
67 		if (!dev->driver || !dev->driver->name ||
68 		    strcmp(dev->driver->name, ENETC_DRIVER_NAME))
69 			continue;
70 
71 		pdata = dev_get_plat(dev);
72 		ppdata = dev_get_parent_plat(dev);
73 		devfn = PCI_FUNC(ppdata->devfn);
74 
75 		enetc_set_ierb_primary_mac(dev, devfn, pdata->enetaddr);
76 
77 		snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x",
78 			 PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn));
79 		offset = fdt_path_offset(blob, path);
80 		if (offset < 0)
81 			continue;
82 		fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6);
83 	}
84 }
85 
86 /*
87  * Bind the device:
88  * - set a more explicit name on the interface
89  */
enetc_bind(struct udevice * dev)90 static int enetc_bind(struct udevice *dev)
91 {
92 	char name[16];
93 	static int eth_num_devices;
94 
95 	/*
96 	 * prefer using PCI function numbers to number interfaces, but these
97 	 * are only available if dts nodes are present.  For PCI they are
98 	 * optional, handle that case too.  Just in case some nodes are present
99 	 * and some are not, use different naming scheme - enetc-N based on
100 	 * PCI function # and enetc#N based on interface count
101 	 */
102 	if (ofnode_valid(dev_ofnode(dev)))
103 		sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev)));
104 	else
105 		sprintf(name, "enetc#%u", eth_num_devices++);
106 	device_set_name(dev, name);
107 
108 	return 0;
109 }
110 
111 /* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */
enetc_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)112 static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
113 {
114 	struct enetc_mdio_priv priv;
115 
116 	priv.regs_base = bus->priv;
117 	return enetc_mdio_read_priv(&priv, addr, devad, reg);
118 }
119 
enetc_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 val)120 static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
121 			    u16 val)
122 {
123 	struct enetc_mdio_priv priv;
124 
125 	priv.regs_base = bus->priv;
126 	return enetc_mdio_write_priv(&priv, addr, devad, reg, val);
127 }
128 
129 /* only interfaces that can pin out through serdes have internal MDIO */
enetc_has_imdio(struct udevice * dev)130 static bool enetc_has_imdio(struct udevice *dev)
131 {
132 	struct enetc_priv *priv = dev_get_priv(dev);
133 
134 	return !!(priv->imdio.priv);
135 }
136 
137 /* set up serdes for SGMII */
enetc_init_sgmii(struct udevice * dev)138 static int enetc_init_sgmii(struct udevice *dev)
139 {
140 	struct enetc_priv *priv = dev_get_priv(dev);
141 	bool is2500 = false;
142 	u16 reg;
143 
144 	if (!enetc_has_imdio(dev))
145 		return 0;
146 
147 	if (priv->if_type == PHY_INTERFACE_MODE_SGMII_2500)
148 		is2500 = true;
149 
150 	/*
151 	 * Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed.
152 	 * Although fixed speed is 1Gbps, we could be running at 2.5Gbps based
153 	 * on PLL configuration.  Setting 1G for 2.5G here is counter intuitive
154 	 * but intentional.
155 	 */
156 	reg = ENETC_PCS_IF_MODE_SGMII;
157 	reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN;
158 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
159 			 ENETC_PCS_IF_MODE, reg);
160 
161 	/* Dev ability - SGMII */
162 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
163 			 ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII);
164 
165 	/* Adjust link timer for SGMII */
166 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
167 			 ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL);
168 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
169 			 ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL);
170 
171 	reg = ENETC_PCS_CR_DEF_VAL;
172 	reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN;
173 	/* restart PCS AN */
174 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE,
175 			 ENETC_PCS_CR, reg);
176 
177 	return 0;
178 }
179 
180 /* set up MAC for RGMII */
enetc_init_rgmii(struct udevice * dev)181 static int enetc_init_rgmii(struct udevice *dev)
182 {
183 	struct enetc_priv *priv = dev_get_priv(dev);
184 	u32 if_mode;
185 
186 	/* enable RGMII AN */
187 	if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
188 	if_mode |= ENETC_PM_IF_MODE_AN_ENA;
189 	enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
190 
191 	return 0;
192 }
193 
194 /* set up MAC configuration for the given interface type */
enetc_setup_mac_iface(struct udevice * dev)195 static void enetc_setup_mac_iface(struct udevice *dev)
196 {
197 	struct enetc_priv *priv = dev_get_priv(dev);
198 	u32 if_mode;
199 
200 	switch (priv->if_type) {
201 	case PHY_INTERFACE_MODE_RGMII:
202 	case PHY_INTERFACE_MODE_RGMII_ID:
203 	case PHY_INTERFACE_MODE_RGMII_RXID:
204 	case PHY_INTERFACE_MODE_RGMII_TXID:
205 		enetc_init_rgmii(dev);
206 		break;
207 	case PHY_INTERFACE_MODE_XGMII:
208 	case PHY_INTERFACE_MODE_USXGMII:
209 	case PHY_INTERFACE_MODE_XFI:
210 		/* set ifmode to (US)XGMII */
211 		if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE);
212 		if_mode &= ~ENETC_PM_IF_IFMODE_MASK;
213 		enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode);
214 		break;
215 	};
216 }
217 
218 /* set up serdes for SXGMII */
enetc_init_sxgmii(struct udevice * dev)219 static int enetc_init_sxgmii(struct udevice *dev)
220 {
221 	struct enetc_priv *priv = dev_get_priv(dev);
222 
223 	if (!enetc_has_imdio(dev))
224 		return 0;
225 
226 	/* Dev ability - SXGMII */
227 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
228 			 ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII);
229 
230 	/* Restart PCS AN */
231 	enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL,
232 			 ENETC_PCS_CR,
233 			 ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN);
234 
235 	return 0;
236 }
237 
238 /* Apply protocol specific configuration to MAC, serdes as needed */
enetc_start_pcs(struct udevice * dev)239 static void enetc_start_pcs(struct udevice *dev)
240 {
241 	struct enetc_priv *priv = dev_get_priv(dev);
242 	const char *if_str;
243 
244 	priv->if_type = PHY_INTERFACE_MODE_NONE;
245 
246 	/* register internal MDIO for debug purposes */
247 	if (enetc_read_port(priv, ENETC_PCAPR0) & ENETC_PCAPRO_MDIO) {
248 		priv->imdio.read = enetc_mdio_read;
249 		priv->imdio.write = enetc_mdio_write;
250 		priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE;
251 		strncpy(priv->imdio.name, dev->name, MDIO_NAME_LEN);
252 		if (!miiphy_get_dev_by_name(priv->imdio.name))
253 			mdio_register(&priv->imdio);
254 	}
255 
256 	if (!ofnode_valid(dev_ofnode(dev))) {
257 		enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n");
258 		return;
259 	}
260 
261 	if_str = ofnode_read_string(dev_ofnode(dev), "phy-mode");
262 	if (if_str)
263 		priv->if_type = phy_get_interface_by_name(if_str);
264 	else
265 		enetc_dbg(dev,
266 			  "phy-mode property not found, defaulting to SGMII\n");
267 	if (priv->if_type < 0)
268 		priv->if_type = PHY_INTERFACE_MODE_NONE;
269 
270 	switch (priv->if_type) {
271 	case PHY_INTERFACE_MODE_SGMII:
272 	case PHY_INTERFACE_MODE_SGMII_2500:
273 		enetc_init_sgmii(dev);
274 		break;
275 	case PHY_INTERFACE_MODE_XGMII:
276 	case PHY_INTERFACE_MODE_USXGMII:
277 	case PHY_INTERFACE_MODE_XFI:
278 		enetc_init_sxgmii(dev);
279 		break;
280 	};
281 }
282 
283 /* Configure the actual/external ethernet PHY, if one is found */
enetc_config_phy(struct udevice * dev)284 static void enetc_config_phy(struct udevice *dev)
285 {
286 	struct enetc_priv *priv = dev_get_priv(dev);
287 	int supported;
288 
289 	priv->phy = dm_eth_phy_connect(dev);
290 
291 	if (!priv->phy)
292 		return;
293 
294 	supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full;
295 	priv->phy->supported &= supported;
296 	priv->phy->advertising &= supported;
297 
298 	phy_config(priv->phy);
299 }
300 
301 /*
302  * Probe ENETC driver:
303  * - initialize port and station interface BARs
304  */
enetc_probe(struct udevice * dev)305 static int enetc_probe(struct udevice *dev)
306 {
307 	struct enetc_priv *priv = dev_get_priv(dev);
308 
309 	if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_available(dev_ofnode(dev))) {
310 		enetc_dbg(dev, "interface disabled\n");
311 		return -ENODEV;
312 	}
313 
314 	priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
315 				    sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
316 	priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
317 				    sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
318 
319 	if (!priv->enetc_txbd || !priv->enetc_rxbd) {
320 		/* free should be able to handle NULL, just free all pointers */
321 		free(priv->enetc_txbd);
322 		free(priv->enetc_rxbd);
323 
324 		return -ENOMEM;
325 	}
326 
327 	/* initialize register */
328 	priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0);
329 	if (!priv->regs_base) {
330 		enetc_dbg(dev, "failed to map BAR0\n");
331 		return -EINVAL;
332 	}
333 	priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
334 
335 	dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
336 
337 	enetc_start_pcs(dev);
338 	enetc_config_phy(dev);
339 
340 	return 0;
341 }
342 
343 /*
344  * Remove the driver from an interface:
345  * - free up allocated memory
346  */
enetc_remove(struct udevice * dev)347 static int enetc_remove(struct udevice *dev)
348 {
349 	struct enetc_priv *priv = dev_get_priv(dev);
350 
351 	free(priv->enetc_txbd);
352 	free(priv->enetc_rxbd);
353 
354 	return 0;
355 }
356 
357 /*
358  * LS1028A is the only part with IERB at this time and there are plans to
359  * change its structure, keep this LS1028A specific for now.
360  */
361 #define LS1028A_IERB_BASE		0x1f0800000ULL
362 #define LS1028A_IERB_PSIPMAR0(pf, vf)	(LS1028A_IERB_BASE + 0x8000 \
363 					 + (pf) * 0x100 + (vf) * 8)
364 #define LS1028A_IERB_PSIPMAR1(pf, vf)	(LS1028A_IERB_PSIPMAR0(pf, vf) + 4)
365 
enetc_ls1028a_write_hwaddr(struct udevice * dev)366 static int enetc_ls1028a_write_hwaddr(struct udevice *dev)
367 {
368 	struct pci_child_plat *ppdata = dev_get_parent_plat(dev);
369 	const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3};
370 	struct eth_pdata *plat = dev_get_plat(dev);
371 	int devfn = PCI_FUNC(ppdata->devfn);
372 	u8 *addr = plat->enetaddr;
373 	u32 lower, upper;
374 	int pf;
375 
376 	if (devfn >= ARRAY_SIZE(devfn_to_pf))
377 		return 0;
378 
379 	pf = devfn_to_pf[devfn];
380 	if (pf < 0)
381 		return 0;
382 
383 	lower = *(const u16 *)(addr + 4);
384 	upper = *(const u32 *)addr;
385 
386 	out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper);
387 	out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower);
388 
389 	return 0;
390 }
391 
enetc_write_hwaddr(struct udevice * dev)392 static int enetc_write_hwaddr(struct udevice *dev)
393 {
394 	struct eth_pdata *plat = dev_get_plat(dev);
395 	struct enetc_priv *priv = dev_get_priv(dev);
396 	u8 *addr = plat->enetaddr;
397 
398 	if (IS_ENABLED(CONFIG_ARCH_LS1028A))
399 		return enetc_ls1028a_write_hwaddr(dev);
400 
401 	u16 lower = *(const u16 *)(addr + 4);
402 	u32 upper = *(const u32 *)addr;
403 
404 	enetc_write_port(priv, ENETC_PSIPMAR0, upper);
405 	enetc_write_port(priv, ENETC_PSIPMAR1, lower);
406 
407 	return 0;
408 }
409 
410 /* Configure port parameters (# of rings, frame size, enable port) */
enetc_enable_si_port(struct enetc_priv * priv)411 static void enetc_enable_si_port(struct enetc_priv *priv)
412 {
413 	u32 val;
414 
415 	/* set Rx/Tx BDR count */
416 	val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT);
417 	val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT);
418 	enetc_write_port(priv, ENETC_PSICFGR(0), val);
419 	/* set Rx max frame size */
420 	enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
421 	/* enable MAC port */
422 	enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN);
423 	/* enable port */
424 	enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN);
425 	/* set SI cache policy */
426 	enetc_write(priv, ENETC_SICAR0,
427 		    ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG);
428 	/* enable SI */
429 	enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
430 }
431 
432 /* returns DMA address for a given buffer index */
enetc_rxb_address(struct udevice * dev,int i)433 static inline u64 enetc_rxb_address(struct udevice *dev, int i)
434 {
435 	return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
436 }
437 
438 /*
439  * Setup a single Tx BD Ring (ID = 0):
440  * - set Tx buffer descriptor address
441  * - set the BD count
442  * - initialize the producer and consumer index
443  */
enetc_setup_tx_bdr(struct udevice * dev)444 static void enetc_setup_tx_bdr(struct udevice *dev)
445 {
446 	struct enetc_priv *priv = dev_get_priv(dev);
447 	struct bd_ring *tx_bdr = &priv->tx_bdr;
448 	u64 tx_bd_add = (u64)priv->enetc_txbd;
449 
450 	/* used later to advance to the next Tx BD */
451 	tx_bdr->bd_count = ENETC_BD_CNT;
452 	tx_bdr->next_prod_idx = 0;
453 	tx_bdr->next_cons_idx = 0;
454 	tx_bdr->cons_idx = priv->regs_base +
455 				ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
456 	tx_bdr->prod_idx = priv->regs_base +
457 				ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
458 
459 	/* set Tx BD address */
460 	enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
461 			lower_32_bits(tx_bd_add));
462 	enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
463 			upper_32_bits(tx_bd_add));
464 	/* set Tx 8 BD count */
465 	enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
466 			tx_bdr->bd_count);
467 
468 	/* reset both producer/consumer indexes */
469 	enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
470 	enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
471 
472 	/* enable TX ring */
473 	enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
474 }
475 
476 /*
477  * Setup a single Rx BD Ring (ID = 0):
478  * - set Rx buffer descriptors address (one descriptor per buffer)
479  * - set buffer size as max frame size
480  * - enable Rx ring
481  * - reset consumer and producer indexes
482  * - set buffer for each descriptor
483  */
enetc_setup_rx_bdr(struct udevice * dev)484 static void enetc_setup_rx_bdr(struct udevice *dev)
485 {
486 	struct enetc_priv *priv = dev_get_priv(dev);
487 	struct bd_ring *rx_bdr = &priv->rx_bdr;
488 	u64 rx_bd_add = (u64)priv->enetc_rxbd;
489 	int i;
490 
491 	/* used later to advance to the next BD produced by ENETC HW */
492 	rx_bdr->bd_count = ENETC_BD_CNT;
493 	rx_bdr->next_prod_idx = 0;
494 	rx_bdr->next_cons_idx = 0;
495 	rx_bdr->cons_idx = priv->regs_base +
496 				ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
497 	rx_bdr->prod_idx = priv->regs_base +
498 				ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
499 
500 	/* set Rx BD address */
501 	enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
502 			lower_32_bits(rx_bd_add));
503 	enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
504 			upper_32_bits(rx_bd_add));
505 	/* set Rx BD count (multiple of 8) */
506 	enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
507 			rx_bdr->bd_count);
508 	/* set Rx buffer  size */
509 	enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
510 
511 	/* fill Rx BD */
512 	memset(priv->enetc_rxbd, 0,
513 	       rx_bdr->bd_count * sizeof(union enetc_rx_bd));
514 	for (i = 0; i < rx_bdr->bd_count; i++) {
515 		priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
516 		/* each RX buffer must be aligned to 64B */
517 		WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
518 	}
519 
520 	/* reset producer (ENETC owned) and consumer (SW owned) index */
521 	enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
522 	enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
523 
524 	/* enable Rx ring */
525 	enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
526 }
527 
528 /*
529  * Start ENETC interface:
530  * - perform FLR
531  * - enable access to port and SI registers
532  * - set mac address
533  * - setup TX/RX buffer descriptors
534  * - enable Tx/Rx rings
535  */
enetc_start(struct udevice * dev)536 static int enetc_start(struct udevice *dev)
537 {
538 	struct enetc_priv *priv = dev_get_priv(dev);
539 
540 	/* reset and enable the PCI device */
541 	dm_pci_flr(dev);
542 	dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
543 			       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
544 
545 	enetc_enable_si_port(priv);
546 
547 	/* setup Tx/Rx buffer descriptors */
548 	enetc_setup_tx_bdr(dev);
549 	enetc_setup_rx_bdr(dev);
550 
551 	enetc_setup_mac_iface(dev);
552 
553 	if (priv->phy)
554 		phy_startup(priv->phy);
555 
556 	return 0;
557 }
558 
559 /*
560  * Stop the network interface:
561  * - just quiesce it, we can wipe all configuration as _start starts from
562  * scratch each time
563  */
enetc_stop(struct udevice * dev)564 static void enetc_stop(struct udevice *dev)
565 {
566 	/* FLR is sufficient to quiesce the device */
567 	dm_pci_flr(dev);
568 	/* leave the BARs accessible after we stop, this is needed to use
569 	 * internal MDIO in command line.
570 	 */
571 	dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
572 }
573 
574 /*
575  * ENETC transmit packet:
576  * - check if Tx BD ring is full
577  * - set buffer/packet address (dma address)
578  * - set final fragment flag
579  * - try while producer index equals consumer index or timeout
580  */
enetc_send(struct udevice * dev,void * packet,int length)581 static int enetc_send(struct udevice *dev, void *packet, int length)
582 {
583 	struct enetc_priv *priv = dev_get_priv(dev);
584 	struct bd_ring *txr = &priv->tx_bdr;
585 	void *nv_packet = (void *)packet;
586 	int tries = ENETC_POLL_TRIES;
587 	u32 pi, ci;
588 
589 	pi = txr->next_prod_idx;
590 	ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
591 	/* Tx ring is full when */
592 	if (((pi + 1) % txr->bd_count) == ci) {
593 		enetc_dbg(dev, "Tx BDR full\n");
594 		return -ETIMEDOUT;
595 	}
596 	enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
597 		  upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
598 
599 	/* prepare Tx BD */
600 	memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
601 	priv->enetc_txbd[pi].addr =
602 		cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
603 	priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
604 	priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
605 	priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
606 	dmb();
607 	/* send frame: increment producer index */
608 	pi = (pi + 1) % txr->bd_count;
609 	txr->next_prod_idx = pi;
610 	enetc_write_reg(txr->prod_idx, pi);
611 	while ((--tries >= 0) &&
612 	       (pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
613 		udelay(10);
614 
615 	return tries > 0 ? 0 : -ETIMEDOUT;
616 }
617 
618 /*
619  * Receive frame:
620  * - wait for the next BD to get ready bit set
621  * - clean up the descriptor
622  * - move on and indicate to HW that the cleaned BD is available for Rx
623  */
enetc_recv(struct udevice * dev,int flags,uchar ** packetp)624 static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
625 {
626 	struct enetc_priv *priv = dev_get_priv(dev);
627 	struct bd_ring *rxr = &priv->rx_bdr;
628 	int tries = ENETC_POLL_TRIES;
629 	int pi = rxr->next_prod_idx;
630 	int ci = rxr->next_cons_idx;
631 	u32 status;
632 	int len;
633 	u8 rdy;
634 
635 	do {
636 		dmb();
637 		status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
638 		/* check if current BD is ready to be consumed */
639 		rdy = ENETC_RXBD_STATUS_R(status);
640 	} while (--tries >= 0 && !rdy);
641 
642 	if (!rdy)
643 		return -EAGAIN;
644 
645 	dmb();
646 	len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
647 	*packetp = (uchar *)enetc_rxb_address(dev, pi);
648 	enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
649 		  ENETC_RXBD_STATUS_ERRORS(status),
650 		  upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
651 
652 	/* BD clean up and advance to next in ring */
653 	memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd));
654 	priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi);
655 	rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
656 	ci = (ci + 1) % rxr->bd_count;
657 	rxr->next_cons_idx = ci;
658 	dmb();
659 	/* free up the slot in the ring for HW */
660 	enetc_write_reg(rxr->cons_idx, ci);
661 
662 	return len;
663 }
664 
665 static const struct eth_ops enetc_ops = {
666 	.start	= enetc_start,
667 	.send	= enetc_send,
668 	.recv	= enetc_recv,
669 	.stop	= enetc_stop,
670 	.write_hwaddr = enetc_write_hwaddr,
671 };
672 
673 U_BOOT_DRIVER(eth_enetc) = {
674 	.name	= ENETC_DRIVER_NAME,
675 	.id	= UCLASS_ETH,
676 	.bind	= enetc_bind,
677 	.probe	= enetc_probe,
678 	.remove = enetc_remove,
679 	.ops	= &enetc_ops,
680 	.priv_auto	= sizeof(struct enetc_priv),
681 	.plat_auto	= sizeof(struct eth_pdata),
682 };
683 
684 static struct pci_device_id enetc_ids[] = {
685 	{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) },
686 	{}
687 };
688 
689 U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids);
690