1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2016
4  * Author: Amit Singh Tomar, amittomer25@gmail.com
5  *
6  * Ethernet driver for H3/A64/A83T based SoC's
7  *
8  * It is derived from the work done by
9  * LABBE Corentin & Chen-Yu Tsai for Linux, THANKS!
10  *
11 */
12 
13 #include <cpu_func.h>
14 #include <log.h>
15 #include <asm/cache.h>
16 #include <asm/global_data.h>
17 #include <asm/io.h>
18 #include <asm/arch/clock.h>
19 #include <asm/arch/gpio.h>
20 #include <common.h>
21 #include <clk.h>
22 #include <dm.h>
23 #include <fdt_support.h>
24 #include <dm/device_compat.h>
25 #include <linux/bitops.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <malloc.h>
29 #include <miiphy.h>
30 #include <net.h>
31 #include <reset.h>
32 #include <dt-bindings/pinctrl/sun4i-a10.h>
33 #include <wait_bit.h>
34 #if CONFIG_IS_ENABLED(DM_GPIO)
35 #include <asm-generic/gpio.h>
36 #endif
37 
38 #define MDIO_CMD_MII_BUSY		BIT(0)
39 #define MDIO_CMD_MII_WRITE		BIT(1)
40 
41 #define MDIO_CMD_MII_PHY_REG_ADDR_MASK	0x000001f0
42 #define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT	4
43 #define MDIO_CMD_MII_PHY_ADDR_MASK	0x0001f000
44 #define MDIO_CMD_MII_PHY_ADDR_SHIFT	12
45 #define MDIO_CMD_MII_CLK_CSR_DIV_16	0x0
46 #define MDIO_CMD_MII_CLK_CSR_DIV_32	0x1
47 #define MDIO_CMD_MII_CLK_CSR_DIV_64	0x2
48 #define MDIO_CMD_MII_CLK_CSR_DIV_128	0x3
49 #define MDIO_CMD_MII_CLK_CSR_SHIFT	20
50 
51 #define CONFIG_TX_DESCR_NUM	32
52 #define CONFIG_RX_DESCR_NUM	32
53 #define CONFIG_ETH_BUFSIZE	2048 /* Note must be dma aligned */
54 
55 /*
56  * The datasheet says that each descriptor can transfers up to 4096 bytes
57  * But later, the register documentation reduces that value to 2048,
58  * using 2048 cause strange behaviours and even BSP driver use 2047
59  */
60 #define CONFIG_ETH_RXSIZE	2044 /* Note must fit in ETH_BUFSIZE */
61 
62 #define TX_TOTAL_BUFSIZE	(CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM)
63 #define RX_TOTAL_BUFSIZE	(CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM)
64 
65 #define H3_EPHY_DEFAULT_VALUE	0x58000
66 #define H3_EPHY_DEFAULT_MASK	GENMASK(31, 15)
67 #define H3_EPHY_ADDR_SHIFT	20
68 #define REG_PHY_ADDR_MASK	GENMASK(4, 0)
69 #define H3_EPHY_LED_POL		BIT(17)	/* 1: active low, 0: active high */
70 #define H3_EPHY_SHUTDOWN	BIT(16)	/* 1: shutdown, 0: power up */
71 #define H3_EPHY_SELECT		BIT(15) /* 1: internal PHY, 0: external PHY */
72 
73 #define SC_RMII_EN		BIT(13)
74 #define SC_EPIT			BIT(2) /* 1: RGMII, 0: MII */
75 #define SC_ETCS_MASK		GENMASK(1, 0)
76 #define SC_ETCS_EXT_GMII	0x1
77 #define SC_ETCS_INT_GMII	0x2
78 #define SC_ETXDC_MASK		GENMASK(12, 10)
79 #define SC_ETXDC_OFFSET		10
80 #define SC_ERXDC_MASK		GENMASK(9, 5)
81 #define SC_ERXDC_OFFSET		5
82 
83 #define CONFIG_MDIO_TIMEOUT	(3 * CONFIG_SYS_HZ)
84 
85 #define AHB_GATE_OFFSET_EPHY	0
86 
87 /* IO mux settings */
88 #define SUN8I_IOMUX_H3		2
89 #define SUN8I_IOMUX_R40		5
90 #define SUN8I_IOMUX_H6		5
91 #define SUN8I_IOMUX_H616	2
92 #define SUN8I_IOMUX		4
93 
94 /* H3/A64 EMAC Register's offset */
95 #define EMAC_CTL0		0x00
96 #define EMAC_CTL0_FULL_DUPLEX		BIT(0)
97 #define EMAC_CTL0_SPEED_MASK		GENMASK(3, 2)
98 #define EMAC_CTL0_SPEED_10		(0x2 << 2)
99 #define EMAC_CTL0_SPEED_100		(0x3 << 2)
100 #define EMAC_CTL0_SPEED_1000		(0x0 << 2)
101 #define EMAC_CTL1		0x04
102 #define EMAC_CTL1_SOFT_RST		BIT(0)
103 #define EMAC_CTL1_BURST_LEN_SHIFT	24
104 #define EMAC_INT_STA		0x08
105 #define EMAC_INT_EN		0x0c
106 #define EMAC_TX_CTL0		0x10
107 #define	EMAC_TX_CTL0_TX_EN		BIT(31)
108 #define EMAC_TX_CTL1		0x14
109 #define	EMAC_TX_CTL1_TX_MD		BIT(1)
110 #define	EMAC_TX_CTL1_TX_DMA_EN		BIT(30)
111 #define	EMAC_TX_CTL1_TX_DMA_START	BIT(31)
112 #define EMAC_TX_FLOW_CTL	0x1c
113 #define EMAC_TX_DMA_DESC	0x20
114 #define EMAC_RX_CTL0		0x24
115 #define	EMAC_RX_CTL0_RX_EN		BIT(31)
116 #define EMAC_RX_CTL1		0x28
117 #define	EMAC_RX_CTL1_RX_MD		BIT(1)
118 #define	EMAC_RX_CTL1_RX_RUNT_FRM	BIT(2)
119 #define	EMAC_RX_CTL1_RX_ERR_FRM		BIT(3)
120 #define	EMAC_RX_CTL1_RX_DMA_EN		BIT(30)
121 #define	EMAC_RX_CTL1_RX_DMA_START	BIT(31)
122 #define EMAC_RX_DMA_DESC	0x34
123 #define EMAC_MII_CMD		0x48
124 #define EMAC_MII_DATA		0x4c
125 #define EMAC_ADDR0_HIGH		0x50
126 #define EMAC_ADDR0_LOW		0x54
127 #define EMAC_TX_DMA_STA		0xb0
128 #define EMAC_TX_CUR_DESC	0xb4
129 #define EMAC_TX_CUR_BUF		0xb8
130 #define EMAC_RX_DMA_STA		0xc0
131 #define EMAC_RX_CUR_DESC	0xc4
132 
133 #define EMAC_DESC_OWN_DMA	BIT(31)
134 #define EMAC_DESC_LAST_DESC	BIT(30)
135 #define EMAC_DESC_FIRST_DESC	BIT(29)
136 #define EMAC_DESC_CHAIN_SECOND	BIT(24)
137 
138 #define EMAC_DESC_RX_ERROR_MASK	0x400068db
139 
140 DECLARE_GLOBAL_DATA_PTR;
141 
142 enum emac_variant {
143 	A83T_EMAC = 1,
144 	H3_EMAC,
145 	A64_EMAC,
146 	R40_GMAC,
147 	H6_EMAC,
148 };
149 
150 struct emac_dma_desc {
151 	u32 status;
152 	u32 ctl_size;
153 	u32 buf_addr;
154 	u32 next;
155 } __aligned(ARCH_DMA_MINALIGN);
156 
157 struct emac_eth_dev {
158 	struct emac_dma_desc rx_chain[CONFIG_TX_DESCR_NUM];
159 	struct emac_dma_desc tx_chain[CONFIG_RX_DESCR_NUM];
160 	char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
161 	char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
162 
163 	u32 interface;
164 	u32 phyaddr;
165 	u32 link;
166 	u32 speed;
167 	u32 duplex;
168 	u32 phy_configured;
169 	u32 tx_currdescnum;
170 	u32 rx_currdescnum;
171 	u32 addr;
172 	u32 tx_slot;
173 	bool use_internal_phy;
174 
175 	enum emac_variant variant;
176 	void *mac_reg;
177 	phys_addr_t sysctl_reg;
178 	struct phy_device *phydev;
179 	struct mii_dev *bus;
180 	struct clk tx_clk;
181 	struct clk ephy_clk;
182 	struct reset_ctl tx_rst;
183 	struct reset_ctl ephy_rst;
184 #if CONFIG_IS_ENABLED(DM_GPIO)
185 	struct gpio_desc reset_gpio;
186 #endif
187 };
188 
189 
190 struct sun8i_eth_pdata {
191 	struct eth_pdata eth_pdata;
192 	u32 reset_delays[3];
193 	int tx_delay_ps;
194 	int rx_delay_ps;
195 };
196 
197 
sun8i_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)198 static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
199 {
200 	struct udevice *dev = bus->priv;
201 	struct emac_eth_dev *priv = dev_get_priv(dev);
202 	u32 mii_cmd;
203 	int ret;
204 
205 	mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
206 		MDIO_CMD_MII_PHY_REG_ADDR_MASK;
207 	mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
208 		MDIO_CMD_MII_PHY_ADDR_MASK;
209 
210 	/*
211 	 * The EMAC clock is either 200 or 300 MHz, so we need a divider
212 	 * of 128 to get the MDIO frequency below the required 2.5 MHz.
213 	 */
214 	if (!priv->use_internal_phy)
215 		mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 <<
216 			   MDIO_CMD_MII_CLK_CSR_SHIFT;
217 
218 	mii_cmd |= MDIO_CMD_MII_BUSY;
219 
220 	writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD);
221 
222 	ret = wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD,
223 				MDIO_CMD_MII_BUSY, false,
224 				CONFIG_MDIO_TIMEOUT, true);
225 	if (ret < 0)
226 		return ret;
227 
228 	return readl(priv->mac_reg + EMAC_MII_DATA);
229 }
230 
sun8i_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 val)231 static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
232 			    u16 val)
233 {
234 	struct udevice *dev = bus->priv;
235 	struct emac_eth_dev *priv = dev_get_priv(dev);
236 	u32 mii_cmd;
237 
238 	mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
239 		MDIO_CMD_MII_PHY_REG_ADDR_MASK;
240 	mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
241 		MDIO_CMD_MII_PHY_ADDR_MASK;
242 
243 	/*
244 	 * The EMAC clock is either 200 or 300 MHz, so we need a divider
245 	 * of 128 to get the MDIO frequency below the required 2.5 MHz.
246 	 */
247 	if (!priv->use_internal_phy)
248 		mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 <<
249 			   MDIO_CMD_MII_CLK_CSR_SHIFT;
250 
251 	mii_cmd |= MDIO_CMD_MII_WRITE;
252 	mii_cmd |= MDIO_CMD_MII_BUSY;
253 
254 	writel(val, priv->mac_reg + EMAC_MII_DATA);
255 	writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD);
256 
257 	return wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD,
258 				 MDIO_CMD_MII_BUSY, false,
259 				 CONFIG_MDIO_TIMEOUT, true);
260 }
261 
sun8i_eth_write_hwaddr(struct udevice * dev)262 static int sun8i_eth_write_hwaddr(struct udevice *dev)
263 {
264 	struct emac_eth_dev *priv = dev_get_priv(dev);
265 	struct eth_pdata *pdata = dev_get_plat(dev);
266 	uchar *mac_id = pdata->enetaddr;
267 	u32 macid_lo, macid_hi;
268 
269 	macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
270 		(mac_id[3] << 24);
271 	macid_hi = mac_id[4] + (mac_id[5] << 8);
272 
273 	writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH);
274 	writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW);
275 
276 	return 0;
277 }
278 
sun8i_adjust_link(struct emac_eth_dev * priv,struct phy_device * phydev)279 static void sun8i_adjust_link(struct emac_eth_dev *priv,
280 			      struct phy_device *phydev)
281 {
282 	u32 v;
283 
284 	v = readl(priv->mac_reg + EMAC_CTL0);
285 
286 	if (phydev->duplex)
287 		v |= EMAC_CTL0_FULL_DUPLEX;
288 	else
289 		v &= ~EMAC_CTL0_FULL_DUPLEX;
290 
291 	v &= ~EMAC_CTL0_SPEED_MASK;
292 
293 	switch (phydev->speed) {
294 	case 1000:
295 		v |= EMAC_CTL0_SPEED_1000;
296 		break;
297 	case 100:
298 		v |= EMAC_CTL0_SPEED_100;
299 		break;
300 	case 10:
301 		v |= EMAC_CTL0_SPEED_10;
302 		break;
303 	}
304 	writel(v, priv->mac_reg + EMAC_CTL0);
305 }
306 
sun8i_emac_set_syscon_ephy(struct emac_eth_dev * priv,u32 reg)307 static u32 sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 reg)
308 {
309 	if (priv->use_internal_phy) {
310 		/* H3 based SoC's that has an Internal 100MBit PHY
311 		 * needs to be configured and powered up before use
312 		*/
313 		reg &= ~H3_EPHY_DEFAULT_MASK;
314 		reg |=  H3_EPHY_DEFAULT_VALUE;
315 		reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT;
316 		reg &= ~H3_EPHY_SHUTDOWN;
317 		return reg | H3_EPHY_SELECT;
318 	}
319 
320 	/* This is to select External Gigabit PHY on those boards with
321 	 * an internal PHY. Does not hurt on other SoCs. Linux does
322 	 * it as well.
323 	 */
324 	return reg & ~H3_EPHY_SELECT;
325 }
326 
sun8i_emac_set_syscon(struct sun8i_eth_pdata * pdata,struct emac_eth_dev * priv)327 static int sun8i_emac_set_syscon(struct sun8i_eth_pdata *pdata,
328 				 struct emac_eth_dev *priv)
329 {
330 	u32 reg;
331 
332 	if (priv->variant == R40_GMAC) {
333 		/* Select RGMII for R40 */
334 		reg = readl(priv->sysctl_reg + 0x164);
335 		reg |= SC_ETCS_INT_GMII |
336 		       SC_EPIT |
337 		       (CONFIG_GMAC_TX_DELAY << SC_ETXDC_OFFSET);
338 
339 		writel(reg, priv->sysctl_reg + 0x164);
340 		return 0;
341 	}
342 
343 	reg = readl(priv->sysctl_reg + 0x30);
344 
345 	reg = sun8i_emac_set_syscon_ephy(priv, reg);
346 
347 	reg &= ~(SC_ETCS_MASK | SC_EPIT);
348 	if (priv->variant == H3_EMAC ||
349 	    priv->variant == A64_EMAC ||
350 	    priv->variant == H6_EMAC)
351 		reg &= ~SC_RMII_EN;
352 
353 	switch (priv->interface) {
354 	case PHY_INTERFACE_MODE_MII:
355 		/* default */
356 		break;
357 	case PHY_INTERFACE_MODE_RGMII:
358 	case PHY_INTERFACE_MODE_RGMII_ID:
359 	case PHY_INTERFACE_MODE_RGMII_RXID:
360 	case PHY_INTERFACE_MODE_RGMII_TXID:
361 		reg |= SC_EPIT | SC_ETCS_INT_GMII;
362 		break;
363 	case PHY_INTERFACE_MODE_RMII:
364 		if (priv->variant == H3_EMAC ||
365 		    priv->variant == A64_EMAC ||
366 		    priv->variant == H6_EMAC) {
367 			reg |= SC_RMII_EN | SC_ETCS_EXT_GMII;
368 		break;
369 		}
370 		/* RMII not supported on A83T */
371 	default:
372 		debug("%s: Invalid PHY interface\n", __func__);
373 		return -EINVAL;
374 	}
375 
376 	if (pdata->tx_delay_ps)
377 		reg |= ((pdata->tx_delay_ps / 100) << SC_ETXDC_OFFSET)
378 			 & SC_ETXDC_MASK;
379 
380 	if (pdata->rx_delay_ps)
381 		reg |= ((pdata->rx_delay_ps / 100) << SC_ERXDC_OFFSET)
382 			 & SC_ERXDC_MASK;
383 
384 	writel(reg, priv->sysctl_reg + 0x30);
385 
386 	return 0;
387 }
388 
sun8i_phy_init(struct emac_eth_dev * priv,void * dev)389 static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev)
390 {
391 	struct phy_device *phydev;
392 
393 	phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
394 	if (!phydev)
395 		return -ENODEV;
396 
397 	phy_connect_dev(phydev, dev);
398 
399 	priv->phydev = phydev;
400 	phy_config(priv->phydev);
401 
402 	return 0;
403 }
404 
405 #define cache_clean_descriptor(desc)					\
406 	flush_dcache_range((uintptr_t)(desc), 				\
407 			   (uintptr_t)(desc) + sizeof(struct emac_dma_desc))
408 
409 #define cache_inv_descriptor(desc)					\
410 	invalidate_dcache_range((uintptr_t)(desc),			\
411 			       (uintptr_t)(desc) + sizeof(struct emac_dma_desc))
412 
rx_descs_init(struct emac_eth_dev * priv)413 static void rx_descs_init(struct emac_eth_dev *priv)
414 {
415 	struct emac_dma_desc *desc_table_p = &priv->rx_chain[0];
416 	char *rxbuffs = &priv->rxbuffer[0];
417 	struct emac_dma_desc *desc_p;
418 	int i;
419 
420 	/*
421 	 * Make sure we don't have dirty cache lines around, which could
422 	 * be cleaned to DRAM *after* the MAC has already written data to it.
423 	 */
424 	invalidate_dcache_range((uintptr_t)desc_table_p,
425 			      (uintptr_t)desc_table_p + sizeof(priv->rx_chain));
426 	invalidate_dcache_range((uintptr_t)rxbuffs,
427 				(uintptr_t)rxbuffs + sizeof(priv->rxbuffer));
428 
429 	for (i = 0; i < CONFIG_RX_DESCR_NUM; i++) {
430 		desc_p = &desc_table_p[i];
431 		desc_p->buf_addr = (uintptr_t)&rxbuffs[i * CONFIG_ETH_BUFSIZE];
432 		desc_p->next = (uintptr_t)&desc_table_p[i + 1];
433 		desc_p->ctl_size = CONFIG_ETH_RXSIZE;
434 		desc_p->status = EMAC_DESC_OWN_DMA;
435 	}
436 
437 	/* Correcting the last pointer of the chain */
438 	desc_p->next = (uintptr_t)&desc_table_p[0];
439 
440 	flush_dcache_range((uintptr_t)priv->rx_chain,
441 			   (uintptr_t)priv->rx_chain +
442 			sizeof(priv->rx_chain));
443 
444 	writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC));
445 	priv->rx_currdescnum = 0;
446 }
447 
tx_descs_init(struct emac_eth_dev * priv)448 static void tx_descs_init(struct emac_eth_dev *priv)
449 {
450 	struct emac_dma_desc *desc_table_p = &priv->tx_chain[0];
451 	char *txbuffs = &priv->txbuffer[0];
452 	struct emac_dma_desc *desc_p;
453 	int i;
454 
455 	for (i = 0; i < CONFIG_TX_DESCR_NUM; i++) {
456 		desc_p = &desc_table_p[i];
457 		desc_p->buf_addr = (uintptr_t)&txbuffs[i * CONFIG_ETH_BUFSIZE];
458 		desc_p->next = (uintptr_t)&desc_table_p[i + 1];
459 		desc_p->ctl_size = 0;
460 		desc_p->status = 0;
461 	}
462 
463 	/* Correcting the last pointer of the chain */
464 	desc_p->next =  (uintptr_t)&desc_table_p[0];
465 
466 	/* Flush the first TX buffer descriptor we will tell the MAC about. */
467 	cache_clean_descriptor(desc_table_p);
468 
469 	writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC);
470 	priv->tx_currdescnum = 0;
471 }
472 
sun8i_emac_eth_start(struct udevice * dev)473 static int sun8i_emac_eth_start(struct udevice *dev)
474 {
475 	struct emac_eth_dev *priv = dev_get_priv(dev);
476 	int ret;
477 
478 	/* Soft reset MAC */
479 	writel(EMAC_CTL1_SOFT_RST, priv->mac_reg + EMAC_CTL1);
480 	ret = wait_for_bit_le32(priv->mac_reg + EMAC_CTL1,
481 				EMAC_CTL1_SOFT_RST, false, 10, true);
482 	if (ret) {
483 		printf("%s: Timeout\n", __func__);
484 		return ret;
485 	}
486 
487 	/* Rewrite mac address after reset */
488 	sun8i_eth_write_hwaddr(dev);
489 
490 	/* transmission starts after the full frame arrived in TX DMA FIFO */
491 	setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_MD);
492 
493 	/*
494 	 * RX DMA reads data from RX DMA FIFO to host memory after a
495 	 * complete frame has been written to RX DMA FIFO
496 	 */
497 	setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_MD);
498 
499 	/* DMA burst length */
500 	writel(8 << EMAC_CTL1_BURST_LEN_SHIFT, priv->mac_reg + EMAC_CTL1);
501 
502 	/* Initialize rx/tx descriptors */
503 	rx_descs_init(priv);
504 	tx_descs_init(priv);
505 
506 	/* PHY Start Up */
507 	ret = phy_startup(priv->phydev);
508 	if (ret)
509 		return ret;
510 
511 	sun8i_adjust_link(priv, priv->phydev);
512 
513 	/* Start RX/TX DMA */
514 	setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN |
515 		     EMAC_RX_CTL1_RX_ERR_FRM | EMAC_RX_CTL1_RX_RUNT_FRM);
516 	setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN);
517 
518 	/* Enable RX/TX */
519 	setbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN);
520 	setbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN);
521 
522 	return 0;
523 }
524 
parse_phy_pins(struct udevice * dev)525 static int parse_phy_pins(struct udevice *dev)
526 {
527 	int offset;
528 	const char *pin_name;
529 	int drive, pull = SUN4I_PINCTRL_NO_PULL, i;
530 	u32 iomux;
531 
532 	offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev),
533 				       "pinctrl-0");
534 	if (offset < 0) {
535 		printf("WARNING: emac: cannot find pinctrl-0 node\n");
536 		return offset;
537 	}
538 
539 	drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
540 					     "drive-strength", ~0);
541 	if (drive != ~0) {
542 		if (drive <= 10)
543 			drive = SUN4I_PINCTRL_10_MA;
544 		else if (drive <= 20)
545 			drive = SUN4I_PINCTRL_20_MA;
546 		else if (drive <= 30)
547 			drive = SUN4I_PINCTRL_30_MA;
548 		else
549 			drive = SUN4I_PINCTRL_40_MA;
550 	}
551 
552 	if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-up", NULL))
553 		pull = SUN4I_PINCTRL_PULL_UP;
554 	else if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-down", NULL))
555 		pull = SUN4I_PINCTRL_PULL_DOWN;
556 
557 	/*
558 	 * The GPIO pinmux value is an integration choice, so depends on the
559 	 * SoC, not the EMAC variant.
560 	 */
561 	if (IS_ENABLED(CONFIG_MACH_SUNXI_H3_H5))
562 		iomux = SUN8I_IOMUX_H3;
563 	else if (IS_ENABLED(CONFIG_MACH_SUN8I_R40))
564 		iomux = SUN8I_IOMUX_R40;
565 	else if (IS_ENABLED(CONFIG_MACH_SUN50I_H6))
566 		iomux = SUN8I_IOMUX_H6;
567 	else if (IS_ENABLED(CONFIG_MACH_SUN50I_H616))
568 		iomux = SUN8I_IOMUX_H616;
569 	else if (IS_ENABLED(CONFIG_MACH_SUN8I_A83T))
570 		iomux = SUN8I_IOMUX;
571 	else if (IS_ENABLED(CONFIG_MACH_SUN50I))
572 		iomux = SUN8I_IOMUX;
573 	else
574 		BUILD_BUG_ON_MSG(1, "missing pinmux value for Ethernet pins");
575 
576 	for (i = 0; ; i++) {
577 		int pin;
578 
579 		pin_name = fdt_stringlist_get(gd->fdt_blob, offset,
580 					      "pins", i, NULL);
581 		if (!pin_name)
582 			break;
583 
584 		pin = sunxi_name_to_gpio(pin_name);
585 		if (pin < 0)
586 			continue;
587 
588 		sunxi_gpio_set_cfgpin(pin, iomux);
589 
590 		if (drive != ~0)
591 			sunxi_gpio_set_drv(pin, drive);
592 		if (pull != ~0)
593 			sunxi_gpio_set_pull(pin, pull);
594 	}
595 
596 	if (!i) {
597 		printf("WARNING: emac: cannot find pins property\n");
598 		return -2;
599 	}
600 
601 	return 0;
602 }
603 
sun8i_emac_eth_recv(struct udevice * dev,int flags,uchar ** packetp)604 static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp)
605 {
606 	struct emac_eth_dev *priv = dev_get_priv(dev);
607 	u32 status, desc_num = priv->rx_currdescnum;
608 	struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
609 	uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
610 	int length;
611 
612 	/* Invalidate entire buffer descriptor */
613 	cache_inv_descriptor(desc_p);
614 
615 	status = desc_p->status;
616 
617 	/* Check for DMA own bit */
618 	if (status & EMAC_DESC_OWN_DMA)
619 		return -EAGAIN;
620 
621 	length = (status >> 16) & 0x3fff;
622 
623 	/* make sure we read from DRAM, not our cache */
624 	invalidate_dcache_range(data_start,
625 				data_start + roundup(length, ARCH_DMA_MINALIGN));
626 
627 	if (status & EMAC_DESC_RX_ERROR_MASK) {
628 		debug("RX: packet error: 0x%x\n",
629 		      status & EMAC_DESC_RX_ERROR_MASK);
630 		return 0;
631 	}
632 	if (length < 0x40) {
633 		debug("RX: Bad Packet (runt)\n");
634 		return 0;
635 	}
636 
637 	if (length > CONFIG_ETH_RXSIZE) {
638 		debug("RX: Too large packet (%d bytes)\n", length);
639 		return 0;
640 	}
641 
642 	*packetp = (uchar *)(ulong)desc_p->buf_addr;
643 
644 	return length;
645 }
646 
sun8i_emac_eth_send(struct udevice * dev,void * packet,int length)647 static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length)
648 {
649 	struct emac_eth_dev *priv = dev_get_priv(dev);
650 	u32 desc_num = priv->tx_currdescnum;
651 	struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num];
652 	uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
653 	uintptr_t data_end = data_start +
654 		roundup(length, ARCH_DMA_MINALIGN);
655 
656 	desc_p->ctl_size = length | EMAC_DESC_CHAIN_SECOND;
657 
658 	memcpy((void *)data_start, packet, length);
659 
660 	/* Flush data to be sent */
661 	flush_dcache_range(data_start, data_end);
662 
663 	/* frame begin and end */
664 	desc_p->ctl_size |= EMAC_DESC_LAST_DESC | EMAC_DESC_FIRST_DESC;
665 	desc_p->status = EMAC_DESC_OWN_DMA;
666 
667 	/* make sure the MAC reads the actual data from DRAM */
668 	cache_clean_descriptor(desc_p);
669 
670 	/* Move to next Descriptor and wrap around */
671 	if (++desc_num >= CONFIG_TX_DESCR_NUM)
672 		desc_num = 0;
673 	priv->tx_currdescnum = desc_num;
674 
675 	/* Start the DMA */
676 	setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_START);
677 
678 	/*
679 	 * Since we copied the data above, we return here without waiting
680 	 * for the packet to be actually send out.
681 	 */
682 
683 	return 0;
684 }
685 
sun8i_emac_board_setup(struct udevice * dev,struct emac_eth_dev * priv)686 static int sun8i_emac_board_setup(struct udevice *dev,
687 				  struct emac_eth_dev *priv)
688 {
689 	int ret;
690 
691 	ret = clk_enable(&priv->tx_clk);
692 	if (ret) {
693 		dev_err(dev, "failed to enable TX clock\n");
694 		return ret;
695 	}
696 
697 	if (reset_valid(&priv->tx_rst)) {
698 		ret = reset_deassert(&priv->tx_rst);
699 		if (ret) {
700 			dev_err(dev, "failed to deassert TX reset\n");
701 			goto err_tx_clk;
702 		}
703 	}
704 
705 	/* Only H3/H5 have clock controls for internal EPHY */
706 	if (clk_valid(&priv->ephy_clk)) {
707 		ret = clk_enable(&priv->ephy_clk);
708 		if (ret) {
709 			dev_err(dev, "failed to enable EPHY TX clock\n");
710 			return ret;
711 		}
712 	}
713 
714 	if (reset_valid(&priv->ephy_rst)) {
715 		ret = reset_deassert(&priv->ephy_rst);
716 		if (ret) {
717 			dev_err(dev, "failed to deassert EPHY TX clock\n");
718 			return ret;
719 		}
720 	}
721 
722 	return 0;
723 
724 err_tx_clk:
725 	clk_disable(&priv->tx_clk);
726 	return ret;
727 }
728 
729 #if CONFIG_IS_ENABLED(DM_GPIO)
sun8i_mdio_reset(struct mii_dev * bus)730 static int sun8i_mdio_reset(struct mii_dev *bus)
731 {
732 	struct udevice *dev = bus->priv;
733 	struct emac_eth_dev *priv = dev_get_priv(dev);
734 	struct sun8i_eth_pdata *pdata = dev_get_plat(dev);
735 	int ret;
736 
737 	if (!dm_gpio_is_valid(&priv->reset_gpio))
738 		return 0;
739 
740 	/* reset the phy */
741 	ret = dm_gpio_set_value(&priv->reset_gpio, 0);
742 	if (ret)
743 		return ret;
744 
745 	udelay(pdata->reset_delays[0]);
746 
747 	ret = dm_gpio_set_value(&priv->reset_gpio, 1);
748 	if (ret)
749 		return ret;
750 
751 	udelay(pdata->reset_delays[1]);
752 
753 	ret = dm_gpio_set_value(&priv->reset_gpio, 0);
754 	if (ret)
755 		return ret;
756 
757 	udelay(pdata->reset_delays[2]);
758 
759 	return 0;
760 }
761 #endif
762 
sun8i_mdio_init(const char * name,struct udevice * priv)763 static int sun8i_mdio_init(const char *name, struct udevice *priv)
764 {
765 	struct mii_dev *bus = mdio_alloc();
766 
767 	if (!bus) {
768 		debug("Failed to allocate MDIO bus\n");
769 		return -ENOMEM;
770 	}
771 
772 	bus->read = sun8i_mdio_read;
773 	bus->write = sun8i_mdio_write;
774 	snprintf(bus->name, sizeof(bus->name), name);
775 	bus->priv = (void *)priv;
776 #if CONFIG_IS_ENABLED(DM_GPIO)
777 	bus->reset = sun8i_mdio_reset;
778 #endif
779 
780 	return  mdio_register(bus);
781 }
782 
sun8i_eth_free_pkt(struct udevice * dev,uchar * packet,int length)783 static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet,
784 			      int length)
785 {
786 	struct emac_eth_dev *priv = dev_get_priv(dev);
787 	u32 desc_num = priv->rx_currdescnum;
788 	struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
789 
790 	/* give the current descriptor back to the MAC */
791 	desc_p->status |= EMAC_DESC_OWN_DMA;
792 
793 	/* Flush Status field of descriptor */
794 	cache_clean_descriptor(desc_p);
795 
796 	/* Move to next desc and wrap-around condition. */
797 	if (++desc_num >= CONFIG_RX_DESCR_NUM)
798 		desc_num = 0;
799 	priv->rx_currdescnum = desc_num;
800 
801 	return 0;
802 }
803 
sun8i_emac_eth_stop(struct udevice * dev)804 static void sun8i_emac_eth_stop(struct udevice *dev)
805 {
806 	struct emac_eth_dev *priv = dev_get_priv(dev);
807 
808 	/* Stop Rx/Tx transmitter */
809 	clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN);
810 	clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN);
811 
812 	/* Stop RX/TX DMA */
813 	clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN);
814 	clrbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN);
815 
816 	phy_shutdown(priv->phydev);
817 }
818 
sun8i_emac_eth_probe(struct udevice * dev)819 static int sun8i_emac_eth_probe(struct udevice *dev)
820 {
821 	struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev);
822 	struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
823 	struct emac_eth_dev *priv = dev_get_priv(dev);
824 	int ret;
825 
826 	priv->mac_reg = (void *)pdata->iobase;
827 
828 	ret = sun8i_emac_board_setup(dev, priv);
829 	if (ret)
830 		return ret;
831 
832 	sun8i_emac_set_syscon(sun8i_pdata, priv);
833 
834 	sun8i_mdio_init(dev->name, dev);
835 	priv->bus = miiphy_get_dev_by_name(dev->name);
836 
837 	return sun8i_phy_init(priv, dev);
838 }
839 
840 static const struct eth_ops sun8i_emac_eth_ops = {
841 	.start                  = sun8i_emac_eth_start,
842 	.write_hwaddr           = sun8i_eth_write_hwaddr,
843 	.send                   = sun8i_emac_eth_send,
844 	.recv                   = sun8i_emac_eth_recv,
845 	.free_pkt               = sun8i_eth_free_pkt,
846 	.stop                   = sun8i_emac_eth_stop,
847 };
848 
sun8i_handle_internal_phy(struct udevice * dev,struct emac_eth_dev * priv)849 static int sun8i_handle_internal_phy(struct udevice *dev, struct emac_eth_dev *priv)
850 {
851 	struct ofnode_phandle_args phandle;
852 	int ret;
853 
854 	ret = ofnode_parse_phandle_with_args(dev_ofnode(dev), "phy-handle",
855 					     NULL, 0, 0, &phandle);
856 	if (ret)
857 		return ret;
858 
859 	/* If the PHY node is not a child of the internal MDIO bus, we are
860 	 * using some external PHY.
861 	 */
862 	if (!ofnode_device_is_compatible(ofnode_get_parent(phandle.node),
863 					 "allwinner,sun8i-h3-mdio-internal"))
864 		return 0;
865 
866 	ret = clk_get_by_index_nodev(phandle.node, 0, &priv->ephy_clk);
867 	if (ret) {
868 		dev_err(dev, "failed to get EPHY TX clock\n");
869 		return ret;
870 	}
871 
872 	ret = reset_get_by_index_nodev(phandle.node, 0, &priv->ephy_rst);
873 	if (ret) {
874 		dev_err(dev, "failed to get EPHY TX reset\n");
875 		return ret;
876 	}
877 
878 	priv->use_internal_phy = true;
879 
880 	return 0;
881 }
882 
sun8i_emac_eth_of_to_plat(struct udevice * dev)883 static int sun8i_emac_eth_of_to_plat(struct udevice *dev)
884 {
885 	struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev);
886 	struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
887 	struct emac_eth_dev *priv = dev_get_priv(dev);
888 	const char *phy_mode;
889 	const fdt32_t *reg;
890 	int node = dev_of_offset(dev);
891 	int offset = 0;
892 #if CONFIG_IS_ENABLED(DM_GPIO)
893 	int reset_flags = GPIOD_IS_OUT;
894 #endif
895 	int ret;
896 
897 	pdata->iobase = dev_read_addr(dev);
898 	if (pdata->iobase == FDT_ADDR_T_NONE) {
899 		debug("%s: Cannot find MAC base address\n", __func__);
900 		return -EINVAL;
901 	}
902 
903 	priv->variant = dev_get_driver_data(dev);
904 
905 	if (!priv->variant) {
906 		printf("%s: Missing variant\n", __func__);
907 		return -EINVAL;
908 	}
909 
910 	ret = clk_get_by_name(dev, "stmmaceth", &priv->tx_clk);
911 	if (ret) {
912 		dev_err(dev, "failed to get TX clock\n");
913 		return ret;
914 	}
915 
916 	ret = reset_get_by_name(dev, "stmmaceth", &priv->tx_rst);
917 	if (ret && ret != -ENOENT) {
918 		dev_err(dev, "failed to get TX reset\n");
919 		return ret;
920 	}
921 
922 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon");
923 	if (offset < 0) {
924 		debug("%s: cannot find syscon node\n", __func__);
925 		return -EINVAL;
926 	}
927 
928 	reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL);
929 	if (!reg) {
930 		debug("%s: cannot find reg property in syscon node\n",
931 		      __func__);
932 		return -EINVAL;
933 	}
934 	priv->sysctl_reg = fdt_translate_address((void *)gd->fdt_blob,
935 						 offset, reg);
936 	if (priv->sysctl_reg == FDT_ADDR_T_NONE) {
937 		debug("%s: Cannot find syscon base address\n", __func__);
938 		return -EINVAL;
939 	}
940 
941 	pdata->phy_interface = -1;
942 	priv->phyaddr = -1;
943 	priv->use_internal_phy = false;
944 
945 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
946 	if (offset < 0) {
947 		debug("%s: Cannot find PHY address\n", __func__);
948 		return -EINVAL;
949 	}
950 	priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
951 
952 	phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
953 
954 	if (phy_mode)
955 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
956 	printf("phy interface%d\n", pdata->phy_interface);
957 
958 	if (pdata->phy_interface == -1) {
959 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
960 		return -EINVAL;
961 	}
962 
963 	if (priv->variant == H3_EMAC) {
964 		ret = sun8i_handle_internal_phy(dev, priv);
965 		if (ret)
966 			return ret;
967 	}
968 
969 	priv->interface = pdata->phy_interface;
970 
971 	if (!priv->use_internal_phy)
972 		parse_phy_pins(dev);
973 
974 	sun8i_pdata->tx_delay_ps = fdtdec_get_int(gd->fdt_blob, node,
975 						  "allwinner,tx-delay-ps", 0);
976 	if (sun8i_pdata->tx_delay_ps < 0 || sun8i_pdata->tx_delay_ps > 700)
977 		printf("%s: Invalid TX delay value %d\n", __func__,
978 		       sun8i_pdata->tx_delay_ps);
979 
980 	sun8i_pdata->rx_delay_ps = fdtdec_get_int(gd->fdt_blob, node,
981 						  "allwinner,rx-delay-ps", 0);
982 	if (sun8i_pdata->rx_delay_ps < 0 || sun8i_pdata->rx_delay_ps > 3100)
983 		printf("%s: Invalid RX delay value %d\n", __func__,
984 		       sun8i_pdata->rx_delay_ps);
985 
986 #if CONFIG_IS_ENABLED(DM_GPIO)
987 	if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev),
988 			    "snps,reset-active-low"))
989 		reset_flags |= GPIOD_ACTIVE_LOW;
990 
991 	ret = gpio_request_by_name(dev, "snps,reset-gpio", 0,
992 				   &priv->reset_gpio, reset_flags);
993 
994 	if (ret == 0) {
995 		ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
996 					   "snps,reset-delays-us",
997 					   sun8i_pdata->reset_delays, 3);
998 	} else if (ret == -ENOENT) {
999 		ret = 0;
1000 	}
1001 #endif
1002 
1003 	return 0;
1004 }
1005 
1006 static const struct udevice_id sun8i_emac_eth_ids[] = {
1007 	{.compatible = "allwinner,sun8i-h3-emac", .data = (uintptr_t)H3_EMAC },
1008 	{.compatible = "allwinner,sun50i-a64-emac",
1009 		.data = (uintptr_t)A64_EMAC },
1010 	{.compatible = "allwinner,sun8i-a83t-emac",
1011 		.data = (uintptr_t)A83T_EMAC },
1012 	{.compatible = "allwinner,sun8i-r40-gmac",
1013 		.data = (uintptr_t)R40_GMAC },
1014 	{.compatible = "allwinner,sun50i-h6-emac",
1015 		.data = (uintptr_t)H6_EMAC },
1016 	{ }
1017 };
1018 
1019 U_BOOT_DRIVER(eth_sun8i_emac) = {
1020 	.name   = "eth_sun8i_emac",
1021 	.id     = UCLASS_ETH,
1022 	.of_match = sun8i_emac_eth_ids,
1023 	.of_to_plat = sun8i_emac_eth_of_to_plat,
1024 	.probe  = sun8i_emac_eth_probe,
1025 	.ops    = &sun8i_emac_eth_ops,
1026 	.priv_auto	= sizeof(struct emac_eth_dev),
1027 	.plat_auto	= sizeof(struct sun8i_eth_pdata),
1028 	.flags = DM_FLAG_ALLOC_PRIV_DMA,
1029 };
1030