1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #ifndef __UBOOT__
89 #include <log.h>
90 #include <dm/devres.h>
91 #include <linux/slab.h>
92 #include <linux/crc32.h>
93 #include <linux/freezer.h>
94 #include <linux/kthread.h>
95 #else
96 #include <ubi_uboot.h>
97 #endif
98 
99 #include "ubi.h"
100 #include "wl.h"
101 
102 /* Number of physical eraseblocks reserved for wear-leveling purposes */
103 #define WL_RESERVED_PEBS 1
104 
105 /*
106  * Maximum difference between two erase counters. If this threshold is
107  * exceeded, the WL sub-system starts moving data from used physical
108  * eraseblocks with low erase counter to free physical eraseblocks with high
109  * erase counter.
110  */
111 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
112 
113 /*
114  * When a physical eraseblock is moved, the WL sub-system has to pick the target
115  * physical eraseblock to move to. The simplest way would be just to pick the
116  * one with the highest erase counter. But in certain workloads this could lead
117  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
118  * situation when the picked physical eraseblock is constantly erased after the
119  * data is written to it. So, we have a constant which limits the highest erase
120  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
121  * does not pick eraseblocks with erase counter greater than the lowest erase
122  * counter plus %WL_FREE_MAX_DIFF.
123  */
124 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
125 
126 /*
127  * Maximum number of consecutive background thread failures which is enough to
128  * switch to read-only mode.
129  */
130 #define WL_MAX_FAILURES 32
131 
132 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
133 static int self_check_in_wl_tree(const struct ubi_device *ubi,
134 				 struct ubi_wl_entry *e, struct rb_root *root);
135 static int self_check_in_pq(const struct ubi_device *ubi,
136 			    struct ubi_wl_entry *e);
137 
138 /**
139  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
140  * @e: the wear-leveling entry to add
141  * @root: the root of the tree
142  *
143  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
144  * the @ubi->used and @ubi->free RB-trees.
145  */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)146 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
147 {
148 	struct rb_node **p, *parent = NULL;
149 
150 	p = &root->rb_node;
151 	while (*p) {
152 		struct ubi_wl_entry *e1;
153 
154 		parent = *p;
155 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
156 
157 		if (e->ec < e1->ec)
158 			p = &(*p)->rb_left;
159 		else if (e->ec > e1->ec)
160 			p = &(*p)->rb_right;
161 		else {
162 			ubi_assert(e->pnum != e1->pnum);
163 			if (e->pnum < e1->pnum)
164 				p = &(*p)->rb_left;
165 			else
166 				p = &(*p)->rb_right;
167 		}
168 	}
169 
170 	rb_link_node(&e->u.rb, parent, p);
171 	rb_insert_color(&e->u.rb, root);
172 }
173 
174 /**
175  * wl_tree_destroy - destroy a wear-leveling entry.
176  * @ubi: UBI device description object
177  * @e: the wear-leveling entry to add
178  *
179  * This function destroys a wear leveling entry and removes
180  * the reference from the lookup table.
181  */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)182 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
183 {
184 	ubi->lookuptbl[e->pnum] = NULL;
185 	kmem_cache_free(ubi_wl_entry_slab, e);
186 }
187 
188 /**
189  * do_work - do one pending work.
190  * @ubi: UBI device description object
191  *
192  * This function returns zero in case of success and a negative error code in
193  * case of failure.
194  */
do_work(struct ubi_device * ubi)195 static int do_work(struct ubi_device *ubi)
196 {
197 	int err;
198 	struct ubi_work *wrk;
199 
200 	cond_resched();
201 
202 	/*
203 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
204 	 * it in read mode, so many of them may be doing works at a time. But
205 	 * the queue flush code has to be sure the whole queue of works is
206 	 * done, and it takes the mutex in write mode.
207 	 */
208 	down_read(&ubi->work_sem);
209 	spin_lock(&ubi->wl_lock);
210 	if (list_empty(&ubi->works)) {
211 		spin_unlock(&ubi->wl_lock);
212 		up_read(&ubi->work_sem);
213 		return 0;
214 	}
215 
216 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
217 	list_del(&wrk->list);
218 	ubi->works_count -= 1;
219 	ubi_assert(ubi->works_count >= 0);
220 	spin_unlock(&ubi->wl_lock);
221 
222 	/*
223 	 * Call the worker function. Do not touch the work structure
224 	 * after this call as it will have been freed or reused by that
225 	 * time by the worker function.
226 	 */
227 	err = wrk->func(ubi, wrk, 0);
228 	if (err)
229 		ubi_err(ubi, "work failed with error code %d", err);
230 	up_read(&ubi->work_sem);
231 
232 	return err;
233 }
234 
235 /**
236  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
237  * @e: the wear-leveling entry to check
238  * @root: the root of the tree
239  *
240  * This function returns non-zero if @e is in the @root RB-tree and zero if it
241  * is not.
242  */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)243 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
244 {
245 	struct rb_node *p;
246 
247 	p = root->rb_node;
248 	while (p) {
249 		struct ubi_wl_entry *e1;
250 
251 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
252 
253 		if (e->pnum == e1->pnum) {
254 			ubi_assert(e == e1);
255 			return 1;
256 		}
257 
258 		if (e->ec < e1->ec)
259 			p = p->rb_left;
260 		else if (e->ec > e1->ec)
261 			p = p->rb_right;
262 		else {
263 			ubi_assert(e->pnum != e1->pnum);
264 			if (e->pnum < e1->pnum)
265 				p = p->rb_left;
266 			else
267 				p = p->rb_right;
268 		}
269 	}
270 
271 	return 0;
272 }
273 
274 /**
275  * prot_queue_add - add physical eraseblock to the protection queue.
276  * @ubi: UBI device description object
277  * @e: the physical eraseblock to add
278  *
279  * This function adds @e to the tail of the protection queue @ubi->pq, where
280  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
281  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
282  * be locked.
283  */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)284 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
285 {
286 	int pq_tail = ubi->pq_head - 1;
287 
288 	if (pq_tail < 0)
289 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
290 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
291 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
292 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
293 }
294 
295 /**
296  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
297  * @ubi: UBI device description object
298  * @root: the RB-tree where to look for
299  * @diff: maximum possible difference from the smallest erase counter
300  *
301  * This function looks for a wear leveling entry with erase counter closest to
302  * min + @diff, where min is the smallest erase counter.
303  */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)304 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
305 					  struct rb_root *root, int diff)
306 {
307 	struct rb_node *p;
308 	struct ubi_wl_entry *e, *prev_e = NULL;
309 	int max;
310 
311 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
312 	max = e->ec + diff;
313 
314 	p = root->rb_node;
315 	while (p) {
316 		struct ubi_wl_entry *e1;
317 
318 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
319 		if (e1->ec >= max)
320 			p = p->rb_left;
321 		else {
322 			p = p->rb_right;
323 			prev_e = e;
324 			e = e1;
325 		}
326 	}
327 
328 	/* If no fastmap has been written and this WL entry can be used
329 	 * as anchor PEB, hold it back and return the second best WL entry
330 	 * such that fastmap can use the anchor PEB later. */
331 	if (prev_e && !ubi->fm_disabled &&
332 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
333 		return prev_e;
334 
335 	return e;
336 }
337 
338 /**
339  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
340  * @ubi: UBI device description object
341  * @root: the RB-tree where to look for
342  *
343  * This function looks for a wear leveling entry with medium erase counter,
344  * but not greater or equivalent than the lowest erase counter plus
345  * %WL_FREE_MAX_DIFF/2.
346  */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)347 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
348 					       struct rb_root *root)
349 {
350 	struct ubi_wl_entry *e, *first, *last;
351 
352 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
353 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
354 
355 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
356 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
357 
358 		/* If no fastmap has been written and this WL entry can be used
359 		 * as anchor PEB, hold it back and return the second best
360 		 * WL entry such that fastmap can use the anchor PEB later. */
361 		e = may_reserve_for_fm(ubi, e, root);
362 	} else
363 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
364 
365 	return e;
366 }
367 
368 /**
369  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
370  * refill_wl_user_pool().
371  * @ubi: UBI device description object
372  *
373  * This function returns a a wear leveling entry in case of success and
374  * NULL in case of failure.
375  */
wl_get_wle(struct ubi_device * ubi)376 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
377 {
378 	struct ubi_wl_entry *e;
379 
380 	e = find_mean_wl_entry(ubi, &ubi->free);
381 	if (!e) {
382 		ubi_err(ubi, "no free eraseblocks");
383 		return NULL;
384 	}
385 
386 	self_check_in_wl_tree(ubi, e, &ubi->free);
387 
388 	/*
389 	 * Move the physical eraseblock to the protection queue where it will
390 	 * be protected from being moved for some time.
391 	 */
392 	rb_erase(&e->u.rb, &ubi->free);
393 	ubi->free_count--;
394 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
395 
396 	return e;
397 }
398 
399 /**
400  * prot_queue_del - remove a physical eraseblock from the protection queue.
401  * @ubi: UBI device description object
402  * @pnum: the physical eraseblock to remove
403  *
404  * This function deletes PEB @pnum from the protection queue and returns zero
405  * in case of success and %-ENODEV if the PEB was not found.
406  */
prot_queue_del(struct ubi_device * ubi,int pnum)407 static int prot_queue_del(struct ubi_device *ubi, int pnum)
408 {
409 	struct ubi_wl_entry *e;
410 
411 	e = ubi->lookuptbl[pnum];
412 	if (!e)
413 		return -ENODEV;
414 
415 	if (self_check_in_pq(ubi, e))
416 		return -ENODEV;
417 
418 	list_del(&e->u.list);
419 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
420 	return 0;
421 }
422 
423 /**
424  * sync_erase - synchronously erase a physical eraseblock.
425  * @ubi: UBI device description object
426  * @e: the the physical eraseblock to erase
427  * @torture: if the physical eraseblock has to be tortured
428  *
429  * This function returns zero in case of success and a negative error code in
430  * case of failure.
431  */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)432 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
433 		      int torture)
434 {
435 	int err;
436 	struct ubi_ec_hdr *ec_hdr;
437 	unsigned long long ec = e->ec;
438 
439 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
440 
441 	err = self_check_ec(ubi, e->pnum, e->ec);
442 	if (err)
443 		return -EINVAL;
444 
445 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
446 	if (!ec_hdr)
447 		return -ENOMEM;
448 
449 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
450 	if (err < 0)
451 		goto out_free;
452 
453 	ec += err;
454 	if (ec > UBI_MAX_ERASECOUNTER) {
455 		/*
456 		 * Erase counter overflow. Upgrade UBI and use 64-bit
457 		 * erase counters internally.
458 		 */
459 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
460 			e->pnum, ec);
461 		err = -EINVAL;
462 		goto out_free;
463 	}
464 
465 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
466 
467 	ec_hdr->ec = cpu_to_be64(ec);
468 
469 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
470 	if (err)
471 		goto out_free;
472 
473 	e->ec = ec;
474 	spin_lock(&ubi->wl_lock);
475 	if (e->ec > ubi->max_ec)
476 		ubi->max_ec = e->ec;
477 	spin_unlock(&ubi->wl_lock);
478 
479 out_free:
480 	kfree(ec_hdr);
481 	return err;
482 }
483 
484 /**
485  * serve_prot_queue - check if it is time to stop protecting PEBs.
486  * @ubi: UBI device description object
487  *
488  * This function is called after each erase operation and removes PEBs from the
489  * tail of the protection queue. These PEBs have been protected for long enough
490  * and should be moved to the used tree.
491  */
serve_prot_queue(struct ubi_device * ubi)492 static void serve_prot_queue(struct ubi_device *ubi)
493 {
494 	struct ubi_wl_entry *e, *tmp;
495 	int count;
496 
497 	/*
498 	 * There may be several protected physical eraseblock to remove,
499 	 * process them all.
500 	 */
501 repeat:
502 	count = 0;
503 	spin_lock(&ubi->wl_lock);
504 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
505 		dbg_wl("PEB %d EC %d protection over, move to used tree",
506 			e->pnum, e->ec);
507 
508 		list_del(&e->u.list);
509 		wl_tree_add(e, &ubi->used);
510 		if (count++ > 32) {
511 			/*
512 			 * Let's be nice and avoid holding the spinlock for
513 			 * too long.
514 			 */
515 			spin_unlock(&ubi->wl_lock);
516 			cond_resched();
517 			goto repeat;
518 		}
519 	}
520 
521 	ubi->pq_head += 1;
522 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
523 		ubi->pq_head = 0;
524 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
525 	spin_unlock(&ubi->wl_lock);
526 }
527 
528 #ifdef __UBOOT__
ubi_do_worker(struct ubi_device * ubi)529 void ubi_do_worker(struct ubi_device *ubi)
530 {
531 	int err;
532 
533 	if (list_empty(&ubi->works) || ubi->ro_mode ||
534 	    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi))
535 		return;
536 
537 	spin_lock(&ubi->wl_lock);
538 	while (!list_empty(&ubi->works)) {
539 		/*
540 		 * call do_work, which executes exactly one work form the queue,
541 		 * including removeing it from the work queue.
542 		 */
543 		spin_unlock(&ubi->wl_lock);
544 		err = do_work(ubi);
545 		spin_lock(&ubi->wl_lock);
546 		if (err) {
547 			ubi_err(ubi, "%s: work failed with error code %d",
548 				ubi->bgt_name, err);
549 		}
550 	}
551 	spin_unlock(&ubi->wl_lock);
552 }
553 #endif
554 
555 /**
556  * __schedule_ubi_work - schedule a work.
557  * @ubi: UBI device description object
558  * @wrk: the work to schedule
559  *
560  * This function adds a work defined by @wrk to the tail of the pending works
561  * list. Can only be used if ubi->work_sem is already held in read mode!
562  */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)563 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
564 {
565 	spin_lock(&ubi->wl_lock);
566 	list_add_tail(&wrk->list, &ubi->works);
567 	ubi_assert(ubi->works_count >= 0);
568 	ubi->works_count += 1;
569 #ifndef __UBOOT__
570 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
571 		wake_up_process(ubi->bgt_thread);
572 #endif
573 	spin_unlock(&ubi->wl_lock);
574 }
575 
576 /**
577  * schedule_ubi_work - schedule a work.
578  * @ubi: UBI device description object
579  * @wrk: the work to schedule
580  *
581  * This function adds a work defined by @wrk to the tail of the pending works
582  * list.
583  */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)584 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
585 {
586 	down_read(&ubi->work_sem);
587 	__schedule_ubi_work(ubi, wrk);
588 	up_read(&ubi->work_sem);
589 }
590 
591 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
592 			int shutdown);
593 
594 /**
595  * schedule_erase - schedule an erase work.
596  * @ubi: UBI device description object
597  * @e: the WL entry of the physical eraseblock to erase
598  * @vol_id: the volume ID that last used this PEB
599  * @lnum: the last used logical eraseblock number for the PEB
600  * @torture: if the physical eraseblock has to be tortured
601  *
602  * This function returns zero in case of success and a %-ENOMEM in case of
603  * failure.
604  */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)605 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
606 			  int vol_id, int lnum, int torture)
607 {
608 	struct ubi_work *wl_wrk;
609 
610 	ubi_assert(e);
611 
612 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
613 	       e->pnum, e->ec, torture);
614 
615 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
616 	if (!wl_wrk)
617 		return -ENOMEM;
618 
619 	wl_wrk->func = &erase_worker;
620 	wl_wrk->e = e;
621 	wl_wrk->vol_id = vol_id;
622 	wl_wrk->lnum = lnum;
623 	wl_wrk->torture = torture;
624 
625 	schedule_ubi_work(ubi, wl_wrk);
626 
627 #ifdef __UBOOT__
628 	ubi_do_worker(ubi);
629 #endif
630 	return 0;
631 }
632 
633 /**
634  * do_sync_erase - run the erase worker synchronously.
635  * @ubi: UBI device description object
636  * @e: the WL entry of the physical eraseblock to erase
637  * @vol_id: the volume ID that last used this PEB
638  * @lnum: the last used logical eraseblock number for the PEB
639  * @torture: if the physical eraseblock has to be tortured
640  *
641  */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)642 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
643 			 int vol_id, int lnum, int torture)
644 {
645 	struct ubi_work *wl_wrk;
646 
647 	dbg_wl("sync erase of PEB %i", e->pnum);
648 
649 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
650 	if (!wl_wrk)
651 		return -ENOMEM;
652 
653 	wl_wrk->e = e;
654 	wl_wrk->vol_id = vol_id;
655 	wl_wrk->lnum = lnum;
656 	wl_wrk->torture = torture;
657 
658 	return erase_worker(ubi, wl_wrk, 0);
659 }
660 
661 /**
662  * wear_leveling_worker - wear-leveling worker function.
663  * @ubi: UBI device description object
664  * @wrk: the work object
665  * @shutdown: non-zero if the worker has to free memory and exit
666  * because the WL-subsystem is shutting down
667  *
668  * This function copies a more worn out physical eraseblock to a less worn out
669  * one. Returns zero in case of success and a negative error code in case of
670  * failure.
671  */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)672 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
673 				int shutdown)
674 {
675 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
676 	int vol_id = -1, lnum = -1;
677 #ifdef CONFIG_MTD_UBI_FASTMAP
678 	int anchor = wrk->anchor;
679 #endif
680 	struct ubi_wl_entry *e1, *e2;
681 	struct ubi_vid_hdr *vid_hdr;
682 
683 	kfree(wrk);
684 	if (shutdown)
685 		return 0;
686 
687 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
688 	if (!vid_hdr)
689 		return -ENOMEM;
690 
691 	mutex_lock(&ubi->move_mutex);
692 	spin_lock(&ubi->wl_lock);
693 	ubi_assert(!ubi->move_from && !ubi->move_to);
694 	ubi_assert(!ubi->move_to_put);
695 
696 	if (!ubi->free.rb_node ||
697 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
698 		/*
699 		 * No free physical eraseblocks? Well, they must be waiting in
700 		 * the queue to be erased. Cancel movement - it will be
701 		 * triggered again when a free physical eraseblock appears.
702 		 *
703 		 * No used physical eraseblocks? They must be temporarily
704 		 * protected from being moved. They will be moved to the
705 		 * @ubi->used tree later and the wear-leveling will be
706 		 * triggered again.
707 		 */
708 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
709 		       !ubi->free.rb_node, !ubi->used.rb_node);
710 		goto out_cancel;
711 	}
712 
713 #ifdef CONFIG_MTD_UBI_FASTMAP
714 	/* Check whether we need to produce an anchor PEB */
715 	if (!anchor)
716 		anchor = !anchor_pebs_avalible(&ubi->free);
717 
718 	if (anchor) {
719 		e1 = find_anchor_wl_entry(&ubi->used);
720 		if (!e1)
721 			goto out_cancel;
722 		e2 = get_peb_for_wl(ubi);
723 		if (!e2)
724 			goto out_cancel;
725 
726 		self_check_in_wl_tree(ubi, e1, &ubi->used);
727 		rb_erase(&e1->u.rb, &ubi->used);
728 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
729 	} else if (!ubi->scrub.rb_node) {
730 #else
731 	if (!ubi->scrub.rb_node) {
732 #endif
733 		/*
734 		 * Now pick the least worn-out used physical eraseblock and a
735 		 * highly worn-out free physical eraseblock. If the erase
736 		 * counters differ much enough, start wear-leveling.
737 		 */
738 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
739 		e2 = get_peb_for_wl(ubi);
740 		if (!e2)
741 			goto out_cancel;
742 
743 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
744 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
745 			       e1->ec, e2->ec);
746 
747 			/* Give the unused PEB back */
748 			wl_tree_add(e2, &ubi->free);
749 			ubi->free_count++;
750 			goto out_cancel;
751 		}
752 		self_check_in_wl_tree(ubi, e1, &ubi->used);
753 		rb_erase(&e1->u.rb, &ubi->used);
754 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
755 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
756 	} else {
757 		/* Perform scrubbing */
758 		scrubbing = 1;
759 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
760 		e2 = get_peb_for_wl(ubi);
761 		if (!e2)
762 			goto out_cancel;
763 
764 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
765 		rb_erase(&e1->u.rb, &ubi->scrub);
766 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
767 	}
768 
769 	ubi->move_from = e1;
770 	ubi->move_to = e2;
771 	spin_unlock(&ubi->wl_lock);
772 
773 	/*
774 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
775 	 * We so far do not know which logical eraseblock our physical
776 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
777 	 * header first.
778 	 *
779 	 * Note, we are protected from this PEB being unmapped and erased. The
780 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
781 	 * which is being moved was unmapped.
782 	 */
783 
784 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
785 	if (err && err != UBI_IO_BITFLIPS) {
786 		if (err == UBI_IO_FF) {
787 			/*
788 			 * We are trying to move PEB without a VID header. UBI
789 			 * always write VID headers shortly after the PEB was
790 			 * given, so we have a situation when it has not yet
791 			 * had a chance to write it, because it was preempted.
792 			 * So add this PEB to the protection queue so far,
793 			 * because presumably more data will be written there
794 			 * (including the missing VID header), and then we'll
795 			 * move it.
796 			 */
797 			dbg_wl("PEB %d has no VID header", e1->pnum);
798 			protect = 1;
799 			goto out_not_moved;
800 		} else if (err == UBI_IO_FF_BITFLIPS) {
801 			/*
802 			 * The same situation as %UBI_IO_FF, but bit-flips were
803 			 * detected. It is better to schedule this PEB for
804 			 * scrubbing.
805 			 */
806 			dbg_wl("PEB %d has no VID header but has bit-flips",
807 			       e1->pnum);
808 			scrubbing = 1;
809 			goto out_not_moved;
810 		}
811 
812 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
813 			err, e1->pnum);
814 		goto out_error;
815 	}
816 
817 	vol_id = be32_to_cpu(vid_hdr->vol_id);
818 	lnum = be32_to_cpu(vid_hdr->lnum);
819 
820 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
821 	if (err) {
822 		if (err == MOVE_CANCEL_RACE) {
823 			/*
824 			 * The LEB has not been moved because the volume is
825 			 * being deleted or the PEB has been put meanwhile. We
826 			 * should prevent this PEB from being selected for
827 			 * wear-leveling movement again, so put it to the
828 			 * protection queue.
829 			 */
830 			protect = 1;
831 			goto out_not_moved;
832 		}
833 		if (err == MOVE_RETRY) {
834 			scrubbing = 1;
835 			goto out_not_moved;
836 		}
837 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
838 		    err == MOVE_TARGET_RD_ERR) {
839 			/*
840 			 * Target PEB had bit-flips or write error - torture it.
841 			 */
842 			torture = 1;
843 			goto out_not_moved;
844 		}
845 
846 		if (err == MOVE_SOURCE_RD_ERR) {
847 			/*
848 			 * An error happened while reading the source PEB. Do
849 			 * not switch to R/O mode in this case, and give the
850 			 * upper layers a possibility to recover from this,
851 			 * e.g. by unmapping corresponding LEB. Instead, just
852 			 * put this PEB to the @ubi->erroneous list to prevent
853 			 * UBI from trying to move it over and over again.
854 			 */
855 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
856 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
857 					ubi->erroneous_peb_count);
858 				goto out_error;
859 			}
860 			erroneous = 1;
861 			goto out_not_moved;
862 		}
863 
864 		if (err < 0)
865 			goto out_error;
866 
867 		ubi_assert(0);
868 	}
869 
870 	/* The PEB has been successfully moved */
871 	if (scrubbing)
872 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
873 			e1->pnum, vol_id, lnum, e2->pnum);
874 	ubi_free_vid_hdr(ubi, vid_hdr);
875 
876 	spin_lock(&ubi->wl_lock);
877 	if (!ubi->move_to_put) {
878 		wl_tree_add(e2, &ubi->used);
879 		e2 = NULL;
880 	}
881 	ubi->move_from = ubi->move_to = NULL;
882 	ubi->move_to_put = ubi->wl_scheduled = 0;
883 	spin_unlock(&ubi->wl_lock);
884 
885 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
886 	if (err) {
887 		if (e2)
888 			wl_entry_destroy(ubi, e2);
889 		goto out_ro;
890 	}
891 
892 	if (e2) {
893 		/*
894 		 * Well, the target PEB was put meanwhile, schedule it for
895 		 * erasure.
896 		 */
897 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
898 		       e2->pnum, vol_id, lnum);
899 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
900 		if (err)
901 			goto out_ro;
902 	}
903 
904 	dbg_wl("done");
905 	mutex_unlock(&ubi->move_mutex);
906 	return 0;
907 
908 	/*
909 	 * For some reasons the LEB was not moved, might be an error, might be
910 	 * something else. @e1 was not changed, so return it back. @e2 might
911 	 * have been changed, schedule it for erasure.
912 	 */
913 out_not_moved:
914 	if (vol_id != -1)
915 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
916 		       e1->pnum, vol_id, lnum, e2->pnum, err);
917 	else
918 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
919 		       e1->pnum, e2->pnum, err);
920 	spin_lock(&ubi->wl_lock);
921 	if (protect)
922 		prot_queue_add(ubi, e1);
923 	else if (erroneous) {
924 		wl_tree_add(e1, &ubi->erroneous);
925 		ubi->erroneous_peb_count += 1;
926 	} else if (scrubbing)
927 		wl_tree_add(e1, &ubi->scrub);
928 	else
929 		wl_tree_add(e1, &ubi->used);
930 	ubi_assert(!ubi->move_to_put);
931 	ubi->move_from = ubi->move_to = NULL;
932 	ubi->wl_scheduled = 0;
933 	spin_unlock(&ubi->wl_lock);
934 
935 	ubi_free_vid_hdr(ubi, vid_hdr);
936 	err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
937 	if (err)
938 		goto out_ro;
939 
940 	mutex_unlock(&ubi->move_mutex);
941 	return 0;
942 
943 out_error:
944 	if (vol_id != -1)
945 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
946 			err, e1->pnum, e2->pnum);
947 	else
948 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
949 			err, e1->pnum, vol_id, lnum, e2->pnum);
950 	spin_lock(&ubi->wl_lock);
951 	ubi->move_from = ubi->move_to = NULL;
952 	ubi->move_to_put = ubi->wl_scheduled = 0;
953 	spin_unlock(&ubi->wl_lock);
954 
955 	ubi_free_vid_hdr(ubi, vid_hdr);
956 	wl_entry_destroy(ubi, e1);
957 	wl_entry_destroy(ubi, e2);
958 
959 out_ro:
960 	ubi_ro_mode(ubi);
961 	mutex_unlock(&ubi->move_mutex);
962 	ubi_assert(err != 0);
963 	return err < 0 ? err : -EIO;
964 
965 out_cancel:
966 	ubi->wl_scheduled = 0;
967 	spin_unlock(&ubi->wl_lock);
968 	mutex_unlock(&ubi->move_mutex);
969 	ubi_free_vid_hdr(ubi, vid_hdr);
970 	return 0;
971 }
972 
973 /**
974  * ensure_wear_leveling - schedule wear-leveling if it is needed.
975  * @ubi: UBI device description object
976  * @nested: set to non-zero if this function is called from UBI worker
977  *
978  * This function checks if it is time to start wear-leveling and schedules it
979  * if yes. This function returns zero in case of success and a negative error
980  * code in case of failure.
981  */
982 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
983 {
984 	int err = 0;
985 	struct ubi_wl_entry *e1;
986 	struct ubi_wl_entry *e2;
987 	struct ubi_work *wrk;
988 
989 	spin_lock(&ubi->wl_lock);
990 	if (ubi->wl_scheduled)
991 		/* Wear-leveling is already in the work queue */
992 		goto out_unlock;
993 
994 	/*
995 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
996 	 * the WL worker has to be scheduled anyway.
997 	 */
998 	if (!ubi->scrub.rb_node) {
999 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1000 			/* No physical eraseblocks - no deal */
1001 			goto out_unlock;
1002 
1003 		/*
1004 		 * We schedule wear-leveling only if the difference between the
1005 		 * lowest erase counter of used physical eraseblocks and a high
1006 		 * erase counter of free physical eraseblocks is greater than
1007 		 * %UBI_WL_THRESHOLD.
1008 		 */
1009 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1010 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1011 
1012 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1013 			goto out_unlock;
1014 		dbg_wl("schedule wear-leveling");
1015 	} else
1016 		dbg_wl("schedule scrubbing");
1017 
1018 	ubi->wl_scheduled = 1;
1019 	spin_unlock(&ubi->wl_lock);
1020 
1021 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1022 	if (!wrk) {
1023 		err = -ENOMEM;
1024 		goto out_cancel;
1025 	}
1026 
1027 	wrk->anchor = 0;
1028 	wrk->func = &wear_leveling_worker;
1029 	if (nested)
1030 		__schedule_ubi_work(ubi, wrk);
1031 #ifndef __UBOOT__
1032 	else
1033 		schedule_ubi_work(ubi, wrk);
1034 #else
1035 	else {
1036 		schedule_ubi_work(ubi, wrk);
1037 		ubi_do_worker(ubi);
1038 	}
1039 #endif
1040 	return err;
1041 
1042 out_cancel:
1043 	spin_lock(&ubi->wl_lock);
1044 	ubi->wl_scheduled = 0;
1045 out_unlock:
1046 	spin_unlock(&ubi->wl_lock);
1047 	return err;
1048 }
1049 
1050 /**
1051  * erase_worker - physical eraseblock erase worker function.
1052  * @ubi: UBI device description object
1053  * @wl_wrk: the work object
1054  * @shutdown: non-zero if the worker has to free memory and exit
1055  * because the WL sub-system is shutting down
1056  *
1057  * This function erases a physical eraseblock and perform torture testing if
1058  * needed. It also takes care about marking the physical eraseblock bad if
1059  * needed. Returns zero in case of success and a negative error code in case of
1060  * failure.
1061  */
1062 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1063 			int shutdown)
1064 {
1065 	struct ubi_wl_entry *e = wl_wrk->e;
1066 	int pnum = e->pnum;
1067 	int vol_id = wl_wrk->vol_id;
1068 	int lnum = wl_wrk->lnum;
1069 	int err, available_consumed = 0;
1070 
1071 	if (shutdown) {
1072 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1073 		kfree(wl_wrk);
1074 		wl_entry_destroy(ubi, e);
1075 		return 0;
1076 	}
1077 
1078 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1079 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1080 
1081 	err = sync_erase(ubi, e, wl_wrk->torture);
1082 	if (!err) {
1083 		/* Fine, we've erased it successfully */
1084 		kfree(wl_wrk);
1085 
1086 		spin_lock(&ubi->wl_lock);
1087 		wl_tree_add(e, &ubi->free);
1088 		ubi->free_count++;
1089 		spin_unlock(&ubi->wl_lock);
1090 
1091 		/*
1092 		 * One more erase operation has happened, take care about
1093 		 * protected physical eraseblocks.
1094 		 */
1095 		serve_prot_queue(ubi);
1096 
1097 		/* And take care about wear-leveling */
1098 		err = ensure_wear_leveling(ubi, 1);
1099 		return err;
1100 	}
1101 
1102 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1103 	kfree(wl_wrk);
1104 
1105 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1106 	    err == -EBUSY) {
1107 		int err1;
1108 
1109 		/* Re-schedule the LEB for erasure */
1110 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1111 		if (err1) {
1112 			err = err1;
1113 			goto out_ro;
1114 		}
1115 		return err;
1116 	}
1117 
1118 	wl_entry_destroy(ubi, e);
1119 	if (err != -EIO)
1120 		/*
1121 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1122 		 * this physical eraseblock for erasure again would cause
1123 		 * errors again and again. Well, lets switch to R/O mode.
1124 		 */
1125 		goto out_ro;
1126 
1127 	/* It is %-EIO, the PEB went bad */
1128 
1129 	if (!ubi->bad_allowed) {
1130 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1131 		goto out_ro;
1132 	}
1133 
1134 	spin_lock(&ubi->volumes_lock);
1135 	if (ubi->beb_rsvd_pebs == 0) {
1136 		if (ubi->avail_pebs == 0) {
1137 			spin_unlock(&ubi->volumes_lock);
1138 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1139 			goto out_ro;
1140 		}
1141 		ubi->avail_pebs -= 1;
1142 		available_consumed = 1;
1143 	}
1144 	spin_unlock(&ubi->volumes_lock);
1145 
1146 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1147 	err = ubi_io_mark_bad(ubi, pnum);
1148 	if (err)
1149 		goto out_ro;
1150 
1151 	spin_lock(&ubi->volumes_lock);
1152 	if (ubi->beb_rsvd_pebs > 0) {
1153 		if (available_consumed) {
1154 			/*
1155 			 * The amount of reserved PEBs increased since we last
1156 			 * checked.
1157 			 */
1158 			ubi->avail_pebs += 1;
1159 			available_consumed = 0;
1160 		}
1161 		ubi->beb_rsvd_pebs -= 1;
1162 	}
1163 	ubi->bad_peb_count += 1;
1164 	ubi->good_peb_count -= 1;
1165 	ubi_calculate_reserved(ubi);
1166 	if (available_consumed)
1167 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1168 	else if (ubi->beb_rsvd_pebs)
1169 		ubi_msg(ubi, "%d PEBs left in the reserve",
1170 			ubi->beb_rsvd_pebs);
1171 	else
1172 		ubi_warn(ubi, "last PEB from the reserve was used");
1173 	spin_unlock(&ubi->volumes_lock);
1174 
1175 	return err;
1176 
1177 out_ro:
1178 	if (available_consumed) {
1179 		spin_lock(&ubi->volumes_lock);
1180 		ubi->avail_pebs += 1;
1181 		spin_unlock(&ubi->volumes_lock);
1182 	}
1183 	ubi_ro_mode(ubi);
1184 	return err;
1185 }
1186 
1187 /**
1188  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1189  * @ubi: UBI device description object
1190  * @vol_id: the volume ID that last used this PEB
1191  * @lnum: the last used logical eraseblock number for the PEB
1192  * @pnum: physical eraseblock to return
1193  * @torture: if this physical eraseblock has to be tortured
1194  *
1195  * This function is called to return physical eraseblock @pnum to the pool of
1196  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1197  * occurred to this @pnum and it has to be tested. This function returns zero
1198  * in case of success, and a negative error code in case of failure.
1199  */
1200 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1201 		   int pnum, int torture)
1202 {
1203 	int err;
1204 	struct ubi_wl_entry *e;
1205 
1206 	dbg_wl("PEB %d", pnum);
1207 	ubi_assert(pnum >= 0);
1208 	ubi_assert(pnum < ubi->peb_count);
1209 
1210 	down_read(&ubi->fm_protect);
1211 
1212 retry:
1213 	spin_lock(&ubi->wl_lock);
1214 	e = ubi->lookuptbl[pnum];
1215 	if (e == ubi->move_from) {
1216 		/*
1217 		 * User is putting the physical eraseblock which was selected to
1218 		 * be moved. It will be scheduled for erasure in the
1219 		 * wear-leveling worker.
1220 		 */
1221 		dbg_wl("PEB %d is being moved, wait", pnum);
1222 		spin_unlock(&ubi->wl_lock);
1223 
1224 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1225 		mutex_lock(&ubi->move_mutex);
1226 		mutex_unlock(&ubi->move_mutex);
1227 		goto retry;
1228 	} else if (e == ubi->move_to) {
1229 		/*
1230 		 * User is putting the physical eraseblock which was selected
1231 		 * as the target the data is moved to. It may happen if the EBA
1232 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1233 		 * but the WL sub-system has not put the PEB to the "used" tree
1234 		 * yet, but it is about to do this. So we just set a flag which
1235 		 * will tell the WL worker that the PEB is not needed anymore
1236 		 * and should be scheduled for erasure.
1237 		 */
1238 		dbg_wl("PEB %d is the target of data moving", pnum);
1239 		ubi_assert(!ubi->move_to_put);
1240 		ubi->move_to_put = 1;
1241 		spin_unlock(&ubi->wl_lock);
1242 		up_read(&ubi->fm_protect);
1243 		return 0;
1244 	} else {
1245 		if (in_wl_tree(e, &ubi->used)) {
1246 			self_check_in_wl_tree(ubi, e, &ubi->used);
1247 			rb_erase(&e->u.rb, &ubi->used);
1248 		} else if (in_wl_tree(e, &ubi->scrub)) {
1249 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1250 			rb_erase(&e->u.rb, &ubi->scrub);
1251 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1252 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1253 			rb_erase(&e->u.rb, &ubi->erroneous);
1254 			ubi->erroneous_peb_count -= 1;
1255 			ubi_assert(ubi->erroneous_peb_count >= 0);
1256 			/* Erroneous PEBs should be tortured */
1257 			torture = 1;
1258 		} else {
1259 			err = prot_queue_del(ubi, e->pnum);
1260 			if (err) {
1261 				ubi_err(ubi, "PEB %d not found", pnum);
1262 				ubi_ro_mode(ubi);
1263 				spin_unlock(&ubi->wl_lock);
1264 				up_read(&ubi->fm_protect);
1265 				return err;
1266 			}
1267 		}
1268 	}
1269 	spin_unlock(&ubi->wl_lock);
1270 
1271 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1272 	if (err) {
1273 		spin_lock(&ubi->wl_lock);
1274 		wl_tree_add(e, &ubi->used);
1275 		spin_unlock(&ubi->wl_lock);
1276 	}
1277 
1278 	up_read(&ubi->fm_protect);
1279 	return err;
1280 }
1281 
1282 /**
1283  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1284  * @ubi: UBI device description object
1285  * @pnum: the physical eraseblock to schedule
1286  *
1287  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1288  * needs scrubbing. This function schedules a physical eraseblock for
1289  * scrubbing which is done in background. This function returns zero in case of
1290  * success and a negative error code in case of failure.
1291  */
1292 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1293 {
1294 	struct ubi_wl_entry *e;
1295 
1296 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1297 
1298 retry:
1299 	spin_lock(&ubi->wl_lock);
1300 	e = ubi->lookuptbl[pnum];
1301 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1302 				   in_wl_tree(e, &ubi->erroneous)) {
1303 		spin_unlock(&ubi->wl_lock);
1304 		return 0;
1305 	}
1306 
1307 	if (e == ubi->move_to) {
1308 		/*
1309 		 * This physical eraseblock was used to move data to. The data
1310 		 * was moved but the PEB was not yet inserted to the proper
1311 		 * tree. We should just wait a little and let the WL worker
1312 		 * proceed.
1313 		 */
1314 		spin_unlock(&ubi->wl_lock);
1315 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1316 		yield();
1317 		goto retry;
1318 	}
1319 
1320 	if (in_wl_tree(e, &ubi->used)) {
1321 		self_check_in_wl_tree(ubi, e, &ubi->used);
1322 		rb_erase(&e->u.rb, &ubi->used);
1323 	} else {
1324 		int err;
1325 
1326 		err = prot_queue_del(ubi, e->pnum);
1327 		if (err) {
1328 			ubi_err(ubi, "PEB %d not found", pnum);
1329 			ubi_ro_mode(ubi);
1330 			spin_unlock(&ubi->wl_lock);
1331 			return err;
1332 		}
1333 	}
1334 
1335 	wl_tree_add(e, &ubi->scrub);
1336 	spin_unlock(&ubi->wl_lock);
1337 
1338 	/*
1339 	 * Technically scrubbing is the same as wear-leveling, so it is done
1340 	 * by the WL worker.
1341 	 */
1342 	return ensure_wear_leveling(ubi, 0);
1343 }
1344 
1345 /**
1346  * ubi_wl_flush - flush all pending works.
1347  * @ubi: UBI device description object
1348  * @vol_id: the volume id to flush for
1349  * @lnum: the logical eraseblock number to flush for
1350  *
1351  * This function executes all pending works for a particular volume id /
1352  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1353  * acts as a wildcard for all of the corresponding volume numbers or logical
1354  * eraseblock numbers. It returns zero in case of success and a negative error
1355  * code in case of failure.
1356  */
1357 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1358 {
1359 	int err = 0;
1360 	int found = 1;
1361 
1362 	/*
1363 	 * Erase while the pending works queue is not empty, but not more than
1364 	 * the number of currently pending works.
1365 	 */
1366 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1367 	       vol_id, lnum, ubi->works_count);
1368 
1369 	while (found) {
1370 		struct ubi_work *wrk, *tmp;
1371 		found = 0;
1372 
1373 		down_read(&ubi->work_sem);
1374 		spin_lock(&ubi->wl_lock);
1375 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1376 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1377 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1378 				list_del(&wrk->list);
1379 				ubi->works_count -= 1;
1380 				ubi_assert(ubi->works_count >= 0);
1381 				spin_unlock(&ubi->wl_lock);
1382 
1383 				err = wrk->func(ubi, wrk, 0);
1384 				if (err) {
1385 					up_read(&ubi->work_sem);
1386 					return err;
1387 				}
1388 
1389 				spin_lock(&ubi->wl_lock);
1390 				found = 1;
1391 				break;
1392 			}
1393 		}
1394 		spin_unlock(&ubi->wl_lock);
1395 		up_read(&ubi->work_sem);
1396 	}
1397 
1398 	/*
1399 	 * Make sure all the works which have been done in parallel are
1400 	 * finished.
1401 	 */
1402 	down_write(&ubi->work_sem);
1403 	up_write(&ubi->work_sem);
1404 
1405 	return err;
1406 }
1407 
1408 /**
1409  * tree_destroy - destroy an RB-tree.
1410  * @ubi: UBI device description object
1411  * @root: the root of the tree to destroy
1412  */
1413 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1414 {
1415 	struct rb_node *rb;
1416 	struct ubi_wl_entry *e;
1417 
1418 	rb = root->rb_node;
1419 	while (rb) {
1420 		if (rb->rb_left)
1421 			rb = rb->rb_left;
1422 		else if (rb->rb_right)
1423 			rb = rb->rb_right;
1424 		else {
1425 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1426 
1427 			rb = rb_parent(rb);
1428 			if (rb) {
1429 				if (rb->rb_left == &e->u.rb)
1430 					rb->rb_left = NULL;
1431 				else
1432 					rb->rb_right = NULL;
1433 			}
1434 
1435 			wl_entry_destroy(ubi, e);
1436 		}
1437 	}
1438 }
1439 
1440 /**
1441  * ubi_thread - UBI background thread.
1442  * @u: the UBI device description object pointer
1443  */
1444 int ubi_thread(void *u)
1445 {
1446 	int failures = 0;
1447 	struct ubi_device *ubi = u;
1448 
1449 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1450 		ubi->bgt_name, task_pid_nr(current));
1451 
1452 	set_freezable();
1453 	for (;;) {
1454 		int err;
1455 
1456 		if (kthread_should_stop())
1457 			break;
1458 
1459 		if (try_to_freeze())
1460 			continue;
1461 
1462 		spin_lock(&ubi->wl_lock);
1463 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1464 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1465 			set_current_state(TASK_INTERRUPTIBLE);
1466 			spin_unlock(&ubi->wl_lock);
1467 			schedule();
1468 			continue;
1469 		}
1470 		spin_unlock(&ubi->wl_lock);
1471 
1472 		err = do_work(ubi);
1473 		if (err) {
1474 			ubi_err(ubi, "%s: work failed with error code %d",
1475 				ubi->bgt_name, err);
1476 			if (failures++ > WL_MAX_FAILURES) {
1477 				/*
1478 				 * Too many failures, disable the thread and
1479 				 * switch to read-only mode.
1480 				 */
1481 				ubi_msg(ubi, "%s: %d consecutive failures",
1482 					ubi->bgt_name, WL_MAX_FAILURES);
1483 				ubi_ro_mode(ubi);
1484 				ubi->thread_enabled = 0;
1485 				continue;
1486 			}
1487 		} else
1488 			failures = 0;
1489 
1490 		cond_resched();
1491 	}
1492 
1493 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1494 	return 0;
1495 }
1496 
1497 /**
1498  * shutdown_work - shutdown all pending works.
1499  * @ubi: UBI device description object
1500  */
1501 static void shutdown_work(struct ubi_device *ubi)
1502 {
1503 #ifdef CONFIG_MTD_UBI_FASTMAP
1504 #ifndef __UBOOT__
1505 	flush_work(&ubi->fm_work);
1506 #else
1507 	/* in U-Boot, we have all work done */
1508 #endif
1509 #endif
1510 	while (!list_empty(&ubi->works)) {
1511 		struct ubi_work *wrk;
1512 
1513 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1514 		list_del(&wrk->list);
1515 		wrk->func(ubi, wrk, 1);
1516 		ubi->works_count -= 1;
1517 		ubi_assert(ubi->works_count >= 0);
1518 	}
1519 }
1520 
1521 /**
1522  * ubi_wl_init - initialize the WL sub-system using attaching information.
1523  * @ubi: UBI device description object
1524  * @ai: attaching information
1525  *
1526  * This function returns zero in case of success, and a negative error code in
1527  * case of failure.
1528  */
1529 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1530 {
1531 	int err, i, reserved_pebs, found_pebs = 0;
1532 	struct rb_node *rb1, *rb2;
1533 	struct ubi_ainf_volume *av;
1534 	struct ubi_ainf_peb *aeb, *tmp;
1535 	struct ubi_wl_entry *e;
1536 
1537 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1538 	spin_lock_init(&ubi->wl_lock);
1539 	mutex_init(&ubi->move_mutex);
1540 	init_rwsem(&ubi->work_sem);
1541 	ubi->max_ec = ai->max_ec;
1542 	INIT_LIST_HEAD(&ubi->works);
1543 
1544 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1545 
1546 	err = -ENOMEM;
1547 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1548 	if (!ubi->lookuptbl)
1549 		return err;
1550 
1551 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1552 		INIT_LIST_HEAD(&ubi->pq[i]);
1553 	ubi->pq_head = 0;
1554 
1555 	ubi->free_count = 0;
1556 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1557 		cond_resched();
1558 
1559 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560 		if (!e)
1561 			goto out_free;
1562 
1563 		e->pnum = aeb->pnum;
1564 		e->ec = aeb->ec;
1565 		ubi->lookuptbl[e->pnum] = e;
1566 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1567 			wl_entry_destroy(ubi, e);
1568 			goto out_free;
1569 		}
1570 
1571 		found_pebs++;
1572 	}
1573 
1574 	list_for_each_entry(aeb, &ai->free, u.list) {
1575 		cond_resched();
1576 
1577 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1578 		if (!e)
1579 			goto out_free;
1580 
1581 		e->pnum = aeb->pnum;
1582 		e->ec = aeb->ec;
1583 		ubi_assert(e->ec >= 0);
1584 
1585 		wl_tree_add(e, &ubi->free);
1586 		ubi->free_count++;
1587 
1588 		ubi->lookuptbl[e->pnum] = e;
1589 
1590 		found_pebs++;
1591 	}
1592 
1593 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1594 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1595 			cond_resched();
1596 
1597 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1598 			if (!e)
1599 				goto out_free;
1600 
1601 			e->pnum = aeb->pnum;
1602 			e->ec = aeb->ec;
1603 			ubi->lookuptbl[e->pnum] = e;
1604 
1605 			if (!aeb->scrub) {
1606 				dbg_wl("add PEB %d EC %d to the used tree",
1607 				       e->pnum, e->ec);
1608 				wl_tree_add(e, &ubi->used);
1609 			} else {
1610 				dbg_wl("add PEB %d EC %d to the scrub tree",
1611 				       e->pnum, e->ec);
1612 				wl_tree_add(e, &ubi->scrub);
1613 			}
1614 
1615 			found_pebs++;
1616 		}
1617 	}
1618 
1619 	dbg_wl("found %i PEBs", found_pebs);
1620 
1621 	if (ubi->fm) {
1622 		ubi_assert(ubi->good_peb_count ==
1623 			   found_pebs + ubi->fm->used_blocks);
1624 
1625 		for (i = 0; i < ubi->fm->used_blocks; i++) {
1626 			e = ubi->fm->e[i];
1627 			ubi->lookuptbl[e->pnum] = e;
1628 		}
1629 	}
1630 	else
1631 		ubi_assert(ubi->good_peb_count == found_pebs);
1632 
1633 	reserved_pebs = WL_RESERVED_PEBS;
1634 	ubi_fastmap_init(ubi, &reserved_pebs);
1635 
1636 	if (ubi->avail_pebs < reserved_pebs) {
1637 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1638 			ubi->avail_pebs, reserved_pebs);
1639 		if (ubi->corr_peb_count)
1640 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1641 				ubi->corr_peb_count);
1642 		goto out_free;
1643 	}
1644 	ubi->avail_pebs -= reserved_pebs;
1645 	ubi->rsvd_pebs += reserved_pebs;
1646 
1647 	/* Schedule wear-leveling if needed */
1648 	err = ensure_wear_leveling(ubi, 0);
1649 	if (err)
1650 		goto out_free;
1651 
1652 	return 0;
1653 
1654 out_free:
1655 	shutdown_work(ubi);
1656 	tree_destroy(ubi, &ubi->used);
1657 	tree_destroy(ubi, &ubi->free);
1658 	tree_destroy(ubi, &ubi->scrub);
1659 	kfree(ubi->lookuptbl);
1660 	return err;
1661 }
1662 
1663 /**
1664  * protection_queue_destroy - destroy the protection queue.
1665  * @ubi: UBI device description object
1666  */
1667 static void protection_queue_destroy(struct ubi_device *ubi)
1668 {
1669 	int i;
1670 	struct ubi_wl_entry *e, *tmp;
1671 
1672 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1673 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1674 			list_del(&e->u.list);
1675 			wl_entry_destroy(ubi, e);
1676 		}
1677 	}
1678 }
1679 
1680 /**
1681  * ubi_wl_close - close the wear-leveling sub-system.
1682  * @ubi: UBI device description object
1683  */
1684 void ubi_wl_close(struct ubi_device *ubi)
1685 {
1686 	dbg_wl("close the WL sub-system");
1687 	ubi_fastmap_close(ubi);
1688 	shutdown_work(ubi);
1689 	protection_queue_destroy(ubi);
1690 	tree_destroy(ubi, &ubi->used);
1691 	tree_destroy(ubi, &ubi->erroneous);
1692 	tree_destroy(ubi, &ubi->free);
1693 	tree_destroy(ubi, &ubi->scrub);
1694 	kfree(ubi->lookuptbl);
1695 }
1696 
1697 /**
1698  * self_check_ec - make sure that the erase counter of a PEB is correct.
1699  * @ubi: UBI device description object
1700  * @pnum: the physical eraseblock number to check
1701  * @ec: the erase counter to check
1702  *
1703  * This function returns zero if the erase counter of physical eraseblock @pnum
1704  * is equivalent to @ec, and a negative error code if not or if an error
1705  * occurred.
1706  */
1707 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1708 {
1709 	int err;
1710 	long long read_ec;
1711 	struct ubi_ec_hdr *ec_hdr;
1712 
1713 	if (!ubi_dbg_chk_gen(ubi))
1714 		return 0;
1715 
1716 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1717 	if (!ec_hdr)
1718 		return -ENOMEM;
1719 
1720 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1721 	if (err && err != UBI_IO_BITFLIPS) {
1722 		/* The header does not have to exist */
1723 		err = 0;
1724 		goto out_free;
1725 	}
1726 
1727 	read_ec = be64_to_cpu(ec_hdr->ec);
1728 	if (ec != read_ec && read_ec - ec > 1) {
1729 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1730 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1731 		dump_stack();
1732 		err = 1;
1733 	} else
1734 		err = 0;
1735 
1736 out_free:
1737 	kfree(ec_hdr);
1738 	return err;
1739 }
1740 
1741 /**
1742  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1743  * @ubi: UBI device description object
1744  * @e: the wear-leveling entry to check
1745  * @root: the root of the tree
1746  *
1747  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1748  * is not.
1749  */
1750 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1751 				 struct ubi_wl_entry *e, struct rb_root *root)
1752 {
1753 	if (!ubi_dbg_chk_gen(ubi))
1754 		return 0;
1755 
1756 	if (in_wl_tree(e, root))
1757 		return 0;
1758 
1759 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1760 		e->pnum, e->ec, root);
1761 	dump_stack();
1762 	return -EINVAL;
1763 }
1764 
1765 /**
1766  * self_check_in_pq - check if wear-leveling entry is in the protection
1767  *                        queue.
1768  * @ubi: UBI device description object
1769  * @e: the wear-leveling entry to check
1770  *
1771  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1772  */
1773 static int self_check_in_pq(const struct ubi_device *ubi,
1774 			    struct ubi_wl_entry *e)
1775 {
1776 	struct ubi_wl_entry *p;
1777 	int i;
1778 
1779 	if (!ubi_dbg_chk_gen(ubi))
1780 		return 0;
1781 
1782 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1783 		list_for_each_entry(p, &ubi->pq[i], u.list)
1784 			if (p == e)
1785 				return 0;
1786 
1787 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1788 		e->pnum, e->ec);
1789 	dump_stack();
1790 	return -EINVAL;
1791 }
1792 #ifndef CONFIG_MTD_UBI_FASTMAP
1793 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1794 {
1795 	struct ubi_wl_entry *e;
1796 
1797 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1798 	self_check_in_wl_tree(ubi, e, &ubi->free);
1799 	ubi->free_count--;
1800 	ubi_assert(ubi->free_count >= 0);
1801 	rb_erase(&e->u.rb, &ubi->free);
1802 
1803 	return e;
1804 }
1805 
1806 /**
1807  * produce_free_peb - produce a free physical eraseblock.
1808  * @ubi: UBI device description object
1809  *
1810  * This function tries to make a free PEB by means of synchronous execution of
1811  * pending works. This may be needed if, for example the background thread is
1812  * disabled. Returns zero in case of success and a negative error code in case
1813  * of failure.
1814  */
1815 static int produce_free_peb(struct ubi_device *ubi)
1816 {
1817 	int err;
1818 
1819 	while (!ubi->free.rb_node && ubi->works_count) {
1820 		spin_unlock(&ubi->wl_lock);
1821 
1822 		dbg_wl("do one work synchronously");
1823 		err = do_work(ubi);
1824 
1825 		spin_lock(&ubi->wl_lock);
1826 		if (err)
1827 			return err;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 /**
1834  * ubi_wl_get_peb - get a physical eraseblock.
1835  * @ubi: UBI device description object
1836  *
1837  * This function returns a physical eraseblock in case of success and a
1838  * negative error code in case of failure.
1839  * Returns with ubi->fm_eba_sem held in read mode!
1840  */
1841 int ubi_wl_get_peb(struct ubi_device *ubi)
1842 {
1843 	int err;
1844 	struct ubi_wl_entry *e;
1845 
1846 retry:
1847 	down_read(&ubi->fm_eba_sem);
1848 	spin_lock(&ubi->wl_lock);
1849 	if (!ubi->free.rb_node) {
1850 		if (ubi->works_count == 0) {
1851 			ubi_err(ubi, "no free eraseblocks");
1852 			ubi_assert(list_empty(&ubi->works));
1853 			spin_unlock(&ubi->wl_lock);
1854 			return -ENOSPC;
1855 		}
1856 
1857 		err = produce_free_peb(ubi);
1858 		if (err < 0) {
1859 			spin_unlock(&ubi->wl_lock);
1860 			return err;
1861 		}
1862 		spin_unlock(&ubi->wl_lock);
1863 		up_read(&ubi->fm_eba_sem);
1864 		goto retry;
1865 
1866 	}
1867 	e = wl_get_wle(ubi);
1868 	prot_queue_add(ubi, e);
1869 	spin_unlock(&ubi->wl_lock);
1870 
1871 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1872 				    ubi->peb_size - ubi->vid_hdr_aloffset);
1873 	if (err) {
1874 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1875 		return err;
1876 	}
1877 
1878 	return e->pnum;
1879 }
1880 #else
1881 #include "fastmap-wl.c"
1882 #endif
1883