1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2019, Vaisala Oyj
4 */
5
6 #include <common.h>
7 #include <command.h>
8 #include <dm.h>
9 #include <i2c.h>
10 #include <rtc.h>
11 #include <dm/device_compat.h>
12 #include <linux/bitops.h>
13
14 /*
15 * RTC register addresses
16 */
17 #define RTC_SEC_REG_ADDR 0x00
18 #define RTC_MIN_REG_ADDR 0x01
19 #define RTC_HR_REG_ADDR 0x02
20 #define RTC_DAY_REG_ADDR 0x03
21 #define RTC_DATE_REG_ADDR 0x04
22 #define RTC_MON_REG_ADDR 0x05
23 #define RTC_YR_REG_ADDR 0x06
24 #define RTC_CTL_REG_ADDR 0x0e
25 #define RTC_STAT_REG_ADDR 0x0f
26 #define RTC_TEST_REG_ADDR 0x13
27
28 /*
29 * RTC control register bits
30 */
31 #define RTC_CTL_BIT_A1IE BIT(0) /* Alarm 1 interrupt enable */
32 #define RTC_CTL_BIT_A2IE BIT(1) /* Alarm 2 interrupt enable */
33 #define RTC_CTL_BIT_INTCN BIT(2) /* Interrupt control */
34 #define RTC_CTL_BIT_DOSC BIT(7) /* Disable Oscillator */
35
36 /*
37 * RTC status register bits
38 */
39 #define RTC_STAT_BIT_A1F BIT(0) /* Alarm 1 flag */
40 #define RTC_STAT_BIT_A2F BIT(1) /* Alarm 2 flag */
41 #define RTC_STAT_BIT_EN32KHZ BIT(3) /* Enable 32KHz Output */
42 #define RTC_STAT_BIT_BB32KHZ BIT(6) /* Battery backed 32KHz Output */
43 #define RTC_STAT_BIT_OSF BIT(7) /* Oscillator stop flag */
44
45 /*
46 * RTC test register bits
47 */
48 #define RTC_TEST_BIT_SWRST BIT(7) /* Software reset */
49
50 #define RTC_DATE_TIME_REG_SIZE 7
51 #define RTC_SRAM_START 0x14
52 #define RTC_SRAM_END 0xFF
53 #define RTC_SRAM_SIZE 236
54
55 struct ds3232_priv_data {
56 u8 max_register;
57 u8 sram_start;
58 int sram_size;
59 };
60
ds3232_rtc_read8(struct udevice * dev,unsigned int reg)61 static int ds3232_rtc_read8(struct udevice *dev, unsigned int reg)
62 {
63 int ret;
64 u8 buf;
65 struct ds3232_priv_data *priv_data;
66
67 priv_data = dev_get_priv(dev);
68 if (!priv_data)
69 return -EINVAL;
70
71 if (reg > priv_data->max_register)
72 return -EINVAL;
73
74 ret = dm_i2c_read(dev, reg, &buf, sizeof(buf));
75 if (ret < 0)
76 return ret;
77
78 return buf;
79 }
80
ds3232_rtc_write8(struct udevice * dev,unsigned int reg,int val)81 static int ds3232_rtc_write8(struct udevice *dev, unsigned int reg, int val)
82 {
83 u8 buf = (u8)val;
84 struct ds3232_priv_data *priv_data;
85
86 priv_data = dev_get_priv(dev);
87 if (!priv_data)
88 return -EINVAL;
89
90 if (reg > priv_data->max_register)
91 return -EINVAL;
92
93 return dm_i2c_write(dev, reg, &buf, sizeof(buf));
94 }
95
reset_sram(struct udevice * dev)96 static int reset_sram(struct udevice *dev)
97 {
98 int ret, sram_end, reg;
99 struct ds3232_priv_data *priv_data;
100
101 priv_data = dev_get_priv(dev);
102 if (!priv_data)
103 return -EINVAL;
104
105 sram_end = priv_data->sram_start + priv_data->sram_size;
106
107 for (reg = priv_data->sram_start; reg < sram_end; reg++) {
108 ret = ds3232_rtc_write8(dev, reg, 0x00);
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114 }
115
verify_osc(struct udevice * dev)116 static int verify_osc(struct udevice *dev)
117 {
118 int ret, rtc_status;
119
120 ret = ds3232_rtc_read8(dev, RTC_STAT_REG_ADDR);
121 if (ret < 0)
122 return ret;
123
124 rtc_status = ret;
125
126 if (rtc_status & RTC_STAT_BIT_OSF) {
127 dev_warn(dev,
128 "oscillator discontinuity flagged, time unreliable\n");
129 /*
130 * In case OSC was off we cannot trust the SRAM data anymore.
131 * Reset it to 0x00.
132 */
133 ret = reset_sram(dev);
134 if (ret < 0)
135 return ret;
136 }
137
138 return 0;
139 }
140
ds3232_rtc_set(struct udevice * dev,const struct rtc_time * tm)141 static int ds3232_rtc_set(struct udevice *dev, const struct rtc_time *tm)
142 {
143 u8 buf[RTC_DATE_TIME_REG_SIZE];
144 u8 is_century;
145
146 if (tm->tm_year < 1900 || tm->tm_year > 2099)
147 dev_warn(dev, "WARNING: year should be between 1900 and 2099!\n");
148
149 is_century = (tm->tm_year >= 2000) ? 0x80 : 0;
150
151 buf[RTC_SEC_REG_ADDR] = bin2bcd(tm->tm_sec);
152 buf[RTC_MIN_REG_ADDR] = bin2bcd(tm->tm_min);
153 buf[RTC_HR_REG_ADDR] = bin2bcd(tm->tm_hour);
154 buf[RTC_DAY_REG_ADDR] = bin2bcd(tm->tm_wday + 1);
155 buf[RTC_DATE_REG_ADDR] = bin2bcd(tm->tm_mday);
156 buf[RTC_MON_REG_ADDR] = bin2bcd(tm->tm_mon) | is_century;
157 buf[RTC_YR_REG_ADDR] = bin2bcd(tm->tm_year % 100);
158
159 return dm_i2c_write(dev, 0, buf, sizeof(buf));
160 }
161
ds3232_rtc_get(struct udevice * dev,struct rtc_time * tm)162 static int ds3232_rtc_get(struct udevice *dev, struct rtc_time *tm)
163 {
164 int ret;
165 u8 buf[RTC_DATE_TIME_REG_SIZE];
166 u8 is_twelve_hr;
167 u8 is_pm;
168 u8 is_century;
169
170 ret = verify_osc(dev);
171 if (ret < 0)
172 return ret;
173
174 ret = dm_i2c_read(dev, 0, buf, sizeof(buf));
175 if (ret < 0)
176 return ret;
177
178 /* Extract additional information for AM/PM and century */
179 is_twelve_hr = buf[RTC_HR_REG_ADDR] & 0x40;
180 is_pm = buf[RTC_HR_REG_ADDR] & 0x20;
181 is_century = buf[RTC_MON_REG_ADDR] & 0x80;
182
183 tm->tm_sec = bcd2bin(buf[RTC_SEC_REG_ADDR] & 0x7F);
184 tm->tm_min = bcd2bin(buf[RTC_MIN_REG_ADDR] & 0x7F);
185
186 if (is_twelve_hr)
187 tm->tm_hour = bcd2bin(buf[RTC_HR_REG_ADDR] & 0x1F)
188 + (is_pm ? 12 : 0);
189 else
190 tm->tm_hour = bcd2bin(buf[RTC_HR_REG_ADDR]);
191
192 tm->tm_wday = bcd2bin((buf[RTC_DAY_REG_ADDR] & 0x07) - 1);
193 tm->tm_mday = bcd2bin(buf[RTC_DATE_REG_ADDR] & 0x3F);
194 tm->tm_mon = bcd2bin((buf[RTC_MON_REG_ADDR] & 0x7F));
195 tm->tm_year = bcd2bin(buf[RTC_YR_REG_ADDR])
196 + (is_century ? 2000 : 1900);
197 tm->tm_yday = 0;
198 tm->tm_isdst = 0;
199
200 return 0;
201 }
202
ds3232_rtc_reset(struct udevice * dev)203 static int ds3232_rtc_reset(struct udevice *dev)
204 {
205 int ret;
206
207 ret = reset_sram(dev);
208 if (ret < 0)
209 return ret;
210
211 /*
212 * From datasheet
213 * (https://datasheets.maximintegrated.com/en/ds/DS3232M.pdf):
214 *
215 * The device reset occurs during the normal acknowledge time slot
216 * following the receipt of the data byte carrying that
217 * SWRST instruction a NACK occurs due to the resetting action.
218 *
219 * Therefore we don't verify the result of I2C write operation since it
220 * will fail due the NACK.
221 */
222 ds3232_rtc_write8(dev, RTC_TEST_REG_ADDR, RTC_TEST_BIT_SWRST);
223
224 return 0;
225 }
226
ds3232_probe(struct udevice * dev)227 static int ds3232_probe(struct udevice *dev)
228 {
229 int rtc_status;
230 int ret;
231 struct ds3232_priv_data *priv_data;
232
233 priv_data = dev_get_priv(dev);
234 if (!priv_data)
235 return -EINVAL;
236
237 priv_data->sram_start = RTC_SRAM_START;
238 priv_data->max_register = RTC_SRAM_END;
239 priv_data->sram_size = RTC_SRAM_SIZE;
240
241 ret = ds3232_rtc_read8(dev, RTC_STAT_REG_ADDR);
242 if (ret < 0)
243 return ret;
244
245 rtc_status = ret;
246
247 ret = verify_osc(dev);
248 if (ret < 0)
249 return ret;
250
251 rtc_status &= ~(RTC_STAT_BIT_OSF | RTC_STAT_BIT_A1F | RTC_STAT_BIT_A2F);
252
253 return ds3232_rtc_write8(dev, RTC_STAT_REG_ADDR, rtc_status);
254 }
255
256 static const struct rtc_ops ds3232_rtc_ops = {
257 .get = ds3232_rtc_get,
258 .set = ds3232_rtc_set,
259 .reset = ds3232_rtc_reset,
260 .read8 = ds3232_rtc_read8,
261 .write8 = ds3232_rtc_write8
262 };
263
264 static const struct udevice_id ds3232_rtc_ids[] = {
265 { .compatible = "dallas,ds3232" },
266 { }
267 };
268
269 U_BOOT_DRIVER(rtc_ds3232) = {
270 .name = "rtc-ds3232",
271 .id = UCLASS_RTC,
272 .probe = ds3232_probe,
273 .of_match = ds3232_rtc_ids,
274 .ops = &ds3232_rtc_ops,
275 .priv_auto = sizeof(struct ds3232_priv_data),
276 };
277