1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application memory management
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <efi_loader.h>
10 #include <init.h>
11 #include <malloc.h>
12 #include <mapmem.h>
13 #include <watchdog.h>
14 #include <asm/cache.h>
15 #include <asm/global_data.h>
16 #include <linux/list_sort.h>
17 #include <linux/sizes.h>
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 /* Magic number identifying memory allocated from pool */
22 #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
23 
24 efi_uintn_t efi_memory_map_key;
25 
26 struct efi_mem_list {
27 	struct list_head link;
28 	struct efi_mem_desc desc;
29 };
30 
31 #define EFI_CARVE_NO_OVERLAP		-1
32 #define EFI_CARVE_LOOP_AGAIN		-2
33 #define EFI_CARVE_OVERLAPS_NONRAM	-3
34 
35 /* This list contains all memory map items */
36 LIST_HEAD(efi_mem);
37 
38 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
39 void *efi_bounce_buffer;
40 #endif
41 
42 /**
43  * struct efi_pool_allocation - memory block allocated from pool
44  *
45  * @num_pages:	number of pages allocated
46  * @checksum:	checksum
47  * @data:	allocated pool memory
48  *
49  * U-Boot services each UEFI AllocatePool() request as a separate
50  * (multiple) page allocation. We have to track the number of pages
51  * to be able to free the correct amount later.
52  *
53  * The checksum calculated in function checksum() is used in FreePool() to avoid
54  * freeing memory not allocated by AllocatePool() and duplicate freeing.
55  *
56  * EFI requires 8 byte alignment for pool allocations, so we can
57  * prepend each allocation with these header fields.
58  */
59 struct efi_pool_allocation {
60 	u64 num_pages;
61 	u64 checksum;
62 	char data[] __aligned(ARCH_DMA_MINALIGN);
63 };
64 
65 /**
66  * checksum() - calculate checksum for memory allocated from pool
67  *
68  * @alloc:	allocation header
69  * Return:	checksum, always non-zero
70  */
checksum(struct efi_pool_allocation * alloc)71 static u64 checksum(struct efi_pool_allocation *alloc)
72 {
73 	u64 addr = (uintptr_t)alloc;
74 	u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
75 		  EFI_ALLOC_POOL_MAGIC;
76 	if (!ret)
77 		++ret;
78 	return ret;
79 }
80 
81 /*
82  * Sorts the memory list from highest address to lowest address
83  *
84  * When allocating memory we should always start from the highest
85  * address chunk, so sort the memory list such that the first list
86  * iterator gets the highest address and goes lower from there.
87  */
efi_mem_cmp(void * priv,struct list_head * a,struct list_head * b)88 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
89 {
90 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
91 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
92 
93 	if (mema->desc.physical_start == memb->desc.physical_start)
94 		return 0;
95 	else if (mema->desc.physical_start < memb->desc.physical_start)
96 		return 1;
97 	else
98 		return -1;
99 }
100 
desc_get_end(struct efi_mem_desc * desc)101 static uint64_t desc_get_end(struct efi_mem_desc *desc)
102 {
103 	return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
104 }
105 
efi_mem_sort(void)106 static void efi_mem_sort(void)
107 {
108 	struct list_head *lhandle;
109 	struct efi_mem_list *prevmem = NULL;
110 	bool merge_again = true;
111 
112 	list_sort(NULL, &efi_mem, efi_mem_cmp);
113 
114 	/* Now merge entries that can be merged */
115 	while (merge_again) {
116 		merge_again = false;
117 		list_for_each(lhandle, &efi_mem) {
118 			struct efi_mem_list *lmem;
119 			struct efi_mem_desc *prev = &prevmem->desc;
120 			struct efi_mem_desc *cur;
121 			uint64_t pages;
122 
123 			lmem = list_entry(lhandle, struct efi_mem_list, link);
124 			if (!prevmem) {
125 				prevmem = lmem;
126 				continue;
127 			}
128 
129 			cur = &lmem->desc;
130 
131 			if ((desc_get_end(cur) == prev->physical_start) &&
132 			    (prev->type == cur->type) &&
133 			    (prev->attribute == cur->attribute)) {
134 				/* There is an existing map before, reuse it */
135 				pages = cur->num_pages;
136 				prev->num_pages += pages;
137 				prev->physical_start -= pages << EFI_PAGE_SHIFT;
138 				prev->virtual_start -= pages << EFI_PAGE_SHIFT;
139 				list_del(&lmem->link);
140 				free(lmem);
141 
142 				merge_again = true;
143 				break;
144 			}
145 
146 			prevmem = lmem;
147 		}
148 	}
149 }
150 
151 /** efi_mem_carve_out - unmap memory region
152  *
153  * @map:		memory map
154  * @carve_desc:		memory region to unmap
155  * @overlap_only_ram:	the carved out region may only overlap RAM
156  * Return Value:	the number of overlapping pages which have been
157  *			removed from the map,
158  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
159  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
160  *			and the map contains anything but free ram
161  *			(only when overlap_only_ram is true),
162  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
163  *			traversed again, as it has been altered.
164  *
165  * Unmaps all memory occupied by the carve_desc region from the list entry
166  * pointed to by map.
167  *
168  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
169  * to re-add the already carved out pages to the mapping.
170  */
efi_mem_carve_out(struct efi_mem_list * map,struct efi_mem_desc * carve_desc,bool overlap_only_ram)171 static s64 efi_mem_carve_out(struct efi_mem_list *map,
172 			     struct efi_mem_desc *carve_desc,
173 			     bool overlap_only_ram)
174 {
175 	struct efi_mem_list *newmap;
176 	struct efi_mem_desc *map_desc = &map->desc;
177 	uint64_t map_start = map_desc->physical_start;
178 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
179 	uint64_t carve_start = carve_desc->physical_start;
180 	uint64_t carve_end = carve_start +
181 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
182 
183 	/* check whether we're overlapping */
184 	if ((carve_end <= map_start) || (carve_start >= map_end))
185 		return EFI_CARVE_NO_OVERLAP;
186 
187 	/* We're overlapping with non-RAM, warn the caller if desired */
188 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
189 		return EFI_CARVE_OVERLAPS_NONRAM;
190 
191 	/* Sanitize carve_start and carve_end to lie within our bounds */
192 	carve_start = max(carve_start, map_start);
193 	carve_end = min(carve_end, map_end);
194 
195 	/* Carving at the beginning of our map? Just move it! */
196 	if (carve_start == map_start) {
197 		if (map_end == carve_end) {
198 			/* Full overlap, just remove map */
199 			list_del(&map->link);
200 			free(map);
201 		} else {
202 			map->desc.physical_start = carve_end;
203 			map->desc.virtual_start = carve_end;
204 			map->desc.num_pages = (map_end - carve_end)
205 					      >> EFI_PAGE_SHIFT;
206 		}
207 
208 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
209 	}
210 
211 	/*
212 	 * Overlapping maps, just split the list map at carve_start,
213 	 * it will get moved or removed in the next iteration.
214 	 *
215 	 * [ map_desc |__carve_start__| newmap ]
216 	 */
217 
218 	/* Create a new map from [ carve_start ... map_end ] */
219 	newmap = calloc(1, sizeof(*newmap));
220 	newmap->desc = map->desc;
221 	newmap->desc.physical_start = carve_start;
222 	newmap->desc.virtual_start = carve_start;
223 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
224 	/* Insert before current entry (descending address order) */
225 	list_add_tail(&newmap->link, &map->link);
226 
227 	/* Shrink the map to [ map_start ... carve_start ] */
228 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
229 
230 	return EFI_CARVE_LOOP_AGAIN;
231 }
232 
233 /**
234  * efi_add_memory_map_pg() - add pages to the memory map
235  *
236  * @start:		start address, must be a multiple of EFI_PAGE_SIZE
237  * @pages:		number of pages to add
238  * @memory_type:	type of memory added
239  * @overlap_only_ram:	region may only overlap RAM
240  * Return:		status code
241  */
efi_add_memory_map_pg(u64 start,u64 pages,int memory_type,bool overlap_only_ram)242 static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
243 					  int memory_type,
244 					  bool overlap_only_ram)
245 {
246 	struct list_head *lhandle;
247 	struct efi_mem_list *newlist;
248 	bool carve_again;
249 	uint64_t carved_pages = 0;
250 	struct efi_event *evt;
251 
252 	EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
253 		  start, pages, memory_type, overlap_only_ram ? "yes" : "no");
254 
255 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
256 		return EFI_INVALID_PARAMETER;
257 
258 	if (!pages)
259 		return EFI_SUCCESS;
260 
261 	++efi_memory_map_key;
262 	newlist = calloc(1, sizeof(*newlist));
263 	newlist->desc.type = memory_type;
264 	newlist->desc.physical_start = start;
265 	newlist->desc.virtual_start = start;
266 	newlist->desc.num_pages = pages;
267 
268 	switch (memory_type) {
269 	case EFI_RUNTIME_SERVICES_CODE:
270 	case EFI_RUNTIME_SERVICES_DATA:
271 		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
272 		break;
273 	case EFI_MMAP_IO:
274 		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
275 		break;
276 	default:
277 		newlist->desc.attribute = EFI_MEMORY_WB;
278 		break;
279 	}
280 
281 	/* Add our new map */
282 	do {
283 		carve_again = false;
284 		list_for_each(lhandle, &efi_mem) {
285 			struct efi_mem_list *lmem;
286 			s64 r;
287 
288 			lmem = list_entry(lhandle, struct efi_mem_list, link);
289 			r = efi_mem_carve_out(lmem, &newlist->desc,
290 					      overlap_only_ram);
291 			switch (r) {
292 			case EFI_CARVE_OVERLAPS_NONRAM:
293 				/*
294 				 * The user requested to only have RAM overlaps,
295 				 * but we hit a non-RAM region. Error out.
296 				 */
297 				return EFI_NO_MAPPING;
298 			case EFI_CARVE_NO_OVERLAP:
299 				/* Just ignore this list entry */
300 				break;
301 			case EFI_CARVE_LOOP_AGAIN:
302 				/*
303 				 * We split an entry, but need to loop through
304 				 * the list again to actually carve it.
305 				 */
306 				carve_again = true;
307 				break;
308 			default:
309 				/* We carved a number of pages */
310 				carved_pages += r;
311 				carve_again = true;
312 				break;
313 			}
314 
315 			if (carve_again) {
316 				/* The list changed, we need to start over */
317 				break;
318 			}
319 		}
320 	} while (carve_again);
321 
322 	if (overlap_only_ram && (carved_pages != pages)) {
323 		/*
324 		 * The payload wanted to have RAM overlaps, but we overlapped
325 		 * with an unallocated region. Error out.
326 		 */
327 		return EFI_NO_MAPPING;
328 	}
329 
330 	/* Add our new map */
331         list_add_tail(&newlist->link, &efi_mem);
332 
333 	/* And make sure memory is listed in descending order */
334 	efi_mem_sort();
335 
336 	/* Notify that the memory map was changed */
337 	list_for_each_entry(evt, &efi_events, link) {
338 		if (evt->group &&
339 		    !guidcmp(evt->group,
340 			     &efi_guid_event_group_memory_map_change)) {
341 			efi_signal_event(evt);
342 			break;
343 		}
344 	}
345 
346 	return EFI_SUCCESS;
347 }
348 
349 /**
350  * efi_add_memory_map() - add memory area to the memory map
351  *
352  * @start:		start address of the memory area
353  * @size:		length in bytes of the memory area
354  * @memory_type:	type of memory added
355  *
356  * Return:		status code
357  *
358  * This function automatically aligns the start and size of the memory area
359  * to EFI_PAGE_SIZE.
360  */
efi_add_memory_map(u64 start,u64 size,int memory_type)361 efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
362 {
363 	u64 pages;
364 
365 	pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
366 	start &= ~EFI_PAGE_MASK;
367 
368 	return efi_add_memory_map_pg(start, pages, memory_type, false);
369 }
370 
371 /**
372  * efi_check_allocated() - validate address to be freed
373  *
374  * Check that the address is within allocated memory:
375  *
376  * * The address must be in a range of the memory map.
377  * * The address may not point to EFI_CONVENTIONAL_MEMORY.
378  *
379  * Page alignment is not checked as this is not a requirement of
380  * efi_free_pool().
381  *
382  * @addr:		address of page to be freed
383  * @must_be_allocated:	return success if the page is allocated
384  * Return:		status code
385  */
efi_check_allocated(u64 addr,bool must_be_allocated)386 static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
387 {
388 	struct efi_mem_list *item;
389 
390 	list_for_each_entry(item, &efi_mem, link) {
391 		u64 start = item->desc.physical_start;
392 		u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
393 
394 		if (addr >= start && addr < end) {
395 			if (must_be_allocated ^
396 			    (item->desc.type == EFI_CONVENTIONAL_MEMORY))
397 				return EFI_SUCCESS;
398 			else
399 				return EFI_NOT_FOUND;
400 		}
401 	}
402 
403 	return EFI_NOT_FOUND;
404 }
405 
efi_find_free_memory(uint64_t len,uint64_t max_addr)406 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
407 {
408 	struct list_head *lhandle;
409 
410 	/*
411 	 * Prealign input max address, so we simplify our matching
412 	 * logic below and can just reuse it as return pointer.
413 	 */
414 	max_addr &= ~EFI_PAGE_MASK;
415 
416 	list_for_each(lhandle, &efi_mem) {
417 		struct efi_mem_list *lmem = list_entry(lhandle,
418 			struct efi_mem_list, link);
419 		struct efi_mem_desc *desc = &lmem->desc;
420 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
421 		uint64_t desc_end = desc->physical_start + desc_len;
422 		uint64_t curmax = min(max_addr, desc_end);
423 		uint64_t ret = curmax - len;
424 
425 		/* We only take memory from free RAM */
426 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
427 			continue;
428 
429 		/* Out of bounds for max_addr */
430 		if ((ret + len) > max_addr)
431 			continue;
432 
433 		/* Out of bounds for upper map limit */
434 		if ((ret + len) > desc_end)
435 			continue;
436 
437 		/* Out of bounds for lower map limit */
438 		if (ret < desc->physical_start)
439 			continue;
440 
441 		/* Return the highest address in this map within bounds */
442 		return ret;
443 	}
444 
445 	return 0;
446 }
447 
448 /*
449  * Allocate memory pages.
450  *
451  * @type		type of allocation to be performed
452  * @memory_type		usage type of the allocated memory
453  * @pages		number of pages to be allocated
454  * @memory		allocated memory
455  * @return		status code
456  */
efi_allocate_pages(int type,int memory_type,efi_uintn_t pages,uint64_t * memory)457 efi_status_t efi_allocate_pages(int type, int memory_type,
458 				efi_uintn_t pages, uint64_t *memory)
459 {
460 	u64 len = pages << EFI_PAGE_SHIFT;
461 	efi_status_t ret;
462 	uint64_t addr;
463 
464 	/* Check import parameters */
465 	if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
466 	    memory_type <= 0x6FFFFFFF)
467 		return EFI_INVALID_PARAMETER;
468 	if (!memory)
469 		return EFI_INVALID_PARAMETER;
470 
471 	switch (type) {
472 	case EFI_ALLOCATE_ANY_PAGES:
473 		/* Any page */
474 		addr = efi_find_free_memory(len, -1ULL);
475 		if (!addr)
476 			return EFI_OUT_OF_RESOURCES;
477 		break;
478 	case EFI_ALLOCATE_MAX_ADDRESS:
479 		/* Max address */
480 		addr = efi_find_free_memory(len, *memory);
481 		if (!addr)
482 			return EFI_OUT_OF_RESOURCES;
483 		break;
484 	case EFI_ALLOCATE_ADDRESS:
485 		/* Exact address, reserve it. The addr is already in *memory. */
486 		ret = efi_check_allocated(*memory, false);
487 		if (ret != EFI_SUCCESS)
488 			return EFI_NOT_FOUND;
489 		addr = *memory;
490 		break;
491 	default:
492 		/* UEFI doesn't specify other allocation types */
493 		return EFI_INVALID_PARAMETER;
494 	}
495 
496 	/* Reserve that map in our memory maps */
497 	ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
498 	if (ret != EFI_SUCCESS)
499 		/* Map would overlap, bail out */
500 		return  EFI_OUT_OF_RESOURCES;
501 
502 	*memory = addr;
503 
504 	return EFI_SUCCESS;
505 }
506 
efi_alloc(uint64_t len,int memory_type)507 void *efi_alloc(uint64_t len, int memory_type)
508 {
509 	uint64_t ret = 0;
510 	uint64_t pages = efi_size_in_pages(len);
511 	efi_status_t r;
512 
513 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
514 			       &ret);
515 	if (r == EFI_SUCCESS)
516 		return (void*)(uintptr_t)ret;
517 
518 	return NULL;
519 }
520 
521 /**
522  * efi_free_pages() - free memory pages
523  *
524  * @memory:	start of the memory area to be freed
525  * @pages:	number of pages to be freed
526  * Return:	status code
527  */
efi_free_pages(uint64_t memory,efi_uintn_t pages)528 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
529 {
530 	efi_status_t ret;
531 
532 	ret = efi_check_allocated(memory, true);
533 	if (ret != EFI_SUCCESS)
534 		return ret;
535 
536 	/* Sanity check */
537 	if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
538 		printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
539 		       memory, pages);
540 		return EFI_INVALID_PARAMETER;
541 	}
542 
543 	ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
544 				    false);
545 	if (ret != EFI_SUCCESS)
546 		return EFI_NOT_FOUND;
547 
548 	return ret;
549 }
550 
551 /**
552  * efi_allocate_pool - allocate memory from pool
553  *
554  * @pool_type:	type of the pool from which memory is to be allocated
555  * @size:	number of bytes to be allocated
556  * @buffer:	allocated memory
557  * Return:	status code
558  */
efi_allocate_pool(int pool_type,efi_uintn_t size,void ** buffer)559 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
560 {
561 	efi_status_t r;
562 	u64 addr;
563 	struct efi_pool_allocation *alloc;
564 	u64 num_pages = efi_size_in_pages(size +
565 					  sizeof(struct efi_pool_allocation));
566 
567 	if (!buffer)
568 		return EFI_INVALID_PARAMETER;
569 
570 	if (size == 0) {
571 		*buffer = NULL;
572 		return EFI_SUCCESS;
573 	}
574 
575 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
576 			       &addr);
577 	if (r == EFI_SUCCESS) {
578 		alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
579 		alloc->num_pages = num_pages;
580 		alloc->checksum = checksum(alloc);
581 		*buffer = alloc->data;
582 	}
583 
584 	return r;
585 }
586 
587 /**
588  * efi_free_pool() - free memory from pool
589  *
590  * @buffer:	start of memory to be freed
591  * Return:	status code
592  */
efi_free_pool(void * buffer)593 efi_status_t efi_free_pool(void *buffer)
594 {
595 	efi_status_t ret;
596 	struct efi_pool_allocation *alloc;
597 
598 	if (!buffer)
599 		return EFI_INVALID_PARAMETER;
600 
601 	ret = efi_check_allocated((uintptr_t)buffer, true);
602 	if (ret != EFI_SUCCESS)
603 		return ret;
604 
605 	alloc = container_of(buffer, struct efi_pool_allocation, data);
606 
607 	/* Check that this memory was allocated by efi_allocate_pool() */
608 	if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
609 	    alloc->checksum != checksum(alloc)) {
610 		printf("%s: illegal free 0x%p\n", __func__, buffer);
611 		return EFI_INVALID_PARAMETER;
612 	}
613 	/* Avoid double free */
614 	alloc->checksum = 0;
615 
616 	ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
617 
618 	return ret;
619 }
620 
621 /*
622  * Get map describing memory usage.
623  *
624  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
625  *			on exit the size of the copied memory map
626  * @memory_map		buffer to which the memory map is written
627  * @map_key		key for the memory map
628  * @descriptor_size	size of an individual memory descriptor
629  * @descriptor_version	version number of the memory descriptor structure
630  * @return		status code
631  */
efi_get_memory_map(efi_uintn_t * memory_map_size,struct efi_mem_desc * memory_map,efi_uintn_t * map_key,efi_uintn_t * descriptor_size,uint32_t * descriptor_version)632 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
633 				struct efi_mem_desc *memory_map,
634 				efi_uintn_t *map_key,
635 				efi_uintn_t *descriptor_size,
636 				uint32_t *descriptor_version)
637 {
638 	efi_uintn_t map_size = 0;
639 	int map_entries = 0;
640 	struct list_head *lhandle;
641 	efi_uintn_t provided_map_size;
642 
643 	if (!memory_map_size)
644 		return EFI_INVALID_PARAMETER;
645 
646 	provided_map_size = *memory_map_size;
647 
648 	list_for_each(lhandle, &efi_mem)
649 		map_entries++;
650 
651 	map_size = map_entries * sizeof(struct efi_mem_desc);
652 
653 	*memory_map_size = map_size;
654 
655 	if (descriptor_size)
656 		*descriptor_size = sizeof(struct efi_mem_desc);
657 
658 	if (descriptor_version)
659 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
660 
661 	if (provided_map_size < map_size)
662 		return EFI_BUFFER_TOO_SMALL;
663 
664 	if (!memory_map)
665 		return EFI_INVALID_PARAMETER;
666 
667 	/* Copy list into array */
668 	/* Return the list in ascending order */
669 	memory_map = &memory_map[map_entries - 1];
670 	list_for_each(lhandle, &efi_mem) {
671 		struct efi_mem_list *lmem;
672 
673 		lmem = list_entry(lhandle, struct efi_mem_list, link);
674 		*memory_map = lmem->desc;
675 		memory_map--;
676 	}
677 
678 	if (map_key)
679 		*map_key = efi_memory_map_key;
680 
681 	return EFI_SUCCESS;
682 }
683 
684 /**
685  * efi_add_conventional_memory_map() - add a RAM memory area to the map
686  *
687  * @ram_start:		start address of a RAM memory area
688  * @ram_end:		end address of a RAM memory area
689  * @ram_top:		max address to be used as conventional memory
690  * Return:		status code
691  */
efi_add_conventional_memory_map(u64 ram_start,u64 ram_end,u64 ram_top)692 efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
693 					     u64 ram_top)
694 {
695 	u64 pages;
696 
697 	/* Remove partial pages */
698 	ram_end &= ~EFI_PAGE_MASK;
699 	ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
700 
701 	if (ram_end <= ram_start) {
702 		/* Invalid mapping */
703 		return EFI_INVALID_PARAMETER;
704 	}
705 
706 	pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
707 
708 	efi_add_memory_map_pg(ram_start, pages,
709 			      EFI_CONVENTIONAL_MEMORY, false);
710 
711 	/*
712 	 * Boards may indicate to the U-Boot memory core that they
713 	 * can not support memory above ram_top. Let's honor this
714 	 * in the efi_loader subsystem too by declaring any memory
715 	 * above ram_top as "already occupied by firmware".
716 	 */
717 	if (ram_top < ram_start) {
718 		/* ram_top is before this region, reserve all */
719 		efi_add_memory_map_pg(ram_start, pages,
720 				      EFI_BOOT_SERVICES_DATA, true);
721 	} else if ((ram_top >= ram_start) && (ram_top < ram_end)) {
722 		/* ram_top is inside this region, reserve parts */
723 		pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
724 
725 		efi_add_memory_map_pg(ram_top, pages,
726 				      EFI_BOOT_SERVICES_DATA, true);
727 	}
728 
729 	return EFI_SUCCESS;
730 }
731 
efi_add_known_memory(void)732 __weak void efi_add_known_memory(void)
733 {
734 	u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK;
735 	int i;
736 
737 	/*
738 	 * ram_top is just outside mapped memory. So use an offset of one for
739 	 * mapping the sandbox address.
740 	 */
741 	ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
742 
743 	/* Fix for 32bit targets with ram_top at 4G */
744 	if (!ram_top)
745 		ram_top = 0x100000000ULL;
746 
747 	/* Add RAM */
748 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
749 		u64 ram_end, ram_start;
750 
751 		ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
752 		ram_end = ram_start + gd->bd->bi_dram[i].size;
753 
754 		efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
755 	}
756 }
757 
758 /* Add memory regions for U-Boot's memory and for the runtime services code */
add_u_boot_and_runtime(void)759 static void add_u_boot_and_runtime(void)
760 {
761 	unsigned long runtime_start, runtime_end, runtime_pages;
762 	unsigned long runtime_mask = EFI_PAGE_MASK;
763 	unsigned long uboot_start, uboot_pages;
764 	unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
765 
766 	/* Add U-Boot */
767 	uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
768 		       uboot_stack_size) & ~EFI_PAGE_MASK;
769 	uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
770 		       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
771 	efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_LOADER_DATA,
772 			      false);
773 
774 #if defined(__aarch64__)
775 	/*
776 	 * Runtime Services must be 64KiB aligned according to the
777 	 * "AArch64 Platforms" section in the UEFI spec (2.7+).
778 	 */
779 
780 	runtime_mask = SZ_64K - 1;
781 #endif
782 
783 	/*
784 	 * Add Runtime Services. We mark surrounding boottime code as runtime as
785 	 * well to fulfill the runtime alignment constraints but avoid padding.
786 	 */
787 	runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
788 	runtime_end = (ulong)&__efi_runtime_stop;
789 	runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
790 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
791 	efi_add_memory_map_pg(runtime_start, runtime_pages,
792 			      EFI_RUNTIME_SERVICES_CODE, false);
793 }
794 
efi_memory_init(void)795 int efi_memory_init(void)
796 {
797 	efi_add_known_memory();
798 
799 	add_u_boot_and_runtime();
800 
801 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
802 	/* Request a 32bit 64MB bounce buffer region */
803 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
804 
805 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
806 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
807 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
808 		return -1;
809 
810 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
811 #endif
812 
813 	return 0;
814 }
815