1 //! Data flow graph tracking Instructions, Values, and blocks.
2 
3 use crate::entity::{self, PrimaryMap, SecondaryMap};
4 use crate::ir;
5 use crate::ir::builder::ReplaceBuilder;
6 use crate::ir::extfunc::ExtFuncData;
7 use crate::ir::instructions::{BranchInfo, CallInfo, InstructionData};
8 use crate::ir::{types, ConstantData, ConstantPool, Immediate};
9 use crate::ir::{
10     Block, FuncRef, Inst, SigRef, Signature, Type, Value, ValueLabelAssignments, ValueList,
11     ValueListPool,
12 };
13 use crate::isa::TargetIsa;
14 use crate::packed_option::ReservedValue;
15 use crate::write::write_operands;
16 use crate::HashMap;
17 use alloc::vec::Vec;
18 use core::fmt;
19 use core::iter;
20 use core::mem;
21 use core::ops::{Index, IndexMut};
22 use core::u16;
23 
24 /// A data flow graph defines all instructions and basic blocks in a function as well as
25 /// the data flow dependencies between them. The DFG also tracks values which can be either
26 /// instruction results or block parameters.
27 ///
28 /// The layout of blocks in the function and of instructions in each block is recorded by the
29 /// `Layout` data structure which forms the other half of the function representation.
30 ///
31 #[derive(Clone)]
32 pub struct DataFlowGraph {
33     /// Data about all of the instructions in the function, including opcodes and operands.
34     /// The instructions in this map are not in program order. That is tracked by `Layout`, along
35     /// with the block containing each instruction.
36     insts: PrimaryMap<Inst, InstructionData>,
37 
38     /// List of result values for each instruction.
39     ///
40     /// This map gets resized automatically by `make_inst()` so it is always in sync with the
41     /// primary `insts` map.
42     results: SecondaryMap<Inst, ValueList>,
43 
44     /// basic blocks in the function and their parameters.
45     ///
46     /// This map is not in program order. That is handled by `Layout`, and so is the sequence of
47     /// instructions contained in each block.
48     blocks: PrimaryMap<Block, BlockData>,
49 
50     /// Memory pool of value lists.
51     ///
52     /// The `ValueList` references into this pool appear in many places:
53     ///
54     /// - Instructions in `insts` that don't have room for their entire argument list inline.
55     /// - Instruction result values in `results`.
56     /// - block parameters in `blocks`.
57     pub value_lists: ValueListPool,
58 
59     /// Primary value table with entries for all values.
60     values: PrimaryMap<Value, ValueData>,
61 
62     /// Function signature table. These signatures are referenced by indirect call instructions as
63     /// well as the external function references.
64     pub signatures: PrimaryMap<SigRef, Signature>,
65 
66     /// The pre-legalization signature for each entry in `signatures`, if any.
67     pub old_signatures: SecondaryMap<SigRef, Option<Signature>>,
68 
69     /// External function references. These are functions that can be called directly.
70     pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
71 
72     /// Saves Value labels.
73     pub values_labels: Option<HashMap<Value, ValueLabelAssignments>>,
74 
75     /// Constants used within the function
76     pub constants: ConstantPool,
77 
78     /// Stores large immediates that otherwise will not fit on InstructionData
79     pub immediates: PrimaryMap<Immediate, ConstantData>,
80 }
81 
82 impl DataFlowGraph {
83     /// Create a new empty `DataFlowGraph`.
new() -> Self84     pub fn new() -> Self {
85         Self {
86             insts: PrimaryMap::new(),
87             results: SecondaryMap::new(),
88             blocks: PrimaryMap::new(),
89             value_lists: ValueListPool::new(),
90             values: PrimaryMap::new(),
91             signatures: PrimaryMap::new(),
92             old_signatures: SecondaryMap::new(),
93             ext_funcs: PrimaryMap::new(),
94             values_labels: None,
95             constants: ConstantPool::new(),
96             immediates: PrimaryMap::new(),
97         }
98     }
99 
100     /// Clear everything.
clear(&mut self)101     pub fn clear(&mut self) {
102         self.insts.clear();
103         self.results.clear();
104         self.blocks.clear();
105         self.value_lists.clear();
106         self.values.clear();
107         self.signatures.clear();
108         self.old_signatures.clear();
109         self.ext_funcs.clear();
110         self.values_labels = None;
111         self.constants.clear();
112         self.immediates.clear();
113     }
114 
115     /// Get the total number of instructions created in this function, whether they are currently
116     /// inserted in the layout or not.
117     ///
118     /// This is intended for use with `SecondaryMap::with_capacity`.
num_insts(&self) -> usize119     pub fn num_insts(&self) -> usize {
120         self.insts.len()
121     }
122 
123     /// Returns `true` if the given instruction reference is valid.
inst_is_valid(&self, inst: Inst) -> bool124     pub fn inst_is_valid(&self, inst: Inst) -> bool {
125         self.insts.is_valid(inst)
126     }
127 
128     /// Get the total number of basic blocks created in this function, whether they are
129     /// currently inserted in the layout or not.
130     ///
131     /// This is intended for use with `SecondaryMap::with_capacity`.
num_blocks(&self) -> usize132     pub fn num_blocks(&self) -> usize {
133         self.blocks.len()
134     }
135 
136     /// Returns `true` if the given block reference is valid.
block_is_valid(&self, block: Block) -> bool137     pub fn block_is_valid(&self, block: Block) -> bool {
138         self.blocks.is_valid(block)
139     }
140 
141     /// Get the total number of values.
num_values(&self) -> usize142     pub fn num_values(&self) -> usize {
143         self.values.len()
144     }
145 
146     /// Starts collection of debug information.
collect_debug_info(&mut self)147     pub fn collect_debug_info(&mut self) {
148         if self.values_labels.is_none() {
149             self.values_labels = Some(HashMap::new());
150         }
151     }
152 }
153 
154 /// Resolve value aliases.
155 ///
156 /// Find the original SSA value that `value` aliases, or None if an
157 /// alias cycle is detected.
maybe_resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Option<Value>158 fn maybe_resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Option<Value> {
159     let mut v = value;
160 
161     // Note that values may be empty here.
162     for _ in 0..=values.len() {
163         if let ValueData::Alias { original, .. } = values[v] {
164             v = original;
165         } else {
166             return Some(v);
167         }
168     }
169 
170     None
171 }
172 
173 /// Resolve value aliases.
174 ///
175 /// Find the original SSA value that `value` aliases.
resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Value176 fn resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Value {
177     if let Some(v) = maybe_resolve_aliases(values, value) {
178         v
179     } else {
180         panic!("Value alias loop detected for {}", value);
181     }
182 }
183 
184 /// Iterator over all Values in a DFG
185 pub struct Values<'a> {
186     inner: entity::Iter<'a, Value, ValueData>,
187 }
188 
189 /// Check for non-values
valid_valuedata(data: &ValueData) -> bool190 fn valid_valuedata(data: &ValueData) -> bool {
191     if let ValueData::Alias {
192         ty: types::INVALID,
193         original,
194     } = *data
195     {
196         if original == Value::reserved_value() {
197             return false;
198         }
199     }
200     true
201 }
202 
203 impl<'a> Iterator for Values<'a> {
204     type Item = Value;
205 
next(&mut self) -> Option<Self::Item>206     fn next(&mut self) -> Option<Self::Item> {
207         self.inner
208             .by_ref()
209             .find(|kv| valid_valuedata(kv.1))
210             .map(|kv| kv.0)
211     }
212 }
213 
214 /// Handling values.
215 ///
216 /// Values are either block parameters or instruction results.
217 impl DataFlowGraph {
218     /// Allocate an extended value entry.
make_value(&mut self, data: ValueData) -> Value219     fn make_value(&mut self, data: ValueData) -> Value {
220         self.values.push(data)
221     }
222 
223     /// Get an iterator over all values.
values<'a>(&'a self) -> Values224     pub fn values<'a>(&'a self) -> Values {
225         Values {
226             inner: self.values.iter(),
227         }
228     }
229 
230     /// Check if a value reference is valid.
value_is_valid(&self, v: Value) -> bool231     pub fn value_is_valid(&self, v: Value) -> bool {
232         self.values.is_valid(v)
233     }
234 
235     /// Get the type of a value.
value_type(&self, v: Value) -> Type236     pub fn value_type(&self, v: Value) -> Type {
237         self.values[v].ty()
238     }
239 
240     /// Get the definition of a value.
241     ///
242     /// This is either the instruction that defined it or the Block that has the value as an
243     /// parameter.
value_def(&self, v: Value) -> ValueDef244     pub fn value_def(&self, v: Value) -> ValueDef {
245         match self.values[v] {
246             ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
247             ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
248             ValueData::Alias { original, .. } => {
249                 // Make sure we only recurse one level. `resolve_aliases` has safeguards to
250                 // detect alias loops without overrunning the stack.
251                 self.value_def(self.resolve_aliases(original))
252             }
253         }
254     }
255 
256     /// Determine if `v` is an attached instruction result / block parameter.
257     ///
258     /// An attached value can't be attached to something else without first being detached.
259     ///
260     /// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
261     /// determine if the original aliased value is attached.
value_is_attached(&self, v: Value) -> bool262     pub fn value_is_attached(&self, v: Value) -> bool {
263         use self::ValueData::*;
264         match self.values[v] {
265             Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
266             Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
267             Alias { .. } => false,
268         }
269     }
270 
271     /// Resolve value aliases.
272     ///
273     /// Find the original SSA value that `value` aliases.
resolve_aliases(&self, value: Value) -> Value274     pub fn resolve_aliases(&self, value: Value) -> Value {
275         resolve_aliases(&self.values, value)
276     }
277 
278     /// Resolve all aliases among inst's arguments.
279     ///
280     /// For each argument of inst which is defined by an alias, replace the
281     /// alias with the aliased value.
resolve_aliases_in_arguments(&mut self, inst: Inst)282     pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
283         for arg in self.insts[inst].arguments_mut(&mut self.value_lists) {
284             let resolved = resolve_aliases(&self.values, *arg);
285             if resolved != *arg {
286                 *arg = resolved;
287             }
288         }
289     }
290 
291     /// Turn a value into an alias of another.
292     ///
293     /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
294     /// will behave as if they used that value `src`.
295     ///
296     /// The `dest` value can't be attached to an instruction or block.
change_to_alias(&mut self, dest: Value, src: Value)297     pub fn change_to_alias(&mut self, dest: Value, src: Value) {
298         debug_assert!(!self.value_is_attached(dest));
299         // Try to create short alias chains by finding the original source value.
300         // This also avoids the creation of loops.
301         let original = self.resolve_aliases(src);
302         debug_assert_ne!(
303             dest, original,
304             "Aliasing {} to {} would create a loop",
305             dest, src
306         );
307         let ty = self.value_type(original);
308         debug_assert_eq!(
309             self.value_type(dest),
310             ty,
311             "Aliasing {} to {} would change its type {} to {}",
312             dest,
313             src,
314             self.value_type(dest),
315             ty
316         );
317         debug_assert_ne!(ty, types::INVALID);
318 
319         self.values[dest] = ValueData::Alias { ty, original };
320     }
321 
322     /// Replace the results of one instruction with aliases to the results of another.
323     ///
324     /// Change all the results of `dest_inst` to behave as aliases of
325     /// corresponding results of `src_inst`, as if calling change_to_alias for
326     /// each.
327     ///
328     /// After calling this instruction, `dest_inst` will have had its results
329     /// cleared, so it likely needs to be removed from the graph.
330     ///
replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst)331     pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
332         debug_assert_ne!(
333             dest_inst, src_inst,
334             "Replacing {} with itself would create a loop",
335             dest_inst
336         );
337         debug_assert_eq!(
338             self.results[dest_inst].len(&self.value_lists),
339             self.results[src_inst].len(&self.value_lists),
340             "Replacing {} with {} would produce a different number of results.",
341             dest_inst,
342             src_inst
343         );
344 
345         for (&dest, &src) in self.results[dest_inst]
346             .as_slice(&self.value_lists)
347             .iter()
348             .zip(self.results[src_inst].as_slice(&self.value_lists))
349         {
350             let original = src;
351             let ty = self.value_type(original);
352             debug_assert_eq!(
353                 self.value_type(dest),
354                 ty,
355                 "Aliasing {} to {} would change its type {} to {}",
356                 dest,
357                 src,
358                 self.value_type(dest),
359                 ty
360             );
361             debug_assert_ne!(ty, types::INVALID);
362 
363             self.values[dest] = ValueData::Alias { ty, original };
364         }
365 
366         self.clear_results(dest_inst);
367     }
368 }
369 
370 /// Where did a value come from?
371 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
372 pub enum ValueDef {
373     /// Value is the n'th result of an instruction.
374     Result(Inst, usize),
375     /// Value is the n'th parameter to a block.
376     Param(Block, usize),
377 }
378 
379 impl ValueDef {
380     /// Unwrap the instruction where the value was defined, or panic.
unwrap_inst(&self) -> Inst381     pub fn unwrap_inst(&self) -> Inst {
382         self.inst().expect("Value is not an instruction result")
383     }
384 
385     /// Get the instruction where the value was defined, if any.
inst(&self) -> Option<Inst>386     pub fn inst(&self) -> Option<Inst> {
387         match *self {
388             Self::Result(inst, _) => Some(inst),
389             _ => None,
390         }
391     }
392 
393     /// Unwrap the block there the parameter is defined, or panic.
unwrap_block(&self) -> Block394     pub fn unwrap_block(&self) -> Block {
395         match *self {
396             Self::Param(block, _) => block,
397             _ => panic!("Value is not a block parameter"),
398         }
399     }
400 
401     /// Get the program point where the value was defined.
pp(self) -> ir::ExpandedProgramPoint402     pub fn pp(self) -> ir::ExpandedProgramPoint {
403         self.into()
404     }
405 
406     /// Get the number component of this definition.
407     ///
408     /// When multiple values are defined at the same program point, this indicates the index of
409     /// this value.
num(self) -> usize410     pub fn num(self) -> usize {
411         match self {
412             Self::Result(_, n) | Self::Param(_, n) => n,
413         }
414     }
415 }
416 
417 /// Internal table storage for extended values.
418 #[derive(Clone, Debug)]
419 enum ValueData {
420     /// Value is defined by an instruction.
421     Inst { ty: Type, num: u16, inst: Inst },
422 
423     /// Value is a block parameter.
424     Param { ty: Type, num: u16, block: Block },
425 
426     /// Value is an alias of another value.
427     /// An alias value can't be linked as an instruction result or block parameter. It is used as a
428     /// placeholder when the original instruction or block has been rewritten or modified.
429     Alias { ty: Type, original: Value },
430 }
431 
432 impl ValueData {
ty(&self) -> Type433     fn ty(&self) -> Type {
434         match *self {
435             ValueData::Inst { ty, .. }
436             | ValueData::Param { ty, .. }
437             | ValueData::Alias { ty, .. } => ty,
438         }
439     }
440 }
441 
442 /// Instructions.
443 ///
444 impl DataFlowGraph {
445     /// Create a new instruction.
446     ///
447     /// The type of the first result is indicated by `data.ty`. If the instruction produces
448     /// multiple results, also call `make_inst_results` to allocate value table entries.
make_inst(&mut self, data: InstructionData) -> Inst449     pub fn make_inst(&mut self, data: InstructionData) -> Inst {
450         let n = self.num_insts() + 1;
451         self.results.resize(n);
452         self.insts.push(data)
453     }
454 
455     /// Returns an object that displays `inst`.
display_inst<'a, I: Into<Option<&'a dyn TargetIsa>>>( &'a self, inst: Inst, isa: I, ) -> DisplayInst<'a>456     pub fn display_inst<'a, I: Into<Option<&'a dyn TargetIsa>>>(
457         &'a self,
458         inst: Inst,
459         isa: I,
460     ) -> DisplayInst<'a> {
461         DisplayInst(self, isa.into(), inst)
462     }
463 
464     /// Get all value arguments on `inst` as a slice.
inst_args(&self, inst: Inst) -> &[Value]465     pub fn inst_args(&self, inst: Inst) -> &[Value] {
466         self.insts[inst].arguments(&self.value_lists)
467     }
468 
469     /// Get all value arguments on `inst` as a mutable slice.
inst_args_mut(&mut self, inst: Inst) -> &mut [Value]470     pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
471         self.insts[inst].arguments_mut(&mut self.value_lists)
472     }
473 
474     /// Get the fixed value arguments on `inst` as a slice.
inst_fixed_args(&self, inst: Inst) -> &[Value]475     pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
476         let num_fixed_args = self[inst]
477             .opcode()
478             .constraints()
479             .num_fixed_value_arguments();
480         &self.inst_args(inst)[..num_fixed_args]
481     }
482 
483     /// Get the fixed value arguments on `inst` as a mutable slice.
inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value]484     pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
485         let num_fixed_args = self[inst]
486             .opcode()
487             .constraints()
488             .num_fixed_value_arguments();
489         &mut self.inst_args_mut(inst)[..num_fixed_args]
490     }
491 
492     /// Get the variable value arguments on `inst` as a slice.
inst_variable_args(&self, inst: Inst) -> &[Value]493     pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
494         let num_fixed_args = self[inst]
495             .opcode()
496             .constraints()
497             .num_fixed_value_arguments();
498         &self.inst_args(inst)[num_fixed_args..]
499     }
500 
501     /// Get the variable value arguments on `inst` as a mutable slice.
inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value]502     pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
503         let num_fixed_args = self[inst]
504             .opcode()
505             .constraints()
506             .num_fixed_value_arguments();
507         &mut self.inst_args_mut(inst)[num_fixed_args..]
508     }
509 
510     /// Create result values for an instruction that produces multiple results.
511     ///
512     /// Instructions that produce no result values only need to be created with `make_inst`,
513     /// otherwise call `make_inst_results` to allocate value table entries for the results.
514     ///
515     /// The result value types are determined from the instruction's value type constraints and the
516     /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
517     /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
518     ///
519     /// The type of the first result value is also set, even if it was already set in the
520     /// `InstructionData` passed to `make_inst`. If this function is called with a single-result
521     /// instruction, that is the only effect.
make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize522     pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
523         self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
524     }
525 
526     /// Create result values for `inst`, reusing the provided detached values.
527     ///
528     /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
529     /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
530     /// produces `None`, a new value is created.
make_inst_results_reusing<I>( &mut self, inst: Inst, ctrl_typevar: Type, reuse: I, ) -> usize where I: Iterator<Item = Option<Value>>,531     pub fn make_inst_results_reusing<I>(
532         &mut self,
533         inst: Inst,
534         ctrl_typevar: Type,
535         reuse: I,
536     ) -> usize
537     where
538         I: Iterator<Item = Option<Value>>,
539     {
540         let mut reuse = reuse.fuse();
541 
542         self.results[inst].clear(&mut self.value_lists);
543 
544         // Get the call signature if this is a function call.
545         if let Some(sig) = self.call_signature(inst) {
546             // Create result values corresponding to the call return types.
547             debug_assert_eq!(
548                 self.insts[inst].opcode().constraints().num_fixed_results(),
549                 0
550             );
551             let num_results = self.signatures[sig].returns.len();
552             for res_idx in 0..num_results {
553                 let ty = self.signatures[sig].returns[res_idx].value_type;
554                 if let Some(Some(v)) = reuse.next() {
555                     debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
556                     self.attach_result(inst, v);
557                 } else {
558                     self.append_result(inst, ty);
559                 }
560             }
561             num_results
562         } else {
563             // Create result values corresponding to the opcode's constraints.
564             let constraints = self.insts[inst].opcode().constraints();
565             let num_results = constraints.num_fixed_results();
566             for res_idx in 0..num_results {
567                 let ty = constraints.result_type(res_idx, ctrl_typevar);
568                 if let Some(Some(v)) = reuse.next() {
569                     debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
570                     self.attach_result(inst, v);
571                 } else {
572                     self.append_result(inst, ty);
573                 }
574             }
575             num_results
576         }
577     }
578 
579     /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
replace(&mut self, inst: Inst) -> ReplaceBuilder580     pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
581         ReplaceBuilder::new(self, inst)
582     }
583 
584     /// Detach the list of result values from `inst` and return it.
585     ///
586     /// This leaves `inst` without any result values. New result values can be created by calling
587     /// `make_inst_results` or by using a `replace(inst)` builder.
detach_results(&mut self, inst: Inst) -> ValueList588     pub fn detach_results(&mut self, inst: Inst) -> ValueList {
589         self.results[inst].take()
590     }
591 
592     /// Clear the list of result values from `inst`.
593     ///
594     /// This leaves `inst` without any result values. New result values can be created by calling
595     /// `make_inst_results` or by using a `replace(inst)` builder.
clear_results(&mut self, inst: Inst)596     pub fn clear_results(&mut self, inst: Inst) {
597         self.results[inst].clear(&mut self.value_lists)
598     }
599 
600     /// Attach an existing value to the result value list for `inst`.
601     ///
602     /// The `res` value is appended to the end of the result list.
603     ///
604     /// This is a very low-level operation. Usually, instruction results with the correct types are
605     /// created automatically. The `res` value must not be attached to anything else.
attach_result(&mut self, inst: Inst, res: Value)606     pub fn attach_result(&mut self, inst: Inst, res: Value) {
607         debug_assert!(!self.value_is_attached(res));
608         let num = self.results[inst].push(res, &mut self.value_lists);
609         debug_assert!(num <= u16::MAX as usize, "Too many result values");
610         let ty = self.value_type(res);
611         self.values[res] = ValueData::Inst {
612             ty,
613             num: num as u16,
614             inst,
615         };
616     }
617 
618     /// Replace an instruction result with a new value of type `new_type`.
619     ///
620     /// The `old_value` must be an attached instruction result.
621     ///
622     /// The old value is left detached, so it should probably be changed into something else.
623     ///
624     /// Returns the new value.
replace_result(&mut self, old_value: Value, new_type: Type) -> Value625     pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
626         let (num, inst) = match self.values[old_value] {
627             ValueData::Inst { num, inst, .. } => (num, inst),
628             _ => panic!("{} is not an instruction result value", old_value),
629         };
630         let new_value = self.make_value(ValueData::Inst {
631             ty: new_type,
632             num,
633             inst,
634         });
635         let num = num as usize;
636         let attached = mem::replace(
637             self.results[inst]
638                 .get_mut(num, &mut self.value_lists)
639                 .expect("Replacing detached result"),
640             new_value,
641         );
642         debug_assert_eq!(
643             attached,
644             old_value,
645             "{} wasn't detached from {}",
646             old_value,
647             self.display_inst(inst, None)
648         );
649         new_value
650     }
651 
652     /// Append a new instruction result value to `inst`.
append_result(&mut self, inst: Inst, ty: Type) -> Value653     pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
654         let res = self.values.next_key();
655         let num = self.results[inst].push(res, &mut self.value_lists);
656         debug_assert!(num <= u16::MAX as usize, "Too many result values");
657         self.make_value(ValueData::Inst {
658             ty,
659             inst,
660             num: num as u16,
661         })
662     }
663 
664     /// Append a new value argument to an instruction.
665     ///
666     /// Panics if the instruction doesn't support arguments.
append_inst_arg(&mut self, inst: Inst, new_arg: Value)667     pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
668         let mut branch_values = self.insts[inst]
669             .take_value_list()
670             .expect("the instruction doesn't have value arguments");
671         branch_values.push(new_arg, &mut self.value_lists);
672         self.insts[inst].put_value_list(branch_values)
673     }
674 
675     /// Get the first result of an instruction.
676     ///
677     /// This function panics if the instruction doesn't have any result.
first_result(&self, inst: Inst) -> Value678     pub fn first_result(&self, inst: Inst) -> Value {
679         self.results[inst]
680             .first(&self.value_lists)
681             .expect("Instruction has no results")
682     }
683 
684     /// Test if `inst` has any result values currently.
has_results(&self, inst: Inst) -> bool685     pub fn has_results(&self, inst: Inst) -> bool {
686         !self.results[inst].is_empty()
687     }
688 
689     /// Return all the results of an instruction.
inst_results(&self, inst: Inst) -> &[Value]690     pub fn inst_results(&self, inst: Inst) -> &[Value] {
691         self.results[inst].as_slice(&self.value_lists)
692     }
693 
694     /// Get the call signature of a direct or indirect call instruction.
695     /// Returns `None` if `inst` is not a call instruction.
call_signature(&self, inst: Inst) -> Option<SigRef>696     pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
697         match self.insts[inst].analyze_call(&self.value_lists) {
698             CallInfo::NotACall => None,
699             CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
700             CallInfo::Indirect(s, _) => Some(s),
701         }
702     }
703 
704     /// Check if `inst` is a branch.
analyze_branch(&self, inst: Inst) -> BranchInfo705     pub fn analyze_branch(&self, inst: Inst) -> BranchInfo {
706         self.insts[inst].analyze_branch(&self.value_lists)
707     }
708 
709     /// Compute the type of an instruction result from opcode constraints and call signatures.
710     ///
711     /// This computes the same sequence of result types that `make_inst_results()` above would
712     /// assign to the created result values, but it does not depend on `make_inst_results()` being
713     /// called first.
714     ///
715     /// Returns `None` if asked about a result index that is too large.
compute_result_type( &self, inst: Inst, result_idx: usize, ctrl_typevar: Type, ) -> Option<Type>716     pub fn compute_result_type(
717         &self,
718         inst: Inst,
719         result_idx: usize,
720         ctrl_typevar: Type,
721     ) -> Option<Type> {
722         let constraints = self.insts[inst].opcode().constraints();
723         let num_fixed_results = constraints.num_fixed_results();
724 
725         if result_idx < num_fixed_results {
726             return Some(constraints.result_type(result_idx, ctrl_typevar));
727         }
728 
729         // Not a fixed result, try to extract a return type from the call signature.
730         self.call_signature(inst).and_then(|sigref| {
731             self.signatures[sigref]
732                 .returns
733                 .get(result_idx - num_fixed_results)
734                 .map(|&arg| arg.value_type)
735         })
736     }
737 
738     /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
ctrl_typevar(&self, inst: Inst) -> Type739     pub fn ctrl_typevar(&self, inst: Inst) -> Type {
740         let constraints = self[inst].opcode().constraints();
741 
742         if !constraints.is_polymorphic() {
743             types::INVALID
744         } else if constraints.requires_typevar_operand() {
745             // Not all instruction formats have a designated operand, but in that case
746             // `requires_typevar_operand()` should never be true.
747             self.value_type(
748                 self[inst]
749                     .typevar_operand(&self.value_lists)
750                     .expect("Instruction format doesn't have a designated operand, bad opcode."),
751             )
752         } else {
753             self.value_type(self.first_result(inst))
754         }
755     }
756 }
757 
758 /// Allow immutable access to instructions via indexing.
759 impl Index<Inst> for DataFlowGraph {
760     type Output = InstructionData;
761 
index(&self, inst: Inst) -> &InstructionData762     fn index(&self, inst: Inst) -> &InstructionData {
763         &self.insts[inst]
764     }
765 }
766 
767 /// Allow mutable access to instructions via indexing.
768 impl IndexMut<Inst> for DataFlowGraph {
index_mut(&mut self, inst: Inst) -> &mut InstructionData769     fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
770         &mut self.insts[inst]
771     }
772 }
773 
774 /// basic blocks.
775 impl DataFlowGraph {
776     /// Create a new basic block.
make_block(&mut self) -> Block777     pub fn make_block(&mut self) -> Block {
778         self.blocks.push(BlockData::new())
779     }
780 
781     /// Get the number of parameters on `block`.
num_block_params(&self, block: Block) -> usize782     pub fn num_block_params(&self, block: Block) -> usize {
783         self.blocks[block].params.len(&self.value_lists)
784     }
785 
786     /// Get the parameters on `block`.
block_params(&self, block: Block) -> &[Value]787     pub fn block_params(&self, block: Block) -> &[Value] {
788         self.blocks[block].params.as_slice(&self.value_lists)
789     }
790 
791     /// Get the types of the parameters on `block`.
block_param_types(&self, block: Block) -> Vec<Type>792     pub fn block_param_types(&self, block: Block) -> Vec<Type> {
793         self.block_params(block)
794             .iter()
795             .map(|&v| self.value_type(v))
796             .collect()
797     }
798 
799     /// Append a parameter with type `ty` to `block`.
append_block_param(&mut self, block: Block, ty: Type) -> Value800     pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
801         let param = self.values.next_key();
802         let num = self.blocks[block].params.push(param, &mut self.value_lists);
803         debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
804         self.make_value(ValueData::Param {
805             ty,
806             num: num as u16,
807             block,
808         })
809     }
810 
811     /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
812     /// Returns the position of `val` before removal.
813     ///
814     /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
815     /// last `block` parameter. This can disrupt all the branch instructions jumping to this
816     /// `block` for which you have to change the branch argument order if necessary.
817     ///
818     /// Panics if `val` is not a block parameter.
swap_remove_block_param(&mut self, val: Value) -> usize819     pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
820         let (block, num) = if let ValueData::Param { num, block, .. } = self.values[val] {
821             (block, num)
822         } else {
823             panic!("{} must be a block parameter", val);
824         };
825         self.blocks[block]
826             .params
827             .swap_remove(num as usize, &mut self.value_lists);
828         if let Some(last_arg_val) = self.blocks[block]
829             .params
830             .get(num as usize, &self.value_lists)
831         {
832             // We update the position of the old last arg.
833             if let ValueData::Param {
834                 num: ref mut old_num,
835                 ..
836             } = self.values[last_arg_val]
837             {
838                 *old_num = num;
839             } else {
840                 panic!("{} should be a Block parameter", last_arg_val);
841             }
842         }
843         num as usize
844     }
845 
846     /// Removes `val` from `block`'s parameters by a standard linear time list removal which
847     /// preserves ordering. Also updates the values' data.
remove_block_param(&mut self, val: Value)848     pub fn remove_block_param(&mut self, val: Value) {
849         let (block, num) = if let ValueData::Param { num, block, .. } = self.values[val] {
850             (block, num)
851         } else {
852             panic!("{} must be a block parameter", val);
853         };
854         self.blocks[block]
855             .params
856             .remove(num as usize, &mut self.value_lists);
857         for index in num..(self.num_block_params(block) as u16) {
858             match self.values[self.blocks[block]
859                 .params
860                 .get(index as usize, &self.value_lists)
861                 .unwrap()]
862             {
863                 ValueData::Param { ref mut num, .. } => {
864                     *num -= 1;
865                 }
866                 _ => panic!(
867                     "{} must be a block parameter",
868                     self.blocks[block]
869                         .params
870                         .get(index as usize, &self.value_lists)
871                         .unwrap()
872                 ),
873             }
874         }
875     }
876 
877     /// Append an existing value to `block`'s parameters.
878     ///
879     /// The appended value can't already be attached to something else.
880     ///
881     /// In almost all cases, you should be using `append_block_param()` instead of this method.
attach_block_param(&mut self, block: Block, param: Value)882     pub fn attach_block_param(&mut self, block: Block, param: Value) {
883         debug_assert!(!self.value_is_attached(param));
884         let num = self.blocks[block].params.push(param, &mut self.value_lists);
885         debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
886         let ty = self.value_type(param);
887         self.values[param] = ValueData::Param {
888             ty,
889             num: num as u16,
890             block,
891         };
892     }
893 
894     /// Replace a block parameter with a new value of type `ty`.
895     ///
896     /// The `old_value` must be an attached block parameter. It is removed from its place in the list
897     /// of parameters and replaced by a new value of type `new_type`. The new value gets the same
898     /// position in the list, and other parameters are not disturbed.
899     ///
900     /// The old value is left detached, so it should probably be changed into something else.
901     ///
902     /// Returns the new value.
replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value903     pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
904         // Create new value identical to the old one except for the type.
905         let (block, num) = if let ValueData::Param { num, block, .. } = self.values[old_value] {
906             (block, num)
907         } else {
908             panic!("{} must be a block parameter", old_value);
909         };
910         let new_arg = self.make_value(ValueData::Param {
911             ty: new_type,
912             num,
913             block,
914         });
915 
916         self.blocks[block]
917             .params
918             .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
919         new_arg
920     }
921 
922     /// Detach all the parameters from `block` and return them as a `ValueList`.
923     ///
924     /// This is a quite low-level operation. Sensible things to do with the detached block parameters
925     /// is to put them back on the same block with `attach_block_param()` or change them into aliases
926     /// with `change_to_alias()`.
detach_block_params(&mut self, block: Block) -> ValueList927     pub fn detach_block_params(&mut self, block: Block) -> ValueList {
928         self.blocks[block].params.take()
929     }
930 }
931 
932 /// Contents of a basic block.
933 ///
934 /// Parameters on a basic block are values that dominate everything in the block. All
935 /// branches to this block must provide matching arguments, and the arguments to the entry block must
936 /// match the function arguments.
937 #[derive(Clone)]
938 struct BlockData {
939     /// List of parameters to this block.
940     params: ValueList,
941 }
942 
943 impl BlockData {
new() -> Self944     fn new() -> Self {
945         Self {
946             params: ValueList::new(),
947         }
948     }
949 }
950 
951 /// Object that can display an instruction.
952 pub struct DisplayInst<'a>(&'a DataFlowGraph, Option<&'a dyn TargetIsa>, Inst);
953 
954 impl<'a> fmt::Display for DisplayInst<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result955     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
956         let dfg = self.0;
957         let isa = self.1;
958         let inst = self.2;
959 
960         if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
961             write!(f, "{}", first)?;
962             for v in rest {
963                 write!(f, ", {}", v)?;
964             }
965             write!(f, " = ")?;
966         }
967 
968         let typevar = dfg.ctrl_typevar(inst);
969         if typevar.is_invalid() {
970             write!(f, "{}", dfg[inst].opcode())?;
971         } else {
972             write!(f, "{}.{}", dfg[inst].opcode(), typevar)?;
973         }
974         write_operands(f, dfg, isa, inst)
975     }
976 }
977 
978 /// Parser routines. These routines should not be used outside the parser.
979 impl DataFlowGraph {
980     /// Set the type of a value. This is only for use in the parser, which needs
981     /// to create invalid values for index padding which may be reassigned later.
982     #[cold]
set_value_type_for_parser(&mut self, v: Value, t: Type)983     fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
984         assert_eq!(
985             self.value_type(v),
986             types::INVALID,
987             "this function is only for assigning types to previously invalid values"
988         );
989         match self.values[v] {
990             ValueData::Inst { ref mut ty, .. }
991             | ValueData::Param { ref mut ty, .. }
992             | ValueData::Alias { ref mut ty, .. } => *ty = t,
993         }
994     }
995 
996     /// Create result values for `inst`, reusing the provided detached values.
997     /// This is similar to `make_inst_results_reusing` except it's only for use
998     /// in the parser, which needs to reuse previously invalid values.
999     #[cold]
make_inst_results_for_parser( &mut self, inst: Inst, ctrl_typevar: Type, reuse: &[Value], ) -> usize1000     pub fn make_inst_results_for_parser(
1001         &mut self,
1002         inst: Inst,
1003         ctrl_typevar: Type,
1004         reuse: &[Value],
1005     ) -> usize {
1006         // Get the call signature if this is a function call.
1007         if let Some(sig) = self.call_signature(inst) {
1008             assert_eq!(
1009                 self.insts[inst].opcode().constraints().num_fixed_results(),
1010                 0
1011             );
1012             for res_idx in 0..self.signatures[sig].returns.len() {
1013                 let ty = self.signatures[sig].returns[res_idx].value_type;
1014                 if let Some(v) = reuse.get(res_idx) {
1015                     self.set_value_type_for_parser(*v, ty);
1016                 }
1017             }
1018         } else {
1019             let constraints = self.insts[inst].opcode().constraints();
1020             for res_idx in 0..constraints.num_fixed_results() {
1021                 let ty = constraints.result_type(res_idx, ctrl_typevar);
1022                 if let Some(v) = reuse.get(res_idx) {
1023                     self.set_value_type_for_parser(*v, ty);
1024                 }
1025             }
1026         }
1027 
1028         self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
1029     }
1030 
1031     /// Similar to `append_block_param`, append a parameter with type `ty` to
1032     /// `block`, but using value `val`. This is only for use by the parser to
1033     /// create parameters with specific values.
1034     #[cold]
append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value)1035     pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
1036         let num = self.blocks[block].params.push(val, &mut self.value_lists);
1037         assert!(num <= u16::MAX as usize, "Too many parameters on block");
1038         self.values[val] = ValueData::Param {
1039             ty,
1040             num: num as u16,
1041             block,
1042         };
1043     }
1044 
1045     /// Create a new value alias. This is only for use by the parser to create
1046     /// aliases with specific values, and the printer for testing.
1047     #[cold]
make_value_alias_for_serialization(&mut self, src: Value, dest: Value)1048     pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
1049         assert_ne!(src, Value::reserved_value());
1050         assert_ne!(dest, Value::reserved_value());
1051 
1052         let ty = if self.values.is_valid(src) {
1053             self.value_type(src)
1054         } else {
1055             // As a special case, if we can't resolve the aliasee yet, use INVALID
1056             // temporarily. It will be resolved later in parsing.
1057             types::INVALID
1058         };
1059         let data = ValueData::Alias { ty, original: src };
1060         self.values[dest] = data;
1061     }
1062 
1063     /// If `v` is already defined as an alias, return its destination value.
1064     /// Otherwise return None. This allows the parser to coalesce identical
1065     /// alias definitions, and the printer to identify an alias's immediate target.
1066     #[cold]
value_alias_dest_for_serialization(&self, v: Value) -> Option<Value>1067     pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
1068         if let ValueData::Alias { original, .. } = self.values[v] {
1069             Some(original)
1070         } else {
1071             None
1072         }
1073     }
1074 
1075     /// Compute the type of an alias. This is only for use in the parser.
1076     /// Returns false if an alias cycle was encountered.
1077     #[cold]
set_alias_type_for_parser(&mut self, v: Value) -> bool1078     pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
1079         if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
1080             let old_ty = self.value_type(v);
1081             let new_ty = self.value_type(resolved);
1082             if old_ty == types::INVALID {
1083                 self.set_value_type_for_parser(v, new_ty);
1084             } else {
1085                 assert_eq!(old_ty, new_ty);
1086             }
1087             true
1088         } else {
1089             false
1090         }
1091     }
1092 
1093     /// Create an invalid value, to pad the index space. This is only for use by
1094     /// the parser to pad out the value index space.
1095     #[cold]
make_invalid_value_for_parser(&mut self)1096     pub fn make_invalid_value_for_parser(&mut self) {
1097         let data = ValueData::Alias {
1098             ty: types::INVALID,
1099             original: Value::reserved_value(),
1100         };
1101         self.make_value(data);
1102     }
1103 
1104     /// Check if a value reference is valid, while being aware of aliases which
1105     /// may be unresolved while parsing.
1106     #[cold]
value_is_valid_for_parser(&self, v: Value) -> bool1107     pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
1108         if !self.value_is_valid(v) {
1109             return false;
1110         }
1111         if let ValueData::Alias { ty, .. } = self.values[v] {
1112             ty != types::INVALID
1113         } else {
1114             true
1115         }
1116     }
1117 }
1118 
1119 #[cfg(test)]
1120 mod tests {
1121     use super::*;
1122     use crate::cursor::{Cursor, FuncCursor};
1123     use crate::ir::types;
1124     use crate::ir::{Function, InstructionData, Opcode, TrapCode};
1125     use alloc::string::ToString;
1126 
1127     #[test]
make_inst()1128     fn make_inst() {
1129         let mut dfg = DataFlowGraph::new();
1130 
1131         let idata = InstructionData::UnaryImm {
1132             opcode: Opcode::Iconst,
1133             imm: 0.into(),
1134         };
1135         let inst = dfg.make_inst(idata);
1136 
1137         dfg.make_inst_results(inst, types::I32);
1138         assert_eq!(inst.to_string(), "inst0");
1139         assert_eq!(
1140             dfg.display_inst(inst, None).to_string(),
1141             "v0 = iconst.i32 0"
1142         );
1143 
1144         // Immutable reference resolution.
1145         {
1146             let immdfg = &dfg;
1147             let ins = &immdfg[inst];
1148             assert_eq!(ins.opcode(), Opcode::Iconst);
1149         }
1150 
1151         // Results.
1152         let val = dfg.first_result(inst);
1153         assert_eq!(dfg.inst_results(inst), &[val]);
1154 
1155         assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
1156         assert_eq!(dfg.value_type(val), types::I32);
1157 
1158         // Replacing results.
1159         assert!(dfg.value_is_attached(val));
1160         let v2 = dfg.replace_result(val, types::F64);
1161         assert!(!dfg.value_is_attached(val));
1162         assert!(dfg.value_is_attached(v2));
1163         assert_eq!(dfg.inst_results(inst), &[v2]);
1164         assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
1165         assert_eq!(dfg.value_type(v2), types::F64);
1166     }
1167 
1168     #[test]
no_results()1169     fn no_results() {
1170         let mut dfg = DataFlowGraph::new();
1171 
1172         let idata = InstructionData::Trap {
1173             opcode: Opcode::Trap,
1174             code: TrapCode::User(0),
1175         };
1176         let inst = dfg.make_inst(idata);
1177         assert_eq!(dfg.display_inst(inst, None).to_string(), "trap user0");
1178 
1179         // Result slice should be empty.
1180         assert_eq!(dfg.inst_results(inst), &[]);
1181     }
1182 
1183     #[test]
block()1184     fn block() {
1185         let mut dfg = DataFlowGraph::new();
1186 
1187         let block = dfg.make_block();
1188         assert_eq!(block.to_string(), "block0");
1189         assert_eq!(dfg.num_block_params(block), 0);
1190         assert_eq!(dfg.block_params(block), &[]);
1191         assert!(dfg.detach_block_params(block).is_empty());
1192         assert_eq!(dfg.num_block_params(block), 0);
1193         assert_eq!(dfg.block_params(block), &[]);
1194 
1195         let arg1 = dfg.append_block_param(block, types::F32);
1196         assert_eq!(arg1.to_string(), "v0");
1197         assert_eq!(dfg.num_block_params(block), 1);
1198         assert_eq!(dfg.block_params(block), &[arg1]);
1199 
1200         let arg2 = dfg.append_block_param(block, types::I16);
1201         assert_eq!(arg2.to_string(), "v1");
1202         assert_eq!(dfg.num_block_params(block), 2);
1203         assert_eq!(dfg.block_params(block), &[arg1, arg2]);
1204 
1205         assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
1206         assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
1207         assert_eq!(dfg.value_type(arg1), types::F32);
1208         assert_eq!(dfg.value_type(arg2), types::I16);
1209 
1210         // Swap the two block parameters.
1211         let vlist = dfg.detach_block_params(block);
1212         assert_eq!(dfg.num_block_params(block), 0);
1213         assert_eq!(dfg.block_params(block), &[]);
1214         assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
1215         dfg.attach_block_param(block, arg2);
1216         let arg3 = dfg.append_block_param(block, types::I32);
1217         dfg.attach_block_param(block, arg1);
1218         assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
1219     }
1220 
1221     #[test]
replace_block_params()1222     fn replace_block_params() {
1223         let mut dfg = DataFlowGraph::new();
1224 
1225         let block = dfg.make_block();
1226         let arg1 = dfg.append_block_param(block, types::F32);
1227 
1228         let new1 = dfg.replace_block_param(arg1, types::I64);
1229         assert_eq!(dfg.value_type(arg1), types::F32);
1230         assert_eq!(dfg.value_type(new1), types::I64);
1231         assert_eq!(dfg.block_params(block), &[new1]);
1232 
1233         dfg.attach_block_param(block, arg1);
1234         assert_eq!(dfg.block_params(block), &[new1, arg1]);
1235 
1236         let new2 = dfg.replace_block_param(arg1, types::I8);
1237         assert_eq!(dfg.value_type(arg1), types::F32);
1238         assert_eq!(dfg.value_type(new2), types::I8);
1239         assert_eq!(dfg.block_params(block), &[new1, new2]);
1240 
1241         dfg.attach_block_param(block, arg1);
1242         assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);
1243 
1244         let new3 = dfg.replace_block_param(new2, types::I16);
1245         assert_eq!(dfg.value_type(new1), types::I64);
1246         assert_eq!(dfg.value_type(new2), types::I8);
1247         assert_eq!(dfg.value_type(new3), types::I16);
1248         assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
1249     }
1250 
1251     #[test]
swap_remove_block_params()1252     fn swap_remove_block_params() {
1253         let mut dfg = DataFlowGraph::new();
1254 
1255         let block = dfg.make_block();
1256         let arg1 = dfg.append_block_param(block, types::F32);
1257         let arg2 = dfg.append_block_param(block, types::F32);
1258         let arg3 = dfg.append_block_param(block, types::F32);
1259         assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);
1260 
1261         dfg.swap_remove_block_param(arg1);
1262         assert_eq!(dfg.value_is_attached(arg1), false);
1263         assert_eq!(dfg.value_is_attached(arg2), true);
1264         assert_eq!(dfg.value_is_attached(arg3), true);
1265         assert_eq!(dfg.block_params(block), &[arg3, arg2]);
1266         dfg.swap_remove_block_param(arg2);
1267         assert_eq!(dfg.value_is_attached(arg2), false);
1268         assert_eq!(dfg.value_is_attached(arg3), true);
1269         assert_eq!(dfg.block_params(block), &[arg3]);
1270         dfg.swap_remove_block_param(arg3);
1271         assert_eq!(dfg.value_is_attached(arg3), false);
1272         assert_eq!(dfg.block_params(block), &[]);
1273     }
1274 
1275     #[test]
aliases()1276     fn aliases() {
1277         use crate::ir::InstBuilder;
1278 
1279         let mut func = Function::new();
1280         let block0 = func.dfg.make_block();
1281         let mut pos = FuncCursor::new(&mut func);
1282         pos.insert_block(block0);
1283 
1284         // Build a little test program.
1285         let v1 = pos.ins().iconst(types::I32, 42);
1286 
1287         // Make sure we can resolve value aliases even when values is empty.
1288         assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
1289 
1290         let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
1291         let (s, c) = pos.ins().iadd_ifcout(v1, arg0);
1292         let iadd = match pos.func.dfg.value_def(s) {
1293             ValueDef::Result(i, 0) => i,
1294             _ => panic!(),
1295         };
1296 
1297         // Remove `c` from the result list.
1298         pos.func.dfg.clear_results(iadd);
1299         pos.func.dfg.attach_result(iadd, s);
1300 
1301         // Replace `iadd_ifcout` with a normal `iadd` and an `ifcmp`.
1302         pos.func.dfg.replace(iadd).iadd(v1, arg0);
1303         let c2 = pos.ins().ifcmp(s, v1);
1304         pos.func.dfg.change_to_alias(c, c2);
1305 
1306         assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
1307         assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
1308 
1309         // Make a copy of the alias.
1310         let c3 = pos.ins().copy(c);
1311         // This does not see through copies.
1312         assert_eq!(pos.func.dfg.resolve_aliases(c3), c3);
1313     }
1314 }
1315