1 //! Parsing interface for parsing a token stream into a syntax tree node.
2 //!
3 //! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4 //! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5 //! these parser functions is a lower level mechanism built around the
6 //! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7 //! tokens in a token stream.
8 //!
9 //! [`ParseStream`]: type.ParseStream.html
10 //! [`Result<T>`]: type.Result.html
11 //! [`Cursor`]: ../buffer/index.html
12 //!
13 //! # Example
14 //!
15 //! Here is a snippet of parsing code to get a feel for the style of the
16 //! library. We define data structures for a subset of Rust syntax including
17 //! enums (not shown) and structs, then provide implementations of the [`Parse`]
18 //! trait to parse these syntax tree data structures from a token stream.
19 //!
20 //! Once `Parse` impls have been defined, they can be called conveniently from a
21 //! procedural macro through [`parse_macro_input!`] as shown at the bottom of
22 //! the snippet. If the caller provides syntactically invalid input to the
23 //! procedural macro, they will receive a helpful compiler error message
24 //! pointing out the exact token that triggered the failure to parse.
25 //!
26 //! [`parse_macro_input!`]: ../macro.parse_macro_input.html
27 //!
28 //! ```
29 //! # extern crate proc_macro;
30 //! #
31 //! use proc_macro::TokenStream;
32 //! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
33 //! use syn::parse::{Parse, ParseStream};
34 //! use syn::punctuated::Punctuated;
35 //!
36 //! enum Item {
37 //!     Struct(ItemStruct),
38 //!     Enum(ItemEnum),
39 //! }
40 //!
41 //! struct ItemStruct {
42 //!     struct_token: Token![struct],
43 //!     ident: Ident,
44 //!     brace_token: token::Brace,
45 //!     fields: Punctuated<Field, Token![,]>,
46 //! }
47 //! #
48 //! # enum ItemEnum {}
49 //!
50 //! impl Parse for Item {
51 //!     fn parse(input: ParseStream) -> Result<Self> {
52 //!         let lookahead = input.lookahead1();
53 //!         if lookahead.peek(Token![struct]) {
54 //!             input.parse().map(Item::Struct)
55 //!         } else if lookahead.peek(Token![enum]) {
56 //!             input.parse().map(Item::Enum)
57 //!         } else {
58 //!             Err(lookahead.error())
59 //!         }
60 //!     }
61 //! }
62 //!
63 //! impl Parse for ItemStruct {
64 //!     fn parse(input: ParseStream) -> Result<Self> {
65 //!         let content;
66 //!         Ok(ItemStruct {
67 //!             struct_token: input.parse()?,
68 //!             ident: input.parse()?,
69 //!             brace_token: braced!(content in input),
70 //!             fields: content.parse_terminated(Field::parse_named)?,
71 //!         })
72 //!     }
73 //! }
74 //! #
75 //! # impl Parse for ItemEnum {
76 //! #     fn parse(input: ParseStream) -> Result<Self> {
77 //! #         unimplemented!()
78 //! #     }
79 //! # }
80 //!
81 //! # const IGNORE: &str = stringify! {
82 //! #[proc_macro]
83 //! # };
84 //! pub fn my_macro(tokens: TokenStream) -> TokenStream {
85 //!     let input = parse_macro_input!(tokens as Item);
86 //!
87 //!     /* ... */
88 //! #   "".parse().unwrap()
89 //! }
90 //! ```
91 //!
92 //! # The `syn::parse*` functions
93 //!
94 //! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
95 //! as an entry point for parsing syntax tree nodes that can be parsed in an
96 //! obvious default way. These functions can return any syntax tree node that
97 //! implements the [`Parse`] trait, which includes most types in Syn.
98 //!
99 //! [`syn::parse`]: ../fn.parse.html
100 //! [`syn::parse2`]: ../fn.parse2.html
101 //! [`syn::parse_str`]: ../fn.parse_str.html
102 //! [`Parse`]: trait.Parse.html
103 //!
104 //! ```
105 //! use syn::Type;
106 //!
107 //! # fn run_parser() -> syn::Result<()> {
108 //! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
109 //! #     Ok(())
110 //! # }
111 //! #
112 //! # run_parser().unwrap();
113 //! ```
114 //!
115 //! The [`parse_quote!`] macro also uses this approach.
116 //!
117 //! [`parse_quote!`]: ../macro.parse_quote.html
118 //!
119 //! # The `Parser` trait
120 //!
121 //! Some types can be parsed in several ways depending on context. For example
122 //! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
123 //! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
124 //! may or may not allow trailing punctuation, and parsing it the wrong way
125 //! would either reject valid input or accept invalid input.
126 //!
127 //! [`Attribute`]: ../struct.Attribute.html
128 //! [`Punctuated`]: ../punctuated/index.html
129 //!
130 //! The `Parse` trait is not implemented in these cases because there is no good
131 //! behavior to consider the default.
132 //!
133 //! ```compile_fail
134 //! # extern crate proc_macro;
135 //! #
136 //! # use syn::punctuated::Punctuated;
137 //! # use syn::{PathSegment, Result, Token};
138 //! #
139 //! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
140 //! #
141 //! // Can't parse `Punctuated` without knowing whether trailing punctuation
142 //! // should be allowed in this context.
143 //! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
144 //! #
145 //! #     Ok(())
146 //! # }
147 //! ```
148 //!
149 //! In these cases the types provide a choice of parser functions rather than a
150 //! single `Parse` implementation, and those parser functions can be invoked
151 //! through the [`Parser`] trait.
152 //!
153 //! [`Parser`]: trait.Parser.html
154 //!
155 //! ```
156 //! # extern crate proc_macro;
157 //! #
158 //! use proc_macro::TokenStream;
159 //! use syn::parse::Parser;
160 //! use syn::punctuated::Punctuated;
161 //! use syn::{Attribute, Expr, PathSegment, Result, Token};
162 //!
163 //! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
164 //!     // Parse a nonempty sequence of path segments separated by `::` punctuation
165 //!     // with no trailing punctuation.
166 //!     let tokens = input.clone();
167 //!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
168 //!     let _path = parser.parse(tokens)?;
169 //!
170 //!     // Parse a possibly empty sequence of expressions terminated by commas with
171 //!     // an optional trailing punctuation.
172 //!     let tokens = input.clone();
173 //!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
174 //!     let _args = parser.parse(tokens)?;
175 //!
176 //!     // Parse zero or more outer attributes but not inner attributes.
177 //!     let tokens = input.clone();
178 //!     let parser = Attribute::parse_outer;
179 //!     let _attrs = parser.parse(tokens)?;
180 //!
181 //!     Ok(())
182 //! }
183 //! ```
184 //!
185 //! ---
186 //!
187 //! *This module is available only if Syn is built with the `"parsing"` feature.*
188 
189 #[path = "discouraged.rs"]
190 pub mod discouraged;
191 
192 use std::cell::Cell;
193 use std::fmt::{self, Debug, Display};
194 use std::marker::PhantomData;
195 use std::mem;
196 use std::ops::Deref;
197 use std::rc::Rc;
198 use std::str::FromStr;
199 
200 #[cfg(all(
201     not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
202     feature = "proc-macro"
203 ))]
204 use crate::proc_macro;
205 use proc_macro2::{self, Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
206 
207 use crate::buffer::{Cursor, TokenBuffer};
208 use crate::error;
209 use crate::lookahead;
210 use crate::punctuated::Punctuated;
211 use crate::token::Token;
212 
213 pub use crate::error::{Error, Result};
214 pub use crate::lookahead::{Lookahead1, Peek};
215 
216 /// Parsing interface implemented by all types that can be parsed in a default
217 /// way from a token stream.
218 ///
219 /// Refer to the [module documentation] for details about implementing and using
220 /// the `Parse` trait.
221 ///
222 /// [module documentation]: self
223 pub trait Parse: Sized {
parse(input: ParseStream) -> Result<Self>224     fn parse(input: ParseStream) -> Result<Self>;
225 }
226 
227 /// Input to a Syn parser function.
228 ///
229 /// See the methods of this type under the documentation of [`ParseBuffer`]. For
230 /// an overview of parsing in Syn, refer to the [module documentation].
231 ///
232 /// [module documentation]: self
233 pub type ParseStream<'a> = &'a ParseBuffer<'a>;
234 
235 /// Cursor position within a buffered token stream.
236 ///
237 /// This type is more commonly used through the type alias [`ParseStream`] which
238 /// is an alias for `&ParseBuffer`.
239 ///
240 /// `ParseStream` is the input type for all parser functions in Syn. They have
241 /// the signature `fn(ParseStream) -> Result<T>`.
242 ///
243 /// ## Calling a parser function
244 ///
245 /// There is no public way to construct a `ParseBuffer`. Instead, if you are
246 /// looking to invoke a parser function that requires `ParseStream` as input,
247 /// you will need to go through one of the public parsing entry points.
248 ///
249 /// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
250 /// - One of [the `syn::parse*` functions][syn-parse]; or
251 /// - A method of the [`Parser`] trait.
252 ///
253 /// [syn-parse]: index.html#the-synparse-functions
254 pub struct ParseBuffer<'a> {
255     scope: Span,
256     // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
257     // The rest of the code in this module needs to be careful that only a
258     // cursor derived from this `cell` is ever assigned to this `cell`.
259     //
260     // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
261     // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
262     // than 'a, and then assign a Cursor<'short> into the Cell.
263     //
264     // By extension, it would not be safe to expose an API that accepts a
265     // Cursor<'a> and trusts that it lives as long as the cursor currently in
266     // the cell.
267     cell: Cell<Cursor<'static>>,
268     marker: PhantomData<Cursor<'a>>,
269     unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
270 }
271 
272 impl<'a> Drop for ParseBuffer<'a> {
drop(&mut self)273     fn drop(&mut self) {
274         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
275             let (inner, old_span) = inner_unexpected(self);
276             if old_span.is_none() {
277                 inner.set(Unexpected::Some(unexpected_span));
278             }
279         }
280     }
281 }
282 
283 impl<'a> Display for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result284     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
285         Display::fmt(&self.cursor().token_stream(), f)
286     }
287 }
288 
289 impl<'a> Debug for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result290     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
291         Debug::fmt(&self.cursor().token_stream(), f)
292     }
293 }
294 
295 /// Cursor state associated with speculative parsing.
296 ///
297 /// This type is the input of the closure provided to [`ParseStream::step`].
298 ///
299 /// [`ParseStream::step`]: ParseBuffer::step
300 ///
301 /// # Example
302 ///
303 /// ```
304 /// use proc_macro2::TokenTree;
305 /// use syn::Result;
306 /// use syn::parse::ParseStream;
307 ///
308 /// // This function advances the stream past the next occurrence of `@`. If
309 /// // no `@` is present in the stream, the stream position is unchanged and
310 /// // an error is returned.
311 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
312 ///     input.step(|cursor| {
313 ///         let mut rest = *cursor;
314 ///         while let Some((tt, next)) = rest.token_tree() {
315 ///             match &tt {
316 ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
317 ///                     return Ok(((), next));
318 ///                 }
319 ///                 _ => rest = next,
320 ///             }
321 ///         }
322 ///         Err(cursor.error("no `@` was found after this point"))
323 ///     })
324 /// }
325 /// #
326 /// # fn remainder_after_skipping_past_next_at(
327 /// #     input: ParseStream,
328 /// # ) -> Result<proc_macro2::TokenStream> {
329 /// #     skip_past_next_at(input)?;
330 /// #     input.parse()
331 /// # }
332 /// #
333 /// # use syn::parse::Parser;
334 /// # let remainder = remainder_after_skipping_past_next_at
335 /// #     .parse_str("a @ b c")
336 /// #     .unwrap();
337 /// # assert_eq!(remainder.to_string(), "b c");
338 /// ```
339 #[derive(Copy, Clone)]
340 pub struct StepCursor<'c, 'a> {
341     scope: Span,
342     // This field is covariant in 'c.
343     cursor: Cursor<'c>,
344     // This field is contravariant in 'c. Together these make StepCursor
345     // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
346     // different lifetime but can upcast into a StepCursor with a shorter
347     // lifetime 'a.
348     //
349     // As long as we only ever construct a StepCursor for which 'c outlives 'a,
350     // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
351     // outlives 'a.
352     marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
353 }
354 
355 impl<'c, 'a> Deref for StepCursor<'c, 'a> {
356     type Target = Cursor<'c>;
357 
deref(&self) -> &Self::Target358     fn deref(&self) -> &Self::Target {
359         &self.cursor
360     }
361 }
362 
363 impl<'c, 'a> StepCursor<'c, 'a> {
364     /// Triggers an error at the current position of the parse stream.
365     ///
366     /// The `ParseStream::step` invocation will return this same error without
367     /// advancing the stream state.
error<T: Display>(self, message: T) -> Error368     pub fn error<T: Display>(self, message: T) -> Error {
369         error::new_at(self.scope, self.cursor, message)
370     }
371 }
372 
advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a>373 pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
374     // Refer to the comments within the StepCursor definition. We use the
375     // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
376     // Cursor is covariant in its lifetime parameter so we can cast a
377     // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
378     let _ = proof;
379     unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
380 }
381 
new_parse_buffer( scope: Span, cursor: Cursor, unexpected: Rc<Cell<Unexpected>>, ) -> ParseBuffer382 pub(crate) fn new_parse_buffer(
383     scope: Span,
384     cursor: Cursor,
385     unexpected: Rc<Cell<Unexpected>>,
386 ) -> ParseBuffer {
387     ParseBuffer {
388         scope,
389         // See comment on `cell` in the struct definition.
390         cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
391         marker: PhantomData,
392         unexpected: Cell::new(Some(unexpected)),
393     }
394 }
395 
396 #[derive(Clone)]
397 pub(crate) enum Unexpected {
398     None,
399     Some(Span),
400     Chain(Rc<Cell<Unexpected>>),
401 }
402 
403 impl Default for Unexpected {
default() -> Self404     fn default() -> Self {
405         Unexpected::None
406     }
407 }
408 
409 // We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
410 // swapping in a None is cheap.
cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T411 fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
412     let prev = cell.take();
413     let ret = prev.clone();
414     cell.set(prev);
415     ret
416 }
417 
inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>)418 fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
419     let mut unexpected = get_unexpected(buffer);
420     loop {
421         match cell_clone(&unexpected) {
422             Unexpected::None => return (unexpected, None),
423             Unexpected::Some(span) => return (unexpected, Some(span)),
424             Unexpected::Chain(next) => unexpected = next,
425         }
426     }
427 }
428 
get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>>429 pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
430     cell_clone(&buffer.unexpected).unwrap()
431 }
432 
span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span>433 fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
434     if cursor.eof() {
435         return None;
436     }
437     while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
438         if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
439             return Some(unexpected);
440         }
441         cursor = rest;
442     }
443     if cursor.eof() {
444         None
445     } else {
446         Some(cursor.span())
447     }
448 }
449 
450 impl<'a> ParseBuffer<'a> {
451     /// Parses a syntax tree node of type `T`, advancing the position of our
452     /// parse stream past it.
parse<T: Parse>(&self) -> Result<T>453     pub fn parse<T: Parse>(&self) -> Result<T> {
454         T::parse(self)
455     }
456 
457     /// Calls the given parser function to parse a syntax tree node of type `T`
458     /// from this stream.
459     ///
460     /// # Example
461     ///
462     /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
463     /// zero or more outer attributes.
464     ///
465     /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
466     ///
467     /// ```
468     /// use syn::{Attribute, Ident, Result, Token};
469     /// use syn::parse::{Parse, ParseStream};
470     ///
471     /// // Parses a unit struct with attributes.
472     /// //
473     /// //     #[path = "s.tmpl"]
474     /// //     struct S;
475     /// struct UnitStruct {
476     ///     attrs: Vec<Attribute>,
477     ///     struct_token: Token![struct],
478     ///     name: Ident,
479     ///     semi_token: Token![;],
480     /// }
481     ///
482     /// impl Parse for UnitStruct {
483     ///     fn parse(input: ParseStream) -> Result<Self> {
484     ///         Ok(UnitStruct {
485     ///             attrs: input.call(Attribute::parse_outer)?,
486     ///             struct_token: input.parse()?,
487     ///             name: input.parse()?,
488     ///             semi_token: input.parse()?,
489     ///         })
490     ///     }
491     /// }
492     /// ```
call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T>493     pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
494         function(self)
495     }
496 
497     /// Looks at the next token in the parse stream to determine whether it
498     /// matches the requested type of token.
499     ///
500     /// Does not advance the position of the parse stream.
501     ///
502     /// # Syntax
503     ///
504     /// Note that this method does not use turbofish syntax. Pass the peek type
505     /// inside of parentheses.
506     ///
507     /// - `input.peek(Token![struct])`
508     /// - `input.peek(Token![==])`
509     /// - `input.peek(Ident)`&emsp;*(does not accept keywords)*
510     /// - `input.peek(Ident::peek_any)`
511     /// - `input.peek(Lifetime)`
512     /// - `input.peek(token::Brace)`
513     ///
514     /// # Example
515     ///
516     /// In this example we finish parsing the list of supertraits when the next
517     /// token in the input is either `where` or an opening curly brace.
518     ///
519     /// ```
520     /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
521     /// use syn::parse::{Parse, ParseStream};
522     /// use syn::punctuated::Punctuated;
523     ///
524     /// // Parses a trait definition containing no associated items.
525     /// //
526     /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
527     /// struct MarkerTrait {
528     ///     trait_token: Token![trait],
529     ///     ident: Ident,
530     ///     generics: Generics,
531     ///     colon_token: Option<Token![:]>,
532     ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
533     ///     brace_token: token::Brace,
534     /// }
535     ///
536     /// impl Parse for MarkerTrait {
537     ///     fn parse(input: ParseStream) -> Result<Self> {
538     ///         let trait_token: Token![trait] = input.parse()?;
539     ///         let ident: Ident = input.parse()?;
540     ///         let mut generics: Generics = input.parse()?;
541     ///         let colon_token: Option<Token![:]> = input.parse()?;
542     ///
543     ///         let mut supertraits = Punctuated::new();
544     ///         if colon_token.is_some() {
545     ///             loop {
546     ///                 supertraits.push_value(input.parse()?);
547     ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
548     ///                     break;
549     ///                 }
550     ///                 supertraits.push_punct(input.parse()?);
551     ///             }
552     ///         }
553     ///
554     ///         generics.where_clause = input.parse()?;
555     ///         let content;
556     ///         let empty_brace_token = braced!(content in input);
557     ///
558     ///         Ok(MarkerTrait {
559     ///             trait_token,
560     ///             ident,
561     ///             generics,
562     ///             colon_token,
563     ///             supertraits,
564     ///             brace_token: empty_brace_token,
565     ///         })
566     ///     }
567     /// }
568     /// ```
peek<T: Peek>(&self, token: T) -> bool569     pub fn peek<T: Peek>(&self, token: T) -> bool {
570         let _ = token;
571         T::Token::peek(self.cursor())
572     }
573 
574     /// Looks at the second-next token in the parse stream.
575     ///
576     /// This is commonly useful as a way to implement contextual keywords.
577     ///
578     /// # Example
579     ///
580     /// This example needs to use `peek2` because the symbol `union` is not a
581     /// keyword in Rust. We can't use just `peek` and decide to parse a union if
582     /// the very next token is `union`, because someone is free to write a `mod
583     /// union` and a macro invocation that looks like `union::some_macro! { ...
584     /// }`. In other words `union` is a contextual keyword.
585     ///
586     /// ```
587     /// use syn::{Ident, ItemUnion, Macro, Result, Token};
588     /// use syn::parse::{Parse, ParseStream};
589     ///
590     /// // Parses either a union or a macro invocation.
591     /// enum UnionOrMacro {
592     ///     // union MaybeUninit<T> { uninit: (), value: T }
593     ///     Union(ItemUnion),
594     ///     // lazy_static! { ... }
595     ///     Macro(Macro),
596     /// }
597     ///
598     /// impl Parse for UnionOrMacro {
599     ///     fn parse(input: ParseStream) -> Result<Self> {
600     ///         if input.peek(Token![union]) && input.peek2(Ident) {
601     ///             input.parse().map(UnionOrMacro::Union)
602     ///         } else {
603     ///             input.parse().map(UnionOrMacro::Macro)
604     ///         }
605     ///     }
606     /// }
607     /// ```
peek2<T: Peek>(&self, token: T) -> bool608     pub fn peek2<T: Peek>(&self, token: T) -> bool {
609         let _ = token;
610         self.cursor().skip().map_or(false, T::Token::peek)
611     }
612 
613     /// Looks at the third-next token in the parse stream.
peek3<T: Peek>(&self, token: T) -> bool614     pub fn peek3<T: Peek>(&self, token: T) -> bool {
615         let _ = token;
616         self.cursor()
617             .skip()
618             .and_then(Cursor::skip)
619             .map_or(false, T::Token::peek)
620     }
621 
622     /// Parses zero or more occurrences of `T` separated by punctuation of type
623     /// `P`, with optional trailing punctuation.
624     ///
625     /// Parsing continues until the end of this parse stream. The entire content
626     /// of this parse stream must consist of `T` and `P`.
627     ///
628     /// # Example
629     ///
630     /// ```
631     /// # use quote::quote;
632     /// #
633     /// use syn::{parenthesized, token, Ident, Result, Token, Type};
634     /// use syn::parse::{Parse, ParseStream};
635     /// use syn::punctuated::Punctuated;
636     ///
637     /// // Parse a simplified tuple struct syntax like:
638     /// //
639     /// //     struct S(A, B);
640     /// struct TupleStruct {
641     ///     struct_token: Token![struct],
642     ///     ident: Ident,
643     ///     paren_token: token::Paren,
644     ///     fields: Punctuated<Type, Token![,]>,
645     ///     semi_token: Token![;],
646     /// }
647     ///
648     /// impl Parse for TupleStruct {
649     ///     fn parse(input: ParseStream) -> Result<Self> {
650     ///         let content;
651     ///         Ok(TupleStruct {
652     ///             struct_token: input.parse()?,
653     ///             ident: input.parse()?,
654     ///             paren_token: parenthesized!(content in input),
655     ///             fields: content.parse_terminated(Type::parse)?,
656     ///             semi_token: input.parse()?,
657     ///         })
658     ///     }
659     /// }
660     /// #
661     /// # let input = quote! {
662     /// #     struct S(A, B);
663     /// # };
664     /// # syn::parse2::<TupleStruct>(input).unwrap();
665     /// ```
parse_terminated<T, P: Parse>( &self, parser: fn(ParseStream) -> Result<T>, ) -> Result<Punctuated<T, P>>666     pub fn parse_terminated<T, P: Parse>(
667         &self,
668         parser: fn(ParseStream) -> Result<T>,
669     ) -> Result<Punctuated<T, P>> {
670         Punctuated::parse_terminated_with(self, parser)
671     }
672 
673     /// Returns whether there are tokens remaining in this stream.
674     ///
675     /// This method returns true at the end of the content of a set of
676     /// delimiters, as well as at the very end of the complete macro input.
677     ///
678     /// # Example
679     ///
680     /// ```
681     /// use syn::{braced, token, Ident, Item, Result, Token};
682     /// use syn::parse::{Parse, ParseStream};
683     ///
684     /// // Parses a Rust `mod m { ... }` containing zero or more items.
685     /// struct Mod {
686     ///     mod_token: Token![mod],
687     ///     name: Ident,
688     ///     brace_token: token::Brace,
689     ///     items: Vec<Item>,
690     /// }
691     ///
692     /// impl Parse for Mod {
693     ///     fn parse(input: ParseStream) -> Result<Self> {
694     ///         let content;
695     ///         Ok(Mod {
696     ///             mod_token: input.parse()?,
697     ///             name: input.parse()?,
698     ///             brace_token: braced!(content in input),
699     ///             items: {
700     ///                 let mut items = Vec::new();
701     ///                 while !content.is_empty() {
702     ///                     items.push(content.parse()?);
703     ///                 }
704     ///                 items
705     ///             },
706     ///         })
707     ///     }
708     /// }
709     /// ```
is_empty(&self) -> bool710     pub fn is_empty(&self) -> bool {
711         self.cursor().eof()
712     }
713 
714     /// Constructs a helper for peeking at the next token in this stream and
715     /// building an error message if it is not one of a set of expected tokens.
716     ///
717     /// # Example
718     ///
719     /// ```
720     /// use syn::{ConstParam, Ident, Lifetime, LifetimeDef, Result, Token, TypeParam};
721     /// use syn::parse::{Parse, ParseStream};
722     ///
723     /// // A generic parameter, a single one of the comma-separated elements inside
724     /// // angle brackets in:
725     /// //
726     /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
727     /// //
728     /// // On invalid input, lookahead gives us a reasonable error message.
729     /// //
730     /// //     error: expected one of: identifier, lifetime, `const`
731     /// //       |
732     /// //     5 |     fn f<!Sized>() {}
733     /// //       |          ^
734     /// enum GenericParam {
735     ///     Type(TypeParam),
736     ///     Lifetime(LifetimeDef),
737     ///     Const(ConstParam),
738     /// }
739     ///
740     /// impl Parse for GenericParam {
741     ///     fn parse(input: ParseStream) -> Result<Self> {
742     ///         let lookahead = input.lookahead1();
743     ///         if lookahead.peek(Ident) {
744     ///             input.parse().map(GenericParam::Type)
745     ///         } else if lookahead.peek(Lifetime) {
746     ///             input.parse().map(GenericParam::Lifetime)
747     ///         } else if lookahead.peek(Token![const]) {
748     ///             input.parse().map(GenericParam::Const)
749     ///         } else {
750     ///             Err(lookahead.error())
751     ///         }
752     ///     }
753     /// }
754     /// ```
lookahead1(&self) -> Lookahead1<'a>755     pub fn lookahead1(&self) -> Lookahead1<'a> {
756         lookahead::new(self.scope, self.cursor())
757     }
758 
759     /// Forks a parse stream so that parsing tokens out of either the original
760     /// or the fork does not advance the position of the other.
761     ///
762     /// # Performance
763     ///
764     /// Forking a parse stream is a cheap fixed amount of work and does not
765     /// involve copying token buffers. Where you might hit performance problems
766     /// is if your macro ends up parsing a large amount of content more than
767     /// once.
768     ///
769     /// ```
770     /// # use syn::{Expr, Result};
771     /// # use syn::parse::ParseStream;
772     /// #
773     /// # fn bad(input: ParseStream) -> Result<Expr> {
774     /// // Do not do this.
775     /// if input.fork().parse::<Expr>().is_ok() {
776     ///     return input.parse::<Expr>();
777     /// }
778     /// # unimplemented!()
779     /// # }
780     /// ```
781     ///
782     /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
783     /// parse stream. Only use a fork when the amount of work performed against
784     /// the fork is small and bounded.
785     ///
786     /// When complex speculative parsing against the forked stream is
787     /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
788     /// original stream once the fork's parse is determined to have been
789     /// successful.
790     ///
791     /// For a lower level way to perform speculative parsing at the token level,
792     /// consider using [`ParseStream::step`] instead.
793     ///
794     /// [`parse::discouraged::Speculative`]: discouraged::Speculative
795     /// [`ParseStream::step`]: ParseBuffer::step
796     ///
797     /// # Example
798     ///
799     /// The parse implementation shown here parses possibly restricted `pub`
800     /// visibilities.
801     ///
802     /// - `pub`
803     /// - `pub(crate)`
804     /// - `pub(self)`
805     /// - `pub(super)`
806     /// - `pub(in some::path)`
807     ///
808     /// To handle the case of visibilities inside of tuple structs, the parser
809     /// needs to distinguish parentheses that specify visibility restrictions
810     /// from parentheses that form part of a tuple type.
811     ///
812     /// ```
813     /// # struct A;
814     /// # struct B;
815     /// # struct C;
816     /// #
817     /// struct S(pub(crate) A, pub (B, C));
818     /// ```
819     ///
820     /// In this example input the first tuple struct element of `S` has
821     /// `pub(crate)` visibility while the second tuple struct element has `pub`
822     /// visibility; the parentheses around `(B, C)` are part of the type rather
823     /// than part of a visibility restriction.
824     ///
825     /// The parser uses a forked parse stream to check the first token inside of
826     /// parentheses after the `pub` keyword. This is a small bounded amount of
827     /// work performed against the forked parse stream.
828     ///
829     /// ```
830     /// use syn::{parenthesized, token, Ident, Path, Result, Token};
831     /// use syn::ext::IdentExt;
832     /// use syn::parse::{Parse, ParseStream};
833     ///
834     /// struct PubVisibility {
835     ///     pub_token: Token![pub],
836     ///     restricted: Option<Restricted>,
837     /// }
838     ///
839     /// struct Restricted {
840     ///     paren_token: token::Paren,
841     ///     in_token: Option<Token![in]>,
842     ///     path: Path,
843     /// }
844     ///
845     /// impl Parse for PubVisibility {
846     ///     fn parse(input: ParseStream) -> Result<Self> {
847     ///         let pub_token: Token![pub] = input.parse()?;
848     ///
849     ///         if input.peek(token::Paren) {
850     ///             let ahead = input.fork();
851     ///             let mut content;
852     ///             parenthesized!(content in ahead);
853     ///
854     ///             if content.peek(Token![crate])
855     ///                 || content.peek(Token![self])
856     ///                 || content.peek(Token![super])
857     ///             {
858     ///                 return Ok(PubVisibility {
859     ///                     pub_token,
860     ///                     restricted: Some(Restricted {
861     ///                         paren_token: parenthesized!(content in input),
862     ///                         in_token: None,
863     ///                         path: Path::from(content.call(Ident::parse_any)?),
864     ///                     }),
865     ///                 });
866     ///             } else if content.peek(Token![in]) {
867     ///                 return Ok(PubVisibility {
868     ///                     pub_token,
869     ///                     restricted: Some(Restricted {
870     ///                         paren_token: parenthesized!(content in input),
871     ///                         in_token: Some(content.parse()?),
872     ///                         path: content.call(Path::parse_mod_style)?,
873     ///                     }),
874     ///                 });
875     ///             }
876     ///         }
877     ///
878     ///         Ok(PubVisibility {
879     ///             pub_token,
880     ///             restricted: None,
881     ///         })
882     ///     }
883     /// }
884     /// ```
fork(&self) -> Self885     pub fn fork(&self) -> Self {
886         ParseBuffer {
887             scope: self.scope,
888             cell: self.cell.clone(),
889             marker: PhantomData,
890             // Not the parent's unexpected. Nothing cares whether the clone
891             // parses all the way unless we `advance_to`.
892             unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
893         }
894     }
895 
896     /// Triggers an error at the current position of the parse stream.
897     ///
898     /// # Example
899     ///
900     /// ```
901     /// use syn::{Expr, Result, Token};
902     /// use syn::parse::{Parse, ParseStream};
903     ///
904     /// // Some kind of loop: `while` or `for` or `loop`.
905     /// struct Loop {
906     ///     expr: Expr,
907     /// }
908     ///
909     /// impl Parse for Loop {
910     ///     fn parse(input: ParseStream) -> Result<Self> {
911     ///         if input.peek(Token![while])
912     ///             || input.peek(Token![for])
913     ///             || input.peek(Token![loop])
914     ///         {
915     ///             Ok(Loop {
916     ///                 expr: input.parse()?,
917     ///             })
918     ///         } else {
919     ///             Err(input.error("expected some kind of loop"))
920     ///         }
921     ///     }
922     /// }
923     /// ```
error<T: Display>(&self, message: T) -> Error924     pub fn error<T: Display>(&self, message: T) -> Error {
925         error::new_at(self.scope, self.cursor(), message)
926     }
927 
928     /// Speculatively parses tokens from this parse stream, advancing the
929     /// position of this stream only if parsing succeeds.
930     ///
931     /// This is a powerful low-level API used for defining the `Parse` impls of
932     /// the basic built-in token types. It is not something that will be used
933     /// widely outside of the Syn codebase.
934     ///
935     /// # Example
936     ///
937     /// ```
938     /// use proc_macro2::TokenTree;
939     /// use syn::Result;
940     /// use syn::parse::ParseStream;
941     ///
942     /// // This function advances the stream past the next occurrence of `@`. If
943     /// // no `@` is present in the stream, the stream position is unchanged and
944     /// // an error is returned.
945     /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
946     ///     input.step(|cursor| {
947     ///         let mut rest = *cursor;
948     ///         while let Some((tt, next)) = rest.token_tree() {
949     ///             match &tt {
950     ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
951     ///                     return Ok(((), next));
952     ///                 }
953     ///                 _ => rest = next,
954     ///             }
955     ///         }
956     ///         Err(cursor.error("no `@` was found after this point"))
957     ///     })
958     /// }
959     /// #
960     /// # fn remainder_after_skipping_past_next_at(
961     /// #     input: ParseStream,
962     /// # ) -> Result<proc_macro2::TokenStream> {
963     /// #     skip_past_next_at(input)?;
964     /// #     input.parse()
965     /// # }
966     /// #
967     /// # use syn::parse::Parser;
968     /// # let remainder = remainder_after_skipping_past_next_at
969     /// #     .parse_str("a @ b c")
970     /// #     .unwrap();
971     /// # assert_eq!(remainder.to_string(), "b c");
972     /// ```
step<F, R>(&self, function: F) -> Result<R> where F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,973     pub fn step<F, R>(&self, function: F) -> Result<R>
974     where
975         F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
976     {
977         // Since the user's function is required to work for any 'c, we know
978         // that the Cursor<'c> they return is either derived from the input
979         // StepCursor<'c, 'a> or from a Cursor<'static>.
980         //
981         // It would not be legal to write this function without the invariant
982         // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
983         // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
984         // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
985         // `step` on their ParseBuffer<'short> with a closure that returns
986         // Cursor<'short>, and we would wrongly write that Cursor<'short> into
987         // the Cell intended to hold Cursor<'a>.
988         //
989         // In some cases it may be necessary for R to contain a Cursor<'a>.
990         // Within Syn we solve this using `advance_step_cursor` which uses the
991         // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
992         // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
993         // safe to expose that API as a method on StepCursor.
994         let (node, rest) = function(StepCursor {
995             scope: self.scope,
996             cursor: self.cell.get(),
997             marker: PhantomData,
998         })?;
999         self.cell.set(rest);
1000         Ok(node)
1001     }
1002 
1003     /// Returns the `Span` of the next token in the parse stream, or
1004     /// `Span::call_site()` if this parse stream has completely exhausted its
1005     /// input `TokenStream`.
span(&self) -> Span1006     pub fn span(&self) -> Span {
1007         let cursor = self.cursor();
1008         if cursor.eof() {
1009             self.scope
1010         } else {
1011             crate::buffer::open_span_of_group(cursor)
1012         }
1013     }
1014 
1015     /// Provides low-level access to the token representation underlying this
1016     /// parse stream.
1017     ///
1018     /// Cursors are immutable so no operations you perform against the cursor
1019     /// will affect the state of this parse stream.
cursor(&self) -> Cursor<'a>1020     pub fn cursor(&self) -> Cursor<'a> {
1021         self.cell.get()
1022     }
1023 
check_unexpected(&self) -> Result<()>1024     fn check_unexpected(&self) -> Result<()> {
1025         match inner_unexpected(self).1 {
1026             Some(span) => Err(Error::new(span, "unexpected token")),
1027             None => Ok(()),
1028         }
1029     }
1030 }
1031 
1032 impl<T: Parse> Parse for Box<T> {
parse(input: ParseStream) -> Result<Self>1033     fn parse(input: ParseStream) -> Result<Self> {
1034         input.parse().map(Box::new)
1035     }
1036 }
1037 
1038 impl<T: Parse + Token> Parse for Option<T> {
parse(input: ParseStream) -> Result<Self>1039     fn parse(input: ParseStream) -> Result<Self> {
1040         if T::peek(input.cursor()) {
1041             Ok(Some(input.parse()?))
1042         } else {
1043             Ok(None)
1044         }
1045     }
1046 }
1047 
1048 impl Parse for TokenStream {
parse(input: ParseStream) -> Result<Self>1049     fn parse(input: ParseStream) -> Result<Self> {
1050         input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1051     }
1052 }
1053 
1054 impl Parse for TokenTree {
parse(input: ParseStream) -> Result<Self>1055     fn parse(input: ParseStream) -> Result<Self> {
1056         input.step(|cursor| match cursor.token_tree() {
1057             Some((tt, rest)) => Ok((tt, rest)),
1058             None => Err(cursor.error("expected token tree")),
1059         })
1060     }
1061 }
1062 
1063 impl Parse for Group {
parse(input: ParseStream) -> Result<Self>1064     fn parse(input: ParseStream) -> Result<Self> {
1065         input.step(|cursor| {
1066             for delim in &[Delimiter::Parenthesis, Delimiter::Brace, Delimiter::Bracket] {
1067                 if let Some((inside, span, rest)) = cursor.group(*delim) {
1068                     let mut group = Group::new(*delim, inside.token_stream());
1069                     group.set_span(span);
1070                     return Ok((group, rest));
1071                 }
1072             }
1073             Err(cursor.error("expected group token"))
1074         })
1075     }
1076 }
1077 
1078 impl Parse for Punct {
parse(input: ParseStream) -> Result<Self>1079     fn parse(input: ParseStream) -> Result<Self> {
1080         input.step(|cursor| match cursor.punct() {
1081             Some((punct, rest)) => Ok((punct, rest)),
1082             None => Err(cursor.error("expected punctuation token")),
1083         })
1084     }
1085 }
1086 
1087 impl Parse for Literal {
parse(input: ParseStream) -> Result<Self>1088     fn parse(input: ParseStream) -> Result<Self> {
1089         input.step(|cursor| match cursor.literal() {
1090             Some((literal, rest)) => Ok((literal, rest)),
1091             None => Err(cursor.error("expected literal token")),
1092         })
1093     }
1094 }
1095 
1096 /// Parser that can parse Rust tokens into a particular syntax tree node.
1097 ///
1098 /// Refer to the [module documentation] for details about parsing in Syn.
1099 ///
1100 /// [module documentation]: self
1101 ///
1102 /// *This trait is available only if Syn is built with the `"parsing"` feature.*
1103 pub trait Parser: Sized {
1104     type Output;
1105 
1106     /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1107     ///
1108     /// This function will check that the input is fully parsed. If there are
1109     /// any unparsed tokens at the end of the stream, an error is returned.
parse2(self, tokens: TokenStream) -> Result<Self::Output>1110     fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1111 
1112     /// Parse tokens of source code into the chosen syntax tree node.
1113     ///
1114     /// This function will check that the input is fully parsed. If there are
1115     /// any unparsed tokens at the end of the stream, an error is returned.
1116     ///
1117     /// *This method is available only if Syn is built with both the `"parsing"` and
1118     /// `"proc-macro"` features.*
1119     #[cfg(all(
1120         not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
1121         feature = "proc-macro"
1122     ))]
parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output>1123     fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1124         self.parse2(proc_macro2::TokenStream::from(tokens))
1125     }
1126 
1127     /// Parse a string of Rust code into the chosen syntax tree node.
1128     ///
1129     /// This function will check that the input is fully parsed. If there are
1130     /// any unparsed tokens at the end of the string, an error is returned.
1131     ///
1132     /// # Hygiene
1133     ///
1134     /// Every span in the resulting syntax tree will be set to resolve at the
1135     /// macro call site.
parse_str(self, s: &str) -> Result<Self::Output>1136     fn parse_str(self, s: &str) -> Result<Self::Output> {
1137         self.parse2(proc_macro2::TokenStream::from_str(s)?)
1138     }
1139 
1140     // Not public API.
1141     #[doc(hidden)]
1142     #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1143     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1144         let _ = scope;
1145         self.parse2(tokens)
1146     }
1147 
1148     // Not public API.
1149     #[doc(hidden)]
1150     #[cfg(any(feature = "full", feature = "derive"))]
__parse_stream(self, input: ParseStream) -> Result<Self::Output>1151     fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1152         input.parse().and_then(|tokens| self.parse2(tokens))
1153     }
1154 }
1155 
tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer1156 fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1157     let scope = Span::call_site();
1158     let cursor = tokens.begin();
1159     let unexpected = Rc::new(Cell::new(Unexpected::None));
1160     new_parse_buffer(scope, cursor, unexpected)
1161 }
1162 
1163 impl<F, T> Parser for F
1164 where
1165     F: FnOnce(ParseStream) -> Result<T>,
1166 {
1167     type Output = T;
1168 
parse2(self, tokens: TokenStream) -> Result<T>1169     fn parse2(self, tokens: TokenStream) -> Result<T> {
1170         let buf = TokenBuffer::new2(tokens);
1171         let state = tokens_to_parse_buffer(&buf);
1172         let node = self(&state)?;
1173         state.check_unexpected()?;
1174         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1175             Err(Error::new(unexpected_span, "unexpected token"))
1176         } else {
1177             Ok(node)
1178         }
1179     }
1180 
1181     #[doc(hidden)]
1182     #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1183     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1184         let buf = TokenBuffer::new2(tokens);
1185         let cursor = buf.begin();
1186         let unexpected = Rc::new(Cell::new(Unexpected::None));
1187         let state = new_parse_buffer(scope, cursor, unexpected);
1188         let node = self(&state)?;
1189         state.check_unexpected()?;
1190         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1191             Err(Error::new(unexpected_span, "unexpected token"))
1192         } else {
1193             Ok(node)
1194         }
1195     }
1196 
1197     #[doc(hidden)]
1198     #[cfg(any(feature = "full", feature = "derive"))]
__parse_stream(self, input: ParseStream) -> Result<Self::Output>1199     fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1200         self(input)
1201     }
1202 }
1203 
1204 #[cfg(any(feature = "full", feature = "derive"))]
parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output>1205 pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1206     f.__parse_scoped(scope, tokens)
1207 }
1208 
1209 #[cfg(any(feature = "full", feature = "derive"))]
parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output>1210 pub(crate) fn parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output> {
1211     f.__parse_stream(input)
1212 }
1213 
1214 /// An empty syntax tree node that consumes no tokens when parsed.
1215 ///
1216 /// This is useful for attribute macros that want to ensure they are not
1217 /// provided any attribute args.
1218 ///
1219 /// ```
1220 /// # extern crate proc_macro;
1221 /// #
1222 /// use proc_macro::TokenStream;
1223 /// use syn::parse_macro_input;
1224 /// use syn::parse::Nothing;
1225 ///
1226 /// # const IGNORE: &str = stringify! {
1227 /// #[proc_macro_attribute]
1228 /// # };
1229 /// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1230 ///     parse_macro_input!(args as Nothing);
1231 ///
1232 ///     /* ... */
1233 /// #   "".parse().unwrap()
1234 /// }
1235 /// ```
1236 ///
1237 /// ```text
1238 /// error: unexpected token
1239 ///  --> src/main.rs:3:19
1240 ///   |
1241 /// 3 | #[my_attr(asdf)]
1242 ///   |           ^^^^
1243 /// ```
1244 pub struct Nothing;
1245 
1246 impl Parse for Nothing {
parse(_input: ParseStream) -> Result<Self>1247     fn parse(_input: ParseStream) -> Result<Self> {
1248         Ok(Nothing)
1249     }
1250 }
1251