1 /* Extended regular expression matching and search library.
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <https://www.gnu.org/licenses/>. */
19
20 static void re_string_construct_common (const char *str, Idx len,
21 re_string_t *pstr,
22 RE_TRANSLATE_TYPE trans, bool icase,
23 const re_dfa_t *dfa);
24 static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa,
25 const re_node_set *nodes,
26 re_hashval_t hash);
27 static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa,
28 const re_node_set *nodes,
29 unsigned int context,
30 re_hashval_t hash);
31 static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr,
32 Idx new_buf_len);
33 #ifdef RE_ENABLE_I18N
34 static void build_wcs_buffer (re_string_t *pstr);
35 static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr);
36 #endif /* RE_ENABLE_I18N */
37 static void build_upper_buffer (re_string_t *pstr);
38 static void re_string_translate_buffer (re_string_t *pstr);
39 static unsigned int re_string_context_at (const re_string_t *input, Idx idx,
40 int eflags) __attribute__ ((pure));
41
42 /* Functions for string operation. */
43
44 /* This function allocate the buffers. It is necessary to call
45 re_string_reconstruct before using the object. */
46
47 static reg_errcode_t
48 __attribute_warn_unused_result__
re_string_allocate(re_string_t * pstr,const char * str,Idx len,Idx init_len,RE_TRANSLATE_TYPE trans,bool icase,const re_dfa_t * dfa)49 re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len,
50 RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa)
51 {
52 reg_errcode_t ret;
53 Idx init_buf_len;
54
55 /* Ensure at least one character fits into the buffers. */
56 if (init_len < dfa->mb_cur_max)
57 init_len = dfa->mb_cur_max;
58 init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
59 re_string_construct_common (str, len, pstr, trans, icase, dfa);
60
61 ret = re_string_realloc_buffers (pstr, init_buf_len);
62 if (__glibc_unlikely (ret != REG_NOERROR))
63 return ret;
64
65 pstr->word_char = dfa->word_char;
66 pstr->word_ops_used = dfa->word_ops_used;
67 pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
68 pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
69 pstr->valid_raw_len = pstr->valid_len;
70 return REG_NOERROR;
71 }
72
73 /* This function allocate the buffers, and initialize them. */
74
75 static reg_errcode_t
76 __attribute_warn_unused_result__
re_string_construct(re_string_t * pstr,const char * str,Idx len,RE_TRANSLATE_TYPE trans,bool icase,const re_dfa_t * dfa)77 re_string_construct (re_string_t *pstr, const char *str, Idx len,
78 RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa)
79 {
80 reg_errcode_t ret;
81 memset (pstr, '\0', sizeof (re_string_t));
82 re_string_construct_common (str, len, pstr, trans, icase, dfa);
83
84 if (len > 0)
85 {
86 ret = re_string_realloc_buffers (pstr, len + 1);
87 if (__glibc_unlikely (ret != REG_NOERROR))
88 return ret;
89 }
90 pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
91
92 if (icase)
93 {
94 #ifdef RE_ENABLE_I18N
95 if (dfa->mb_cur_max > 1)
96 {
97 while (1)
98 {
99 ret = build_wcs_upper_buffer (pstr);
100 if (__glibc_unlikely (ret != REG_NOERROR))
101 return ret;
102 if (pstr->valid_raw_len >= len)
103 break;
104 if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
105 break;
106 ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
107 if (__glibc_unlikely (ret != REG_NOERROR))
108 return ret;
109 }
110 }
111 else
112 #endif /* RE_ENABLE_I18N */
113 build_upper_buffer (pstr);
114 }
115 else
116 {
117 #ifdef RE_ENABLE_I18N
118 if (dfa->mb_cur_max > 1)
119 build_wcs_buffer (pstr);
120 else
121 #endif /* RE_ENABLE_I18N */
122 {
123 if (trans != NULL)
124 re_string_translate_buffer (pstr);
125 else
126 {
127 pstr->valid_len = pstr->bufs_len;
128 pstr->valid_raw_len = pstr->bufs_len;
129 }
130 }
131 }
132
133 return REG_NOERROR;
134 }
135
136 /* Helper functions for re_string_allocate, and re_string_construct. */
137
138 static reg_errcode_t
139 __attribute_warn_unused_result__
re_string_realloc_buffers(re_string_t * pstr,Idx new_buf_len)140 re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len)
141 {
142 #ifdef RE_ENABLE_I18N
143 if (pstr->mb_cur_max > 1)
144 {
145 wint_t *new_wcs;
146
147 /* Avoid overflow in realloc. */
148 const size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx));
149 if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size)
150 < new_buf_len))
151 return REG_ESPACE;
152
153 new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
154 if (__glibc_unlikely (new_wcs == NULL))
155 return REG_ESPACE;
156 pstr->wcs = new_wcs;
157 if (pstr->offsets != NULL)
158 {
159 Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len);
160 if (__glibc_unlikely (new_offsets == NULL))
161 return REG_ESPACE;
162 pstr->offsets = new_offsets;
163 }
164 }
165 #endif /* RE_ENABLE_I18N */
166 if (pstr->mbs_allocated)
167 {
168 unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,
169 new_buf_len);
170 if (__glibc_unlikely (new_mbs == NULL))
171 return REG_ESPACE;
172 pstr->mbs = new_mbs;
173 }
174 pstr->bufs_len = new_buf_len;
175 return REG_NOERROR;
176 }
177
178
179 static void
re_string_construct_common(const char * str,Idx len,re_string_t * pstr,RE_TRANSLATE_TYPE trans,bool icase,const re_dfa_t * dfa)180 re_string_construct_common (const char *str, Idx len, re_string_t *pstr,
181 RE_TRANSLATE_TYPE trans, bool icase,
182 const re_dfa_t *dfa)
183 {
184 pstr->raw_mbs = (const unsigned char *) str;
185 pstr->len = len;
186 pstr->raw_len = len;
187 pstr->trans = trans;
188 pstr->icase = icase;
189 pstr->mbs_allocated = (trans != NULL || icase);
190 pstr->mb_cur_max = dfa->mb_cur_max;
191 pstr->is_utf8 = dfa->is_utf8;
192 pstr->map_notascii = dfa->map_notascii;
193 pstr->stop = pstr->len;
194 pstr->raw_stop = pstr->stop;
195 }
196
197 #ifdef RE_ENABLE_I18N
198
199 /* Build wide character buffer PSTR->WCS.
200 If the byte sequence of the string are:
201 <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
202 Then wide character buffer will be:
203 <wc1> , WEOF , <wc2> , WEOF , <wc3>
204 We use WEOF for padding, they indicate that the position isn't
205 a first byte of a multibyte character.
206
207 Note that this function assumes PSTR->VALID_LEN elements are already
208 built and starts from PSTR->VALID_LEN. */
209
210 static void
build_wcs_buffer(re_string_t * pstr)211 build_wcs_buffer (re_string_t *pstr)
212 {
213 #ifdef _LIBC
214 unsigned char buf[MB_LEN_MAX];
215 DEBUG_ASSERT (MB_LEN_MAX >= pstr->mb_cur_max);
216 #else
217 unsigned char buf[64];
218 #endif
219 mbstate_t prev_st;
220 Idx byte_idx, end_idx, remain_len;
221 size_t mbclen;
222
223 /* Build the buffers from pstr->valid_len to either pstr->len or
224 pstr->bufs_len. */
225 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
226 for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
227 {
228 wchar_t wc;
229 const char *p;
230
231 remain_len = end_idx - byte_idx;
232 prev_st = pstr->cur_state;
233 /* Apply the translation if we need. */
234 if (__glibc_unlikely (pstr->trans != NULL))
235 {
236 int i, ch;
237
238 for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
239 {
240 ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
241 buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch];
242 }
243 p = (const char *) buf;
244 }
245 else
246 p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
247 mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
248 if (__glibc_unlikely (mbclen == (size_t) -1 || mbclen == 0
249 || (mbclen == (size_t) -2
250 && pstr->bufs_len >= pstr->len)))
251 {
252 /* We treat these cases as a singlebyte character. */
253 mbclen = 1;
254 wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
255 if (__glibc_unlikely (pstr->trans != NULL))
256 wc = pstr->trans[wc];
257 pstr->cur_state = prev_st;
258 }
259 else if (__glibc_unlikely (mbclen == (size_t) -2))
260 {
261 /* The buffer doesn't have enough space, finish to build. */
262 pstr->cur_state = prev_st;
263 break;
264 }
265
266 /* Write wide character and padding. */
267 pstr->wcs[byte_idx++] = wc;
268 /* Write paddings. */
269 for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
270 pstr->wcs[byte_idx++] = WEOF;
271 }
272 pstr->valid_len = byte_idx;
273 pstr->valid_raw_len = byte_idx;
274 }
275
276 /* Build wide character buffer PSTR->WCS like build_wcs_buffer,
277 but for REG_ICASE. */
278
279 static reg_errcode_t
280 __attribute_warn_unused_result__
build_wcs_upper_buffer(re_string_t * pstr)281 build_wcs_upper_buffer (re_string_t *pstr)
282 {
283 mbstate_t prev_st;
284 Idx src_idx, byte_idx, end_idx, remain_len;
285 size_t mbclen;
286 #ifdef _LIBC
287 char buf[MB_LEN_MAX];
288 DEBUG_ASSERT (pstr->mb_cur_max <= MB_LEN_MAX);
289 #else
290 char buf[64];
291 #endif
292
293 byte_idx = pstr->valid_len;
294 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
295
296 /* The following optimization assumes that ASCII characters can be
297 mapped to wide characters with a simple cast. */
298 if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
299 {
300 while (byte_idx < end_idx)
301 {
302 wchar_t wc;
303 unsigned char ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
304
305 if (isascii (ch) && mbsinit (&pstr->cur_state))
306 {
307 /* The next step uses the assumption that wchar_t is encoded
308 ASCII-safe: all ASCII values can be converted like this. */
309 wchar_t wcu = __towupper (ch);
310 if (isascii (wcu))
311 {
312 pstr->mbs[byte_idx] = wcu;
313 pstr->wcs[byte_idx] = wcu;
314 byte_idx++;
315 continue;
316 }
317 }
318
319 remain_len = end_idx - byte_idx;
320 prev_st = pstr->cur_state;
321 mbclen = __mbrtowc (&wc,
322 ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
323 + byte_idx), remain_len, &pstr->cur_state);
324 if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2))
325 {
326 wchar_t wcu = __towupper (wc);
327 if (wcu != wc)
328 {
329 size_t mbcdlen;
330
331 mbcdlen = __wcrtomb (buf, wcu, &prev_st);
332 if (__glibc_likely (mbclen == mbcdlen))
333 memcpy (pstr->mbs + byte_idx, buf, mbclen);
334 else
335 {
336 src_idx = byte_idx;
337 goto offsets_needed;
338 }
339 }
340 else
341 memcpy (pstr->mbs + byte_idx,
342 pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
343 pstr->wcs[byte_idx++] = wcu;
344 /* Write paddings. */
345 for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
346 pstr->wcs[byte_idx++] = WEOF;
347 }
348 else if (mbclen == (size_t) -1 || mbclen == 0
349 || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len))
350 {
351 /* It is an invalid character, an incomplete character
352 at the end of the string, or '\0'. Just use the byte. */
353 pstr->mbs[byte_idx] = ch;
354 /* And also cast it to wide char. */
355 pstr->wcs[byte_idx++] = (wchar_t) ch;
356 if (__glibc_unlikely (mbclen == (size_t) -1))
357 pstr->cur_state = prev_st;
358 }
359 else
360 {
361 /* The buffer doesn't have enough space, finish to build. */
362 pstr->cur_state = prev_st;
363 break;
364 }
365 }
366 pstr->valid_len = byte_idx;
367 pstr->valid_raw_len = byte_idx;
368 return REG_NOERROR;
369 }
370 else
371 for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
372 {
373 wchar_t wc;
374 const char *p;
375 offsets_needed:
376 remain_len = end_idx - byte_idx;
377 prev_st = pstr->cur_state;
378 if (__glibc_unlikely (pstr->trans != NULL))
379 {
380 int i, ch;
381
382 for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
383 {
384 ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
385 buf[i] = pstr->trans[ch];
386 }
387 p = (const char *) buf;
388 }
389 else
390 p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
391 mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
392 if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2))
393 {
394 wchar_t wcu = __towupper (wc);
395 if (wcu != wc)
396 {
397 size_t mbcdlen;
398
399 mbcdlen = __wcrtomb ((char *) buf, wcu, &prev_st);
400 if (__glibc_likely (mbclen == mbcdlen))
401 memcpy (pstr->mbs + byte_idx, buf, mbclen);
402 else if (mbcdlen != (size_t) -1)
403 {
404 size_t i;
405
406 if (byte_idx + mbcdlen > pstr->bufs_len)
407 {
408 pstr->cur_state = prev_st;
409 break;
410 }
411
412 if (pstr->offsets == NULL)
413 {
414 pstr->offsets = re_malloc (Idx, pstr->bufs_len);
415
416 if (pstr->offsets == NULL)
417 return REG_ESPACE;
418 }
419 if (!pstr->offsets_needed)
420 {
421 for (i = 0; i < (size_t) byte_idx; ++i)
422 pstr->offsets[i] = i;
423 pstr->offsets_needed = 1;
424 }
425
426 memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
427 pstr->wcs[byte_idx] = wcu;
428 pstr->offsets[byte_idx] = src_idx;
429 for (i = 1; i < mbcdlen; ++i)
430 {
431 pstr->offsets[byte_idx + i]
432 = src_idx + (i < mbclen ? i : mbclen - 1);
433 pstr->wcs[byte_idx + i] = WEOF;
434 }
435 pstr->len += mbcdlen - mbclen;
436 if (pstr->raw_stop > src_idx)
437 pstr->stop += mbcdlen - mbclen;
438 end_idx = (pstr->bufs_len > pstr->len)
439 ? pstr->len : pstr->bufs_len;
440 byte_idx += mbcdlen;
441 src_idx += mbclen;
442 continue;
443 }
444 else
445 memcpy (pstr->mbs + byte_idx, p, mbclen);
446 }
447 else
448 memcpy (pstr->mbs + byte_idx, p, mbclen);
449
450 if (__glibc_unlikely (pstr->offsets_needed != 0))
451 {
452 size_t i;
453 for (i = 0; i < mbclen; ++i)
454 pstr->offsets[byte_idx + i] = src_idx + i;
455 }
456 src_idx += mbclen;
457
458 pstr->wcs[byte_idx++] = wcu;
459 /* Write paddings. */
460 for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
461 pstr->wcs[byte_idx++] = WEOF;
462 }
463 else if (mbclen == (size_t) -1 || mbclen == 0
464 || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len))
465 {
466 /* It is an invalid character or '\0'. Just use the byte. */
467 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
468
469 if (__glibc_unlikely (pstr->trans != NULL))
470 ch = pstr->trans [ch];
471 pstr->mbs[byte_idx] = ch;
472
473 if (__glibc_unlikely (pstr->offsets_needed != 0))
474 pstr->offsets[byte_idx] = src_idx;
475 ++src_idx;
476
477 /* And also cast it to wide char. */
478 pstr->wcs[byte_idx++] = (wchar_t) ch;
479 if (__glibc_unlikely (mbclen == (size_t) -1))
480 pstr->cur_state = prev_st;
481 }
482 else
483 {
484 /* The buffer doesn't have enough space, finish to build. */
485 pstr->cur_state = prev_st;
486 break;
487 }
488 }
489 pstr->valid_len = byte_idx;
490 pstr->valid_raw_len = src_idx;
491 return REG_NOERROR;
492 }
493
494 /* Skip characters until the index becomes greater than NEW_RAW_IDX.
495 Return the index. */
496
497 static Idx
re_string_skip_chars(re_string_t * pstr,Idx new_raw_idx,wint_t * last_wc)498 re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc)
499 {
500 mbstate_t prev_st;
501 Idx rawbuf_idx;
502 size_t mbclen;
503 wint_t wc = WEOF;
504
505 /* Skip the characters which are not necessary to check. */
506 for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
507 rawbuf_idx < new_raw_idx;)
508 {
509 wchar_t wc2;
510 Idx remain_len = pstr->raw_len - rawbuf_idx;
511 prev_st = pstr->cur_state;
512 mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx,
513 remain_len, &pstr->cur_state);
514 if (__glibc_unlikely (mbclen == (size_t) -2 || mbclen == (size_t) -1
515 || mbclen == 0))
516 {
517 /* We treat these cases as a single byte character. */
518 if (mbclen == 0 || remain_len == 0)
519 wc = L'\0';
520 else
521 wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx);
522 mbclen = 1;
523 pstr->cur_state = prev_st;
524 }
525 else
526 wc = wc2;
527 /* Then proceed the next character. */
528 rawbuf_idx += mbclen;
529 }
530 *last_wc = wc;
531 return rawbuf_idx;
532 }
533 #endif /* RE_ENABLE_I18N */
534
535 /* Build the buffer PSTR->MBS, and apply the translation if we need.
536 This function is used in case of REG_ICASE. */
537
538 static void
build_upper_buffer(re_string_t * pstr)539 build_upper_buffer (re_string_t *pstr)
540 {
541 Idx char_idx, end_idx;
542 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
543
544 for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
545 {
546 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
547 if (__glibc_unlikely (pstr->trans != NULL))
548 ch = pstr->trans[ch];
549 pstr->mbs[char_idx] = toupper (ch);
550 }
551 pstr->valid_len = char_idx;
552 pstr->valid_raw_len = char_idx;
553 }
554
555 /* Apply TRANS to the buffer in PSTR. */
556
557 static void
re_string_translate_buffer(re_string_t * pstr)558 re_string_translate_buffer (re_string_t *pstr)
559 {
560 Idx buf_idx, end_idx;
561 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
562
563 for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
564 {
565 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
566 pstr->mbs[buf_idx] = pstr->trans[ch];
567 }
568
569 pstr->valid_len = buf_idx;
570 pstr->valid_raw_len = buf_idx;
571 }
572
573 /* This function re-construct the buffers.
574 Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
575 convert to upper case in case of REG_ICASE, apply translation. */
576
577 static reg_errcode_t
578 __attribute_warn_unused_result__
re_string_reconstruct(re_string_t * pstr,Idx idx,int eflags)579 re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags)
580 {
581 Idx offset;
582
583 if (__glibc_unlikely (pstr->raw_mbs_idx <= idx))
584 offset = idx - pstr->raw_mbs_idx;
585 else
586 {
587 /* Reset buffer. */
588 #ifdef RE_ENABLE_I18N
589 if (pstr->mb_cur_max > 1)
590 memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
591 #endif /* RE_ENABLE_I18N */
592 pstr->len = pstr->raw_len;
593 pstr->stop = pstr->raw_stop;
594 pstr->valid_len = 0;
595 pstr->raw_mbs_idx = 0;
596 pstr->valid_raw_len = 0;
597 pstr->offsets_needed = 0;
598 pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
599 : CONTEXT_NEWLINE | CONTEXT_BEGBUF);
600 if (!pstr->mbs_allocated)
601 pstr->mbs = (unsigned char *) pstr->raw_mbs;
602 offset = idx;
603 }
604
605 if (__glibc_likely (offset != 0))
606 {
607 /* Should the already checked characters be kept? */
608 if (__glibc_likely (offset < pstr->valid_raw_len))
609 {
610 /* Yes, move them to the front of the buffer. */
611 #ifdef RE_ENABLE_I18N
612 if (__glibc_unlikely (pstr->offsets_needed))
613 {
614 Idx low = 0, high = pstr->valid_len, mid;
615 do
616 {
617 mid = (high + low) / 2;
618 if (pstr->offsets[mid] > offset)
619 high = mid;
620 else if (pstr->offsets[mid] < offset)
621 low = mid + 1;
622 else
623 break;
624 }
625 while (low < high);
626 if (pstr->offsets[mid] < offset)
627 ++mid;
628 pstr->tip_context = re_string_context_at (pstr, mid - 1,
629 eflags);
630 /* This can be quite complicated, so handle specially
631 only the common and easy case where the character with
632 different length representation of lower and upper
633 case is present at or after offset. */
634 if (pstr->valid_len > offset
635 && mid == offset && pstr->offsets[mid] == offset)
636 {
637 memmove (pstr->wcs, pstr->wcs + offset,
638 (pstr->valid_len - offset) * sizeof (wint_t));
639 memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset);
640 pstr->valid_len -= offset;
641 pstr->valid_raw_len -= offset;
642 for (low = 0; low < pstr->valid_len; low++)
643 pstr->offsets[low] = pstr->offsets[low + offset] - offset;
644 }
645 else
646 {
647 /* Otherwise, just find out how long the partial multibyte
648 character at offset is and fill it with WEOF/255. */
649 pstr->len = pstr->raw_len - idx + offset;
650 pstr->stop = pstr->raw_stop - idx + offset;
651 pstr->offsets_needed = 0;
652 while (mid > 0 && pstr->offsets[mid - 1] == offset)
653 --mid;
654 while (mid < pstr->valid_len)
655 if (pstr->wcs[mid] != WEOF)
656 break;
657 else
658 ++mid;
659 if (mid == pstr->valid_len)
660 pstr->valid_len = 0;
661 else
662 {
663 pstr->valid_len = pstr->offsets[mid] - offset;
664 if (pstr->valid_len)
665 {
666 for (low = 0; low < pstr->valid_len; ++low)
667 pstr->wcs[low] = WEOF;
668 memset (pstr->mbs, 255, pstr->valid_len);
669 }
670 }
671 pstr->valid_raw_len = pstr->valid_len;
672 }
673 }
674 else
675 #endif
676 {
677 pstr->tip_context = re_string_context_at (pstr, offset - 1,
678 eflags);
679 #ifdef RE_ENABLE_I18N
680 if (pstr->mb_cur_max > 1)
681 memmove (pstr->wcs, pstr->wcs + offset,
682 (pstr->valid_len - offset) * sizeof (wint_t));
683 #endif /* RE_ENABLE_I18N */
684 if (__glibc_unlikely (pstr->mbs_allocated))
685 memmove (pstr->mbs, pstr->mbs + offset,
686 pstr->valid_len - offset);
687 pstr->valid_len -= offset;
688 pstr->valid_raw_len -= offset;
689 DEBUG_ASSERT (pstr->valid_len > 0);
690 }
691 }
692 else
693 {
694 #ifdef RE_ENABLE_I18N
695 /* No, skip all characters until IDX. */
696 Idx prev_valid_len = pstr->valid_len;
697
698 if (__glibc_unlikely (pstr->offsets_needed))
699 {
700 pstr->len = pstr->raw_len - idx + offset;
701 pstr->stop = pstr->raw_stop - idx + offset;
702 pstr->offsets_needed = 0;
703 }
704 #endif
705 pstr->valid_len = 0;
706 #ifdef RE_ENABLE_I18N
707 if (pstr->mb_cur_max > 1)
708 {
709 Idx wcs_idx;
710 wint_t wc = WEOF;
711
712 if (pstr->is_utf8)
713 {
714 const unsigned char *raw, *p, *end;
715
716 /* Special case UTF-8. Multi-byte chars start with any
717 byte other than 0x80 - 0xbf. */
718 raw = pstr->raw_mbs + pstr->raw_mbs_idx;
719 end = raw + (offset - pstr->mb_cur_max);
720 if (end < pstr->raw_mbs)
721 end = pstr->raw_mbs;
722 p = raw + offset - 1;
723 #ifdef _LIBC
724 /* We know the wchar_t encoding is UCS4, so for the simple
725 case, ASCII characters, skip the conversion step. */
726 if (isascii (*p) && __glibc_likely (pstr->trans == NULL))
727 {
728 memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
729 /* pstr->valid_len = 0; */
730 wc = (wchar_t) *p;
731 }
732 else
733 #endif
734 for (; p >= end; --p)
735 if ((*p & 0xc0) != 0x80)
736 {
737 mbstate_t cur_state;
738 wchar_t wc2;
739 Idx mlen = raw + pstr->len - p;
740 unsigned char buf[6];
741 size_t mbclen;
742
743 const unsigned char *pp = p;
744 if (__glibc_unlikely (pstr->trans != NULL))
745 {
746 int i = mlen < 6 ? mlen : 6;
747 while (--i >= 0)
748 buf[i] = pstr->trans[p[i]];
749 pp = buf;
750 }
751 /* XXX Don't use mbrtowc, we know which conversion
752 to use (UTF-8 -> UCS4). */
753 memset (&cur_state, 0, sizeof (cur_state));
754 mbclen = __mbrtowc (&wc2, (const char *) pp, mlen,
755 &cur_state);
756 if (raw + offset - p <= mbclen
757 && mbclen < (size_t) -2)
758 {
759 memset (&pstr->cur_state, '\0',
760 sizeof (mbstate_t));
761 pstr->valid_len = mbclen - (raw + offset - p);
762 wc = wc2;
763 }
764 break;
765 }
766 }
767
768 if (wc == WEOF)
769 pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
770 if (wc == WEOF)
771 pstr->tip_context
772 = re_string_context_at (pstr, prev_valid_len - 1, eflags);
773 else
774 pstr->tip_context = ((__glibc_unlikely (pstr->word_ops_used != 0)
775 && IS_WIDE_WORD_CHAR (wc))
776 ? CONTEXT_WORD
777 : ((IS_WIDE_NEWLINE (wc)
778 && pstr->newline_anchor)
779 ? CONTEXT_NEWLINE : 0));
780 if (__glibc_unlikely (pstr->valid_len))
781 {
782 for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
783 pstr->wcs[wcs_idx] = WEOF;
784 if (pstr->mbs_allocated)
785 memset (pstr->mbs, 255, pstr->valid_len);
786 }
787 pstr->valid_raw_len = pstr->valid_len;
788 }
789 else
790 #endif /* RE_ENABLE_I18N */
791 {
792 int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
793 pstr->valid_raw_len = 0;
794 if (pstr->trans)
795 c = pstr->trans[c];
796 pstr->tip_context = (bitset_contain (pstr->word_char, c)
797 ? CONTEXT_WORD
798 : ((IS_NEWLINE (c) && pstr->newline_anchor)
799 ? CONTEXT_NEWLINE : 0));
800 }
801 }
802 if (!__glibc_unlikely (pstr->mbs_allocated))
803 pstr->mbs += offset;
804 }
805 pstr->raw_mbs_idx = idx;
806 pstr->len -= offset;
807 pstr->stop -= offset;
808
809 /* Then build the buffers. */
810 #ifdef RE_ENABLE_I18N
811 if (pstr->mb_cur_max > 1)
812 {
813 if (pstr->icase)
814 {
815 reg_errcode_t ret = build_wcs_upper_buffer (pstr);
816 if (__glibc_unlikely (ret != REG_NOERROR))
817 return ret;
818 }
819 else
820 build_wcs_buffer (pstr);
821 }
822 else
823 #endif /* RE_ENABLE_I18N */
824 if (__glibc_unlikely (pstr->mbs_allocated))
825 {
826 if (pstr->icase)
827 build_upper_buffer (pstr);
828 else if (pstr->trans != NULL)
829 re_string_translate_buffer (pstr);
830 }
831 else
832 pstr->valid_len = pstr->len;
833
834 pstr->cur_idx = 0;
835 return REG_NOERROR;
836 }
837
838 static unsigned char
839 __attribute__ ((pure))
re_string_peek_byte_case(const re_string_t * pstr,Idx idx)840 re_string_peek_byte_case (const re_string_t *pstr, Idx idx)
841 {
842 int ch;
843 Idx off;
844
845 /* Handle the common (easiest) cases first. */
846 if (__glibc_likely (!pstr->mbs_allocated))
847 return re_string_peek_byte (pstr, idx);
848
849 #ifdef RE_ENABLE_I18N
850 if (pstr->mb_cur_max > 1
851 && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
852 return re_string_peek_byte (pstr, idx);
853 #endif
854
855 off = pstr->cur_idx + idx;
856 #ifdef RE_ENABLE_I18N
857 if (pstr->offsets_needed)
858 off = pstr->offsets[off];
859 #endif
860
861 ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
862
863 #ifdef RE_ENABLE_I18N
864 /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
865 this function returns CAPITAL LETTER I instead of first byte of
866 DOTLESS SMALL LETTER I. The latter would confuse the parser,
867 since peek_byte_case doesn't advance cur_idx in any way. */
868 if (pstr->offsets_needed && !isascii (ch))
869 return re_string_peek_byte (pstr, idx);
870 #endif
871
872 return ch;
873 }
874
875 static unsigned char
re_string_fetch_byte_case(re_string_t * pstr)876 re_string_fetch_byte_case (re_string_t *pstr)
877 {
878 if (__glibc_likely (!pstr->mbs_allocated))
879 return re_string_fetch_byte (pstr);
880
881 #ifdef RE_ENABLE_I18N
882 if (pstr->offsets_needed)
883 {
884 Idx off;
885 int ch;
886
887 /* For tr_TR.UTF-8 [[:islower:]] there is
888 [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip
889 in that case the whole multi-byte character and return
890 the original letter. On the other side, with
891 [[: DOTLESS SMALL LETTER I return [[:I, as doing
892 anything else would complicate things too much. */
893
894 if (!re_string_first_byte (pstr, pstr->cur_idx))
895 return re_string_fetch_byte (pstr);
896
897 off = pstr->offsets[pstr->cur_idx];
898 ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
899
900 if (! isascii (ch))
901 return re_string_fetch_byte (pstr);
902
903 re_string_skip_bytes (pstr,
904 re_string_char_size_at (pstr, pstr->cur_idx));
905 return ch;
906 }
907 #endif
908
909 return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
910 }
911
912 static void
re_string_destruct(re_string_t * pstr)913 re_string_destruct (re_string_t *pstr)
914 {
915 #ifdef RE_ENABLE_I18N
916 re_free (pstr->wcs);
917 re_free (pstr->offsets);
918 #endif /* RE_ENABLE_I18N */
919 if (pstr->mbs_allocated)
920 re_free (pstr->mbs);
921 }
922
923 /* Return the context at IDX in INPUT. */
924
925 static unsigned int
re_string_context_at(const re_string_t * input,Idx idx,int eflags)926 re_string_context_at (const re_string_t *input, Idx idx, int eflags)
927 {
928 int c;
929 if (__glibc_unlikely (idx < 0))
930 /* In this case, we use the value stored in input->tip_context,
931 since we can't know the character in input->mbs[-1] here. */
932 return input->tip_context;
933 if (__glibc_unlikely (idx == input->len))
934 return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
935 : CONTEXT_NEWLINE | CONTEXT_ENDBUF);
936 #ifdef RE_ENABLE_I18N
937 if (input->mb_cur_max > 1)
938 {
939 wint_t wc;
940 Idx wc_idx = idx;
941 while(input->wcs[wc_idx] == WEOF)
942 {
943 DEBUG_ASSERT (wc_idx >= 0);
944 --wc_idx;
945 if (wc_idx < 0)
946 return input->tip_context;
947 }
948 wc = input->wcs[wc_idx];
949 if (__glibc_unlikely (input->word_ops_used != 0)
950 && IS_WIDE_WORD_CHAR (wc))
951 return CONTEXT_WORD;
952 return (IS_WIDE_NEWLINE (wc) && input->newline_anchor
953 ? CONTEXT_NEWLINE : 0);
954 }
955 else
956 #endif
957 {
958 c = re_string_byte_at (input, idx);
959 if (bitset_contain (input->word_char, c))
960 return CONTEXT_WORD;
961 return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0;
962 }
963 }
964
965 /* Functions for set operation. */
966
967 static reg_errcode_t
968 __attribute_warn_unused_result__
re_node_set_alloc(re_node_set * set,Idx size)969 re_node_set_alloc (re_node_set *set, Idx size)
970 {
971 set->alloc = size;
972 set->nelem = 0;
973 set->elems = re_malloc (Idx, size);
974 if (__glibc_unlikely (set->elems == NULL)
975 && (MALLOC_0_IS_NONNULL || size != 0))
976 return REG_ESPACE;
977 return REG_NOERROR;
978 }
979
980 static reg_errcode_t
981 __attribute_warn_unused_result__
re_node_set_init_1(re_node_set * set,Idx elem)982 re_node_set_init_1 (re_node_set *set, Idx elem)
983 {
984 set->alloc = 1;
985 set->nelem = 1;
986 set->elems = re_malloc (Idx, 1);
987 if (__glibc_unlikely (set->elems == NULL))
988 {
989 set->alloc = set->nelem = 0;
990 return REG_ESPACE;
991 }
992 set->elems[0] = elem;
993 return REG_NOERROR;
994 }
995
996 static reg_errcode_t
997 __attribute_warn_unused_result__
re_node_set_init_2(re_node_set * set,Idx elem1,Idx elem2)998 re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2)
999 {
1000 set->alloc = 2;
1001 set->elems = re_malloc (Idx, 2);
1002 if (__glibc_unlikely (set->elems == NULL))
1003 return REG_ESPACE;
1004 if (elem1 == elem2)
1005 {
1006 set->nelem = 1;
1007 set->elems[0] = elem1;
1008 }
1009 else
1010 {
1011 set->nelem = 2;
1012 if (elem1 < elem2)
1013 {
1014 set->elems[0] = elem1;
1015 set->elems[1] = elem2;
1016 }
1017 else
1018 {
1019 set->elems[0] = elem2;
1020 set->elems[1] = elem1;
1021 }
1022 }
1023 return REG_NOERROR;
1024 }
1025
1026 static reg_errcode_t
1027 __attribute_warn_unused_result__
re_node_set_init_copy(re_node_set * dest,const re_node_set * src)1028 re_node_set_init_copy (re_node_set *dest, const re_node_set *src)
1029 {
1030 dest->nelem = src->nelem;
1031 if (src->nelem > 0)
1032 {
1033 dest->alloc = dest->nelem;
1034 dest->elems = re_malloc (Idx, dest->alloc);
1035 if (__glibc_unlikely (dest->elems == NULL))
1036 {
1037 dest->alloc = dest->nelem = 0;
1038 return REG_ESPACE;
1039 }
1040 memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx));
1041 }
1042 else
1043 re_node_set_init_empty (dest);
1044 return REG_NOERROR;
1045 }
1046
1047 /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
1048 DEST. Return value indicate the error code or REG_NOERROR if succeeded.
1049 Note: We assume dest->elems is NULL, when dest->alloc is 0. */
1050
1051 static reg_errcode_t
1052 __attribute_warn_unused_result__
re_node_set_add_intersect(re_node_set * dest,const re_node_set * src1,const re_node_set * src2)1053 re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1,
1054 const re_node_set *src2)
1055 {
1056 Idx i1, i2, is, id, delta, sbase;
1057 if (src1->nelem == 0 || src2->nelem == 0)
1058 return REG_NOERROR;
1059
1060 /* We need dest->nelem + 2 * elems_in_intersection; this is a
1061 conservative estimate. */
1062 if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
1063 {
1064 Idx new_alloc = src1->nelem + src2->nelem + dest->alloc;
1065 Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc);
1066 if (__glibc_unlikely (new_elems == NULL))
1067 return REG_ESPACE;
1068 dest->elems = new_elems;
1069 dest->alloc = new_alloc;
1070 }
1071
1072 /* Find the items in the intersection of SRC1 and SRC2, and copy
1073 into the top of DEST those that are not already in DEST itself. */
1074 sbase = dest->nelem + src1->nelem + src2->nelem;
1075 i1 = src1->nelem - 1;
1076 i2 = src2->nelem - 1;
1077 id = dest->nelem - 1;
1078 for (;;)
1079 {
1080 if (src1->elems[i1] == src2->elems[i2])
1081 {
1082 /* Try to find the item in DEST. Maybe we could binary search? */
1083 while (id >= 0 && dest->elems[id] > src1->elems[i1])
1084 --id;
1085
1086 if (id < 0 || dest->elems[id] != src1->elems[i1])
1087 dest->elems[--sbase] = src1->elems[i1];
1088
1089 if (--i1 < 0 || --i2 < 0)
1090 break;
1091 }
1092
1093 /* Lower the highest of the two items. */
1094 else if (src1->elems[i1] < src2->elems[i2])
1095 {
1096 if (--i2 < 0)
1097 break;
1098 }
1099 else
1100 {
1101 if (--i1 < 0)
1102 break;
1103 }
1104 }
1105
1106 id = dest->nelem - 1;
1107 is = dest->nelem + src1->nelem + src2->nelem - 1;
1108 delta = is - sbase + 1;
1109
1110 /* Now copy. When DELTA becomes zero, the remaining
1111 DEST elements are already in place; this is more or
1112 less the same loop that is in re_node_set_merge. */
1113 dest->nelem += delta;
1114 if (delta > 0 && id >= 0)
1115 for (;;)
1116 {
1117 if (dest->elems[is] > dest->elems[id])
1118 {
1119 /* Copy from the top. */
1120 dest->elems[id + delta--] = dest->elems[is--];
1121 if (delta == 0)
1122 break;
1123 }
1124 else
1125 {
1126 /* Slide from the bottom. */
1127 dest->elems[id + delta] = dest->elems[id];
1128 if (--id < 0)
1129 break;
1130 }
1131 }
1132
1133 /* Copy remaining SRC elements. */
1134 memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx));
1135
1136 return REG_NOERROR;
1137 }
1138
1139 /* Calculate the union set of the sets SRC1 and SRC2. And store it to
1140 DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
1141
1142 static reg_errcode_t
1143 __attribute_warn_unused_result__
re_node_set_init_union(re_node_set * dest,const re_node_set * src1,const re_node_set * src2)1144 re_node_set_init_union (re_node_set *dest, const re_node_set *src1,
1145 const re_node_set *src2)
1146 {
1147 Idx i1, i2, id;
1148 if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
1149 {
1150 dest->alloc = src1->nelem + src2->nelem;
1151 dest->elems = re_malloc (Idx, dest->alloc);
1152 if (__glibc_unlikely (dest->elems == NULL))
1153 return REG_ESPACE;
1154 }
1155 else
1156 {
1157 if (src1 != NULL && src1->nelem > 0)
1158 return re_node_set_init_copy (dest, src1);
1159 else if (src2 != NULL && src2->nelem > 0)
1160 return re_node_set_init_copy (dest, src2);
1161 else
1162 re_node_set_init_empty (dest);
1163 return REG_NOERROR;
1164 }
1165 for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
1166 {
1167 if (src1->elems[i1] > src2->elems[i2])
1168 {
1169 dest->elems[id++] = src2->elems[i2++];
1170 continue;
1171 }
1172 if (src1->elems[i1] == src2->elems[i2])
1173 ++i2;
1174 dest->elems[id++] = src1->elems[i1++];
1175 }
1176 if (i1 < src1->nelem)
1177 {
1178 memcpy (dest->elems + id, src1->elems + i1,
1179 (src1->nelem - i1) * sizeof (Idx));
1180 id += src1->nelem - i1;
1181 }
1182 else if (i2 < src2->nelem)
1183 {
1184 memcpy (dest->elems + id, src2->elems + i2,
1185 (src2->nelem - i2) * sizeof (Idx));
1186 id += src2->nelem - i2;
1187 }
1188 dest->nelem = id;
1189 return REG_NOERROR;
1190 }
1191
1192 /* Calculate the union set of the sets DEST and SRC. And store it to
1193 DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
1194
1195 static reg_errcode_t
1196 __attribute_warn_unused_result__
re_node_set_merge(re_node_set * dest,const re_node_set * src)1197 re_node_set_merge (re_node_set *dest, const re_node_set *src)
1198 {
1199 Idx is, id, sbase, delta;
1200 if (src == NULL || src->nelem == 0)
1201 return REG_NOERROR;
1202 if (dest->alloc < 2 * src->nelem + dest->nelem)
1203 {
1204 Idx new_alloc = 2 * (src->nelem + dest->alloc);
1205 Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc);
1206 if (__glibc_unlikely (new_buffer == NULL))
1207 return REG_ESPACE;
1208 dest->elems = new_buffer;
1209 dest->alloc = new_alloc;
1210 }
1211
1212 if (__glibc_unlikely (dest->nelem == 0))
1213 {
1214 /* Although we already guaranteed above that dest->alloc != 0 and
1215 therefore dest->elems != NULL, add a debug assertion to pacify
1216 GCC 11.2.1's -fanalyzer. */
1217 DEBUG_ASSERT (dest->elems);
1218 dest->nelem = src->nelem;
1219 memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx));
1220 return REG_NOERROR;
1221 }
1222
1223 /* Copy into the top of DEST the items of SRC that are not
1224 found in DEST. Maybe we could binary search in DEST? */
1225 for (sbase = dest->nelem + 2 * src->nelem,
1226 is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; )
1227 {
1228 if (dest->elems[id] == src->elems[is])
1229 is--, id--;
1230 else if (dest->elems[id] < src->elems[is])
1231 dest->elems[--sbase] = src->elems[is--];
1232 else /* if (dest->elems[id] > src->elems[is]) */
1233 --id;
1234 }
1235
1236 if (is >= 0)
1237 {
1238 /* If DEST is exhausted, the remaining items of SRC must be unique. */
1239 sbase -= is + 1;
1240 memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx));
1241 }
1242
1243 id = dest->nelem - 1;
1244 is = dest->nelem + 2 * src->nelem - 1;
1245 delta = is - sbase + 1;
1246 if (delta == 0)
1247 return REG_NOERROR;
1248
1249 /* Now copy. When DELTA becomes zero, the remaining
1250 DEST elements are already in place. */
1251 dest->nelem += delta;
1252 for (;;)
1253 {
1254 if (dest->elems[is] > dest->elems[id])
1255 {
1256 /* Copy from the top. */
1257 dest->elems[id + delta--] = dest->elems[is--];
1258 if (delta == 0)
1259 break;
1260 }
1261 else
1262 {
1263 /* Slide from the bottom. */
1264 dest->elems[id + delta] = dest->elems[id];
1265 if (--id < 0)
1266 {
1267 /* Copy remaining SRC elements. */
1268 memcpy (dest->elems, dest->elems + sbase,
1269 delta * sizeof (Idx));
1270 break;
1271 }
1272 }
1273 }
1274
1275 return REG_NOERROR;
1276 }
1277
1278 /* Insert the new element ELEM to the re_node_set* SET.
1279 SET should not already have ELEM.
1280 Return true if successful. */
1281
1282 static bool
1283 __attribute_warn_unused_result__
re_node_set_insert(re_node_set * set,Idx elem)1284 re_node_set_insert (re_node_set *set, Idx elem)
1285 {
1286 Idx idx;
1287 /* In case the set is empty. */
1288 if (set->alloc == 0)
1289 return __glibc_likely (re_node_set_init_1 (set, elem) == REG_NOERROR);
1290
1291 if (__glibc_unlikely (set->nelem) == 0)
1292 {
1293 /* Although we already guaranteed above that set->alloc != 0 and
1294 therefore set->elems != NULL, add a debug assertion to pacify
1295 GCC 11.2 -fanalyzer. */
1296 DEBUG_ASSERT (set->elems);
1297 set->elems[0] = elem;
1298 ++set->nelem;
1299 return true;
1300 }
1301
1302 /* Realloc if we need. */
1303 if (set->alloc == set->nelem)
1304 {
1305 Idx *new_elems;
1306 set->alloc = set->alloc * 2;
1307 new_elems = re_realloc (set->elems, Idx, set->alloc);
1308 if (__glibc_unlikely (new_elems == NULL))
1309 return false;
1310 set->elems = new_elems;
1311 }
1312
1313 /* Move the elements which follows the new element. Test the
1314 first element separately to skip a check in the inner loop. */
1315 if (elem < set->elems[0])
1316 {
1317 for (idx = set->nelem; idx > 0; idx--)
1318 set->elems[idx] = set->elems[idx - 1];
1319 }
1320 else
1321 {
1322 for (idx = set->nelem; set->elems[idx - 1] > elem; idx--)
1323 set->elems[idx] = set->elems[idx - 1];
1324 DEBUG_ASSERT (set->elems[idx - 1] < elem);
1325 }
1326
1327 /* Insert the new element. */
1328 set->elems[idx] = elem;
1329 ++set->nelem;
1330 return true;
1331 }
1332
1333 /* Insert the new element ELEM to the re_node_set* SET.
1334 SET should not already have any element greater than or equal to ELEM.
1335 Return true if successful. */
1336
1337 static bool
1338 __attribute_warn_unused_result__
re_node_set_insert_last(re_node_set * set,Idx elem)1339 re_node_set_insert_last (re_node_set *set, Idx elem)
1340 {
1341 /* Realloc if we need. */
1342 if (set->alloc == set->nelem)
1343 {
1344 Idx *new_elems;
1345 set->alloc = (set->alloc + 1) * 2;
1346 new_elems = re_realloc (set->elems, Idx, set->alloc);
1347 if (__glibc_unlikely (new_elems == NULL))
1348 return false;
1349 set->elems = new_elems;
1350 }
1351
1352 /* Insert the new element. */
1353 set->elems[set->nelem++] = elem;
1354 return true;
1355 }
1356
1357 /* Compare two node sets SET1 and SET2.
1358 Return true if SET1 and SET2 are equivalent. */
1359
1360 static bool
1361 __attribute__ ((pure))
re_node_set_compare(const re_node_set * set1,const re_node_set * set2)1362 re_node_set_compare (const re_node_set *set1, const re_node_set *set2)
1363 {
1364 Idx i;
1365 if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
1366 return false;
1367 for (i = set1->nelem ; --i >= 0 ; )
1368 if (set1->elems[i] != set2->elems[i])
1369 return false;
1370 return true;
1371 }
1372
1373 /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */
1374
1375 static Idx
1376 __attribute__ ((pure))
re_node_set_contains(const re_node_set * set,Idx elem)1377 re_node_set_contains (const re_node_set *set, Idx elem)
1378 {
1379 __re_size_t idx, right, mid;
1380 if (set->nelem <= 0)
1381 return 0;
1382
1383 /* Binary search the element. */
1384 idx = 0;
1385 right = set->nelem - 1;
1386 while (idx < right)
1387 {
1388 mid = (idx + right) / 2;
1389 if (set->elems[mid] < elem)
1390 idx = mid + 1;
1391 else
1392 right = mid;
1393 }
1394 return set->elems[idx] == elem ? idx + 1 : 0;
1395 }
1396
1397 static void
re_node_set_remove_at(re_node_set * set,Idx idx)1398 re_node_set_remove_at (re_node_set *set, Idx idx)
1399 {
1400 if (idx < 0 || idx >= set->nelem)
1401 return;
1402 --set->nelem;
1403 for (; idx < set->nelem; idx++)
1404 set->elems[idx] = set->elems[idx + 1];
1405 }
1406
1407
1408 /* Add the token TOKEN to dfa->nodes, and return the index of the token.
1409 Or return -1 if an error occurred. */
1410
1411 static Idx
re_dfa_add_node(re_dfa_t * dfa,re_token_t token)1412 re_dfa_add_node (re_dfa_t *dfa, re_token_t token)
1413 {
1414 if (__glibc_unlikely (dfa->nodes_len >= dfa->nodes_alloc))
1415 {
1416 size_t new_nodes_alloc = dfa->nodes_alloc * 2;
1417 Idx *new_nexts, *new_indices;
1418 re_node_set *new_edests, *new_eclosures;
1419 re_token_t *new_nodes;
1420
1421 /* Avoid overflows in realloc. */
1422 const size_t max_object_size = MAX (sizeof (re_token_t),
1423 MAX (sizeof (re_node_set),
1424 sizeof (Idx)));
1425 if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size)
1426 < new_nodes_alloc))
1427 return -1;
1428
1429 new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc);
1430 if (__glibc_unlikely (new_nodes == NULL))
1431 return -1;
1432 dfa->nodes = new_nodes;
1433 new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc);
1434 new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc);
1435 new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc);
1436 new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc);
1437 if (__glibc_unlikely (new_nexts == NULL || new_indices == NULL
1438 || new_edests == NULL || new_eclosures == NULL))
1439 {
1440 re_free (new_nexts);
1441 re_free (new_indices);
1442 re_free (new_edests);
1443 re_free (new_eclosures);
1444 return -1;
1445 }
1446 dfa->nexts = new_nexts;
1447 dfa->org_indices = new_indices;
1448 dfa->edests = new_edests;
1449 dfa->eclosures = new_eclosures;
1450 dfa->nodes_alloc = new_nodes_alloc;
1451 }
1452 dfa->nodes[dfa->nodes_len] = token;
1453 dfa->nodes[dfa->nodes_len].constraint = 0;
1454 #ifdef RE_ENABLE_I18N
1455 dfa->nodes[dfa->nodes_len].accept_mb =
1456 ((token.type == OP_PERIOD && dfa->mb_cur_max > 1)
1457 || token.type == COMPLEX_BRACKET);
1458 #endif
1459 dfa->nexts[dfa->nodes_len] = -1;
1460 re_node_set_init_empty (dfa->edests + dfa->nodes_len);
1461 re_node_set_init_empty (dfa->eclosures + dfa->nodes_len);
1462 return dfa->nodes_len++;
1463 }
1464
1465 static re_hashval_t
calc_state_hash(const re_node_set * nodes,unsigned int context)1466 calc_state_hash (const re_node_set *nodes, unsigned int context)
1467 {
1468 re_hashval_t hash = nodes->nelem + context;
1469 Idx i;
1470 for (i = 0 ; i < nodes->nelem ; i++)
1471 hash += nodes->elems[i];
1472 return hash;
1473 }
1474
1475 /* Search for the state whose node_set is equivalent to NODES.
1476 Return the pointer to the state, if we found it in the DFA.
1477 Otherwise create the new one and return it. In case of an error
1478 return NULL and set the error code in ERR.
1479 Note: - We assume NULL as the invalid state, then it is possible that
1480 return value is NULL and ERR is REG_NOERROR.
1481 - We never return non-NULL value in case of any errors, it is for
1482 optimization. */
1483
1484 static re_dfastate_t *
1485 __attribute_warn_unused_result__
re_acquire_state(reg_errcode_t * err,const re_dfa_t * dfa,const re_node_set * nodes)1486 re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa,
1487 const re_node_set *nodes)
1488 {
1489 re_hashval_t hash;
1490 re_dfastate_t *new_state;
1491 struct re_state_table_entry *spot;
1492 Idx i;
1493 #if defined GCC_LINT || defined lint
1494 /* Suppress bogus uninitialized-variable warnings. */
1495 *err = REG_NOERROR;
1496 #endif
1497 if (__glibc_unlikely (nodes->nelem == 0))
1498 {
1499 *err = REG_NOERROR;
1500 return NULL;
1501 }
1502 hash = calc_state_hash (nodes, 0);
1503 spot = dfa->state_table + (hash & dfa->state_hash_mask);
1504
1505 for (i = 0 ; i < spot->num ; i++)
1506 {
1507 re_dfastate_t *state = spot->array[i];
1508 if (hash != state->hash)
1509 continue;
1510 if (re_node_set_compare (&state->nodes, nodes))
1511 return state;
1512 }
1513
1514 /* There are no appropriate state in the dfa, create the new one. */
1515 new_state = create_ci_newstate (dfa, nodes, hash);
1516 if (__glibc_unlikely (new_state == NULL))
1517 *err = REG_ESPACE;
1518
1519 return new_state;
1520 }
1521
1522 /* Search for the state whose node_set is equivalent to NODES and
1523 whose context is equivalent to CONTEXT.
1524 Return the pointer to the state, if we found it in the DFA.
1525 Otherwise create the new one and return it. In case of an error
1526 return NULL and set the error code in ERR.
1527 Note: - We assume NULL as the invalid state, then it is possible that
1528 return value is NULL and ERR is REG_NOERROR.
1529 - We never return non-NULL value in case of any errors, it is for
1530 optimization. */
1531
1532 static re_dfastate_t *
1533 __attribute_warn_unused_result__
re_acquire_state_context(reg_errcode_t * err,const re_dfa_t * dfa,const re_node_set * nodes,unsigned int context)1534 re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa,
1535 const re_node_set *nodes, unsigned int context)
1536 {
1537 re_hashval_t hash;
1538 re_dfastate_t *new_state;
1539 struct re_state_table_entry *spot;
1540 Idx i;
1541 #if defined GCC_LINT || defined lint
1542 /* Suppress bogus uninitialized-variable warnings. */
1543 *err = REG_NOERROR;
1544 #endif
1545 if (nodes->nelem == 0)
1546 {
1547 *err = REG_NOERROR;
1548 return NULL;
1549 }
1550 hash = calc_state_hash (nodes, context);
1551 spot = dfa->state_table + (hash & dfa->state_hash_mask);
1552
1553 for (i = 0 ; i < spot->num ; i++)
1554 {
1555 re_dfastate_t *state = spot->array[i];
1556 if (state->hash == hash
1557 && state->context == context
1558 && re_node_set_compare (state->entrance_nodes, nodes))
1559 return state;
1560 }
1561 /* There are no appropriate state in 'dfa', create the new one. */
1562 new_state = create_cd_newstate (dfa, nodes, context, hash);
1563 if (__glibc_unlikely (new_state == NULL))
1564 *err = REG_ESPACE;
1565
1566 return new_state;
1567 }
1568
1569 /* Finish initialization of the new state NEWSTATE, and using its hash value
1570 HASH put in the appropriate bucket of DFA's state table. Return value
1571 indicates the error code if failed. */
1572
1573 static reg_errcode_t
1574 __attribute_warn_unused_result__
register_state(const re_dfa_t * dfa,re_dfastate_t * newstate,re_hashval_t hash)1575 register_state (const re_dfa_t *dfa, re_dfastate_t *newstate,
1576 re_hashval_t hash)
1577 {
1578 struct re_state_table_entry *spot;
1579 reg_errcode_t err;
1580 Idx i;
1581
1582 newstate->hash = hash;
1583 err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem);
1584 if (__glibc_unlikely (err != REG_NOERROR))
1585 return REG_ESPACE;
1586 for (i = 0; i < newstate->nodes.nelem; i++)
1587 {
1588 Idx elem = newstate->nodes.elems[i];
1589 if (!IS_EPSILON_NODE (dfa->nodes[elem].type))
1590 if (! re_node_set_insert_last (&newstate->non_eps_nodes, elem))
1591 return REG_ESPACE;
1592 }
1593
1594 spot = dfa->state_table + (hash & dfa->state_hash_mask);
1595 if (__glibc_unlikely (spot->alloc <= spot->num))
1596 {
1597 Idx new_alloc = 2 * spot->num + 2;
1598 re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,
1599 new_alloc);
1600 if (__glibc_unlikely (new_array == NULL))
1601 return REG_ESPACE;
1602 spot->array = new_array;
1603 spot->alloc = new_alloc;
1604 }
1605 spot->array[spot->num++] = newstate;
1606 return REG_NOERROR;
1607 }
1608
1609 static void
free_state(re_dfastate_t * state)1610 free_state (re_dfastate_t *state)
1611 {
1612 re_node_set_free (&state->non_eps_nodes);
1613 re_node_set_free (&state->inveclosure);
1614 if (state->entrance_nodes != &state->nodes)
1615 {
1616 re_node_set_free (state->entrance_nodes);
1617 re_free (state->entrance_nodes);
1618 }
1619 re_node_set_free (&state->nodes);
1620 re_free (state->word_trtable);
1621 re_free (state->trtable);
1622 re_free (state);
1623 }
1624
1625 /* Create the new state which is independent of contexts.
1626 Return the new state if succeeded, otherwise return NULL. */
1627
1628 static re_dfastate_t *
1629 __attribute_warn_unused_result__
create_ci_newstate(const re_dfa_t * dfa,const re_node_set * nodes,re_hashval_t hash)1630 create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
1631 re_hashval_t hash)
1632 {
1633 Idx i;
1634 reg_errcode_t err;
1635 re_dfastate_t *newstate;
1636
1637 newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
1638 if (__glibc_unlikely (newstate == NULL))
1639 return NULL;
1640 err = re_node_set_init_copy (&newstate->nodes, nodes);
1641 if (__glibc_unlikely (err != REG_NOERROR))
1642 {
1643 re_free (newstate);
1644 return NULL;
1645 }
1646
1647 newstate->entrance_nodes = &newstate->nodes;
1648 for (i = 0 ; i < nodes->nelem ; i++)
1649 {
1650 re_token_t *node = dfa->nodes + nodes->elems[i];
1651 re_token_type_t type = node->type;
1652 if (type == CHARACTER && !node->constraint)
1653 continue;
1654 #ifdef RE_ENABLE_I18N
1655 newstate->accept_mb |= node->accept_mb;
1656 #endif /* RE_ENABLE_I18N */
1657
1658 /* If the state has the halt node, the state is a halt state. */
1659 if (type == END_OF_RE)
1660 newstate->halt = 1;
1661 else if (type == OP_BACK_REF)
1662 newstate->has_backref = 1;
1663 else if (type == ANCHOR || node->constraint)
1664 newstate->has_constraint = 1;
1665 }
1666 err = register_state (dfa, newstate, hash);
1667 if (__glibc_unlikely (err != REG_NOERROR))
1668 {
1669 free_state (newstate);
1670 newstate = NULL;
1671 }
1672 return newstate;
1673 }
1674
1675 /* Create the new state which is depend on the context CONTEXT.
1676 Return the new state if succeeded, otherwise return NULL. */
1677
1678 static re_dfastate_t *
1679 __attribute_warn_unused_result__
create_cd_newstate(const re_dfa_t * dfa,const re_node_set * nodes,unsigned int context,re_hashval_t hash)1680 create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
1681 unsigned int context, re_hashval_t hash)
1682 {
1683 Idx i, nctx_nodes = 0;
1684 reg_errcode_t err;
1685 re_dfastate_t *newstate;
1686
1687 newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
1688 if (__glibc_unlikely (newstate == NULL))
1689 return NULL;
1690 err = re_node_set_init_copy (&newstate->nodes, nodes);
1691 if (__glibc_unlikely (err != REG_NOERROR))
1692 {
1693 re_free (newstate);
1694 return NULL;
1695 }
1696
1697 newstate->context = context;
1698 newstate->entrance_nodes = &newstate->nodes;
1699
1700 for (i = 0 ; i < nodes->nelem ; i++)
1701 {
1702 re_token_t *node = dfa->nodes + nodes->elems[i];
1703 re_token_type_t type = node->type;
1704 unsigned int constraint = node->constraint;
1705
1706 if (type == CHARACTER && !constraint)
1707 continue;
1708 #ifdef RE_ENABLE_I18N
1709 newstate->accept_mb |= node->accept_mb;
1710 #endif /* RE_ENABLE_I18N */
1711
1712 /* If the state has the halt node, the state is a halt state. */
1713 if (type == END_OF_RE)
1714 newstate->halt = 1;
1715 else if (type == OP_BACK_REF)
1716 newstate->has_backref = 1;
1717
1718 if (constraint)
1719 {
1720 if (newstate->entrance_nodes == &newstate->nodes)
1721 {
1722 re_node_set *entrance_nodes = re_malloc (re_node_set, 1);
1723 if (__glibc_unlikely (entrance_nodes == NULL))
1724 {
1725 free_state (newstate);
1726 return NULL;
1727 }
1728 newstate->entrance_nodes = entrance_nodes;
1729 if (re_node_set_init_copy (newstate->entrance_nodes, nodes)
1730 != REG_NOERROR)
1731 {
1732 free_state (newstate);
1733 return NULL;
1734 }
1735 nctx_nodes = 0;
1736 newstate->has_constraint = 1;
1737 }
1738
1739 if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
1740 {
1741 re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
1742 ++nctx_nodes;
1743 }
1744 }
1745 }
1746 err = register_state (dfa, newstate, hash);
1747 if (__glibc_unlikely (err != REG_NOERROR))
1748 {
1749 free_state (newstate);
1750 newstate = NULL;
1751 }
1752 return newstate;
1753 }
1754