1 // Copyright 2007 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Compiled regular expression representation.
6 // Tested by compile_test.cc
7
8 #include "re2/prog.h"
9
10 #if defined(__AVX2__)
11 #include <immintrin.h>
12 #ifdef _MSC_VER
13 #include <intrin.h>
14 #endif
15 #endif
16 #include <stdint.h>
17 #include <string.h>
18 #include <algorithm>
19 #include <memory>
20 #include <utility>
21
22 #include "util/util.h"
23 #include "util/logging.h"
24 #include "util/strutil.h"
25 #include "re2/bitmap256.h"
26 #include "re2/stringpiece.h"
27
28 namespace re2 {
29
30 // Constructors per Inst opcode
31
InitAlt(uint32_t out,uint32_t out1)32 void Prog::Inst::InitAlt(uint32_t out, uint32_t out1) {
33 DCHECK_EQ(out_opcode_, 0);
34 set_out_opcode(out, kInstAlt);
35 out1_ = out1;
36 }
37
InitByteRange(int lo,int hi,int foldcase,uint32_t out)38 void Prog::Inst::InitByteRange(int lo, int hi, int foldcase, uint32_t out) {
39 DCHECK_EQ(out_opcode_, 0);
40 set_out_opcode(out, kInstByteRange);
41 lo_ = lo & 0xFF;
42 hi_ = hi & 0xFF;
43 hint_foldcase_ = foldcase&1;
44 }
45
InitCapture(int cap,uint32_t out)46 void Prog::Inst::InitCapture(int cap, uint32_t out) {
47 DCHECK_EQ(out_opcode_, 0);
48 set_out_opcode(out, kInstCapture);
49 cap_ = cap;
50 }
51
InitEmptyWidth(EmptyOp empty,uint32_t out)52 void Prog::Inst::InitEmptyWidth(EmptyOp empty, uint32_t out) {
53 DCHECK_EQ(out_opcode_, 0);
54 set_out_opcode(out, kInstEmptyWidth);
55 empty_ = empty;
56 }
57
InitMatch(int32_t id)58 void Prog::Inst::InitMatch(int32_t id) {
59 DCHECK_EQ(out_opcode_, 0);
60 set_opcode(kInstMatch);
61 match_id_ = id;
62 }
63
InitNop(uint32_t out)64 void Prog::Inst::InitNop(uint32_t out) {
65 DCHECK_EQ(out_opcode_, 0);
66 set_opcode(kInstNop);
67 }
68
InitFail()69 void Prog::Inst::InitFail() {
70 DCHECK_EQ(out_opcode_, 0);
71 set_opcode(kInstFail);
72 }
73
Dump()74 std::string Prog::Inst::Dump() {
75 switch (opcode()) {
76 default:
77 return StringPrintf("opcode %d", static_cast<int>(opcode()));
78
79 case kInstAlt:
80 return StringPrintf("alt -> %d | %d", out(), out1_);
81
82 case kInstAltMatch:
83 return StringPrintf("altmatch -> %d | %d", out(), out1_);
84
85 case kInstByteRange:
86 return StringPrintf("byte%s [%02x-%02x] %d -> %d",
87 foldcase() ? "/i" : "",
88 lo_, hi_, hint(), out());
89
90 case kInstCapture:
91 return StringPrintf("capture %d -> %d", cap_, out());
92
93 case kInstEmptyWidth:
94 return StringPrintf("emptywidth %#x -> %d",
95 static_cast<int>(empty_), out());
96
97 case kInstMatch:
98 return StringPrintf("match! %d", match_id());
99
100 case kInstNop:
101 return StringPrintf("nop -> %d", out());
102
103 case kInstFail:
104 return StringPrintf("fail");
105 }
106 }
107
Prog()108 Prog::Prog()
109 : anchor_start_(false),
110 anchor_end_(false),
111 reversed_(false),
112 did_flatten_(false),
113 did_onepass_(false),
114 start_(0),
115 start_unanchored_(0),
116 size_(0),
117 bytemap_range_(0),
118 prefix_size_(0),
119 prefix_front_(-1),
120 prefix_back_(-1),
121 list_count_(0),
122 dfa_mem_(0),
123 dfa_first_(NULL),
124 dfa_longest_(NULL) {
125 }
126
~Prog()127 Prog::~Prog() {
128 DeleteDFA(dfa_longest_);
129 DeleteDFA(dfa_first_);
130 }
131
132 typedef SparseSet Workq;
133
AddToQueue(Workq * q,int id)134 static inline void AddToQueue(Workq* q, int id) {
135 if (id != 0)
136 q->insert(id);
137 }
138
ProgToString(Prog * prog,Workq * q)139 static std::string ProgToString(Prog* prog, Workq* q) {
140 std::string s;
141 for (Workq::iterator i = q->begin(); i != q->end(); ++i) {
142 int id = *i;
143 Prog::Inst* ip = prog->inst(id);
144 s += StringPrintf("%d. %s\n", id, ip->Dump().c_str());
145 AddToQueue(q, ip->out());
146 if (ip->opcode() == kInstAlt || ip->opcode() == kInstAltMatch)
147 AddToQueue(q, ip->out1());
148 }
149 return s;
150 }
151
FlattenedProgToString(Prog * prog,int start)152 static std::string FlattenedProgToString(Prog* prog, int start) {
153 std::string s;
154 for (int id = start; id < prog->size(); id++) {
155 Prog::Inst* ip = prog->inst(id);
156 if (ip->last())
157 s += StringPrintf("%d. %s\n", id, ip->Dump().c_str());
158 else
159 s += StringPrintf("%d+ %s\n", id, ip->Dump().c_str());
160 }
161 return s;
162 }
163
Dump()164 std::string Prog::Dump() {
165 if (did_flatten_)
166 return FlattenedProgToString(this, start_);
167
168 Workq q(size_);
169 AddToQueue(&q, start_);
170 return ProgToString(this, &q);
171 }
172
DumpUnanchored()173 std::string Prog::DumpUnanchored() {
174 if (did_flatten_)
175 return FlattenedProgToString(this, start_unanchored_);
176
177 Workq q(size_);
178 AddToQueue(&q, start_unanchored_);
179 return ProgToString(this, &q);
180 }
181
DumpByteMap()182 std::string Prog::DumpByteMap() {
183 std::string map;
184 for (int c = 0; c < 256; c++) {
185 int b = bytemap_[c];
186 int lo = c;
187 while (c < 256-1 && bytemap_[c+1] == b)
188 c++;
189 int hi = c;
190 map += StringPrintf("[%02x-%02x] -> %d\n", lo, hi, b);
191 }
192 return map;
193 }
194
195 // Is ip a guaranteed match at end of text, perhaps after some capturing?
IsMatch(Prog * prog,Prog::Inst * ip)196 static bool IsMatch(Prog* prog, Prog::Inst* ip) {
197 for (;;) {
198 switch (ip->opcode()) {
199 default:
200 LOG(DFATAL) << "Unexpected opcode in IsMatch: " << ip->opcode();
201 return false;
202
203 case kInstAlt:
204 case kInstAltMatch:
205 case kInstByteRange:
206 case kInstFail:
207 case kInstEmptyWidth:
208 return false;
209
210 case kInstCapture:
211 case kInstNop:
212 ip = prog->inst(ip->out());
213 break;
214
215 case kInstMatch:
216 return true;
217 }
218 }
219 }
220
221 // Peep-hole optimizer.
Optimize()222 void Prog::Optimize() {
223 Workq q(size_);
224
225 // Eliminate nops. Most are taken out during compilation
226 // but a few are hard to avoid.
227 q.clear();
228 AddToQueue(&q, start_);
229 for (Workq::iterator i = q.begin(); i != q.end(); ++i) {
230 int id = *i;
231
232 Inst* ip = inst(id);
233 int j = ip->out();
234 Inst* jp;
235 while (j != 0 && (jp=inst(j))->opcode() == kInstNop) {
236 j = jp->out();
237 }
238 ip->set_out(j);
239 AddToQueue(&q, ip->out());
240
241 if (ip->opcode() == kInstAlt) {
242 j = ip->out1();
243 while (j != 0 && (jp=inst(j))->opcode() == kInstNop) {
244 j = jp->out();
245 }
246 ip->out1_ = j;
247 AddToQueue(&q, ip->out1());
248 }
249 }
250
251 // Insert kInstAltMatch instructions
252 // Look for
253 // ip: Alt -> j | k
254 // j: ByteRange [00-FF] -> ip
255 // k: Match
256 // or the reverse (the above is the greedy one).
257 // Rewrite Alt to AltMatch.
258 q.clear();
259 AddToQueue(&q, start_);
260 for (Workq::iterator i = q.begin(); i != q.end(); ++i) {
261 int id = *i;
262 Inst* ip = inst(id);
263 AddToQueue(&q, ip->out());
264 if (ip->opcode() == kInstAlt)
265 AddToQueue(&q, ip->out1());
266
267 if (ip->opcode() == kInstAlt) {
268 Inst* j = inst(ip->out());
269 Inst* k = inst(ip->out1());
270 if (j->opcode() == kInstByteRange && j->out() == id &&
271 j->lo() == 0x00 && j->hi() == 0xFF &&
272 IsMatch(this, k)) {
273 ip->set_opcode(kInstAltMatch);
274 continue;
275 }
276 if (IsMatch(this, j) &&
277 k->opcode() == kInstByteRange && k->out() == id &&
278 k->lo() == 0x00 && k->hi() == 0xFF) {
279 ip->set_opcode(kInstAltMatch);
280 }
281 }
282 }
283 }
284
EmptyFlags(const StringPiece & text,const char * p)285 uint32_t Prog::EmptyFlags(const StringPiece& text, const char* p) {
286 int flags = 0;
287
288 // ^ and \A
289 if (p == text.data())
290 flags |= kEmptyBeginText | kEmptyBeginLine;
291 else if (p[-1] == '\n')
292 flags |= kEmptyBeginLine;
293
294 // $ and \z
295 if (p == text.data() + text.size())
296 flags |= kEmptyEndText | kEmptyEndLine;
297 else if (p < text.data() + text.size() && p[0] == '\n')
298 flags |= kEmptyEndLine;
299
300 // \b and \B
301 if (p == text.data() && p == text.data() + text.size()) {
302 // no word boundary here
303 } else if (p == text.data()) {
304 if (IsWordChar(p[0]))
305 flags |= kEmptyWordBoundary;
306 } else if (p == text.data() + text.size()) {
307 if (IsWordChar(p[-1]))
308 flags |= kEmptyWordBoundary;
309 } else {
310 if (IsWordChar(p[-1]) != IsWordChar(p[0]))
311 flags |= kEmptyWordBoundary;
312 }
313 if (!(flags & kEmptyWordBoundary))
314 flags |= kEmptyNonWordBoundary;
315
316 return flags;
317 }
318
319 // ByteMapBuilder implements a coloring algorithm.
320 //
321 // The first phase is a series of "mark and merge" batches: we mark one or more
322 // [lo-hi] ranges, then merge them into our internal state. Batching is not for
323 // performance; rather, it means that the ranges are treated indistinguishably.
324 //
325 // Internally, the ranges are represented using a bitmap that stores the splits
326 // and a vector that stores the colors; both of them are indexed by the ranges'
327 // last bytes. Thus, in order to merge a [lo-hi] range, we split at lo-1 and at
328 // hi (if not already split), then recolor each range in between. The color map
329 // (i.e. from the old color to the new color) is maintained for the lifetime of
330 // the batch and so underpins this somewhat obscure approach to set operations.
331 //
332 // The second phase builds the bytemap from our internal state: we recolor each
333 // range, then store the new color (which is now the byte class) in each of the
334 // corresponding array elements. Finally, we output the number of byte classes.
335 class ByteMapBuilder {
336 public:
ByteMapBuilder()337 ByteMapBuilder() {
338 // Initial state: the [0-255] range has color 256.
339 // This will avoid problems during the second phase,
340 // in which we assign byte classes numbered from 0.
341 splits_.Set(255);
342 colors_[255] = 256;
343 nextcolor_ = 257;
344 }
345
346 void Mark(int lo, int hi);
347 void Merge();
348 void Build(uint8_t* bytemap, int* bytemap_range);
349
350 private:
351 int Recolor(int oldcolor);
352
353 Bitmap256 splits_;
354 int colors_[256];
355 int nextcolor_;
356 std::vector<std::pair<int, int>> colormap_;
357 std::vector<std::pair<int, int>> ranges_;
358
359 ByteMapBuilder(const ByteMapBuilder&) = delete;
360 ByteMapBuilder& operator=(const ByteMapBuilder&) = delete;
361 };
362
Mark(int lo,int hi)363 void ByteMapBuilder::Mark(int lo, int hi) {
364 DCHECK_GE(lo, 0);
365 DCHECK_GE(hi, 0);
366 DCHECK_LE(lo, 255);
367 DCHECK_LE(hi, 255);
368 DCHECK_LE(lo, hi);
369
370 // Ignore any [0-255] ranges. They cause us to recolor every range, which
371 // has no effect on the eventual result and is therefore a waste of time.
372 if (lo == 0 && hi == 255)
373 return;
374
375 ranges_.emplace_back(lo, hi);
376 }
377
Merge()378 void ByteMapBuilder::Merge() {
379 for (std::vector<std::pair<int, int>>::const_iterator it = ranges_.begin();
380 it != ranges_.end();
381 ++it) {
382 int lo = it->first-1;
383 int hi = it->second;
384
385 if (0 <= lo && !splits_.Test(lo)) {
386 splits_.Set(lo);
387 int next = splits_.FindNextSetBit(lo+1);
388 colors_[lo] = colors_[next];
389 }
390 if (!splits_.Test(hi)) {
391 splits_.Set(hi);
392 int next = splits_.FindNextSetBit(hi+1);
393 colors_[hi] = colors_[next];
394 }
395
396 int c = lo+1;
397 while (c < 256) {
398 int next = splits_.FindNextSetBit(c);
399 colors_[next] = Recolor(colors_[next]);
400 if (next == hi)
401 break;
402 c = next+1;
403 }
404 }
405 colormap_.clear();
406 ranges_.clear();
407 }
408
Build(uint8_t * bytemap,int * bytemap_range)409 void ByteMapBuilder::Build(uint8_t* bytemap, int* bytemap_range) {
410 // Assign byte classes numbered from 0.
411 nextcolor_ = 0;
412
413 int c = 0;
414 while (c < 256) {
415 int next = splits_.FindNextSetBit(c);
416 uint8_t b = static_cast<uint8_t>(Recolor(colors_[next]));
417 while (c <= next) {
418 bytemap[c] = b;
419 c++;
420 }
421 }
422
423 *bytemap_range = nextcolor_;
424 }
425
Recolor(int oldcolor)426 int ByteMapBuilder::Recolor(int oldcolor) {
427 // Yes, this is a linear search. There can be at most 256
428 // colors and there will typically be far fewer than that.
429 // Also, we need to consider keys *and* values in order to
430 // avoid recoloring a given range more than once per batch.
431 std::vector<std::pair<int, int>>::const_iterator it =
432 std::find_if(colormap_.begin(), colormap_.end(),
433 [=](const std::pair<int, int>& kv) -> bool {
434 return kv.first == oldcolor || kv.second == oldcolor;
435 });
436 if (it != colormap_.end())
437 return it->second;
438 int newcolor = nextcolor_;
439 nextcolor_++;
440 colormap_.emplace_back(oldcolor, newcolor);
441 return newcolor;
442 }
443
ComputeByteMap()444 void Prog::ComputeByteMap() {
445 // Fill in bytemap with byte classes for the program.
446 // Ranges of bytes that are treated indistinguishably
447 // will be mapped to a single byte class.
448 ByteMapBuilder builder;
449
450 // Don't repeat the work for ^ and $.
451 bool marked_line_boundaries = false;
452 // Don't repeat the work for \b and \B.
453 bool marked_word_boundaries = false;
454
455 for (int id = 0; id < size(); id++) {
456 Inst* ip = inst(id);
457 if (ip->opcode() == kInstByteRange) {
458 int lo = ip->lo();
459 int hi = ip->hi();
460 builder.Mark(lo, hi);
461 if (ip->foldcase() && lo <= 'z' && hi >= 'a') {
462 int foldlo = lo;
463 int foldhi = hi;
464 if (foldlo < 'a')
465 foldlo = 'a';
466 if (foldhi > 'z')
467 foldhi = 'z';
468 if (foldlo <= foldhi) {
469 foldlo += 'A' - 'a';
470 foldhi += 'A' - 'a';
471 builder.Mark(foldlo, foldhi);
472 }
473 }
474 // If this Inst is not the last Inst in its list AND the next Inst is
475 // also a ByteRange AND the Insts have the same out, defer the merge.
476 if (!ip->last() &&
477 inst(id+1)->opcode() == kInstByteRange &&
478 ip->out() == inst(id+1)->out())
479 continue;
480 builder.Merge();
481 } else if (ip->opcode() == kInstEmptyWidth) {
482 if (ip->empty() & (kEmptyBeginLine|kEmptyEndLine) &&
483 !marked_line_boundaries) {
484 builder.Mark('\n', '\n');
485 builder.Merge();
486 marked_line_boundaries = true;
487 }
488 if (ip->empty() & (kEmptyWordBoundary|kEmptyNonWordBoundary) &&
489 !marked_word_boundaries) {
490 // We require two batches here: the first for ranges that are word
491 // characters, the second for ranges that are not word characters.
492 for (bool isword : {true, false}) {
493 int j;
494 for (int i = 0; i < 256; i = j) {
495 for (j = i + 1; j < 256 &&
496 Prog::IsWordChar(static_cast<uint8_t>(i)) ==
497 Prog::IsWordChar(static_cast<uint8_t>(j));
498 j++)
499 ;
500 if (Prog::IsWordChar(static_cast<uint8_t>(i)) == isword)
501 builder.Mark(i, j - 1);
502 }
503 builder.Merge();
504 }
505 marked_word_boundaries = true;
506 }
507 }
508 }
509
510 builder.Build(bytemap_, &bytemap_range_);
511
512 if (0) { // For debugging, use trivial bytemap.
513 LOG(ERROR) << "Using trivial bytemap.";
514 for (int i = 0; i < 256; i++)
515 bytemap_[i] = static_cast<uint8_t>(i);
516 bytemap_range_ = 256;
517 }
518 }
519
520 // Prog::Flatten() implements a graph rewriting algorithm.
521 //
522 // The overall process is similar to epsilon removal, but retains some epsilon
523 // transitions: those from Capture and EmptyWidth instructions; and those from
524 // nullable subexpressions. (The latter avoids quadratic blowup in transitions
525 // in the worst case.) It might be best thought of as Alt instruction elision.
526 //
527 // In conceptual terms, it divides the Prog into "trees" of instructions, then
528 // traverses the "trees" in order to produce "lists" of instructions. A "tree"
529 // is one or more instructions that grow from one "root" instruction to one or
530 // more "leaf" instructions; if a "tree" has exactly one instruction, then the
531 // "root" is also the "leaf". In most cases, a "root" is the successor of some
532 // "leaf" (i.e. the "leaf" instruction's out() returns the "root" instruction)
533 // and is considered a "successor root". A "leaf" can be a ByteRange, Capture,
534 // EmptyWidth or Match instruction. However, this is insufficient for handling
535 // nested nullable subexpressions correctly, so in some cases, a "root" is the
536 // dominator of the instructions reachable from some "successor root" (i.e. it
537 // has an unreachable predecessor) and is considered a "dominator root". Since
538 // only Alt instructions can be "dominator roots" (other instructions would be
539 // "leaves"), only Alt instructions are required to be marked as predecessors.
540 //
541 // Dividing the Prog into "trees" comprises two passes: marking the "successor
542 // roots" and the predecessors; and marking the "dominator roots". Sorting the
543 // "successor roots" by their bytecode offsets enables iteration in order from
544 // greatest to least during the second pass; by working backwards in this case
545 // and flooding the graph no further than "leaves" and already marked "roots",
546 // it becomes possible to mark "dominator roots" without doing excessive work.
547 //
548 // Traversing the "trees" is just iterating over the "roots" in order of their
549 // marking and flooding the graph no further than "leaves" and "roots". When a
550 // "leaf" is reached, the instruction is copied with its successor remapped to
551 // its "root" number. When a "root" is reached, a Nop instruction is generated
552 // with its successor remapped similarly. As each "list" is produced, its last
553 // instruction is marked as such. After all of the "lists" have been produced,
554 // a pass over their instructions remaps their successors to bytecode offsets.
Flatten()555 void Prog::Flatten() {
556 if (did_flatten_)
557 return;
558 did_flatten_ = true;
559
560 // Scratch structures. It's important that these are reused by functions
561 // that we call in loops because they would thrash the heap otherwise.
562 SparseSet reachable(size());
563 std::vector<int> stk;
564 stk.reserve(size());
565
566 // First pass: Marks "successor roots" and predecessors.
567 // Builds the mapping from inst-ids to root-ids.
568 SparseArray<int> rootmap(size());
569 SparseArray<int> predmap(size());
570 std::vector<std::vector<int>> predvec;
571 MarkSuccessors(&rootmap, &predmap, &predvec, &reachable, &stk);
572
573 // Second pass: Marks "dominator roots".
574 SparseArray<int> sorted(rootmap);
575 std::sort(sorted.begin(), sorted.end(), sorted.less);
576 for (SparseArray<int>::const_iterator i = sorted.end() - 1;
577 i != sorted.begin();
578 --i) {
579 if (i->index() != start_unanchored() && i->index() != start())
580 MarkDominator(i->index(), &rootmap, &predmap, &predvec, &reachable, &stk);
581 }
582
583 // Third pass: Emits "lists". Remaps outs to root-ids.
584 // Builds the mapping from root-ids to flat-ids.
585 std::vector<int> flatmap(rootmap.size());
586 std::vector<Inst> flat;
587 flat.reserve(size());
588 for (SparseArray<int>::const_iterator i = rootmap.begin();
589 i != rootmap.end();
590 ++i) {
591 flatmap[i->value()] = static_cast<int>(flat.size());
592 EmitList(i->index(), &rootmap, &flat, &reachable, &stk);
593 flat.back().set_last();
594 // We have the bounds of the "list", so this is the
595 // most convenient point at which to compute hints.
596 ComputeHints(&flat, flatmap[i->value()], static_cast<int>(flat.size()));
597 }
598
599 list_count_ = static_cast<int>(flatmap.size());
600 for (int i = 0; i < kNumInst; i++)
601 inst_count_[i] = 0;
602
603 // Fourth pass: Remaps outs to flat-ids.
604 // Counts instructions by opcode.
605 for (int id = 0; id < static_cast<int>(flat.size()); id++) {
606 Inst* ip = &flat[id];
607 if (ip->opcode() != kInstAltMatch) // handled in EmitList()
608 ip->set_out(flatmap[ip->out()]);
609 inst_count_[ip->opcode()]++;
610 }
611
612 int total = 0;
613 for (int i = 0; i < kNumInst; i++)
614 total += inst_count_[i];
615 DCHECK_EQ(total, static_cast<int>(flat.size()));
616
617 // Remap start_unanchored and start.
618 if (start_unanchored() == 0) {
619 DCHECK_EQ(start(), 0);
620 } else if (start_unanchored() == start()) {
621 set_start_unanchored(flatmap[1]);
622 set_start(flatmap[1]);
623 } else {
624 set_start_unanchored(flatmap[1]);
625 set_start(flatmap[2]);
626 }
627
628 // Finally, replace the old instructions with the new instructions.
629 size_ = static_cast<int>(flat.size());
630 inst_ = PODArray<Inst>(size_);
631 memmove(inst_.data(), flat.data(), size_*sizeof inst_[0]);
632
633 // Populate the list heads for BitState.
634 // 512 instructions limits the memory footprint to 1KiB.
635 if (size_ <= 512) {
636 list_heads_ = PODArray<uint16_t>(size_);
637 // 0xFF makes it more obvious if we try to look up a non-head.
638 memset(list_heads_.data(), 0xFF, size_*sizeof list_heads_[0]);
639 for (int i = 0; i < list_count_; ++i)
640 list_heads_[flatmap[i]] = i;
641 }
642 }
643
MarkSuccessors(SparseArray<int> * rootmap,SparseArray<int> * predmap,std::vector<std::vector<int>> * predvec,SparseSet * reachable,std::vector<int> * stk)644 void Prog::MarkSuccessors(SparseArray<int>* rootmap,
645 SparseArray<int>* predmap,
646 std::vector<std::vector<int>>* predvec,
647 SparseSet* reachable, std::vector<int>* stk) {
648 // Mark the kInstFail instruction.
649 rootmap->set_new(0, rootmap->size());
650
651 // Mark the start_unanchored and start instructions.
652 if (!rootmap->has_index(start_unanchored()))
653 rootmap->set_new(start_unanchored(), rootmap->size());
654 if (!rootmap->has_index(start()))
655 rootmap->set_new(start(), rootmap->size());
656
657 reachable->clear();
658 stk->clear();
659 stk->push_back(start_unanchored());
660 while (!stk->empty()) {
661 int id = stk->back();
662 stk->pop_back();
663 Loop:
664 if (reachable->contains(id))
665 continue;
666 reachable->insert_new(id);
667
668 Inst* ip = inst(id);
669 switch (ip->opcode()) {
670 default:
671 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
672 break;
673
674 case kInstAltMatch:
675 case kInstAlt:
676 // Mark this instruction as a predecessor of each out.
677 for (int out : {ip->out(), ip->out1()}) {
678 if (!predmap->has_index(out)) {
679 predmap->set_new(out, static_cast<int>(predvec->size()));
680 predvec->emplace_back();
681 }
682 (*predvec)[predmap->get_existing(out)].emplace_back(id);
683 }
684 stk->push_back(ip->out1());
685 id = ip->out();
686 goto Loop;
687
688 case kInstByteRange:
689 case kInstCapture:
690 case kInstEmptyWidth:
691 // Mark the out of this instruction as a "root".
692 if (!rootmap->has_index(ip->out()))
693 rootmap->set_new(ip->out(), rootmap->size());
694 id = ip->out();
695 goto Loop;
696
697 case kInstNop:
698 id = ip->out();
699 goto Loop;
700
701 case kInstMatch:
702 case kInstFail:
703 break;
704 }
705 }
706 }
707
MarkDominator(int root,SparseArray<int> * rootmap,SparseArray<int> * predmap,std::vector<std::vector<int>> * predvec,SparseSet * reachable,std::vector<int> * stk)708 void Prog::MarkDominator(int root, SparseArray<int>* rootmap,
709 SparseArray<int>* predmap,
710 std::vector<std::vector<int>>* predvec,
711 SparseSet* reachable, std::vector<int>* stk) {
712 reachable->clear();
713 stk->clear();
714 stk->push_back(root);
715 while (!stk->empty()) {
716 int id = stk->back();
717 stk->pop_back();
718 Loop:
719 if (reachable->contains(id))
720 continue;
721 reachable->insert_new(id);
722
723 if (id != root && rootmap->has_index(id)) {
724 // We reached another "tree" via epsilon transition.
725 continue;
726 }
727
728 Inst* ip = inst(id);
729 switch (ip->opcode()) {
730 default:
731 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
732 break;
733
734 case kInstAltMatch:
735 case kInstAlt:
736 stk->push_back(ip->out1());
737 id = ip->out();
738 goto Loop;
739
740 case kInstByteRange:
741 case kInstCapture:
742 case kInstEmptyWidth:
743 break;
744
745 case kInstNop:
746 id = ip->out();
747 goto Loop;
748
749 case kInstMatch:
750 case kInstFail:
751 break;
752 }
753 }
754
755 for (SparseSet::const_iterator i = reachable->begin();
756 i != reachable->end();
757 ++i) {
758 int id = *i;
759 if (predmap->has_index(id)) {
760 for (int pred : (*predvec)[predmap->get_existing(id)]) {
761 if (!reachable->contains(pred)) {
762 // id has a predecessor that cannot be reached from root!
763 // Therefore, id must be a "root" too - mark it as such.
764 if (!rootmap->has_index(id))
765 rootmap->set_new(id, rootmap->size());
766 }
767 }
768 }
769 }
770 }
771
EmitList(int root,SparseArray<int> * rootmap,std::vector<Inst> * flat,SparseSet * reachable,std::vector<int> * stk)772 void Prog::EmitList(int root, SparseArray<int>* rootmap,
773 std::vector<Inst>* flat,
774 SparseSet* reachable, std::vector<int>* stk) {
775 reachable->clear();
776 stk->clear();
777 stk->push_back(root);
778 while (!stk->empty()) {
779 int id = stk->back();
780 stk->pop_back();
781 Loop:
782 if (reachable->contains(id))
783 continue;
784 reachable->insert_new(id);
785
786 if (id != root && rootmap->has_index(id)) {
787 // We reached another "tree" via epsilon transition. Emit a kInstNop
788 // instruction so that the Prog does not become quadratically larger.
789 flat->emplace_back();
790 flat->back().set_opcode(kInstNop);
791 flat->back().set_out(rootmap->get_existing(id));
792 continue;
793 }
794
795 Inst* ip = inst(id);
796 switch (ip->opcode()) {
797 default:
798 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
799 break;
800
801 case kInstAltMatch:
802 flat->emplace_back();
803 flat->back().set_opcode(kInstAltMatch);
804 flat->back().set_out(static_cast<int>(flat->size()));
805 flat->back().out1_ = static_cast<uint32_t>(flat->size())+1;
806 FALLTHROUGH_INTENDED;
807
808 case kInstAlt:
809 stk->push_back(ip->out1());
810 id = ip->out();
811 goto Loop;
812
813 case kInstByteRange:
814 case kInstCapture:
815 case kInstEmptyWidth:
816 flat->emplace_back();
817 memmove(&flat->back(), ip, sizeof *ip);
818 flat->back().set_out(rootmap->get_existing(ip->out()));
819 break;
820
821 case kInstNop:
822 id = ip->out();
823 goto Loop;
824
825 case kInstMatch:
826 case kInstFail:
827 flat->emplace_back();
828 memmove(&flat->back(), ip, sizeof *ip);
829 break;
830 }
831 }
832 }
833
834 // For each ByteRange instruction in [begin, end), computes a hint to execution
835 // engines: the delta to the next instruction (in flat) worth exploring iff the
836 // current instruction matched.
837 //
838 // Implements a coloring algorithm related to ByteMapBuilder, but in this case,
839 // colors are instructions and recoloring ranges precisely identifies conflicts
840 // between instructions. Iterating backwards over [begin, end) is guaranteed to
841 // identify the nearest conflict (if any) with only linear complexity.
ComputeHints(std::vector<Inst> * flat,int begin,int end)842 void Prog::ComputeHints(std::vector<Inst>* flat, int begin, int end) {
843 Bitmap256 splits;
844 int colors[256];
845
846 bool dirty = false;
847 for (int id = end; id >= begin; --id) {
848 if (id == end ||
849 (*flat)[id].opcode() != kInstByteRange) {
850 if (dirty) {
851 dirty = false;
852 splits.Clear();
853 }
854 splits.Set(255);
855 colors[255] = id;
856 // At this point, the [0-255] range is colored with id.
857 // Thus, hints cannot point beyond id; and if id == end,
858 // hints that would have pointed to id will be 0 instead.
859 continue;
860 }
861 dirty = true;
862
863 // We recolor the [lo-hi] range with id. Note that first ratchets backwards
864 // from end to the nearest conflict (if any) during recoloring.
865 int first = end;
866 auto Recolor = [&](int lo, int hi) {
867 // Like ByteMapBuilder, we split at lo-1 and at hi.
868 --lo;
869
870 if (0 <= lo && !splits.Test(lo)) {
871 splits.Set(lo);
872 int next = splits.FindNextSetBit(lo+1);
873 colors[lo] = colors[next];
874 }
875 if (!splits.Test(hi)) {
876 splits.Set(hi);
877 int next = splits.FindNextSetBit(hi+1);
878 colors[hi] = colors[next];
879 }
880
881 int c = lo+1;
882 while (c < 256) {
883 int next = splits.FindNextSetBit(c);
884 // Ratchet backwards...
885 first = std::min(first, colors[next]);
886 // Recolor with id - because it's the new nearest conflict!
887 colors[next] = id;
888 if (next == hi)
889 break;
890 c = next+1;
891 }
892 };
893
894 Inst* ip = &(*flat)[id];
895 int lo = ip->lo();
896 int hi = ip->hi();
897 Recolor(lo, hi);
898 if (ip->foldcase() && lo <= 'z' && hi >= 'a') {
899 int foldlo = lo;
900 int foldhi = hi;
901 if (foldlo < 'a')
902 foldlo = 'a';
903 if (foldhi > 'z')
904 foldhi = 'z';
905 if (foldlo <= foldhi) {
906 foldlo += 'A' - 'a';
907 foldhi += 'A' - 'a';
908 Recolor(foldlo, foldhi);
909 }
910 }
911
912 if (first != end) {
913 uint16_t hint = static_cast<uint16_t>(std::min(first - id, 32767));
914 ip->hint_foldcase_ |= hint<<1;
915 }
916 }
917 }
918
919 #if defined(__AVX2__)
920 // Finds the least significant non-zero bit in n.
FindLSBSet(uint32_t n)921 static int FindLSBSet(uint32_t n) {
922 DCHECK_NE(n, 0);
923 #if defined(__GNUC__)
924 return __builtin_ctz(n);
925 #elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
926 unsigned long c;
927 _BitScanForward(&c, n);
928 return static_cast<int>(c);
929 #else
930 int c = 31;
931 for (int shift = 1 << 4; shift != 0; shift >>= 1) {
932 uint32_t word = n << shift;
933 if (word != 0) {
934 n = word;
935 c -= shift;
936 }
937 }
938 return c;
939 #endif
940 }
941 #endif
942
PrefixAccel_FrontAndBack(const void * data,size_t size)943 const void* Prog::PrefixAccel_FrontAndBack(const void* data, size_t size) {
944 DCHECK_GE(prefix_size_, 2);
945 if (size < prefix_size_)
946 return NULL;
947 // Don't bother searching the last prefix_size_-1 bytes for prefix_front_.
948 // This also means that probing for prefix_back_ doesn't go out of bounds.
949 size -= prefix_size_-1;
950
951 #if defined(__AVX2__)
952 // Use AVX2 to look for prefix_front_ and prefix_back_ 32 bytes at a time.
953 if (size >= sizeof(__m256i)) {
954 const __m256i* fp = reinterpret_cast<const __m256i*>(
955 reinterpret_cast<const char*>(data));
956 const __m256i* bp = reinterpret_cast<const __m256i*>(
957 reinterpret_cast<const char*>(data) + prefix_size_-1);
958 const __m256i* endfp = fp + size/sizeof(__m256i);
959 const __m256i f_set1 = _mm256_set1_epi8(prefix_front_);
960 const __m256i b_set1 = _mm256_set1_epi8(prefix_back_);
961 while (fp != endfp) {
962 const __m256i f_loadu = _mm256_loadu_si256(fp++);
963 const __m256i b_loadu = _mm256_loadu_si256(bp++);
964 const __m256i f_cmpeq = _mm256_cmpeq_epi8(f_set1, f_loadu);
965 const __m256i b_cmpeq = _mm256_cmpeq_epi8(b_set1, b_loadu);
966 const int fb_testz = _mm256_testz_si256(f_cmpeq, b_cmpeq);
967 if (fb_testz == 0) { // ZF: 1 means zero, 0 means non-zero.
968 const __m256i fb_and = _mm256_and_si256(f_cmpeq, b_cmpeq);
969 const int fb_movemask = _mm256_movemask_epi8(fb_and);
970 const int fb_ctz = FindLSBSet(fb_movemask);
971 return reinterpret_cast<const char*>(fp-1) + fb_ctz;
972 }
973 }
974 data = fp;
975 size = size%sizeof(__m256i);
976 }
977 #endif
978
979 const char* p0 = reinterpret_cast<const char*>(data);
980 for (const char* p = p0;; p++) {
981 DCHECK_GE(size, static_cast<size_t>(p-p0));
982 p = reinterpret_cast<const char*>(memchr(p, prefix_front_, size - (p-p0)));
983 if (p == NULL || p[prefix_size_-1] == prefix_back_)
984 return p;
985 }
986 }
987
988 } // namespace re2
989