1;;;; TYPEP und Verwandtes
2;;;; Michael Stoll, 21. 10. 1988
3;;;; Bruno Haible, 10.6.1989
4;;;; Sam Steingold 2000-2005
5
6;;; Datenstrukturen für TYPEP:
7;;; - Ein Type-Specifier-Symbol hat auf seiner Propertyliste unter dem
8;;;   Indikator SYS::TYPE-SYMBOL eine Funktion von einem Argument, die
9;;;   testet, ob ein Objekt vom richtigen Typ ist.
10;;; - Ein Symbol, das eine Type-Specifier-Liste beginnen kann, hat auf seiner
11;;;   Propertyliste unter dem Indikator SYS::TYPE-LIST eine Funktion von
12;;;   einem Argument für das zu testende Objekt und zusätzlichen Argumenten
13;;;   für die Listenelemente.
14;;; - Ein Symbol, das als Typmacro definiert wurde, hat auf seiner Property-
15;;;   liste unter dem Indikator SYSTEM::DEFTYPE-EXPANDER den zugehörigen
16;;;   Expander: eine Funktion, die den zu expandierenden Type-Specifier (eine
17;;;   mindestens einelementige Liste) als Argument bekommt.
18
19(in-package "EXT")
20(export '(type-expand))
21(in-package "SYSTEM")
22
23; vorläufig, solange bis clos.lisp geladen wird:
24(eval-when (eval)
25  (predefun clos::built-in-class-p (object) (declare (ignore object)) nil))
26(unless (fboundp 'clos::class-name)
27  (defun clos::class-name (c) (declare (ignore c)) nil)
28)
29
30(defun typespec-error (fun type)
31  (error-of-type 'error
32    (TEXT "~S: invalid type specification ~S")
33    fun type
34) )
35
36;; ============================================================================
37
38;; return the CLOS class named by TYPESPEC or NIL
39(defun clos-class (typespec)
40  (let ((cc (get typespec 'CLOS::CLOSCLASS)))
41    (when (and cc (clos::defined-class-p cc) (eq (clos:class-name cc) typespec))
42      cc)))
43
44;;; TYPEP, CLTL S. 72, S. 42-51
45(defun typep (x y &optional env &aux f) ; x = Objekt, y = Typ
46  (declare (ignore env))
47  (setq y (expand-deftype y))
48  (cond
49    ((symbolp y)
50       (cond ((setq f (get y 'TYPE-SYMBOL)) (funcall f x))
51             ((setq f (get y 'TYPE-LIST)) (funcall f x))
52             ((setq f (get y 'DEFSTRUCT-DESCRIPTION)) (ds-typep x y f))
53             ((setq f (clos-class y))
54              ; It's not worth handling structure classes specially here.
55              (clos::typep-class x f))
56             (t (typespec-error 'typep y))
57    )  )
58    ((and (consp y) (symbolp (first y)))
59       (cond
60         ((and (eq (first y) 'SATISFIES) (eql (length y) 2))
61            (unless (symbolp (second y))
62              (error-of-type 'error
63                (TEXT "~S: argument to SATISFIES must be a symbol: ~S")
64                'typep (second y)
65            ) )
66            (if (funcall (symbol-function (second y)) x) t nil)
67         )
68         ((eq (first y) 'MEMBER)
69            (if (member x (rest y)) t nil)
70         )
71         ((and (eq (first y) 'EQL) (eql (length y) 2))
72            (eql x (second y))
73         )
74         ((and (eq (first y) 'NOT) (eql (length y) 2))
75            (not (typep x (second y)))
76         )
77         ((eq (first y) 'AND)
78            (dolist (type (rest y) t)
79              (unless (typep x type) (return nil))
80         )  )
81         ((eq (first y) 'OR)
82            (dolist (type (rest y) nil)
83              (when (typep x type) (return t))
84         )  )
85         ((setq f (get (first y) 'TYPE-LIST)) (apply f x (rest y)))
86         (t (typespec-error 'typep y))
87    )  )
88    ((clos::defined-class-p y) (clos::typep-class x y))
89    ((clos::eql-specializer-p y) (eql x (clos::eql-specializer-singleton y)))
90    ((encodingp y) (charset-typep x y))
91    (t (typespec-error 'typep y))
92) )
93
94;; ----------------------------------------------------------------------------
95
96;; UPGRADED-ARRAY-ELEMENT-TYPE is a lattice homomorphism, see
97;; ANSI CL 15.1.2.1.
98(defun upgraded-array-element-type (type &optional environment)
99  (declare (ignore environment))
100  ;; see array.d
101  (case type
102    ((BIT) 'BIT)
103    ((CHARACTER) 'CHARACTER)
104    ((T) 'T)
105    ((NIL) 'NIL)
106    (t (if (subtypep type 'NIL)
107         'NIL
108         (multiple-value-bind (low high) (sys::subtype-integer type)
109           ; Es gilt (or (null low) (subtypep type `(INTEGER ,low ,high)))
110           (if (and (integerp low) (not (minusp low)) (integerp high))
111             (let ((l (integer-length high)))
112               ; Es gilt (subtypep type `(UNSIGNED-BYTE ,l))
113               (cond ((<= l 1) 'BIT)
114                     ((<= l 2) '(UNSIGNED-BYTE 2))
115                     ((<= l 4) '(UNSIGNED-BYTE 4))
116                     ((<= l 8) '(UNSIGNED-BYTE 8))
117                     ((<= l 16) '(UNSIGNED-BYTE 16))
118                     ((<= l 32) '(UNSIGNED-BYTE 32))
119                     (t 'T)))
120             (if (subtypep type 'CHARACTER)
121               'CHARACTER
122               'T)))))))
123
124;; ----------------------------------------------------------------------------
125
126;; UPGRADED-COMPLEX-PART-TYPE is a lattice homomorphism, see
127;; HyperSpec/Body/fun_complex.html and HyperSpec/Body/syscla_complex.html,
128;; and an idempotent. Therefore
129;;   (subtypep (upgraded-complex-part-type T1) (upgraded-complex-part-type T2))
130;; is equivalent to
131;;   (subtypep T1 (upgraded-complex-part-type T2))
132;; (Proof: Let U T be an abbreviation for (upgraded-complex-part-type T).
133;;  If U T1 <= U T2, then T1 <= U T1 <= U T2.
134;;  If T1 <= U T2, then by homomorphism U T1 <= U U T2 = U T2.)
135;;
136;; For _any_ CL implementation, you could define
137;;   (defun upgraded-complex-part-type (type) 'REAL)
138;; Likewise for _any_ CL implementation, you could define
139;;   (defun upgraded-complex-part-type (type) type)
140;; or - again for _any_ CL implementation:
141;;   (defun upgraded-complex-part-type (type)
142;;     (cond ((subtypep type 'NIL) 'NIL)
143;;           ((subtypep type 'SHORT-FLOAT) 'SHORT-FLOAT)
144;;           ((subtypep type 'SINGLE-FLOAT) 'SINGLE-FLOAT)
145;;           ((subtypep type 'DOUBLE-FLOAT) 'DOUBLE-FLOAT)
146;;           ((subtypep type 'LONG-FLOAT) 'LONG-FLOAT)
147;;           ((subtypep type 'RATIONAL) 'RATIONAL)
148;;           ((subtypep type 'REAL) 'REAL)
149;;           (t (error ...))))
150;; The reason is that a complex number is immutable: no setters for the
151;; realpart and imagpart exist.
152;;
153;; We choose the second implementation because it allows the most precise
154;; type inference.
155(defun upgraded-complex-part-type (type &optional environment)
156  (declare (ignore environment))
157  (if (subtypep type 'REAL)
158    type
159    (error-of-type 'error
160      (TEXT "~S: type ~S is not a subtype of ~S")
161      'upgraded-complex-part-type type 'real)))
162
163;; ----------------------------------------------------------------------------
164
165;; Macros for defining the various built-in "atomic type specifier"s and
166;; "compound type specifier"s. The following macros add information for both
167;; the TYPEP function above and the c-TYPEP in the compiler.
168
169; Alist symbol -> funname, used by the compiler.
170(defparameter c-typep-alist1 '())
171; Alist symbol -> lambdabody, used by the compiler.
172(defparameter c-typep-alist2 '())
173; Alist symbol -> expander function, used by the compiler.
174(defparameter c-typep-alist3 '())
175
176; (def-atomic-type symbol function-name)
177; defines an atomic type. The function-name designates a function taking one
178; argument and returning a generalized boolean value. It can be either a
179; symbol or a lambda expression.
180(defmacro def-atomic-type (symbol funname)
181  (let ((lambdap (and (consp funname) (eq (car funname) 'LAMBDA))))
182    `(PROGN
183       (SETF (GET ',symbol 'TYPE-SYMBOL)
184             ,(if lambdap
185                `(FUNCTION ,(concat-pnames "TYPE-SYMBOL-" symbol) ,funname)
186                `(FUNCTION ,funname)
187              )
188       )
189       ,(if lambdap
190          `(SETQ C-TYPEP-ALIST2
191                 (NCONC C-TYPEP-ALIST2 (LIST (CONS ',symbol ',(cdr funname))))
192           )
193          `(SETQ C-TYPEP-ALIST1
194                 (NCONC C-TYPEP-ALIST1 (LIST (CONS ',symbol ',funname)))
195           )
196        )
197       ',symbol
198     )
199) )
200
201; (def-compound-type symbol lambda-list (x) check-form typep-form c-typep-form)
202; defines a compound type. The lambda-list is of the form (&optional ...)
203; where the arguments come from the CDR of the type specifier.
204; For typep-form, x is an object.
205; For c-typep-form, x is a multiply evaluatable form (actually a gensym).
206; check-form is a form performing error checking, may call `error'.
207; typep-form should return a generalized boolean value.
208; c-typep-form should produce a form returning a generalized boolean value.
209(defmacro def-compound-type (symbol lambdalist (var) check-form typep-form c-typep-form)
210  `(PROGN
211     (SETF (GET ',symbol 'TYPE-LIST)
212           (FUNCTION ,(concat-pnames "TYPE-LIST-" symbol)
213             (LAMBDA (,var ,@lambdalist)
214               ,@(if check-form
215                   `((MACROLET ((ERROR (&REST ERROR-ARGS)
216                                  (LIST* 'ERROR-OF-TYPE ''ERROR ERROR-ARGS)
217                               ))
218                       ,check-form
219                    ))
220                 )
221               ,typep-form
222     )     ) )
223     (SETQ C-TYPEP-ALIST3
224           (NCONC C-TYPEP-ALIST3
225                  (LIST (CONS ',symbol
226                              #'(LAMBDA (,var ,@lambdalist &REST ILLEGAL-ARGS)
227                                  (DECLARE (IGNORE ILLEGAL-ARGS))
228                                  ,@(if check-form
229                                      `((MACROLET ((ERROR (&REST ERROR-ARGS)
230                                                     (LIST 'PROGN
231                                                           (LIST* 'C-WARN ERROR-ARGS)
232                                                           '(THROW 'C-TYPEP NIL)
233                                                  )) )
234                                          ,check-form
235                                       ))
236                                    )
237                                  ,c-typep-form
238                                )
239     )     )      )     )
240     ',symbol
241   )
242)
243
244; CLtL1 p. 43
245(def-atomic-type ARRAY arrayp)
246(def-atomic-type ATOM atom)
247(def-atomic-type BASE-CHAR
248  #+BASE-CHAR=CHARACTER
249  characterp
250  #-BASE-CHAR=CHARACTER
251  (lambda (x) (and (characterp x) (base-char-p x)))
252)
253(def-atomic-type BASE-STRING
254  (lambda (x)
255    (and (stringp x)
256         (eq (array-element-type x)
257             #+BASE-CHAR=CHARACTER 'CHARACTER #-BASE-CHAR=CHARACTER 'BASE-CHAR
258) ) )    )
259(def-atomic-type BIGNUM
260  (lambda (x) (and (integerp x) (not (fixnump x))))
261)
262(def-atomic-type BIT
263  (lambda (x) (or (eql x 0) (eql x 1)))
264)
265(def-atomic-type BIT-VECTOR bit-vector-p)
266(def-atomic-type BOOLEAN
267  (lambda (x) (or (eq x 'nil) (eq x 't)))
268)
269(def-atomic-type CHARACTER characterp)
270(def-atomic-type COMPILED-FUNCTION compiled-function-p)
271(def-atomic-type COMPLEX complexp)
272(def-atomic-type CONS consp)
273(def-atomic-type DOUBLE-FLOAT double-float-p)
274(def-atomic-type ENCODING encodingp)
275(def-atomic-type EXTENDED-CHAR
276  #+BASE-CHAR=CHARACTER
277  (lambda (x) (declare (ignore x)) nil)
278  #-BASE-CHAR=CHARACTER
279  (lambda (x) (and (characterp x) (not (base-char-p x))))
280)
281(def-atomic-type FIXNUM fixnump)
282(def-atomic-type FLOAT floatp)
283(def-atomic-type FUNCTION functionp)
284(def-atomic-type HASH-TABLE hash-table-p)
285(def-atomic-type INTEGER integerp)
286(def-atomic-type KEYWORD keywordp)
287(def-atomic-type LIST listp)
288#+LOGICAL-PATHNAMES
289(def-atomic-type LOGICAL-PATHNAME logical-pathname-p)
290(def-atomic-type LONG-FLOAT long-float-p)
291(def-atomic-type NIL
292  (lambda (x) (declare (ignore x)) nil)
293)
294(def-atomic-type NULL null)
295(def-atomic-type NUMBER numberp)
296(def-atomic-type PACKAGE packagep)
297(def-atomic-type PATHNAME pathnamep)
298(def-atomic-type RANDOM-STATE random-state-p)
299(def-atomic-type RATIO
300  (lambda (x) (and (rationalp x) (not (integerp x))))
301)
302(def-atomic-type RATIONAL rationalp)
303(def-atomic-type READTABLE readtablep)
304(def-atomic-type REAL realp)
305(def-atomic-type SEQUENCE sequencep)
306(def-atomic-type SHORT-FLOAT short-float-p)
307(def-atomic-type SIMPLE-ARRAY simple-array-p)
308(def-atomic-type SIMPLE-BASE-STRING
309  (lambda (x)
310    (and (simple-string-p x)
311         (eq (array-element-type x)
312             #+BASE-CHAR=CHARACTER 'CHARACTER #-BASE-CHAR=CHARACTER 'BASE-CHAR
313) ) )    )
314(def-atomic-type SIMPLE-BIT-VECTOR simple-bit-vector-p)
315(def-atomic-type SIMPLE-STRING simple-string-p)
316(def-atomic-type SIMPLE-VECTOR simple-vector-p)
317(def-atomic-type SINGLE-FLOAT single-float-p)
318(defun %standard-char-p (x) (and (characterp x) (standard-char-p x))) ; ABI
319(def-atomic-type STANDARD-CHAR %standard-char-p)
320(def-atomic-type CLOS:STANDARD-OBJECT clos::std-instance-p)
321(def-atomic-type STREAM streamp)
322(def-atomic-type FILE-STREAM file-stream-p)
323(def-atomic-type SYNONYM-STREAM synonym-stream-p)
324(def-atomic-type BROADCAST-STREAM broadcast-stream-p)
325(def-atomic-type CONCATENATED-STREAM concatenated-stream-p)
326(def-atomic-type TWO-WAY-STREAM two-way-stream-p)
327(def-atomic-type ECHO-STREAM echo-stream-p)
328(def-atomic-type STRING-STREAM string-stream-p)
329(def-atomic-type STRING stringp)
330(def-atomic-type STRING-CHAR characterp)
331(def-atomic-type CLOS:STRUCTURE-OBJECT clos::structure-object-p)
332(def-atomic-type SYMBOL symbolp)
333(def-atomic-type T (lambda (x) (declare (ignore x)) t))
334;; foreign1.lisp is loaded after this file,
335;; so these symbols are not external yet
336#+ffi
337(def-atomic-type ffi::foreign-function
338  (lambda (x) (eq 'ffi::foreign-function (type-of x))))
339#+ffi
340(def-atomic-type ffi::foreign-variable
341  (lambda (x) (eq 'ffi::foreign-variable (type-of x))))
342#+ffi
343(def-atomic-type ffi::foreign-address
344  (lambda (x) (eq 'ffi::foreign-address (type-of x))))
345;; see lispbibl.d (#define FOREIGN) and predtype.d (TYPE-OF):
346#+(or unix ffi affi win32)
347(def-atomic-type foreign-pointer
348  (lambda (x) (eq 'foreign-pointer (type-of x))))
349(def-atomic-type VECTOR vectorp)
350(def-atomic-type PLIST
351    (lambda (x) (multiple-value-bind (length tail) (list-length-dotted x)
352                  (and (null tail) (evenp length)))))
353
354(defmacro ensure-dim (type dim)
355  ;; make sure DIM is a valid dimension
356  `(unless (or (eq ,dim '*) (typep ,dim `(INTEGER 0 (,ARRAY-DIMENSION-LIMIT))))
357     (error (TEXT "~S: dimension ~S is invalid") ',type ,dim)))
358
359(defmacro ensure-rank (type rank)
360  ;; make sure RANK is a valid rank
361  `(unless (typep ,rank `(INTEGER 0 (,ARRAY-RANK-LIMIT)))
362     (error (TEXT "~S: rank ~S is invalid") ',type ,rank)))
363
364; CLtL1 p. 46-50
365(defun c-typep-array (tester el-type dims x)
366  `(AND (,tester ,x)
367        ,@(if (eq el-type '*)
368            '()
369            `((EQUAL (ARRAY-ELEMENT-TYPE ,x) ',(upgraded-array-element-type el-type)))
370          )
371        ,@(if (eq dims '*)
372            '()
373            (if (numberp dims)
374              `((EQL ,dims (ARRAY-RANK ,x)))
375              `((EQL ,(length dims) (ARRAY-RANK ,x))
376                ,@(let ((i 0))
377                    (mapcap #'(lambda (dim)
378                                (prog1
379                                  (if (eq dim '*)
380                                    '()
381                                    `((EQL ',dim (ARRAY-DIMENSION ,x ,i)))
382                                  )
383                                  (incf i)
384                              ) )
385                            dims
386                  ) )
387               )
388          ) )
389   )
390)
391(defun c-typep-vector (tester size x)
392  `(AND (,tester ,x)
393        ,@(if (eq size '*)
394            '()
395            `((EQL ',size (ARRAY-DIMENSION ,x 0)))
396          )
397   )
398)
399(defun typep-number-test (x low high test type)
400  (and (funcall test x)
401       (cond ((eq low '*))
402             ((funcall test low) (<= low x))
403             ((and (consp low) (null (rest low)) (funcall test (first low)))
404                (< (first low) x)
405             )
406             (t (error-of-type 'error
407                  #1=(TEXT "~S: argument to ~S must be *, ~S or a list of ~S: ~S")
408                  'typep type type type low
409       )     )  )
410       (cond ((eq high '*))
411             ((funcall test high) (>= high x))
412             ((and (consp high) (null (rest high)) (funcall test (first high)))
413                (> (first high) x)
414             )
415             (t (error-of-type 'error
416                  #1# 'typep type type type high
417) )    )     )  )
418(defun c-typep-number (caller tester low high x)
419  `(AND (,tester ,x)
420        ,@(cond ((eq low '*) '())
421                ((funcall tester low) `((<= ,low ,x)))
422                ((and (consp low) (null (rest low)) (funcall tester (first low)))
423                 `((< ,(first low) ,x))
424                )
425                (t (c-warn #1=(TEXT "~S: argument to ~S must be *, ~S or a list of ~S: ~S")
426                           'typep caller caller caller low
427                   )
428                   (throw 'c-TYPEP nil)
429          )     )
430        ,@(cond ((eq high '*) '())
431                ((funcall tester high) `((>= ,high ,x)))
432                ((and (consp high) (null (rest high)) (funcall tester (first high)))
433                 `((> ,(first high) ,x))
434                )
435                (t (c-warn #1# 'typep caller caller caller high)
436                   (throw 'c-TYPEP nil)
437          )     )
438   )
439)
440(def-compound-type ARRAY (&optional (el-type '*) (dims '*)) (x)
441  (unless (eq dims '*)
442    (if (numberp dims)
443      (ensure-rank ARRAY dims)
444      (dolist (dim dims) (ensure-dim ARRAY dim))))
445  (and (arrayp x)
446       (or (eq el-type '*)
447           (equal (array-element-type x) (upgraded-array-element-type el-type))
448       )
449       (or (eq dims '*)
450           (if (numberp dims)
451             (eql dims (array-rank x))
452             (and (eql (length dims) (array-rank x))
453                  (every #'(lambda (a b) (or (eq a '*) (eql a b)))
454                         dims (array-dimensions x)
455  )    )   ) )    )
456  (c-typep-array 'ARRAYP el-type dims x)
457)
458(def-compound-type SIMPLE-ARRAY (&optional (el-type '*) (dims '*)) (x)
459  (unless (eq dims '*)
460    (if (numberp dims)
461      (ensure-rank SIMPLE-ARRAY dims)
462      (dolist (dim dims) (ensure-dim SIMPLE-ARRAY dim))))
463  (and (simple-array-p x)
464       (or (eq el-type '*)
465           (equal (array-element-type x) (upgraded-array-element-type el-type))
466       )
467       (or (eq dims '*)
468           (if (numberp dims)
469             (eql dims (array-rank x))
470             (and (eql (length dims) (array-rank x))
471                  (every #'(lambda (a b) (or (eq a '*) (eql a b)))
472                         dims (array-dimensions x)
473  )    )   ) )    )
474  (c-typep-array 'SIMPLE-ARRAY-P el-type dims x)
475)
476(def-compound-type VECTOR (&optional (el-type '*) (size '*)) (x)
477  (ensure-dim VECTOR size)
478  (and (vectorp x)
479       (or (eq el-type '*)
480           (equal (array-element-type x) (upgraded-array-element-type el-type))
481       )
482       (or (eq size '*) (eql (array-dimension x 0) size))
483  )
484  `(AND (VECTORP ,x)
485        ,@(if (eq el-type '*)
486            '()
487            `((EQUAL (ARRAY-ELEMENT-TYPE ,x) ',(upgraded-array-element-type el-type)))
488          )
489        ,@(if (eq size '*)
490            '()
491            `((EQL (ARRAY-DIMENSION ,x 0) ',size))
492          )
493   )
494)
495(def-compound-type SIMPLE-VECTOR (&optional (size '*)) (x)
496  (ensure-dim SIMLPE-VECTOR size)
497  (and (simple-vector-p x)
498       (or (eq size '*) (eql size (array-dimension x 0)))
499  )
500  (c-typep-vector 'SIMPLE-VECTOR-P size x)
501)
502(def-compound-type COMPLEX (&optional (rtype '*) (itype rtype)) (x)
503  nil
504  (and (complexp x)
505       (or (eq rtype '*)
506           (typep (realpart x) (upgraded-complex-part-type rtype)))
507       (or (eq itype '*)
508           (typep (imagpart x) (upgraded-complex-part-type itype))))
509  `(AND (COMPLEXP ,x)
510        ,@(if (eq rtype '*)
511            '()
512            `((TYPEP (REALPART ,x) ',(upgraded-complex-part-type rtype))))
513        ,@(if (eq itype '*)
514            '()
515            `((TYPEP (IMAGPART ,x) ',(upgraded-complex-part-type itype))))))
516(def-compound-type INTEGER (&optional (low '*) (high '*)) (x)
517  nil
518  (typep-number-test x low high #'integerp 'INTEGER)
519  (c-typep-number 'INTEGER 'INTEGERP low high x)
520)
521(def-compound-type MOD (n) (x)
522  (unless (integerp n)
523    (error (TEXT "~S: argument to MOD must be an integer: ~S")
524           'typep n
525  ) )
526  (and (integerp x) (<= 0 x) (< x n))
527  `(AND (INTEGERP ,x) (NOT (MINUSP ,x)) (< ,x ,n))
528)
529(def-compound-type SIGNED-BYTE (&optional (n '*)) (x)
530  (unless (or (eq n '*) (integerp n))
531    (error (TEXT "~S: argument to SIGNED-BYTE must be an integer or * : ~S")
532           'typep n
533  ) )
534  (and (integerp x) (or (eq n '*) (< (integer-length x) n)))
535  `(AND (INTEGERP ,x)
536        ,@(if (eq n '*) '() `((< (INTEGER-LENGTH ,x) ,n)))
537   )
538)
539(def-compound-type UNSIGNED-BYTE (&optional (n '*)) (x)
540  (unless (or (eq n '*) (integerp n))
541    (error (TEXT "~S: argument to UNSIGNED-BYTE must be an integer or * : ~S")
542           'typep n
543  ) )
544  (and (integerp x)
545       (not (minusp x))
546       (or (eq n '*) (<= (integer-length x) n))
547  )
548  `(AND (INTEGERP ,x) (NOT (MINUSP ,x))
549        ,@(if (eq n '*) '() `((<= (INTEGER-LENGTH ,x) ,n)))
550   )
551)
552(def-compound-type REAL (&optional (low '*) (high '*)) (x)
553  nil
554  (typep-number-test x low high #'realp 'REAL)
555  (c-typep-number 'REAL 'REALP low high x)
556)
557(def-compound-type RATIONAL (&optional (low '*) (high '*)) (x)
558  nil
559  (typep-number-test x low high #'rationalp 'RATIONAL)
560  (c-typep-number 'RATIONAL 'RATIONALP low high x)
561)
562(def-compound-type FLOAT (&optional (low '*) (high '*)) (x)
563  nil
564  (typep-number-test x low high #'floatp 'FLOAT)
565  (c-typep-number 'FLOAT 'FLOATP low high x)
566)
567(def-compound-type SHORT-FLOAT (&optional (low '*) (high '*)) (x)
568  nil
569  (typep-number-test x low high #'short-float-p 'SHORT-FLOAT)
570  (c-typep-number 'SHORT-FLOAT 'SHORT-FLOAT-P low high x)
571)
572(def-compound-type SINGLE-FLOAT (&optional (low '*) (high '*)) (x)
573  nil
574  (typep-number-test x low high #'single-float-p 'SINGLE-FLOAT)
575  (c-typep-number 'SINGLE-FLOAT 'SINGLE-FLOAT-P low high x)
576)
577(def-compound-type DOUBLE-FLOAT (&optional (low '*) (high '*)) (x)
578  nil
579  (typep-number-test x low high #'double-float-p 'DOUBLE-FLOAT)
580  (c-typep-number 'DOUBLE-FLOAT 'DOUBLE-FLOAT-P low high x)
581)
582(def-compound-type LONG-FLOAT (&optional (low '*) (high '*)) (x)
583  nil
584  (typep-number-test x low high #'long-float-p 'LONG-FLOAT)
585  (c-typep-number 'LONG-FLOAT 'LONG-FLOAT-P low high x)
586)
587(def-compound-type STRING (&optional (size '*)) (x)
588  (ensure-dim STRING size)
589  (and (stringp x)
590       (or (eq size '*) (eql size (array-dimension x 0)))
591  )
592  (c-typep-vector 'STRINGP size x)
593)
594(def-compound-type SIMPLE-STRING (&optional (size '*)) (x)
595  (ensure-dim SIMPLE-STRING size)
596  (and (simple-string-p x)
597       (or (eq size '*) (eql size (array-dimension x 0)))
598  )
599  (c-typep-vector 'SIMPLE-STRING-P size x)
600)
601(def-compound-type BASE-STRING (&optional (size '*)) (x)
602  (ensure-dim BASE-STRING size)
603  (and (stringp x)
604       (or (eq size '*) (eql size (array-dimension x 0)))
605  )
606  (c-typep-vector 'STRINGP size x)
607)
608(def-compound-type SIMPLE-BASE-STRING (&optional (size '*)) (x)
609  (ensure-dim SIMPLE-BASE-STRING size)
610  (and (simple-string-p x)
611       (or (eq size '*) (eql size (array-dimension x 0)))
612  )
613  (c-typep-vector 'SIMPLE-STRING-P size x)
614)
615(def-compound-type BIT-VECTOR (&optional (size '*)) (x)
616  (ensure-dim BIT-VECTOR size)
617  (and (bit-vector-p x)
618       (or (eq size '*) (eql size (array-dimension x 0)))
619  )
620  (c-typep-vector 'BIT-VECTOR-P size x)
621)
622(def-compound-type SIMPLE-BIT-VECTOR (&optional (size '*)) (x)
623  (ensure-dim SIMPLE-BIT-VECTOR size)
624  (and (simple-bit-vector-p x)
625       (or (eq size '*) (eql size (array-dimension x 0)))
626  )
627  (c-typep-vector 'SIMPLE-BIT-VECTOR-P size x)
628)
629(def-compound-type CONS (&optional (car-type '*) (cdr-type '*)) (x)
630  nil
631  (and (consp x)
632       (or (eq car-type '*) (typep (car x) car-type))
633       (or (eq cdr-type '*) (typep (cdr x) cdr-type))
634  )
635  `(AND (CONSP ,x)
636        ,@(if (eq car-type '*) '() `((TYPEP (CAR ,x) ',car-type)))
637        ,@(if (eq cdr-type '*) '() `((TYPEP (CDR ,x) ',cdr-type)))
638   )
639)
640
641(fmakunbound 'def-compound-type)
642
643;; ----------------------------------------------------------------------------
644
645; Typtest ohne Gefahr einer Fehlermeldung. Für SIGNAL und HANDLER-BIND.
646(defun safe-typep (x y &optional env)
647  (let ((*error-handler*
648          #'(lambda (&rest error-args)
649              (declare (ignore error-args))
650              (return-from safe-typep (values nil nil))
651       ))   )
652    (values (typep x y env) t)
653) )
654
655; Umwandlung eines "type for declaration" in einen "type for discrimination".
656(defun type-for-discrimination (y &optional (notp nil) &aux f)
657  (cond ((symbolp y)
658           (cond ((get y 'TYPE-SYMBOL) y)
659                 ((get y 'TYPE-LIST) y)
660                 ((setq f (get y 'DEFTYPE-EXPANDER))
661                  (let* ((z (funcall f (list y)))
662                         (zx (type-for-discrimination z notp)))
663                    (if (eql zx z) y zx)
664                 ))
665                 (t y)
666        )  )
667        ((and (consp y) (symbolp (first y)))
668           (case (first y)
669             ((SATISFIES MEMBER EQL) y)
670             (NOT
671              (let* ((z (second y))
672                     (zx (type-for-discrimination z (not notp))))
673                (if (eql zx z) y `(NOT ,zx))
674             ))
675             ((AND OR COMPLEX VALUES)
676              (let* ((z (rest y))
677                     (zx (mapcar #'(lambda (x) (type-for-discrimination x notp)) z)))
678                (if (every #'eql z zx) y (cons (first y) zx))
679             ))
680             (FUNCTION
681              ;; (FUNCTION arg-types res-type) is somewhere between
682              ;; NIL and FUNCTION, but undecidable.
683              (if notp 'NIL 'FUNCTION)
684             )
685             (t (cond ((get (first y) 'TYPE-LIST) y)
686                      ((setq f (get (first y) 'DEFTYPE-EXPANDER))
687                       (let* ((z (funcall f y))
688                              (zx (type-for-discrimination z notp)))
689                         (if (eql zx z) y zx)
690                      ))
691                      (t y)
692        )  ) )  )
693        (t y)
694) )
695
696; Testet eine Liste von Werten auf Erfüllen eines Type-Specifiers. Für THE.
697(defun %the (values type) ; ABI
698  (macrolet ((near-typep (objform typform)
699               ;; near-typep ist wie typep, nur dass das Objekt auch ein
700               ;; Read-Label sein darf. Das tritt z.B. auf bei
701               ;; (read-from-string "#1=#S(FOO :X #1#)")
702               ;; im Konstruktor MAKE-FOO. Die Implementation ist aber
703               ;; nicht gezwungen, bei fehlerhaftem THE zwingend einen
704               ;; Fehler zu melden, darum ist ein lascherer Typcheck hier
705               ;; erlaubt.
706               (let ((g (gensym)))
707                 `(let ((,g ,objform))
708                    (or (typep ,g ,typform) (eq (type-of ,g) 'READ-LABEL))))))
709    (if (and (consp type) (eq (car type) 'VALUES))
710      ;; The VALUES type specifier is ill-defined in ANSI CL.
711      ;;
712      ;; There are two possibilities to define a VALUES type specifier in a
713      ;; sane way:
714      ;; - (EXACT-VALUES type1 ... [&optional ...]) describes the exact shape
715      ;;   of the values list, as received by MULTIPLE-VALUE-LIST.
716      ;;   For example, (EXACT-VALUES SYMBOL) is matched by (values 'a) but not
717      ;;   by (values 'a 'b) or (values).
718      ;; - (ASSIGNABLE-VALUES type1 ... [&optional ...]) describes the values
719      ;;   as received by a set of variables through MULTIPLE-VALUE-BIND or
720      ;;   MULTIPLE-VALUE-SETQ. For example, (ASSIGNABLE-VALUES SYMBOL) is
721      ;;   defined by whether
722      ;;     (MULTIPLE-VALUE-BIND (var1) values (DECLARE (TYPE SYMBOL var1)) ...)
723      ;;   is valid or not; therefore (ASSIGNABLE-VALUES SYMBOL) is matched by
724      ;;   (values 'a) and (values 'a 'b) and (values).
725      ;;   Note that &OPTIONAL is actually redundant here:
726      ;;     (ASSIGNABLE-VALUES type1 ... &optional otype1 ...)
727      ;;   is equivalent to
728      ;;     (ASSIGNABLE-VALUES type1 ... (OR NULL otype1) ...)
729      ;; HyperSpec/Body/typspe_values.html indicates that VALUES means
730      ;; EXACT-VALUES; however, HyperSpec/Body/speope_the.html indicates that
731      ;; VALUES means ASSIGNABLE-VALUES.
732      ;;
733      ;; SBCL interprets the VALUES type specifier to mean EXACT-VALUES when
734      ;; it contains &OPTIONAL or &REST, but ASSIGNABLE-VALUES when it has
735      ;; only a tuple of type specifiers. This is utter nonsense, in particular
736      ;; because it makes (VALUES type1 ... typek &OPTIONAL)
737      ;; different from   (VALUES type1 ... typek).
738      ;;
739      ;; Here we use the ASSIGNABLE-VALUES interpretation.
740      ;; In SUBTYPEP we just punt and don't assume any interpretation.
741      (let ((vals values) (types (cdr type)))
742        ;; required:
743        (loop
744          (when (or (atom types) (atom vals)) (return-from %the t))
745          (when (memq (car types) lambda-list-keywords) (return))
746          (unless (near-typep (pop vals) (pop types))
747            (return-from %the nil)))
748        ;; &optional:
749        (when (and (consp types) (eq (car types) '&optional))
750          (setq types (cdr types))
751          (loop
752            (when (or (atom types) (atom vals)) (return-from %the t))
753            (when (memq (car types) lambda-list-keywords) (return))
754            (unless (near-typep (pop vals) (pop types))
755              (return-from %the nil))))
756        ;; &rest &key:
757        (case (car types)
758          (&rest
759           (setq types (cdr types))
760           (when (atom types) (typespec-error 'the type))
761           (unless (near-typep (pop vals) (pop types))
762             (return-from %the nil)))
763          (&key)
764          (t (typespec-error 'the type)))
765        (if (eq (car types) '&key)
766          (progn
767            (setq types (cdr types))
768            (when (oddp (length vals)) (return-from %the nil))
769            (let ((keywords nil))
770              (loop
771                (when (or (atom types) (atom vals)) (return-from %the t))
772                (when (memq (car types) lambda-list-keywords) (return))
773                (let ((item (pop types)))
774                  (unless (and (listp item) (eql (length item) 2)
775                               (symbolp (first item)))
776                    (typespec-error 'the type))
777                  (let ((kw (symbol-to-keyword (first item))))
778                    (unless (near-typep (getf vals kw) (second item))
779                      (return-from %the nil))
780                    (push kw keywords))))
781              (if (and (consp types) (eq (car types) '&allow-other-keys))
782                (setq types (cdr types))
783                (unless (getf vals ':allow-other-keys)
784                  (do ((L vals (cddr L)))
785                      ((atom L))
786                    (unless (memq (car L) keywords)
787                      (return-from %the nil)))))))
788          (when (consp types) (typespec-error 'the type)))
789        t)
790      (near-typep (if (consp values) (car values) nil) type))))
791
792;;; ===========================================================================
793
794;; SUBTYPEP
795(load "subtypep")
796
797
798;; Returns the number of bytes that are needed to represent #\Null in a
799;; given encoding.
800(defun encoding-zeroes (encoding)
801  #+UNICODE
802  ;; this should use min_bytes_per_char for cache, not the hash table
803  (let ((name (ext:encoding-charset encoding))
804        (table #.(make-hash-table :key-type '(or string symbol) :value-type 'fixnum
805                                  :test 'stablehash-equal :warn-if-needs-rehash-after-gc t
806                                  :initial-contents '(("UTF-7" . 1))))
807        (tester #.(make-string 2 :initial-element (code-char 0))))
808    (or (gethash name table)
809        (setf (gethash name table)
810              (- (length (ext:convert-string-to-bytes tester encoding))
811                 (length (ext:convert-string-to-bytes tester encoding
812                                                      :end 1))))))
813  #-UNICODE 1)
814
815;; Determines two values low,high such that
816;;   (subtypep type `(INTEGER ,low ,high))
817;; holds and low is as large as possible and high is as small as possible.
818;; low = * means -infinity, high = * means infinity.
819;; When (subtypep type 'INTEGER) is false, the values NIL,NIL are returned.
820;; We need this function only for MAKE-ARRAY, UPGRADED-ARRAY-ELEMENT-TYPE and
821;; OPEN and can therefore w.l.o.g. replace
822;;   type  with  `(OR ,type (MEMBER 0))
823#| ;; The original implementation calls canonicalize-type and then applies
824   ;; a particular SUBTYPE variant:
825 (defun subtype-integer (type)
826  (macrolet ((yes () '(return-from subtype-integer (values low high)))
827             (no () '(return-from subtype-integer nil))
828             (unknown () '(return-from subtype-integer nil)))
829    (setq type (canonicalize-type type))
830    (if (consp type)
831      (case (first type)
832        (MEMBER ; (MEMBER &rest objects)
833          ;; All elements must be of type INTEGER.
834          (let ((low 0) (high 0)) ; wlog!
835            (dolist (x (rest type) (yes))
836              (unless (typep x 'INTEGER) (return (no)))
837              (setq low (min low x) high (max high x)))))
838        (OR ; (OR type*)
839          ;; Every type must be subtype of INTEGER.
840          (let ((low 0) (high 0)) ; wlog!
841            (dolist (type1 (rest type) (yes))
842              (multiple-value-bind (low1 high1) (subtype-integer type1)
843                (unless low1 (return (no)))
844                (setq low (if (or (eq low '*) (eq low1 '*)) '* (min low low1))
845                      high (if (or (eq high '*) (eq high1 '*))
846                               '* (max high high1)))))))
847        (AND ; (AND type*)
848          ;; If one of the types is subtype of INTEGER, then yes,
849          ;; otherwise unknown.
850          (let ((low nil) (high nil))
851            (dolist (type1 (rest type))
852              (multiple-value-bind (low1 high1) (subtype-integer type1)
853                (when low1
854                  (if low
855                    (setq low (if (eq low '*) low1 (if (eq low1 '*) low (max low low1)))
856                          high (if (eq high '*) high1 (if (eq high1 '*) high (min high high1))))
857                    (setq low low1 high high1)))))
858            (if low
859              (progn
860                (when (and (numberp low) (numberp high) (not (<= low high)))
861                  (setq low 0 high 0) ; type equivalent to NIL)
862                (yes))
863              (unknown)))))
864      (setq type (list type)))
865    (if (eq (first type) 'INTEGER)
866      (let ((low (if (rest type) (second type) '*))
867            (high (if (cddr type) (third type) '*)))
868        (when (consp low)
869          (setq low (first low))
870          (when (numberp low) (incf low)))
871        (when (consp high)
872          (setq high (first high))
873          (when (numberp high) (decf high)))
874        (when (and (numberp low) (numberp high) (not (<= low high))) ; type leer?
875          (setq low 0 high 0))
876        (yes))
877      (if (and (eq (first type) 'INTERVALS) (eq (second type) 'INTEGER))
878        (let ((low (third type))
879              (high (car (last type))))
880          (when (consp low)
881            (setq low (first low))
882            (when (numberp low) (incf low)))
883          (when (consp high)
884            (setq high (first high))
885            (when (numberp high) (decf high)))
886          (yes))
887        (unknown)))))
888|# ;; This implementation inlines the (tail-recursive) canonicalize-type
889   ;; function. Its advantage is that it doesn't cons as much.
890   ;; (For example, (subtype-integer '(UNSIGNED-BYTE 8)) doesn't cons.)
891(defun subtype-integer (type)
892  (macrolet ((yes () '(return-from subtype-integer (values low high)))
893             (no () '(return-from subtype-integer nil))
894             (unknown () '(return-from subtype-integer nil)))
895    (setq type (expand-deftype type))
896    (cond ((symbolp type)
897           (case type
898             (BIT (let ((low 0) (high 1)) (yes)))
899             (FIXNUM
900              (let ((low '#,most-negative-fixnum)
901                    (high '#,most-positive-fixnum))
902                (yes)))
903             ((INTEGER BIGNUM SIGNED-BYTE)
904              (let ((low '*) (high '*)) (yes)))
905             (UNSIGNED-BYTE
906              (let ((low 0) (high '*)) (yes)))
907             ((NIL)
908              (let ((low 0) (high 0)) (yes))) ; wlog!
909             (t (no))))
910          ((and (consp type) (symbolp (first type)))
911           (unless (and (list-length type) (null (cdr (last type))))
912             (typespec-error 'subtypep type))
913           (case (first type)
914             (MEMBER ; (MEMBER &rest objects)
915              ;; All elements must be of type INTEGER.
916              (let ((low 0) (high 0)) ; wlog!
917                (dolist (x (rest type) (yes))
918                  (unless (typep x 'INTEGER) (return (no)))
919                  (setq low (min low x) high (max high x)))))
920             (EQL ; (EQL object)
921              (let ((x (second type)))
922                (if (typep x 'INTEGER)
923                  (let ((low (min 0 x)) (high (max 0 x))) (yes))
924                  (no))))
925             (OR ; (OR type*)
926              ;; Every type must be subtype of INTEGER.
927              (let ((low 0) (high 0)) ; wlog!
928                (dolist (type1 (rest type) (yes))
929                  (multiple-value-bind (low1 high1) (subtype-integer type1)
930                    (unless low1 (return (no)))
931                    (setq low (if (or (eq low '*) (eq low1 '*))
932                                  '* (min low low1))
933                          high (if (or (eq high '*) (eq high1 '*))
934                                   '* (max high high1)))))))
935             (AND ; (AND type*)
936              ;; If one of the types is subtype of INTEGER, then yes,
937              ;; otherwise unknown.
938              (let ((low nil) (high nil))
939                (dolist (type1 (rest type))
940                  (multiple-value-bind (low1 high1) (subtype-integer type1)
941                    (when low1
942                      (if low
943                        (setq low (if (eq low '*) low1
944                                      (if (eq low1 '*) low
945                                          (max low low1)))
946                              high (if (eq high '*) high1
947                                       (if (eq high1 '*) high
948                                           (min high high1))))
949                        (setq low low1
950                              high high1)))))
951                (if low
952                  (progn
953                    (when (and (numberp low) (numberp high)
954                               (not (<= low high)))
955                      (setq low 0 high 0)) ; type equivalent to NIL
956                    (yes))
957                  (unknown))))
958             (INTEGER
959              (let ((low (if (rest type) (second type) '*))
960                    (high (if (cddr type) (third type) '*)))
961                (when (consp low)
962                  (setq low (first low))
963                  (when (numberp low) (incf low)))
964                (when (consp high)
965                  (setq high (first high))
966                  (when (numberp high) (decf high)))
967                (when (and (numberp low) (numberp high) (not (<= low high)))
968                  (setq low 0 high 0)) ; type equivalent to NIL
969                (yes)))
970             (INTERVALS
971              (if (eq (second type) 'INTEGER)
972                (let ((low (third type))
973                      (high (car (last type))))
974                  (when (consp low)
975                    (setq low (first low))
976                    (when (numberp low) (incf low)))
977                  (when (consp high)
978                    (setq high (first high))
979                    (when (numberp high) (decf high)))
980                  (yes))
981                (unknown)))
982             (MOD ; (MOD n)
983              (let ((n (second type)))
984                (unless (and (integerp n) (>= n 0))
985                  (typespec-error 'subtypep type))
986                (if (eql n 0)
987                  (no)
988                  (let ((low 0) (high (1- n)))
989                    (yes)))))
990             (SIGNED-BYTE ; (SIGNED-BYTE &optional s)
991              (let ((s (if (cdr type) (second type) '*)))
992                (if (eq s '*)
993                  (let ((low '*) (high '*)) (yes))
994                  (progn
995                    (unless (and (integerp s) (plusp s))
996                      (typespec-error 'subtypep type))
997                    (let ((n (ash 1 (1- s)))) ; (ash 1 *) == (expt 2 *)
998                      (let ((low (- n)) (high (1- n)))
999                        (yes)))))))
1000             (UNSIGNED-BYTE ; (UNSIGNED-BYTE &optional s)
1001              (let ((s (if (cdr type) (second type) '*)))
1002                (if (eq s '*)
1003                    (let ((low 0) (high '*)) (yes))
1004                    (progn
1005                      (unless (and (integerp s) (>= s 0))
1006                        (typespec-error 'subtypep type))
1007                      (let ((n (ash 1 s))) ; (ash 1 *) == (expt 2 *)
1008                        (let ((low 0) (high (1- n)))
1009                          (yes)))))))
1010             (t (no))))
1011          ((clos::defined-class-p type)
1012           (if (and (clos::built-in-class-p type)
1013                    (eq (get (clos:class-name type) 'CLOS::CLOSCLASS) type))
1014             (return-from subtype-integer
1015               (subtype-integer (clos:class-name type)))
1016             (no)))
1017          ((clos::eql-specializer-p type)
1018           (let ((x (clos::eql-specializer-singleton type)))
1019             (if (typep x 'INTEGER)
1020               (let ((low (min 0 x)) (high (max 0 x))) (yes))
1021               (no))))
1022          ((encodingp type) (no))
1023          (t (typespec-error 'subtypep type)))))
1024
1025#| TODO: Fix subtype-integer such that this works.
1026Henry Baker:
1027 (defun type-null (x)
1028  (values (and (eq 'bit (upgraded-array-element-type `(or bit ,x)))
1029               (not (typep 0 x))
1030               (not (typep 1 x)))
1031          t))
1032 (type-null '(and symbol number))
1033 (type-null '(and integer symbol))
1034 (type-null '(and integer character))
1035|#
1036
1037;; Determines a sequence kind (an atom, as defined in defseq.lisp: one of
1038;;   LIST - stands for LIST
1039;;   VECTOR - stands for (VECTOR T)
1040;;   STRING - stands for (VECTOR CHARACTER)
1041;;   1, 2, 4, 8, 16, 32 - stands for (VECTOR (UNSIGNED-BYTE n))
1042;;   0 - stands for (VECTOR NIL))
1043;; that indicates the sequence type meant by the given type. Other possible
1044;; return values are
1045;;   SEQUENCE - denoting a type whose intersection with (OR LIST VECTOR) is not
1046;;              subtype of LIST or VECTOR, or
1047;;   NIL - indicating a type whose intersection with (OR LIST VECTOR) is empty.
1048;; When the type is (OR (VECTOR eltype1) ... (VECTOR eltypeN)), the chosen
1049;; element type is the smallest element type that contains all of eltype1 ...
1050;; eltypeN.
1051;;
1052;; User-defined sequence types are not supported here.
1053;;
1054;; This implementation inlines the (tail-recursive) canonicalize-type
1055;; function. Its advantage is that it doesn't cons as much. Also it employs
1056;; some heuristics and does not have the full power of SUBTYPEP.
1057(defun subtype-sequence (type)
1058  (setq type (expand-deftype type))
1059  (cond ((symbolp type)
1060         (case type
1061           ((LIST CONS NULL) 'LIST)
1062           ((NIL) 'NIL)
1063           ((BIT-VECTOR SIMPLE-BIT-VECTOR) '1)
1064           ((STRING SIMPLE-STRING BASE-STRING SIMPLE-BASE-STRING) 'STRING)
1065           ((VECTOR SIMPLE-VECTOR ARRAY SIMPLE-ARRAY) 'VECTOR)
1066           ((SEQUENCE) 'SEQUENCE)
1067           (t 'NIL)))
1068        ((and (consp type) (symbolp (first type)))
1069         (unless (and (list-length type) (null (cdr (last type))))
1070           (typespec-error 'subtypep type))
1071         (case (first type)
1072           (MEMBER ; (MEMBER &rest objects)
1073            (let ((kind 'NIL))
1074              (dolist (x (rest type))
1075                (setq kind (sequence-type-union kind (type-of-sequence x))))
1076              kind))
1077           (EQL ; (EQL object)
1078            (unless (eql (length type) 2)
1079              (typespec-error 'subtypep type))
1080            (type-of-sequence (second type)))
1081           (OR ; (OR type*)
1082            (let ((kind 'NIL))
1083              (dolist (x (rest type))
1084                (setq kind (sequence-type-union kind (subtype-sequence x))))
1085              kind))
1086           (AND ; (AND type*)
1087            (let ((kind 'SEQUENCE))
1088              (dolist (x (rest type))
1089                (setq kind (sequence-type-intersection kind (subtype-sequence x))))
1090              kind))
1091           ((SIMPLE-BIT-VECTOR BIT-VECTOR) ; (SIMPLE-BIT-VECTOR &optional size)
1092            (when (cddr type)
1093              (typespec-error 'subtypep type))
1094            '1)
1095           ((SIMPLE-STRING STRING SIMPLE-BASE-STRING BASE-STRING) ; (SIMPLE-STRING &optional size)
1096            (when (cddr type)
1097              (typespec-error 'subtypep type))
1098            'STRING)
1099           (SIMPLE-VECTOR ; (SIMPLE-VECTOR &optional size)
1100            (when (cddr type)
1101              (typespec-error 'subtypep type))
1102            'VECTOR)
1103           ((VECTOR ARRAY SIMPLE-ARRAY) ; (VECTOR &optional el-type size), (ARRAY &optional el-type dimensions)
1104            (when (cdddr type)
1105              (typespec-error 'subtypep type))
1106            (let ((el-type (if (cdr type) (second type) '*)))
1107              (if (eq el-type '*)
1108                'VECTOR
1109                (let ((eltype (upgraded-array-element-type el-type)))
1110                  (cond ((eq eltype 'T) 'VECTOR)
1111                        ((eq eltype 'CHARACTER) 'STRING)
1112                        ((eq eltype 'BIT) '1)
1113                        ((and (consp eltype) (eq (first eltype) 'UNSIGNED-BYTE)) (second eltype))
1114                        ((eq eltype 'NIL) '0)
1115                        (t (error (TEXT "~S is not up-to-date with ~S for element type ~S")
1116                                  'subtypep-sequence 'upgraded-array-element-type eltype)))))))
1117           ((CONS) ; (CONS &optional cartype cdrtype)
1118            (when (cdddr type)
1119              (typespec-error 'subtypep type))
1120            'LIST)
1121           (t 'NIL)))
1122        ((clos::defined-class-p type)
1123         (if (and (clos::built-in-class-p type)
1124                  (eq (get (clos:class-name type) 'CLOS::CLOSCLASS) type))
1125           (subtype-sequence (clos:class-name type))
1126           'NIL))
1127        ((clos::eql-specializer-p type)
1128         (type-of-sequence (clos::eql-specializer-singleton type)))
1129        (t 'NIL)))
1130(defun type-of-sequence (x)
1131  (cond ((listp x) 'LIST)
1132        ((vectorp x)
1133         (let ((eltype (array-element-type x)))
1134           (cond ((eq eltype 'T) 'VECTOR)
1135                 ((eq eltype 'CHARACTER) 'STRING)
1136                 ((eq eltype 'BIT) '1)
1137                 ((and (consp eltype) (eq (first eltype) 'UNSIGNED-BYTE)) (second eltype))
1138                 ((eq eltype 'NIL) '0)
1139                 (t (error (TEXT "~S is not up-to-date with ~S for element type ~S")
1140                           'type-of-sequence 'array-element-type eltype)))))
1141        (t 'NIL)))
1142(defun sequence-type-union (t1 t2)
1143  (cond ; Simple general rules.
1144        ((eql t1 t2) t1)
1145        ((eq t1 'NIL) t2)
1146        ((eq t2 'NIL) t1)
1147        ; Now the union of two different types.
1148        ((or (eq t1 'SEQUENCE) (eq t2 'SEQUENCE)) 'SEQUENCE)
1149        ((or (eq t1 'LIST) (eq t2 'LIST))
1150         ; union of LIST and a vector type
1151         'SEQUENCE)
1152        ((or (eq t1 'VECTOR) (eq t2 'VECTOR)) 'VECTOR)
1153        ((eql t1 0) t2)
1154        ((eql t2 0) t1)
1155        ((or (eq t1 'STRING) (eq t2 'STRING))
1156         ; union of STRING and an integer-vector type
1157         'VECTOR)
1158        (t (max t1 t2))))
1159(defun sequence-type-intersection (t1 t2)
1160  (cond ; Simple general rules.
1161        ((eql t1 t2) t1)
1162        ((or (eq t1 'NIL) (eq t2 'NIL)) 'NIL)
1163        ; Now the intersection of two different types.
1164        ((eq t1 'SEQUENCE) t2)
1165        ((eq t2 'SEQUENCE) t1)
1166        ((or (eq t1 'LIST) (eq t2 'LIST))
1167         ; intersection of LIST and a vector type
1168         'NIL)
1169        ((eq t1 'VECTOR) t2)
1170        ((eq t2 'VECTOR) t1)
1171        ((or (eql t1 0) (eql t2 0)) '0)
1172        ((or (eq t1 'STRING) (eq t2 'STRING))
1173         ; intersection of STRING and an integer-vector type
1174         '0)
1175        (t (min t1 t2))))
1176
1177;; ============================================================================
1178
1179(defun type-expand (typespec &optional once-p)
1180  (multiple-value-bind (expanded user-defined-p)
1181      (expand-deftype typespec once-p)
1182    (if user-defined-p (values expanded user-defined-p)
1183      (cond ((symbolp typespec)
1184             (cond ((or (get typespec 'TYPE-SYMBOL) (get typespec 'TYPE-LIST))
1185                    (values typespec nil))
1186                   ((or (get typespec 'DEFSTRUCT-DESCRIPTION)
1187                        (clos-class typespec))
1188                    (values typespec nil))
1189                   (t (typespec-error 'type-expand typespec))))
1190            ((and (consp typespec) (symbolp (first typespec)))
1191             (case (first typespec)
1192               ((SATISFIES MEMBER EQL NOT AND OR) (values typespec nil))
1193               (t (cond ((get (first typespec) 'TYPE-LIST)
1194                         (values typespec nil))
1195                        (t (typespec-error 'type-expand typespec))))))
1196            ((clos::defined-class-p typespec) (values typespec nil))
1197            (t (typespec-error 'type-expand typespec))))))
1198
1199;; ============================================================================
1200
1201(unless (clos::funcallable-instance-p #'clos::class-name)
1202  (fmakunbound 'clos::class-name))
1203
1204
1205(keywordp :junk)
1206  T
1207
1208(keywordp ::junk)
1209  T
1210
1211(symbol-name ::junk)
1212  "JUNK"
1213
1214(symbol-name :#junk)
1215  "#JUNK"
1216
1217(symbol-name :#.junk)
1218  "#.JUNK"
1219