1/*
2   md.c : Multiple Devices driver for Linux
3	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5     completely rewritten, based on the MD driver code from Marc Zyngier
6
7   Changes:
8
9   - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10   - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
11   - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
12   - kmod support by: Cyrus Durgin
13   - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
14   - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
15
16   - lots of fixes and improvements to the RAID1/RAID5 and generic
17     RAID code (such as request based resynchronization):
18
19     Neil Brown <neilb@cse.unsw.edu.au>.
20
21   This program is free software; you can redistribute it and/or modify
22   it under the terms of the GNU General Public License as published by
23   the Free Software Foundation; either version 2, or (at your option)
24   any later version.
25
26   You should have received a copy of the GNU General Public License
27   (for example /usr/src/linux/COPYING); if not, write to the Free
28   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29*/
30
31#include <linux/module.h>
32#include <linux/config.h>
33#include <linux/linkage.h>
34#include <linux/raid/md.h>
35#include <linux/sysctl.h>
36#include <linux/bio.h>
37#include <linux/devfs_fs_kernel.h>
38#include <linux/buffer_head.h> /* for invalidate_bdev */
39#include <linux/suspend.h>
40
41#include <linux/init.h>
42
43#ifdef CONFIG_KMOD
44#include <linux/kmod.h>
45#endif
46
47#define __KERNEL_SYSCALLS__
48#include <linux/unistd.h>
49
50#include <asm/unaligned.h>
51
52#define MAJOR_NR MD_MAJOR
53#define MD_DRIVER
54#define DEVICE_NR(device) (minor(device))
55
56#include <linux/blk.h>
57
58#define DEBUG 0
59#define dprintk(x...) ((void)(DEBUG && printk(x)))
60
61
62#ifndef MODULE
63static void autostart_arrays (void);
64#endif
65
66static mdk_personality_t *pers[MAX_PERSONALITY];
67static spinlock_t pers_lock = SPIN_LOCK_UNLOCKED;
68
69/*
70 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
71 * is 1000 KB/sec, so the extra system load does not show up that much.
72 * Increase it if you want to have more _guaranteed_ speed. Note that
73 * the RAID driver will use the maximum available bandwith if the IO
74 * subsystem is idle. There is also an 'absolute maximum' reconstruction
75 * speed limit - in case reconstruction slows down your system despite
76 * idle IO detection.
77 *
78 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
79 */
80
81static int sysctl_speed_limit_min = 1000;
82static int sysctl_speed_limit_max = 200000;
83
84static struct ctl_table_header *raid_table_header;
85
86static ctl_table raid_table[] = {
87	{
88		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
89		.procname	= "speed_limit_min",
90		.data		= &sysctl_speed_limit_min,
91		.maxlen		= sizeof(int),
92		.mode		= 0644,
93		.proc_handler	= &proc_dointvec,
94	},
95	{
96		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
97		.procname	= "speed_limit_max",
98		.data		= &sysctl_speed_limit_max,
99		.maxlen		= sizeof(int),
100		.mode		= 0644,
101		.proc_handler	= &proc_dointvec,
102	},
103	{ .ctl_name = 0 }
104};
105
106static ctl_table raid_dir_table[] = {
107	{
108		.ctl_name	= DEV_RAID,
109		.procname	= "raid",
110		.maxlen		= 0,
111		.mode		= 0555,
112		.child		= raid_table,
113	},
114	{ .ctl_name = 0 }
115};
116
117static ctl_table raid_root_table[] = {
118	{
119		.ctl_name	= CTL_DEV,
120		.procname	= "dev",
121		.maxlen		= 0,
122		.mode		= 0555,
123		.child		= raid_dir_table,
124	},
125	{ .ctl_name = 0 }
126};
127
128static struct block_device_operations md_fops;
129
130static struct gendisk *disks[MAX_MD_DEVS];
131
132/*
133 * Enables to iterate over all existing md arrays
134 * all_mddevs_lock protects this list as well as mddev_map.
135 */
136static LIST_HEAD(all_mddevs);
137static spinlock_t all_mddevs_lock = SPIN_LOCK_UNLOCKED;
138
139
140/*
141 * iterates through all used mddevs in the system.
142 * We take care to grab the all_mddevs_lock whenever navigating
143 * the list, and to always hold a refcount when unlocked.
144 * Any code which breaks out of this loop while own
145 * a reference to the current mddev and must mddev_put it.
146 */
147#define ITERATE_MDDEV(mddev,tmp)					\
148									\
149	for (({ spin_lock(&all_mddevs_lock); 				\
150		tmp = all_mddevs.next;					\
151		mddev = NULL;});					\
152	     ({ if (tmp != &all_mddevs)					\
153			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
154		spin_unlock(&all_mddevs_lock);				\
155		if (mddev) mddev_put(mddev);				\
156		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
157		tmp != &all_mddevs;});					\
158	     ({ spin_lock(&all_mddevs_lock);				\
159		tmp = tmp->next;})					\
160		)
161
162static mddev_t *mddev_map[MAX_MD_DEVS];
163
164static int md_fail_request (request_queue_t *q, struct bio *bio)
165{
166	bio_io_error(bio, bio->bi_size);
167	return 0;
168}
169
170static inline mddev_t *mddev_get(mddev_t *mddev)
171{
172	atomic_inc(&mddev->active);
173	return mddev;
174}
175
176static void mddev_put(mddev_t *mddev)
177{
178	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179		return;
180	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181		list_del(&mddev->all_mddevs);
182		mddev_map[mdidx(mddev)] = NULL;
183		kfree(mddev);
184		MOD_DEC_USE_COUNT;
185	}
186	spin_unlock(&all_mddevs_lock);
187}
188
189static mddev_t * mddev_find(int unit)
190{
191	mddev_t *mddev, *new = NULL;
192
193 retry:
194	spin_lock(&all_mddevs_lock);
195	if (mddev_map[unit]) {
196		mddev =  mddev_get(mddev_map[unit]);
197		spin_unlock(&all_mddevs_lock);
198		if (new)
199			kfree(new);
200		return mddev;
201	}
202	if (new) {
203		mddev_map[unit] = new;
204		list_add(&new->all_mddevs, &all_mddevs);
205		spin_unlock(&all_mddevs_lock);
206		MOD_INC_USE_COUNT;
207		return new;
208	}
209	spin_unlock(&all_mddevs_lock);
210
211	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
212	if (!new)
213		return NULL;
214
215	memset(new, 0, sizeof(*new));
216
217	new->__minor = unit;
218	init_MUTEX(&new->reconfig_sem);
219	INIT_LIST_HEAD(&new->disks);
220	INIT_LIST_HEAD(&new->all_mddevs);
221	init_timer(&new->safemode_timer);
222	atomic_set(&new->active, 1);
223	blk_queue_make_request(&new->queue, md_fail_request);
224
225	goto retry;
226}
227
228static inline int mddev_lock(mddev_t * mddev)
229{
230	return down_interruptible(&mddev->reconfig_sem);
231}
232
233static inline void mddev_lock_uninterruptible(mddev_t * mddev)
234{
235	down(&mddev->reconfig_sem);
236}
237
238static inline int mddev_trylock(mddev_t * mddev)
239{
240	return down_trylock(&mddev->reconfig_sem);
241}
242
243static inline void mddev_unlock(mddev_t * mddev)
244{
245	up(&mddev->reconfig_sem);
246}
247
248mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
249{
250	mdk_rdev_t * rdev;
251	struct list_head *tmp;
252
253	ITERATE_RDEV(mddev,rdev,tmp) {
254		if (rdev->desc_nr == nr)
255			return rdev;
256	}
257	return NULL;
258}
259
260static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
261{
262	struct list_head *tmp;
263	mdk_rdev_t *rdev;
264
265	ITERATE_RDEV(mddev,rdev,tmp) {
266		if (rdev->bdev->bd_dev == dev)
267			return rdev;
268	}
269	return NULL;
270}
271
272inline static sector_t calc_dev_sboffset(struct block_device *bdev)
273{
274	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
275	return MD_NEW_SIZE_BLOCKS(size);
276}
277
278static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
279{
280	sector_t size;
281
282	size = rdev->sb_offset;
283
284	if (chunk_size)
285		size &= ~((sector_t)chunk_size/1024 - 1);
286	return size;
287}
288
289static int alloc_disk_sb(mdk_rdev_t * rdev)
290{
291	if (rdev->sb_page)
292		MD_BUG();
293
294	rdev->sb_page = alloc_page(GFP_KERNEL);
295	if (!rdev->sb_page) {
296		printk(KERN_ALERT "md: out of memory.\n");
297		return -EINVAL;
298	}
299
300	return 0;
301}
302
303static void free_disk_sb(mdk_rdev_t * rdev)
304{
305	if (rdev->sb_page) {
306		page_cache_release(rdev->sb_page);
307		rdev->sb_loaded = 0;
308		rdev->sb_page = NULL;
309		rdev->sb_offset = 0;
310		rdev->size = 0;
311	}
312}
313
314
315static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
316{
317	if (bio->bi_size)
318		return 1;
319
320	complete((struct completion*)bio->bi_private);
321	return 0;
322}
323
324static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
325		   struct page *page, int rw)
326{
327	struct bio bio;
328	struct bio_vec vec;
329	struct completion event;
330
331	bio_init(&bio);
332	bio.bi_io_vec = &vec;
333	vec.bv_page = page;
334	vec.bv_len = size;
335	vec.bv_offset = 0;
336	bio.bi_vcnt = 1;
337	bio.bi_idx = 0;
338	bio.bi_size = size;
339	bio.bi_bdev = bdev;
340	bio.bi_sector = sector;
341	init_completion(&event);
342	bio.bi_private = &event;
343	bio.bi_end_io = bi_complete;
344	submit_bio(rw, &bio);
345	blk_run_queues();
346	wait_for_completion(&event);
347
348	return test_bit(BIO_UPTODATE, &bio.bi_flags);
349}
350
351static int read_disk_sb(mdk_rdev_t * rdev)
352{
353
354	if (!rdev->sb_page) {
355		MD_BUG();
356		return -EINVAL;
357	}
358	if (rdev->sb_loaded)
359		return 0;
360
361
362	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
363		goto fail;
364	rdev->sb_loaded = 1;
365	return 0;
366
367fail:
368	printk(KERN_ERR "md: disabled device %s, could not read superblock.\n",
369		bdev_partition_name(rdev->bdev));
370	return -EINVAL;
371}
372
373static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
374{
375	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
376		(sb1->set_uuid1 == sb2->set_uuid1) &&
377		(sb1->set_uuid2 == sb2->set_uuid2) &&
378		(sb1->set_uuid3 == sb2->set_uuid3))
379
380		return 1;
381
382	return 0;
383}
384
385
386static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
387{
388	int ret;
389	mdp_super_t *tmp1, *tmp2;
390
391	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
392	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
393
394	if (!tmp1 || !tmp2) {
395		ret = 0;
396		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
397		goto abort;
398	}
399
400	*tmp1 = *sb1;
401	*tmp2 = *sb2;
402
403	/*
404	 * nr_disks is not constant
405	 */
406	tmp1->nr_disks = 0;
407	tmp2->nr_disks = 0;
408
409	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
410		ret = 0;
411	else
412		ret = 1;
413
414abort:
415	if (tmp1)
416		kfree(tmp1);
417	if (tmp2)
418		kfree(tmp2);
419
420	return ret;
421}
422
423static unsigned int calc_sb_csum(mdp_super_t * sb)
424{
425	unsigned int disk_csum, csum;
426
427	disk_csum = sb->sb_csum;
428	sb->sb_csum = 0;
429	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
430	sb->sb_csum = disk_csum;
431	return csum;
432}
433
434/*
435 * Handle superblock details.
436 * We want to be able to handle multiple superblock formats
437 * so we have a common interface to them all, and an array of
438 * different handlers.
439 * We rely on user-space to write the initial superblock, and support
440 * reading and updating of superblocks.
441 * Interface methods are:
442 *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
443 *      loads and validates a superblock on dev.
444 *      if refdev != NULL, compare superblocks on both devices
445 *    Return:
446 *      0 - dev has a superblock that is compatible with refdev
447 *      1 - dev has a superblock that is compatible and newer than refdev
448 *          so dev should be used as the refdev in future
449 *     -EINVAL superblock incompatible or invalid
450 *     -othererror e.g. -EIO
451 *
452 *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
453 *      Verify that dev is acceptable into mddev.
454 *       The first time, mddev->raid_disks will be 0, and data from
455 *       dev should be merged in.  Subsequent calls check that dev
456 *       is new enough.  Return 0 or -EINVAL
457 *
458 *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
459 *     Update the superblock for rdev with data in mddev
460 *     This does not write to disc.
461 *
462 */
463
464struct super_type  {
465	char 		*name;
466	struct module	*owner;
467	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
468	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
469	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
470};
471
472/*
473 * load_super for 0.90.0
474 */
475static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
476{
477	mdp_super_t *sb;
478	int ret;
479	sector_t sb_offset;
480
481	/*
482	 * Calculate the position of the superblock,
483	 * it's at the end of the disk.
484	 *
485	 * It also happens to be a multiple of 4Kb.
486	 */
487	sb_offset = calc_dev_sboffset(rdev->bdev);
488	rdev->sb_offset = sb_offset;
489
490	ret = read_disk_sb(rdev);
491	if (ret) return ret;
492
493	ret = -EINVAL;
494
495	sb = (mdp_super_t*)page_address(rdev->sb_page);
496
497	if (sb->md_magic != MD_SB_MAGIC) {
498		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
499			bdev_partition_name(rdev->bdev));
500		goto abort;
501	}
502
503	if (sb->major_version != 0 ||
504	    sb->minor_version != 90) {
505		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
506			sb->major_version, sb->minor_version,
507			bdev_partition_name(rdev->bdev));
508		goto abort;
509	}
510
511	if (sb->md_minor >= MAX_MD_DEVS) {
512		printk(KERN_ERR "md: %s: invalid raid minor (%x)\n",
513			bdev_partition_name(rdev->bdev), sb->md_minor);
514		goto abort;
515	}
516	if (sb->raid_disks <= 0)
517		goto abort;
518
519	if (calc_sb_csum(sb) != sb->sb_csum) {
520		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
521			bdev_partition_name(rdev->bdev));
522		goto abort;
523	}
524
525	rdev->preferred_minor = sb->md_minor;
526	rdev->data_offset = 0;
527
528	if (sb->level == MULTIPATH)
529		rdev->desc_nr = -1;
530	else
531		rdev->desc_nr = sb->this_disk.number;
532
533	if (refdev == 0)
534		ret = 1;
535	else {
536		__u64 ev1, ev2;
537		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
538		if (!uuid_equal(refsb, sb)) {
539			printk(KERN_WARNING "md: %s has different UUID to %s\n",
540				bdev_partition_name(rdev->bdev),
541				bdev_partition_name(refdev->bdev));
542			goto abort;
543		}
544		if (!sb_equal(refsb, sb)) {
545			printk(KERN_WARNING "md: %s has same UUID"
546				" but different superblock to %s\n",
547				bdev_partition_name(rdev->bdev),
548				bdev_partition_name(refdev->bdev));
549			goto abort;
550		}
551		ev1 = md_event(sb);
552		ev2 = md_event(refsb);
553		if (ev1 > ev2)
554			ret = 1;
555		else
556			ret = 0;
557	}
558	rdev->size = calc_dev_size(rdev, sb->chunk_size);
559
560 abort:
561	return ret;
562}
563
564/*
565 * validate_super for 0.90.0
566 */
567static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
568{
569	mdp_disk_t *desc;
570	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
571
572	if (mddev->raid_disks == 0) {
573		mddev->major_version = 0;
574		mddev->minor_version = sb->minor_version;
575		mddev->patch_version = sb->patch_version;
576		mddev->persistent = ! sb->not_persistent;
577		mddev->chunk_size = sb->chunk_size;
578		mddev->ctime = sb->ctime;
579		mddev->utime = sb->utime;
580		mddev->level = sb->level;
581		mddev->layout = sb->layout;
582		mddev->raid_disks = sb->raid_disks;
583		mddev->size = sb->size;
584		mddev->events = md_event(sb);
585
586		if (sb->state & (1<<MD_SB_CLEAN))
587			mddev->recovery_cp = MaxSector;
588		else {
589			if (sb->events_hi == sb->cp_events_hi &&
590				sb->events_lo == sb->cp_events_lo) {
591				mddev->recovery_cp = sb->recovery_cp;
592			} else
593				mddev->recovery_cp = 0;
594		}
595
596		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
597		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
598		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
599		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
600
601		mddev->max_disks = MD_SB_DISKS;
602	} else {
603		__u64 ev1;
604		ev1 = md_event(sb);
605		++ev1;
606		if (ev1 < mddev->events)
607			return -EINVAL;
608	}
609	if (mddev->level != LEVEL_MULTIPATH) {
610		rdev->raid_disk = -1;
611		rdev->in_sync = rdev->faulty = 0;
612		desc = sb->disks + rdev->desc_nr;
613
614		if (desc->state & (1<<MD_DISK_FAULTY))
615			rdev->faulty = 1;
616		else if (desc->state & (1<<MD_DISK_SYNC) &&
617			 desc->raid_disk < mddev->raid_disks) {
618			rdev->in_sync = 1;
619			rdev->raid_disk = desc->raid_disk;
620		}
621	}
622	return 0;
623}
624
625/*
626 * sync_super for 0.90.0
627 */
628static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
629{
630	mdp_super_t *sb;
631	struct list_head *tmp;
632	mdk_rdev_t *rdev2;
633	int next_spare = mddev->raid_disks;
634
635	/* make rdev->sb match mddev data..
636	 *
637	 * 1/ zero out disks
638	 * 2/ Add info for each disk, keeping track of highest desc_nr
639	 * 3/ any empty disks < highest become removed
640	 *
641	 * disks[0] gets initialised to REMOVED because
642	 * we cannot be sure from other fields if it has
643	 * been initialised or not.
644	 */
645	int highest = 0;
646	int i;
647	int active=0, working=0,failed=0,spare=0,nr_disks=0;
648
649	sb = (mdp_super_t*)page_address(rdev->sb_page);
650
651	memset(sb, 0, sizeof(*sb));
652
653	sb->md_magic = MD_SB_MAGIC;
654	sb->major_version = mddev->major_version;
655	sb->minor_version = mddev->minor_version;
656	sb->patch_version = mddev->patch_version;
657	sb->gvalid_words  = 0; /* ignored */
658	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
659	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
660	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
661	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
662
663	sb->ctime = mddev->ctime;
664	sb->level = mddev->level;
665	sb->size  = mddev->size;
666	sb->raid_disks = mddev->raid_disks;
667	sb->md_minor = mddev->__minor;
668	sb->not_persistent = !mddev->persistent;
669	sb->utime = mddev->utime;
670	sb->state = 0;
671	sb->events_hi = (mddev->events>>32);
672	sb->events_lo = (u32)mddev->events;
673
674	if (mddev->in_sync)
675	{
676		sb->recovery_cp = mddev->recovery_cp;
677		sb->cp_events_hi = (mddev->events>>32);
678		sb->cp_events_lo = (u32)mddev->events;
679		if (mddev->recovery_cp == MaxSector)
680			sb->state = (1<< MD_SB_CLEAN);
681	} else
682		sb->recovery_cp = 0;
683
684	sb->layout = mddev->layout;
685	sb->chunk_size = mddev->chunk_size;
686
687	sb->disks[0].state = (1<<MD_DISK_REMOVED);
688	ITERATE_RDEV(mddev,rdev2,tmp) {
689		mdp_disk_t *d;
690		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
691			rdev2->desc_nr = rdev2->raid_disk;
692		else
693			rdev2->desc_nr = next_spare++;
694		d = &sb->disks[rdev2->desc_nr];
695		nr_disks++;
696		d->number = rdev2->desc_nr;
697		d->major = MAJOR(rdev2->bdev->bd_dev);
698		d->minor = MINOR(rdev2->bdev->bd_dev);
699		if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
700			d->raid_disk = rdev2->raid_disk;
701		else
702			d->raid_disk = rdev2->desc_nr; /* compatibility */
703		if (rdev2->faulty) {
704			d->state = (1<<MD_DISK_FAULTY);
705			failed++;
706		} else if (rdev2->in_sync) {
707			d->state = (1<<MD_DISK_ACTIVE);
708			d->state |= (1<<MD_DISK_SYNC);
709			active++;
710			working++;
711		} else {
712			d->state = 0;
713			spare++;
714			working++;
715		}
716		if (rdev2->desc_nr > highest)
717			highest = rdev2->desc_nr;
718	}
719
720	/* now set the "removed" bit on any non-trailing holes */
721	for (i=0; i<highest; i++) {
722		mdp_disk_t *d = &sb->disks[i];
723		if (d->state == 0 && d->number == 0) {
724			d->number = i;
725			d->raid_disk = i;
726			d->state = (1<<MD_DISK_REMOVED);
727		}
728	}
729	sb->nr_disks = nr_disks;
730	sb->active_disks = active;
731	sb->working_disks = working;
732	sb->failed_disks = failed;
733	sb->spare_disks = spare;
734
735	sb->this_disk = sb->disks[rdev->desc_nr];
736	sb->sb_csum = calc_sb_csum(sb);
737}
738
739/*
740 * version 1 superblock
741 */
742
743static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
744{
745	unsigned int disk_csum, csum;
746	int size = 256 + sb->max_dev*2;
747
748	disk_csum = sb->sb_csum;
749	sb->sb_csum = 0;
750	csum = csum_partial((void *)sb, size, 0);
751	sb->sb_csum = disk_csum;
752	return csum;
753}
754
755static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
756{
757	struct mdp_superblock_1 *sb;
758	int ret;
759	sector_t sb_offset;
760
761	/*
762	 * Calculate the position of the superblock.
763	 * It is always aligned to a 4K boundary and
764	 * depeding on minor_version, it can be:
765	 * 0: At least 8K, but less than 12K, from end of device
766	 * 1: At start of device
767	 * 2: 4K from start of device.
768	 */
769	switch(minor_version) {
770	case 0:
771		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
772		sb_offset -= 8*2;
773		sb_offset &= ~(4*2);
774		/* convert from sectors to K */
775		sb_offset /= 2;
776		break;
777	case 1:
778		sb_offset = 0;
779		break;
780	case 2:
781		sb_offset = 4;
782		break;
783	default:
784		return -EINVAL;
785	}
786	rdev->sb_offset = sb_offset;
787
788	ret = read_disk_sb(rdev);
789	if (ret) return ret;
790
791
792	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
793
794	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
795	    sb->major_version != cpu_to_le32(1) ||
796	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
797	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
798	    sb->feature_map != 0)
799		return -EINVAL;
800
801	if (calc_sb_1_csum(sb) != sb->sb_csum) {
802		printk("md: invalid superblock checksum on %s\n",
803			bdev_partition_name(rdev->bdev));
804		return -EINVAL;
805	}
806	rdev->preferred_minor = 0xffff;
807	rdev->data_offset = le64_to_cpu(sb->data_offset);
808
809	if (refdev == 0)
810		return 1;
811	else {
812		__u64 ev1, ev2;
813		struct mdp_superblock_1 *refsb =
814			(struct mdp_superblock_1*)page_address(refdev->sb_page);
815
816		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
817		    sb->level != refsb->level ||
818		    sb->layout != refsb->layout ||
819		    sb->chunksize != refsb->chunksize) {
820			printk(KERN_WARNING "md: %s has strangely different"
821				" superblock to %s\n",
822				bdev_partition_name(rdev->bdev),
823				bdev_partition_name(refdev->bdev));
824			return -EINVAL;
825		}
826		ev1 = le64_to_cpu(sb->events);
827		ev2 = le64_to_cpu(refsb->events);
828
829		if (ev1 > ev2)
830			return 1;
831	}
832	if (minor_version)
833		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
834	else
835		rdev->size = rdev->sb_offset;
836	if (rdev->size < le64_to_cpu(sb->data_size)/2)
837		return -EINVAL;
838	rdev->size = le64_to_cpu(sb->data_size)/2;
839	if (le32_to_cpu(sb->chunksize))
840		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
841	return 0;
842}
843
844static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
845{
846	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
847
848	if (mddev->raid_disks == 0) {
849		mddev->major_version = 1;
850		mddev->minor_version = 0;
851		mddev->patch_version = 0;
852		mddev->persistent = 1;
853		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
854		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
855		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
856		mddev->level = le32_to_cpu(sb->level);
857		mddev->layout = le32_to_cpu(sb->layout);
858		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
859		mddev->size = (u32)le64_to_cpu(sb->size);
860		mddev->events = le64_to_cpu(sb->events);
861
862		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
863		memcpy(mddev->uuid, sb->set_uuid, 16);
864
865		mddev->max_disks =  (4096-256)/2;
866	} else {
867		__u64 ev1;
868		ev1 = le64_to_cpu(sb->events);
869		++ev1;
870		if (ev1 < mddev->events)
871			return -EINVAL;
872	}
873
874	if (mddev->level != LEVEL_MULTIPATH) {
875		int role;
876		rdev->desc_nr = le32_to_cpu(sb->dev_number);
877		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
878		switch(role) {
879		case 0xffff: /* spare */
880			rdev->in_sync = 0;
881			rdev->faulty = 0;
882			rdev->raid_disk = -1;
883			break;
884		case 0xfffe: /* faulty */
885			rdev->in_sync = 0;
886			rdev->faulty = 1;
887			rdev->raid_disk = -1;
888			break;
889		default:
890			rdev->in_sync = 1;
891			rdev->faulty = 0;
892			rdev->raid_disk = role;
893			break;
894		}
895	}
896	return 0;
897}
898
899static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
900{
901	struct mdp_superblock_1 *sb;
902	struct list_head *tmp;
903	mdk_rdev_t *rdev2;
904	int max_dev, i;
905	/* make rdev->sb match mddev and rdev data. */
906
907	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
908
909	sb->feature_map = 0;
910	sb->pad0 = 0;
911	memset(sb->pad1, 0, sizeof(sb->pad1));
912	memset(sb->pad2, 0, sizeof(sb->pad2));
913	memset(sb->pad3, 0, sizeof(sb->pad3));
914
915	sb->utime = cpu_to_le64((__u64)mddev->utime);
916	sb->events = cpu_to_le64(mddev->events);
917	if (mddev->in_sync)
918		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
919	else
920		sb->resync_offset = cpu_to_le64(0);
921
922	max_dev = 0;
923	ITERATE_RDEV(mddev,rdev2,tmp)
924		if (rdev2->desc_nr > max_dev)
925			max_dev = rdev2->desc_nr;
926
927	sb->max_dev = max_dev;
928	for (i=0; i<max_dev;i++)
929		sb->dev_roles[max_dev] = cpu_to_le16(0xfffe);
930
931	ITERATE_RDEV(mddev,rdev2,tmp) {
932		i = rdev2->desc_nr;
933		if (rdev2->faulty)
934			sb->dev_roles[i] = cpu_to_le16(0xfffe);
935		else if (rdev2->in_sync)
936			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
937		else
938			sb->dev_roles[i] = cpu_to_le16(0xffff);
939	}
940
941	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
942}
943
944
945struct super_type super_types[] = {
946	[0] = {
947		.name	= "0.90.0",
948		.owner	= THIS_MODULE,
949		.load_super	= super_90_load,
950		.validate_super	= super_90_validate,
951		.sync_super	= super_90_sync,
952	},
953	[1] = {
954		.name	= "md-1",
955		.owner	= THIS_MODULE,
956		.load_super	= super_1_load,
957		.validate_super	= super_1_validate,
958		.sync_super	= super_1_sync,
959	},
960};
961
962static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
963{
964	struct list_head *tmp;
965	mdk_rdev_t *rdev;
966
967	ITERATE_RDEV(mddev,rdev,tmp)
968		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
969			return rdev;
970
971	return NULL;
972}
973
974static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
975{
976	struct list_head *tmp;
977	mdk_rdev_t *rdev;
978
979	ITERATE_RDEV(mddev1,rdev,tmp)
980		if (match_dev_unit(mddev2, rdev))
981			return 1;
982
983	return 0;
984}
985
986static LIST_HEAD(pending_raid_disks);
987
988static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
989{
990	mdk_rdev_t *same_pdev;
991
992	if (rdev->mddev) {
993		MD_BUG();
994		return -EINVAL;
995	}
996	same_pdev = match_dev_unit(mddev, rdev);
997	if (same_pdev)
998		printk(KERN_WARNING
999			"md%d: WARNING: %s appears to be on the same physical"
1000	 		" disk as %s. True\n     protection against single-disk"
1001			" failure might be compromised.\n",
1002			mdidx(mddev), bdev_partition_name(rdev->bdev),
1003			bdev_partition_name(same_pdev->bdev));
1004
1005	/* Verify rdev->desc_nr is unique.
1006	 * If it is -1, assign a free number, else
1007	 * check number is not in use
1008	 */
1009	if (rdev->desc_nr < 0) {
1010		int choice = 0;
1011		if (mddev->pers) choice = mddev->raid_disks;
1012		while (find_rdev_nr(mddev, choice))
1013			choice++;
1014		rdev->desc_nr = choice;
1015	} else {
1016		if (find_rdev_nr(mddev, rdev->desc_nr))
1017			return -EBUSY;
1018	}
1019
1020	list_add(&rdev->same_set, &mddev->disks);
1021	rdev->mddev = mddev;
1022	printk(KERN_INFO "md: bind<%s>\n", bdev_partition_name(rdev->bdev));
1023	return 0;
1024}
1025
1026static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1027{
1028	if (!rdev->mddev) {
1029		MD_BUG();
1030		return;
1031	}
1032	list_del_init(&rdev->same_set);
1033	printk(KERN_INFO "md: unbind<%s>\n", bdev_partition_name(rdev->bdev));
1034	rdev->mddev = NULL;
1035}
1036
1037/*
1038 * prevent the device from being mounted, repartitioned or
1039 * otherwise reused by a RAID array (or any other kernel
1040 * subsystem), by opening the device. [simply getting an
1041 * inode is not enough, the SCSI module usage code needs
1042 * an explicit open() on the device]
1043 */
1044static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1045{
1046	int err = 0;
1047	struct block_device *bdev;
1048
1049	bdev = bdget(dev);
1050	if (!bdev)
1051		return -ENOMEM;
1052	err = blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0, BDEV_RAW);
1053	if (err)
1054		return err;
1055	err = bd_claim(bdev, rdev);
1056	if (err) {
1057		blkdev_put(bdev, BDEV_RAW);
1058		return err;
1059	}
1060	rdev->bdev = bdev;
1061	return err;
1062}
1063
1064static void unlock_rdev(mdk_rdev_t *rdev)
1065{
1066	struct block_device *bdev = rdev->bdev;
1067	rdev->bdev = NULL;
1068	if (!bdev)
1069		MD_BUG();
1070	bd_release(bdev);
1071	blkdev_put(bdev, BDEV_RAW);
1072}
1073
1074void md_autodetect_dev(dev_t dev);
1075
1076static void export_rdev(mdk_rdev_t * rdev)
1077{
1078	printk(KERN_INFO "md: export_rdev(%s)\n",
1079		bdev_partition_name(rdev->bdev));
1080	if (rdev->mddev)
1081		MD_BUG();
1082	free_disk_sb(rdev);
1083	list_del_init(&rdev->same_set);
1084#ifndef MODULE
1085	md_autodetect_dev(rdev->bdev->bd_dev);
1086#endif
1087	unlock_rdev(rdev);
1088	kfree(rdev);
1089}
1090
1091static void kick_rdev_from_array(mdk_rdev_t * rdev)
1092{
1093	unbind_rdev_from_array(rdev);
1094	export_rdev(rdev);
1095}
1096
1097static void export_array(mddev_t *mddev)
1098{
1099	struct list_head *tmp;
1100	mdk_rdev_t *rdev;
1101
1102	ITERATE_RDEV(mddev,rdev,tmp) {
1103		if (!rdev->mddev) {
1104			MD_BUG();
1105			continue;
1106		}
1107		kick_rdev_from_array(rdev);
1108	}
1109	if (!list_empty(&mddev->disks))
1110		MD_BUG();
1111	mddev->raid_disks = 0;
1112	mddev->major_version = 0;
1113}
1114
1115static void print_desc(mdp_disk_t *desc)
1116{
1117	printk(" DISK<N:%d,%s(%d,%d),R:%d,S:%d>\n", desc->number,
1118		partition_name(MKDEV(desc->major,desc->minor)),
1119		desc->major,desc->minor,desc->raid_disk,desc->state);
1120}
1121
1122static void print_sb(mdp_super_t *sb)
1123{
1124	int i;
1125
1126	printk(KERN_INFO
1127		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1128		sb->major_version, sb->minor_version, sb->patch_version,
1129		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1130		sb->ctime);
1131	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1132		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1133		sb->md_minor, sb->layout, sb->chunk_size);
1134	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1135		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1136		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1137		sb->failed_disks, sb->spare_disks,
1138		sb->sb_csum, (unsigned long)sb->events_lo);
1139
1140	printk(KERN_INFO);
1141	for (i = 0; i < MD_SB_DISKS; i++) {
1142		mdp_disk_t *desc;
1143
1144		desc = sb->disks + i;
1145		if (desc->number || desc->major || desc->minor ||
1146		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1147			printk("     D %2d: ", i);
1148			print_desc(desc);
1149		}
1150	}
1151	printk(KERN_INFO "md:     THIS: ");
1152	print_desc(&sb->this_disk);
1153
1154}
1155
1156static void print_rdev(mdk_rdev_t *rdev)
1157{
1158	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%d ",
1159		bdev_partition_name(rdev->bdev), (unsigned long long)rdev->size,
1160	       	rdev->faulty, rdev->in_sync, rdev->desc_nr);
1161	if (rdev->sb_loaded) {
1162		printk(KERN_INFO "md: rdev superblock:\n");
1163		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1164	} else
1165		printk(KERN_INFO "md: no rdev superblock!\n");
1166}
1167
1168void md_print_devices(void)
1169{
1170	struct list_head *tmp, *tmp2;
1171	mdk_rdev_t *rdev;
1172	mddev_t *mddev;
1173
1174	printk("\n");
1175	printk("md:	**********************************\n");
1176	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1177	printk("md:	**********************************\n");
1178	ITERATE_MDDEV(mddev,tmp) {
1179		printk("md%d: ", mdidx(mddev));
1180
1181		ITERATE_RDEV(mddev,rdev,tmp2)
1182			printk("<%s>", bdev_partition_name(rdev->bdev));
1183
1184		ITERATE_RDEV(mddev,rdev,tmp2)
1185			print_rdev(rdev);
1186	}
1187	printk("md:	**********************************\n");
1188	printk("\n");
1189}
1190
1191
1192static int write_disk_sb(mdk_rdev_t * rdev)
1193{
1194
1195	if (!rdev->sb_loaded) {
1196		MD_BUG();
1197		return 1;
1198	}
1199	if (rdev->faulty) {
1200		MD_BUG();
1201		return 1;
1202	}
1203
1204	dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1205		bdev_partition_name(rdev->bdev),
1206	       (unsigned long long)rdev->sb_offset);
1207
1208	if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1209		return 0;
1210
1211	printk("md: write_disk_sb failed for device %s\n",
1212		bdev_partition_name(rdev->bdev));
1213	return 1;
1214}
1215
1216static void sync_sbs(mddev_t * mddev)
1217{
1218	mdk_rdev_t *rdev;
1219	struct list_head *tmp;
1220
1221	ITERATE_RDEV(mddev,rdev,tmp) {
1222		super_types[mddev->major_version].
1223			sync_super(mddev, rdev);
1224		rdev->sb_loaded = 1;
1225	}
1226}
1227
1228static void md_update_sb(mddev_t * mddev)
1229{
1230	int err, count = 100;
1231	struct list_head *tmp;
1232	mdk_rdev_t *rdev;
1233
1234	mddev->sb_dirty = 0;
1235repeat:
1236	mddev->utime = get_seconds();
1237	mddev->events ++;
1238
1239	if (!mddev->events) {
1240		/*
1241		 * oops, this 64-bit counter should never wrap.
1242		 * Either we are in around ~1 trillion A.C., assuming
1243		 * 1 reboot per second, or we have a bug:
1244		 */
1245		MD_BUG();
1246		mddev->events --;
1247	}
1248	sync_sbs(mddev);
1249
1250	/*
1251	 * do not write anything to disk if using
1252	 * nonpersistent superblocks
1253	 */
1254	if (!mddev->persistent)
1255		return;
1256
1257	dprintk(KERN_INFO
1258		"md: updating md%d RAID superblock on device (in sync %d)\n",
1259		mdidx(mddev),mddev->in_sync);
1260
1261	err = 0;
1262	ITERATE_RDEV(mddev,rdev,tmp) {
1263		dprintk(KERN_INFO "md: ");
1264		if (rdev->faulty)
1265			dprintk("(skipping faulty ");
1266
1267		dprintk("%s ", bdev_partition_name(rdev->bdev));
1268		if (!rdev->faulty) {
1269			err += write_disk_sb(rdev);
1270		} else
1271			dprintk(")\n");
1272		if (!err && mddev->level == LEVEL_MULTIPATH)
1273			/* only need to write one superblock... */
1274			break;
1275	}
1276	if (err) {
1277		if (--count) {
1278			printk(KERN_ERR "md: errors occurred during superblock"
1279				" update, repeating\n");
1280			goto repeat;
1281		}
1282		printk(KERN_ERR \
1283			"md: excessive errors occurred during superblock update, exiting\n");
1284	}
1285}
1286
1287/*
1288 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1289 *
1290 * mark the device faulty if:
1291 *
1292 *   - the device is nonexistent (zero size)
1293 *   - the device has no valid superblock
1294 *
1295 * a faulty rdev _never_ has rdev->sb set.
1296 */
1297static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1298{
1299	int err;
1300	mdk_rdev_t *rdev;
1301	sector_t size;
1302
1303	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1304	if (!rdev) {
1305		printk(KERN_ERR "md: could not alloc mem for %s!\n",
1306			partition_name(newdev));
1307		return ERR_PTR(-ENOMEM);
1308	}
1309	memset(rdev, 0, sizeof(*rdev));
1310
1311	if ((err = alloc_disk_sb(rdev)))
1312		goto abort_free;
1313
1314	err = lock_rdev(rdev, newdev);
1315	if (err) {
1316		printk(KERN_ERR "md: could not lock %s.\n",
1317			partition_name(newdev));
1318		goto abort_free;
1319	}
1320	rdev->desc_nr = -1;
1321	rdev->faulty = 0;
1322	rdev->in_sync = 0;
1323	rdev->data_offset = 0;
1324	atomic_set(&rdev->nr_pending, 0);
1325
1326	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1327	if (!size) {
1328		printk(KERN_WARNING
1329			"md: %s has zero or unknown size, marking faulty!\n",
1330			bdev_partition_name(rdev->bdev));
1331		err = -EINVAL;
1332		goto abort_free;
1333	}
1334
1335	if (super_format >= 0) {
1336		err = super_types[super_format].
1337			load_super(rdev, NULL, super_minor);
1338		if (err == -EINVAL) {
1339			printk(KERN_WARNING
1340				"md: %s has invalid sb, not importing!\n",
1341				bdev_partition_name(rdev->bdev));
1342			goto abort_free;
1343		}
1344		if (err < 0) {
1345			printk(KERN_WARNING
1346				"md: could not read %s's sb, not importing!\n",
1347				bdev_partition_name(rdev->bdev));
1348			goto abort_free;
1349		}
1350	}
1351	INIT_LIST_HEAD(&rdev->same_set);
1352
1353	return rdev;
1354
1355abort_free:
1356	if (rdev->sb_page) {
1357		if (rdev->bdev)
1358			unlock_rdev(rdev);
1359		free_disk_sb(rdev);
1360	}
1361	kfree(rdev);
1362	return ERR_PTR(err);
1363}
1364
1365/*
1366 * Check a full RAID array for plausibility
1367 */
1368
1369
1370static int analyze_sbs(mddev_t * mddev)
1371{
1372	int i;
1373	struct list_head *tmp;
1374	mdk_rdev_t *rdev, *freshest;
1375
1376	freshest = NULL;
1377	ITERATE_RDEV(mddev,rdev,tmp)
1378		switch (super_types[mddev->major_version].
1379			load_super(rdev, freshest, mddev->minor_version)) {
1380		case 1:
1381			freshest = rdev;
1382			break;
1383		case 0:
1384			break;
1385		default:
1386			printk( KERN_ERR \
1387				"md: fatal superblock inconsistency in %s"
1388				" -- removing from array\n",
1389				bdev_partition_name(rdev->bdev));
1390			kick_rdev_from_array(rdev);
1391		}
1392
1393
1394	super_types[mddev->major_version].
1395		validate_super(mddev, freshest);
1396
1397	i = 0;
1398	ITERATE_RDEV(mddev,rdev,tmp) {
1399		if (rdev != freshest)
1400			if (super_types[mddev->major_version].
1401			    validate_super(mddev, rdev)) {
1402				printk(KERN_WARNING "md: kicking non-fresh %s"
1403					" from array!\n",
1404					bdev_partition_name(rdev->bdev));
1405				kick_rdev_from_array(rdev);
1406				continue;
1407			}
1408		if (mddev->level == LEVEL_MULTIPATH) {
1409			rdev->desc_nr = i++;
1410			rdev->raid_disk = rdev->desc_nr;
1411			rdev->in_sync = 1;
1412		}
1413	}
1414
1415
1416	/*
1417	 * Check if we can support this RAID array
1418	 */
1419	if (mddev->major_version != MD_MAJOR_VERSION ||
1420			mddev->minor_version > MD_MINOR_VERSION) {
1421		printk(KERN_ALERT
1422			"md: md%d: unsupported raid array version %d.%d.%d\n",
1423			mdidx(mddev), mddev->major_version,
1424			mddev->minor_version, mddev->patch_version);
1425		goto abort;
1426	}
1427
1428	if ((mddev->recovery_cp != MaxSector) && ((mddev->level == 1) ||
1429			(mddev->level == 4) || (mddev->level == 5)))
1430		printk(KERN_ERR "md: md%d: raid array is not clean"
1431			" -- starting background reconstruction\n",
1432			mdidx(mddev));
1433
1434	return 0;
1435abort:
1436	return 1;
1437}
1438
1439static struct gendisk *md_probe(dev_t dev, int *part, void *data)
1440{
1441	static DECLARE_MUTEX(disks_sem);
1442	int unit = MINOR(dev);
1443	mddev_t *mddev = mddev_find(unit);
1444	struct gendisk *disk;
1445
1446	if (!mddev)
1447		return NULL;
1448
1449	down(&disks_sem);
1450	if (disks[unit]) {
1451		up(&disks_sem);
1452		mddev_put(mddev);
1453		return NULL;
1454	}
1455	disk = alloc_disk(1);
1456	if (!disk) {
1457		up(&disks_sem);
1458		mddev_put(mddev);
1459		return NULL;
1460	}
1461	disk->major = MD_MAJOR;
1462	disk->first_minor = mdidx(mddev);
1463	sprintf(disk->disk_name, "md%d", mdidx(mddev));
1464	disk->fops = &md_fops;
1465	disk->private_data = mddev;
1466	disk->queue = &mddev->queue;
1467	add_disk(disk);
1468	disks[mdidx(mddev)] = disk;
1469	up(&disks_sem);
1470	return NULL;
1471}
1472
1473void md_wakeup_thread(mdk_thread_t *thread);
1474
1475static void md_safemode_timeout(unsigned long data)
1476{
1477	mddev_t *mddev = (mddev_t *) data;
1478
1479	mddev->safemode = 1;
1480	md_wakeup_thread(mddev->thread);
1481}
1482
1483
1484static int do_md_run(mddev_t * mddev)
1485{
1486	int pnum, err;
1487	int chunk_size;
1488	struct list_head *tmp;
1489	mdk_rdev_t *rdev;
1490	struct gendisk *disk;
1491
1492	if (list_empty(&mddev->disks)) {
1493		MD_BUG();
1494		return -EINVAL;
1495	}
1496
1497	if (mddev->pers)
1498		return -EBUSY;
1499
1500	/*
1501	 * Analyze all RAID superblock(s)
1502	 */
1503	if (!mddev->raid_disks && analyze_sbs(mddev)) {
1504		MD_BUG();
1505		return -EINVAL;
1506	}
1507
1508	chunk_size = mddev->chunk_size;
1509	pnum = level_to_pers(mddev->level);
1510
1511	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1512		if (!chunk_size) {
1513			/*
1514			 * 'default chunksize' in the old md code used to
1515			 * be PAGE_SIZE, baaad.
1516			 * we abort here to be on the safe side. We don't
1517			 * want to continue the bad practice.
1518			 */
1519			printk(KERN_ERR
1520				"no chunksize specified, see 'man raidtab'\n");
1521			return -EINVAL;
1522		}
1523		if (chunk_size > MAX_CHUNK_SIZE) {
1524			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1525				chunk_size, MAX_CHUNK_SIZE);
1526			return -EINVAL;
1527		}
1528		/*
1529		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1530		 */
1531		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1532			MD_BUG();
1533			return -EINVAL;
1534		}
1535		if (chunk_size < PAGE_SIZE) {
1536			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1537				chunk_size, PAGE_SIZE);
1538			return -EINVAL;
1539		}
1540
1541		/* devices must have minimum size of one chunk */
1542		ITERATE_RDEV(mddev,rdev,tmp) {
1543			if (rdev->faulty)
1544				continue;
1545			if (rdev->size < chunk_size / 1024) {
1546				printk(KERN_WARNING
1547					"md: Dev %s smaller than chunk_size:"
1548					" %lluk < %dk\n",
1549					bdev_partition_name(rdev->bdev),
1550					(unsigned long long)rdev->size,
1551					chunk_size / 1024);
1552				return -EINVAL;
1553			}
1554		}
1555	}
1556	if (pnum >= MAX_PERSONALITY) {
1557		MD_BUG();
1558		return -EINVAL;
1559	}
1560
1561#ifdef CONFIG_KMOD
1562	if (!pers[pnum])
1563	{
1564		char module_name[80];
1565		sprintf (module_name, "md-personality-%d", pnum);
1566		request_module (module_name);
1567	}
1568#endif
1569
1570	/*
1571	 * Drop all container device buffers, from now on
1572	 * the only valid external interface is through the md
1573	 * device.
1574	 * Also find largest hardsector size
1575	 */
1576	ITERATE_RDEV(mddev,rdev,tmp) {
1577		if (rdev->faulty)
1578			continue;
1579		sync_blockdev(rdev->bdev);
1580		invalidate_bdev(rdev->bdev, 0);
1581	}
1582
1583	md_probe(mdidx(mddev), NULL, NULL);
1584	disk = disks[mdidx(mddev)];
1585	if (!disk)
1586		return -ENOMEM;
1587
1588	spin_lock(&pers_lock);
1589	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1590		spin_unlock(&pers_lock);
1591		printk(KERN_ERR "md: personality %d is not loaded!\n",
1592		       pnum);
1593		return -EINVAL;
1594	}
1595
1596	mddev->pers = pers[pnum];
1597	spin_unlock(&pers_lock);
1598
1599	blk_queue_make_request(&mddev->queue, mddev->pers->make_request);
1600	printk("%s: setting max_sectors to %d, segment boundary to %d\n",
1601		disk->disk_name,
1602		chunk_size >> 9,
1603		(chunk_size>>1)-1);
1604	blk_queue_max_sectors(&mddev->queue, chunk_size >> 9);
1605	blk_queue_segment_boundary(&mddev->queue, (chunk_size>>1) - 1);
1606	mddev->queue.queuedata = mddev;
1607
1608	err = mddev->pers->run(mddev);
1609	if (err) {
1610		printk(KERN_ERR "md: pers->run() failed ...\n");
1611		module_put(mddev->pers->owner);
1612		mddev->pers = NULL;
1613		return -EINVAL;
1614	}
1615 	atomic_set(&mddev->writes_pending,0);
1616	mddev->safemode = 0;
1617	mddev->safemode_timer.function = md_safemode_timeout;
1618	mddev->safemode_timer.data = (unsigned long) mddev;
1619	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1620	mddev->in_sync = 1;
1621
1622	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1623	md_wakeup_thread(mddev->thread);
1624	set_capacity(disk, mddev->array_size<<1);
1625	return 0;
1626}
1627
1628static int restart_array(mddev_t *mddev)
1629{
1630	struct gendisk *disk = disks[mdidx(mddev)];
1631	int err;
1632
1633	/*
1634	 * Complain if it has no devices
1635	 */
1636	err = -ENXIO;
1637	if (list_empty(&mddev->disks))
1638		goto out;
1639
1640	if (mddev->pers) {
1641		err = -EBUSY;
1642		if (!mddev->ro)
1643			goto out;
1644
1645		mddev->safemode = 0;
1646		mddev->ro = 0;
1647		set_disk_ro(disk, 0);
1648
1649		printk(KERN_INFO "md: md%d switched to read-write mode.\n",
1650			mdidx(mddev));
1651		/*
1652		 * Kick recovery or resync if necessary
1653		 */
1654		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1655		md_wakeup_thread(mddev->thread);
1656		err = 0;
1657	} else {
1658		printk(KERN_ERR "md: md%d has no personality assigned.\n",
1659			mdidx(mddev));
1660		err = -EINVAL;
1661	}
1662
1663out:
1664	return err;
1665}
1666
1667static int do_md_stop(mddev_t * mddev, int ro)
1668{
1669	int err = 0;
1670	struct gendisk *disk = disks[mdidx(mddev)];
1671
1672	if (atomic_read(&mddev->active)>2) {
1673		printk("md: md%d still in use.\n",mdidx(mddev));
1674		err = -EBUSY;
1675		goto out;
1676	}
1677
1678	if (mddev->pers) {
1679		if (mddev->sync_thread) {
1680			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681			md_unregister_thread(mddev->sync_thread);
1682			mddev->sync_thread = NULL;
1683		}
1684
1685		del_timer_sync(&mddev->safemode_timer);
1686
1687		invalidate_device(mk_kdev(disk->major, disk->first_minor), 1);
1688
1689		if (ro) {
1690			err  = -ENXIO;
1691			if (mddev->ro)
1692				goto out;
1693			mddev->ro = 1;
1694		} else {
1695			if (mddev->ro)
1696				set_disk_ro(disk, 0);
1697			if (mddev->pers->stop(mddev)) {
1698				err = -EBUSY;
1699				if (mddev->ro)
1700					set_disk_ro(disk, 1);
1701				goto out;
1702			}
1703			module_put(mddev->pers->owner);
1704			mddev->pers = NULL;
1705			if (mddev->ro)
1706				mddev->ro = 0;
1707		}
1708		if (mddev->raid_disks) {
1709			/* mark array as shutdown cleanly */
1710			mddev->in_sync = 1;
1711			md_update_sb(mddev);
1712		}
1713		if (ro)
1714			set_disk_ro(disk, 1);
1715	}
1716	/*
1717	 * Free resources if final stop
1718	 */
1719	if (!ro) {
1720		struct gendisk *disk;
1721		printk(KERN_INFO "md: md%d stopped.\n", mdidx(mddev));
1722
1723		export_array(mddev);
1724
1725		mddev->array_size = 0;
1726		disk = disks[mdidx(mddev)];
1727		if (disk)
1728			set_capacity(disk, 0);
1729	} else
1730		printk(KERN_INFO "md: md%d switched to read-only mode.\n",
1731			mdidx(mddev));
1732	err = 0;
1733out:
1734	return err;
1735}
1736
1737static void autorun_array(mddev_t *mddev)
1738{
1739	mdk_rdev_t *rdev;
1740	struct list_head *tmp;
1741	int err;
1742
1743	if (list_empty(&mddev->disks)) {
1744		MD_BUG();
1745		return;
1746	}
1747
1748	printk(KERN_INFO "md: running: ");
1749
1750	ITERATE_RDEV(mddev,rdev,tmp) {
1751		printk("<%s>", bdev_partition_name(rdev->bdev));
1752	}
1753	printk("\n");
1754
1755	err = do_md_run (mddev);
1756	if (err) {
1757		printk(KERN_WARNING "md :do_md_run() returned %d\n", err);
1758		do_md_stop (mddev, 0);
1759	}
1760}
1761
1762/*
1763 * lets try to run arrays based on all disks that have arrived
1764 * until now. (those are in pending_raid_disks)
1765 *
1766 * the method: pick the first pending disk, collect all disks with
1767 * the same UUID, remove all from the pending list and put them into
1768 * the 'same_array' list. Then order this list based on superblock
1769 * update time (freshest comes first), kick out 'old' disks and
1770 * compare superblocks. If everything's fine then run it.
1771 *
1772 * If "unit" is allocated, then bump its reference count
1773 */
1774static void autorun_devices(void)
1775{
1776	struct list_head candidates;
1777	struct list_head *tmp;
1778	mdk_rdev_t *rdev0, *rdev;
1779	mddev_t *mddev;
1780
1781	printk(KERN_INFO "md: autorun ...\n");
1782	while (!list_empty(&pending_raid_disks)) {
1783		rdev0 = list_entry(pending_raid_disks.next,
1784					 mdk_rdev_t, same_set);
1785
1786		printk(KERN_INFO "md: considering %s ...\n",
1787			bdev_partition_name(rdev0->bdev));
1788		INIT_LIST_HEAD(&candidates);
1789		ITERATE_RDEV_PENDING(rdev,tmp)
1790			if (super_90_load(rdev, rdev0, 0) >= 0) {
1791				printk(KERN_INFO "md:  adding %s ...\n",
1792					bdev_partition_name(rdev->bdev));
1793				list_move(&rdev->same_set, &candidates);
1794			}
1795		/*
1796		 * now we have a set of devices, with all of them having
1797		 * mostly sane superblocks. It's time to allocate the
1798		 * mddev.
1799		 */
1800
1801		mddev = mddev_find(rdev0->preferred_minor);
1802		if (!mddev) {
1803			printk(KERN_ERR
1804				"md: cannot allocate memory for md drive.\n");
1805			break;
1806		}
1807		if (mddev_lock(mddev))
1808			printk(KERN_WARNING "md: md%d locked, cannot run\n",
1809			       mdidx(mddev));
1810		else if (mddev->raid_disks || mddev->major_version
1811			 || !list_empty(&mddev->disks)) {
1812			printk(KERN_WARNING
1813				"md: md%d already running, cannot run %s\n",
1814				mdidx(mddev), bdev_partition_name(rdev0->bdev));
1815			mddev_unlock(mddev);
1816		} else {
1817			printk(KERN_INFO "md: created md%d\n", mdidx(mddev));
1818			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1819				list_del_init(&rdev->same_set);
1820				if (bind_rdev_to_array(rdev, mddev))
1821					export_rdev(rdev);
1822			}
1823			autorun_array(mddev);
1824			mddev_unlock(mddev);
1825		}
1826		/* on success, candidates will be empty, on error
1827		 * it won't...
1828		 */
1829		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1830			export_rdev(rdev);
1831		mddev_put(mddev);
1832	}
1833	printk(KERN_INFO "md: ... autorun DONE.\n");
1834}
1835
1836/*
1837 * import RAID devices based on one partition
1838 * if possible, the array gets run as well.
1839 */
1840
1841static int autostart_array(dev_t startdev)
1842{
1843	int err = -EINVAL, i;
1844	mdp_super_t *sb = NULL;
1845	mdk_rdev_t *start_rdev = NULL, *rdev;
1846
1847	start_rdev = md_import_device(startdev, 0, 0);
1848	if (IS_ERR(start_rdev)) {
1849		printk(KERN_WARNING "md: could not import %s!\n",
1850			partition_name(startdev));
1851		return err;
1852	}
1853
1854	/* NOTE: this can only work for 0.90.0 superblocks */
1855	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1856	if (sb->major_version != 0 ||
1857	    sb->minor_version != 90 ) {
1858		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1859		export_rdev(start_rdev);
1860		return err;
1861	}
1862
1863	if (start_rdev->faulty) {
1864		printk(KERN_WARNING
1865			"md: can not autostart based on faulty %s!\n",
1866			bdev_partition_name(start_rdev->bdev));
1867		export_rdev(start_rdev);
1868		return err;
1869	}
1870	list_add(&start_rdev->same_set, &pending_raid_disks);
1871
1872	for (i = 0; i < MD_SB_DISKS; i++) {
1873		mdp_disk_t *desc;
1874		dev_t dev;
1875
1876		desc = sb->disks + i;
1877		dev = MKDEV(desc->major, desc->minor);
1878
1879		if (!dev)
1880			continue;
1881		if (dev == startdev)
1882			continue;
1883		rdev = md_import_device(dev, 0, 0);
1884		if (IS_ERR(rdev)) {
1885			printk(KERN_WARNING "md: could not import %s,"
1886				" trying to run array nevertheless.\n",
1887				partition_name(dev));
1888			continue;
1889		}
1890		list_add(&rdev->same_set, &pending_raid_disks);
1891	}
1892
1893	/*
1894	 * possibly return codes
1895	 */
1896	autorun_devices();
1897	return 0;
1898
1899}
1900
1901
1902static int get_version(void * arg)
1903{
1904	mdu_version_t ver;
1905
1906	ver.major = MD_MAJOR_VERSION;
1907	ver.minor = MD_MINOR_VERSION;
1908	ver.patchlevel = MD_PATCHLEVEL_VERSION;
1909
1910	if (copy_to_user(arg, &ver, sizeof(ver)))
1911		return -EFAULT;
1912
1913	return 0;
1914}
1915
1916static int get_array_info(mddev_t * mddev, void * arg)
1917{
1918	mdu_array_info_t info;
1919	int nr,working,active,failed,spare;
1920	mdk_rdev_t *rdev;
1921	struct list_head *tmp;
1922
1923	nr=working=active=failed=spare=0;
1924	ITERATE_RDEV(mddev,rdev,tmp) {
1925		nr++;
1926		if (rdev->faulty)
1927			failed++;
1928		else {
1929			working++;
1930			if (rdev->in_sync)
1931				active++;
1932			else
1933				spare++;
1934		}
1935	}
1936
1937	info.major_version = mddev->major_version;
1938	info.minor_version = mddev->minor_version;
1939	info.patch_version = 1;
1940	info.ctime         = mddev->ctime;
1941	info.level         = mddev->level;
1942	info.size          = mddev->size;
1943	info.nr_disks      = nr;
1944	info.raid_disks    = mddev->raid_disks;
1945	info.md_minor      = mddev->__minor;
1946	info.not_persistent= !mddev->persistent;
1947
1948	info.utime         = mddev->utime;
1949	info.state         = 0;
1950	if (mddev->in_sync)
1951		info.state = (1<<MD_SB_CLEAN);
1952	info.active_disks  = active;
1953	info.working_disks = working;
1954	info.failed_disks  = failed;
1955	info.spare_disks   = spare;
1956
1957	info.layout        = mddev->layout;
1958	info.chunk_size    = mddev->chunk_size;
1959
1960	if (copy_to_user(arg, &info, sizeof(info)))
1961		return -EFAULT;
1962
1963	return 0;
1964}
1965
1966static int get_disk_info(mddev_t * mddev, void * arg)
1967{
1968	mdu_disk_info_t info;
1969	unsigned int nr;
1970	mdk_rdev_t *rdev;
1971
1972	if (copy_from_user(&info, arg, sizeof(info)))
1973		return -EFAULT;
1974
1975	nr = info.number;
1976
1977	rdev = find_rdev_nr(mddev, nr);
1978	if (rdev) {
1979		info.major = MAJOR(rdev->bdev->bd_dev);
1980		info.minor = MINOR(rdev->bdev->bd_dev);
1981		info.raid_disk = rdev->raid_disk;
1982		info.state = 0;
1983		if (rdev->faulty)
1984			info.state |= (1<<MD_DISK_FAULTY);
1985		else if (rdev->in_sync) {
1986			info.state |= (1<<MD_DISK_ACTIVE);
1987			info.state |= (1<<MD_DISK_SYNC);
1988		}
1989	} else {
1990		info.major = info.minor = 0;
1991		info.raid_disk = -1;
1992		info.state = (1<<MD_DISK_REMOVED);
1993	}
1994
1995	if (copy_to_user(arg, &info, sizeof(info)))
1996		return -EFAULT;
1997
1998	return 0;
1999}
2000
2001static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2002{
2003	mdk_rdev_t *rdev;
2004	dev_t dev;
2005	dev = MKDEV(info->major,info->minor);
2006	if (!mddev->raid_disks) {
2007		int err;
2008		/* expecting a device which has a superblock */
2009		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2010		if (IS_ERR(rdev)) {
2011			printk(KERN_WARNING
2012				"md: md_import_device returned %ld\n",
2013				PTR_ERR(rdev));
2014			return PTR_ERR(rdev);
2015		}
2016		if (!list_empty(&mddev->disks)) {
2017			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2018							mdk_rdev_t, same_set);
2019			int err = super_types[mddev->major_version]
2020				.load_super(rdev, rdev0, mddev->minor_version);
2021			if (err < 0) {
2022				printk(KERN_WARNING
2023					"md: %s has different UUID to %s\n",
2024					bdev_partition_name(rdev->bdev),
2025					bdev_partition_name(rdev0->bdev));
2026				export_rdev(rdev);
2027				return -EINVAL;
2028			}
2029		}
2030		err = bind_rdev_to_array(rdev, mddev);
2031		if (err)
2032			export_rdev(rdev);
2033		return err;
2034	}
2035
2036	/*
2037	 * add_new_disk can be used once the array is assembled
2038	 * to add "hot spares".  They must already have a superblock
2039	 * written
2040	 */
2041	if (mddev->pers) {
2042		int err;
2043		if (!mddev->pers->hot_add_disk) {
2044			printk(KERN_WARNING
2045				"md%d: personality does not support diskops!\n",
2046			       mdidx(mddev));
2047			return -EINVAL;
2048		}
2049		rdev = md_import_device(dev, mddev->major_version,
2050					mddev->minor_version);
2051		if (IS_ERR(rdev)) {
2052			printk(KERN_WARNING
2053				"md: md_import_device returned %ld\n",
2054				PTR_ERR(rdev));
2055			return PTR_ERR(rdev);
2056		}
2057		rdev->in_sync = 0; /* just to be sure */
2058		rdev->raid_disk = -1;
2059		err = bind_rdev_to_array(rdev, mddev);
2060		if (err)
2061			export_rdev(rdev);
2062		if (mddev->thread)
2063			md_wakeup_thread(mddev->thread);
2064		return err;
2065	}
2066
2067	/* otherwise, add_new_disk is only allowed
2068	 * for major_version==0 superblocks
2069	 */
2070	if (mddev->major_version != 0) {
2071		printk(KERN_WARNING "md%d: ADD_NEW_DISK not supported\n",
2072		       mdidx(mddev));
2073		return -EINVAL;
2074	}
2075
2076	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2077		int err;
2078		rdev = md_import_device (dev, -1, 0);
2079		if (IS_ERR(rdev)) {
2080			printk(KERN_WARNING
2081				"md: error, md_import_device() returned %ld\n",
2082				PTR_ERR(rdev));
2083			return PTR_ERR(rdev);
2084		}
2085		rdev->desc_nr = info->number;
2086		if (info->raid_disk < mddev->raid_disks)
2087			rdev->raid_disk = info->raid_disk;
2088		else
2089			rdev->raid_disk = -1;
2090
2091		rdev->faulty = 0;
2092		if (rdev->raid_disk < mddev->raid_disks)
2093			rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2094		else
2095			rdev->in_sync = 0;
2096
2097		err = bind_rdev_to_array(rdev, mddev);
2098		if (err) {
2099			export_rdev(rdev);
2100			return err;
2101		}
2102
2103		if (!mddev->persistent) {
2104			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2105			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2106		} else
2107			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2108		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2109
2110		if (!mddev->size || (mddev->size > rdev->size))
2111			mddev->size = rdev->size;
2112	}
2113
2114	return 0;
2115}
2116
2117static int hot_generate_error(mddev_t * mddev, dev_t dev)
2118{
2119	struct request_queue *q;
2120	mdk_rdev_t *rdev;
2121
2122	if (!mddev->pers)
2123		return -ENODEV;
2124
2125	printk(KERN_INFO "md: trying to generate %s error in md%d ... \n",
2126		partition_name(dev), mdidx(mddev));
2127
2128	rdev = find_rdev(mddev, dev);
2129	if (!rdev) {
2130		MD_BUG();
2131		return -ENXIO;
2132	}
2133
2134	if (rdev->desc_nr == -1) {
2135		MD_BUG();
2136		return -EINVAL;
2137	}
2138	if (!rdev->in_sync)
2139		return -ENODEV;
2140
2141	q = bdev_get_queue(rdev->bdev);
2142	if (!q) {
2143		MD_BUG();
2144		return -ENODEV;
2145	}
2146	printk(KERN_INFO "md: okay, generating error!\n");
2147//	q->oneshot_error = 1; // disabled for now
2148
2149	return 0;
2150}
2151
2152static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2153{
2154	mdk_rdev_t *rdev;
2155
2156	if (!mddev->pers)
2157		return -ENODEV;
2158
2159	printk(KERN_INFO "md: trying to remove %s from md%d ... \n",
2160		partition_name(dev), mdidx(mddev));
2161
2162	rdev = find_rdev(mddev, dev);
2163	if (!rdev)
2164		return -ENXIO;
2165
2166	if (rdev->raid_disk >= 0)
2167		goto busy;
2168
2169	kick_rdev_from_array(rdev);
2170	md_update_sb(mddev);
2171
2172	return 0;
2173busy:
2174	printk(KERN_WARNING "md: cannot remove active disk %s from md%d ... \n",
2175		bdev_partition_name(rdev->bdev), mdidx(mddev));
2176	return -EBUSY;
2177}
2178
2179static int hot_add_disk(mddev_t * mddev, dev_t dev)
2180{
2181	int err;
2182	unsigned int size;
2183	mdk_rdev_t *rdev;
2184
2185	if (!mddev->pers)
2186		return -ENODEV;
2187
2188	printk(KERN_INFO "md: trying to hot-add %s to md%d ... \n",
2189		partition_name(dev), mdidx(mddev));
2190
2191	if (mddev->major_version != 0) {
2192		printk(KERN_WARNING "md%d: HOT_ADD may only be used with"
2193			" version-0 superblocks.\n",
2194			mdidx(mddev));
2195		return -EINVAL;
2196	}
2197	if (!mddev->pers->hot_add_disk) {
2198		printk(KERN_WARNING
2199			"md%d: personality does not support diskops!\n",
2200			mdidx(mddev));
2201		return -EINVAL;
2202	}
2203
2204	rdev = md_import_device (dev, -1, 0);
2205	if (IS_ERR(rdev)) {
2206		printk(KERN_WARNING
2207			"md: error, md_import_device() returned %ld\n",
2208			PTR_ERR(rdev));
2209		return -EINVAL;
2210	}
2211
2212	rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2213	size = calc_dev_size(rdev, mddev->chunk_size);
2214	rdev->size = size;
2215
2216	if (size < mddev->size) {
2217		printk(KERN_WARNING
2218			"md%d: disk size %llu blocks < array size %llu\n",
2219			mdidx(mddev), (unsigned long long)size,
2220			(unsigned long long)mddev->size);
2221		err = -ENOSPC;
2222		goto abort_export;
2223	}
2224
2225	if (rdev->faulty) {
2226		printk(KERN_WARNING
2227			"md: can not hot-add faulty %s disk to md%d!\n",
2228			bdev_partition_name(rdev->bdev), mdidx(mddev));
2229		err = -EINVAL;
2230		goto abort_export;
2231	}
2232	rdev->in_sync = 0;
2233	rdev->desc_nr = -1;
2234	bind_rdev_to_array(rdev, mddev);
2235
2236	/*
2237	 * The rest should better be atomic, we can have disk failures
2238	 * noticed in interrupt contexts ...
2239	 */
2240
2241	if (rdev->desc_nr == mddev->max_disks) {
2242		printk(KERN_WARNING "md%d: can not hot-add to full array!\n",
2243			mdidx(mddev));
2244		err = -EBUSY;
2245		goto abort_unbind_export;
2246	}
2247
2248	rdev->raid_disk = -1;
2249
2250	md_update_sb(mddev);
2251
2252	/*
2253	 * Kick recovery, maybe this spare has to be added to the
2254	 * array immediately.
2255	 */
2256	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2257	md_wakeup_thread(mddev->thread);
2258
2259	return 0;
2260
2261abort_unbind_export:
2262	unbind_rdev_from_array(rdev);
2263
2264abort_export:
2265	export_rdev(rdev);
2266	return err;
2267}
2268
2269/*
2270 * set_array_info is used two different ways
2271 * The original usage is when creating a new array.
2272 * In this usage, raid_disks is > = and it together with
2273 *  level, size, not_persistent,layout,chunksize determine the
2274 *  shape of the array.
2275 *  This will always create an array with a type-0.90.0 superblock.
2276 * The newer usage is when assembling an array.
2277 *  In this case raid_disks will be 0, and the major_version field is
2278 *  use to determine which style super-blocks are to be found on the devices.
2279 *  The minor and patch _version numbers are also kept incase the
2280 *  super_block handler wishes to interpret them.
2281 */
2282static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2283{
2284
2285	if (info->raid_disks == 0) {
2286		/* just setting version number for superblock loading */
2287		if (info->major_version < 0 ||
2288		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2289		    super_types[info->major_version].name == NULL) {
2290			/* maybe try to auto-load a module? */
2291			printk(KERN_INFO
2292				"md: superblock version %d not known\n",
2293				info->major_version);
2294			return -EINVAL;
2295		}
2296		mddev->major_version = info->major_version;
2297		mddev->minor_version = info->minor_version;
2298		mddev->patch_version = info->patch_version;
2299		return 0;
2300	}
2301	mddev->major_version = MD_MAJOR_VERSION;
2302	mddev->minor_version = MD_MINOR_VERSION;
2303	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2304	mddev->ctime         = get_seconds();
2305
2306	mddev->level         = info->level;
2307	mddev->size          = info->size;
2308	mddev->raid_disks    = info->raid_disks;
2309	/* don't set __minor, it is determined by which /dev/md* was
2310	 * openned
2311	 */
2312	if (info->state & (1<<MD_SB_CLEAN))
2313		mddev->recovery_cp = MaxSector;
2314	else
2315		mddev->recovery_cp = 0;
2316	mddev->persistent    = ! info->not_persistent;
2317
2318	mddev->layout        = info->layout;
2319	mddev->chunk_size    = info->chunk_size;
2320
2321	mddev->max_disks     = MD_SB_DISKS;
2322
2323
2324	/*
2325	 * Generate a 128 bit UUID
2326	 */
2327	get_random_bytes(mddev->uuid, 16);
2328
2329	return 0;
2330}
2331
2332static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2333{
2334	mdk_rdev_t *rdev;
2335
2336	rdev = find_rdev(mddev, dev);
2337	if (!rdev)
2338		return 0;
2339
2340	md_error(mddev, rdev);
2341	return 1;
2342}
2343
2344static int md_ioctl(struct inode *inode, struct file *file,
2345			unsigned int cmd, unsigned long arg)
2346{
2347	unsigned int minor;
2348	int err = 0;
2349	struct hd_geometry *loc = (struct hd_geometry *) arg;
2350	mddev_t *mddev = NULL;
2351	kdev_t dev;
2352
2353	if (!capable(CAP_SYS_ADMIN))
2354		return -EACCES;
2355
2356	dev = inode->i_rdev;
2357	minor = minor(dev);
2358	if (minor >= MAX_MD_DEVS) {
2359		MD_BUG();
2360		return -EINVAL;
2361	}
2362
2363	/*
2364	 * Commands dealing with the RAID driver but not any
2365	 * particular array:
2366	 */
2367	switch (cmd)
2368	{
2369		case RAID_VERSION:
2370			err = get_version((void *)arg);
2371			goto done;
2372
2373		case PRINT_RAID_DEBUG:
2374			err = 0;
2375			md_print_devices();
2376			goto done;
2377
2378#ifndef MODULE
2379		case RAID_AUTORUN:
2380			err = 0;
2381			autostart_arrays();
2382			goto done;
2383#endif
2384		default:;
2385	}
2386
2387	/*
2388	 * Commands creating/starting a new array:
2389	 */
2390
2391	mddev = inode->i_bdev->bd_inode->u.generic_ip;
2392
2393	if (!mddev) {
2394		BUG();
2395		goto abort;
2396	}
2397
2398
2399	if (cmd == START_ARRAY) {
2400		/* START_ARRAY doesn't need to lock the array as autostart_array
2401		 * does the locking, and it could even be a different array
2402		 */
2403		err = autostart_array(arg);
2404		if (err) {
2405			printk(KERN_WARNING "md: autostart %s failed!\n",
2406				partition_name(arg));
2407			goto abort;
2408		}
2409		goto done;
2410	}
2411
2412	err = mddev_lock(mddev);
2413	if (err) {
2414		printk(KERN_INFO
2415			"md: ioctl lock interrupted, reason %d, cmd %d\n",
2416			err, cmd);
2417		goto abort;
2418	}
2419
2420	switch (cmd)
2421	{
2422		case SET_ARRAY_INFO:
2423
2424			if (!list_empty(&mddev->disks)) {
2425				printk(KERN_WARNING
2426					"md: array md%d already has disks!\n",
2427					mdidx(mddev));
2428				err = -EBUSY;
2429				goto abort_unlock;
2430			}
2431			if (mddev->raid_disks) {
2432				printk(KERN_WARNING
2433					"md: array md%d already initialised!\n",
2434					mdidx(mddev));
2435				err = -EBUSY;
2436				goto abort_unlock;
2437			}
2438			{
2439				mdu_array_info_t info;
2440				if (!arg)
2441					memset(&info, 0, sizeof(info));
2442				else if (copy_from_user(&info, (void*)arg, sizeof(info))) {
2443					err = -EFAULT;
2444					goto abort_unlock;
2445				}
2446				err = set_array_info(mddev, &info);
2447				if (err) {
2448					printk(KERN_WARNING "md: couldn't set"
2449						" array info. %d\n", err);
2450					goto abort_unlock;
2451				}
2452			}
2453			goto done_unlock;
2454
2455		default:;
2456	}
2457
2458	/*
2459	 * Commands querying/configuring an existing array:
2460	 */
2461	/* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
2462	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
2463		err = -ENODEV;
2464		goto abort_unlock;
2465	}
2466
2467	/*
2468	 * Commands even a read-only array can execute:
2469	 */
2470	switch (cmd)
2471	{
2472		case GET_ARRAY_INFO:
2473			err = get_array_info(mddev, (void *)arg);
2474			goto done_unlock;
2475
2476		case GET_DISK_INFO:
2477			err = get_disk_info(mddev, (void *)arg);
2478			goto done_unlock;
2479
2480		case RESTART_ARRAY_RW:
2481			err = restart_array(mddev);
2482			goto done_unlock;
2483
2484		case STOP_ARRAY:
2485			err = do_md_stop (mddev, 0);
2486			goto done_unlock;
2487
2488		case STOP_ARRAY_RO:
2489			err = do_md_stop (mddev, 1);
2490			goto done_unlock;
2491
2492	/*
2493	 * We have a problem here : there is no easy way to give a CHS
2494	 * virtual geometry. We currently pretend that we have a 2 heads
2495	 * 4 sectors (with a BIG number of cylinders...). This drives
2496	 * dosfs just mad... ;-)
2497	 */
2498		case HDIO_GETGEO:
2499			if (!loc) {
2500				err = -EINVAL;
2501				goto abort_unlock;
2502			}
2503			err = put_user (2, (char *) &loc->heads);
2504			if (err)
2505				goto abort_unlock;
2506			err = put_user (4, (char *) &loc->sectors);
2507			if (err)
2508				goto abort_unlock;
2509			err = put_user(get_capacity(disks[mdidx(mddev)])/8,
2510						(short *) &loc->cylinders);
2511			if (err)
2512				goto abort_unlock;
2513			err = put_user (get_start_sect(inode->i_bdev),
2514						(long *) &loc->start);
2515			goto done_unlock;
2516	}
2517
2518	/*
2519	 * The remaining ioctls are changing the state of the
2520	 * superblock, so we do not allow read-only arrays
2521	 * here:
2522	 */
2523	if (mddev->ro) {
2524		err = -EROFS;
2525		goto abort_unlock;
2526	}
2527
2528	switch (cmd)
2529	{
2530		case ADD_NEW_DISK:
2531		{
2532			mdu_disk_info_t info;
2533			if (copy_from_user(&info, (void*)arg, sizeof(info)))
2534				err = -EFAULT;
2535			else
2536				err = add_new_disk(mddev, &info);
2537			goto done_unlock;
2538		}
2539		case HOT_GENERATE_ERROR:
2540			err = hot_generate_error(mddev, arg);
2541			goto done_unlock;
2542		case HOT_REMOVE_DISK:
2543			err = hot_remove_disk(mddev, arg);
2544			goto done_unlock;
2545
2546		case HOT_ADD_DISK:
2547			err = hot_add_disk(mddev, arg);
2548			goto done_unlock;
2549
2550		case SET_DISK_FAULTY:
2551			err = set_disk_faulty(mddev, arg);
2552			goto done_unlock;
2553
2554		case RUN_ARRAY:
2555		{
2556			err = do_md_run (mddev);
2557			/*
2558			 * we have to clean up the mess if
2559			 * the array cannot be run for some
2560			 * reason ...
2561			 * ->pers will not be set, to superblock will
2562			 * not be updated.
2563			 */
2564			if (err)
2565				do_md_stop (mddev, 0);
2566			goto done_unlock;
2567		}
2568
2569		default:
2570			if (_IOC_TYPE(cmd) == MD_MAJOR)
2571				printk(KERN_WARNING "md: %s(pid %d) used"
2572					" obsolete MD ioctl, upgrade your"
2573					" software to use new ictls.\n",
2574					current->comm, current->pid);
2575			err = -EINVAL;
2576			goto abort_unlock;
2577	}
2578
2579done_unlock:
2580abort_unlock:
2581	mddev_unlock(mddev);
2582
2583	return err;
2584done:
2585	if (err)
2586		MD_BUG();
2587abort:
2588	return err;
2589}
2590
2591static int md_open(struct inode *inode, struct file *file)
2592{
2593	/*
2594	 * Succeed if we can find or allocate a mddev structure.
2595	 */
2596	mddev_t *mddev = mddev_find(minor(inode->i_rdev));
2597	int err = -ENOMEM;
2598
2599	if (!mddev)
2600		goto out;
2601
2602	if ((err = mddev_lock(mddev)))
2603		goto put;
2604
2605	err = 0;
2606	mddev_unlock(mddev);
2607	inode->i_bdev->bd_inode->u.generic_ip = mddev_get(mddev);
2608 put:
2609	mddev_put(mddev);
2610 out:
2611	return err;
2612}
2613
2614static int md_release(struct inode *inode, struct file * file)
2615{
2616 	mddev_t *mddev = inode->i_bdev->bd_inode->u.generic_ip;
2617
2618	if (!mddev)
2619		BUG();
2620	mddev_put(mddev);
2621
2622	return 0;
2623}
2624
2625static struct block_device_operations md_fops =
2626{
2627	.owner		= THIS_MODULE,
2628	.open		= md_open,
2629	.release	= md_release,
2630	.ioctl		= md_ioctl,
2631};
2632
2633int md_thread(void * arg)
2634{
2635	mdk_thread_t *thread = arg;
2636
2637	lock_kernel();
2638
2639	/*
2640	 * Detach thread
2641	 */
2642
2643	daemonize(thread->name, mdidx(thread->mddev));
2644
2645	current->exit_signal = SIGCHLD;
2646	allow_signal(SIGKILL);
2647	thread->tsk = current;
2648
2649	/*
2650	 * md_thread is a 'system-thread', it's priority should be very
2651	 * high. We avoid resource deadlocks individually in each
2652	 * raid personality. (RAID5 does preallocation) We also use RR and
2653	 * the very same RT priority as kswapd, thus we will never get
2654	 * into a priority inversion deadlock.
2655	 *
2656	 * we definitely have to have equal or higher priority than
2657	 * bdflush, otherwise bdflush will deadlock if there are too
2658	 * many dirty RAID5 blocks.
2659	 */
2660	unlock_kernel();
2661
2662	complete(thread->event);
2663	while (thread->run) {
2664		void (*run)(mddev_t *);
2665
2666		wait_event_interruptible(thread->wqueue,
2667					 test_bit(THREAD_WAKEUP, &thread->flags));
2668		if (current->flags & PF_FREEZE)
2669			refrigerator(PF_IOTHREAD);
2670
2671		clear_bit(THREAD_WAKEUP, &thread->flags);
2672
2673		run = thread->run;
2674		if (run) {
2675			run(thread->mddev);
2676			blk_run_queues();
2677		}
2678		if (signal_pending(current))
2679			flush_signals(current);
2680	}
2681	complete(thread->event);
2682	return 0;
2683}
2684
2685void md_wakeup_thread(mdk_thread_t *thread)
2686{
2687	if (thread) {
2688		dprintk("md: waking up MD thread %p.\n", thread);
2689		set_bit(THREAD_WAKEUP, &thread->flags);
2690		wake_up(&thread->wqueue);
2691	}
2692}
2693
2694mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2695				 const char *name)
2696{
2697	mdk_thread_t *thread;
2698	int ret;
2699	struct completion event;
2700
2701	thread = (mdk_thread_t *) kmalloc
2702				(sizeof(mdk_thread_t), GFP_KERNEL);
2703	if (!thread)
2704		return NULL;
2705
2706	memset(thread, 0, sizeof(mdk_thread_t));
2707	init_waitqueue_head(&thread->wqueue);
2708
2709	init_completion(&event);
2710	thread->event = &event;
2711	thread->run = run;
2712	thread->mddev = mddev;
2713	thread->name = name;
2714	ret = kernel_thread(md_thread, thread, 0);
2715	if (ret < 0) {
2716		kfree(thread);
2717		return NULL;
2718	}
2719	wait_for_completion(&event);
2720	return thread;
2721}
2722
2723void md_interrupt_thread(mdk_thread_t *thread)
2724{
2725	if (!thread->tsk) {
2726		MD_BUG();
2727		return;
2728	}
2729	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
2730	send_sig(SIGKILL, thread->tsk, 1);
2731}
2732
2733void md_unregister_thread(mdk_thread_t *thread)
2734{
2735	struct completion event;
2736
2737	init_completion(&event);
2738
2739	thread->event = &event;
2740	thread->run = NULL;
2741	thread->name = NULL;
2742	md_interrupt_thread(thread);
2743	wait_for_completion(&event);
2744	kfree(thread);
2745}
2746
2747void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
2748{
2749	dprintk("md_error dev:(%d:%d), rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2750		MD_MAJOR,mdidx(mddev),
2751		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
2752		__builtin_return_address(0),__builtin_return_address(1),
2753		__builtin_return_address(2),__builtin_return_address(3));
2754
2755	if (!mddev) {
2756		MD_BUG();
2757		return;
2758	}
2759
2760	if (!rdev || rdev->faulty)
2761		return;
2762	if (!mddev->pers->error_handler)
2763		return;
2764	mddev->pers->error_handler(mddev,rdev);
2765	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2766	md_wakeup_thread(mddev->thread);
2767}
2768
2769/* seq_file implementation /proc/mdstat */
2770
2771static void status_unused(struct seq_file *seq)
2772{
2773	int i = 0;
2774	mdk_rdev_t *rdev;
2775	struct list_head *tmp;
2776
2777	seq_printf(seq, "unused devices: ");
2778
2779	ITERATE_RDEV_PENDING(rdev,tmp) {
2780		i++;
2781		seq_printf(seq, "%s ",
2782			      bdev_partition_name(rdev->bdev));
2783	}
2784	if (!i)
2785		seq_printf(seq, "<none>");
2786
2787	seq_printf(seq, "\n");
2788}
2789
2790
2791static void status_resync(struct seq_file *seq, mddev_t * mddev)
2792{
2793	unsigned long max_blocks, resync, res, dt, db, rt;
2794
2795	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
2796	max_blocks = mddev->size;
2797
2798	/*
2799	 * Should not happen.
2800	 */
2801	if (!max_blocks) {
2802		MD_BUG();
2803		return;
2804	}
2805	res = (resync/1024)*1000/(max_blocks/1024 + 1);
2806	{
2807		int i, x = res/50, y = 20-x;
2808		seq_printf(seq, "[");
2809		for (i = 0; i < x; i++)
2810			seq_printf(seq, "=");
2811		seq_printf(seq, ">");
2812		for (i = 0; i < y; i++)
2813			seq_printf(seq, ".");
2814		seq_printf(seq, "] ");
2815	}
2816	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
2817		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
2818		       "resync" : "recovery"),
2819		      res/10, res % 10, resync, max_blocks);
2820
2821	/*
2822	 * We do not want to overflow, so the order of operands and
2823	 * the * 100 / 100 trick are important. We do a +1 to be
2824	 * safe against division by zero. We only estimate anyway.
2825	 *
2826	 * dt: time from mark until now
2827	 * db: blocks written from mark until now
2828	 * rt: remaining time
2829	 */
2830	dt = ((jiffies - mddev->resync_mark) / HZ);
2831	if (!dt) dt++;
2832	db = resync - (mddev->resync_mark_cnt/2);
2833	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
2834
2835	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
2836
2837	seq_printf(seq, " speed=%ldK/sec", db/dt);
2838}
2839
2840static void *md_seq_start(struct seq_file *seq, loff_t *pos)
2841{
2842	struct list_head *tmp;
2843	loff_t l = *pos;
2844	mddev_t *mddev;
2845
2846	if (l > 0x10000)
2847		return NULL;
2848	if (!l--)
2849		/* header */
2850		return (void*)1;
2851
2852	spin_lock(&all_mddevs_lock);
2853	list_for_each(tmp,&all_mddevs)
2854		if (!l--) {
2855			mddev = list_entry(tmp, mddev_t, all_mddevs);
2856			mddev_get(mddev);
2857			spin_unlock(&all_mddevs_lock);
2858			return mddev;
2859		}
2860	spin_unlock(&all_mddevs_lock);
2861	return (void*)2;/* tail */
2862}
2863
2864static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2865{
2866	struct list_head *tmp;
2867	mddev_t *next_mddev, *mddev = v;
2868
2869	++*pos;
2870	if (v == (void*)2)
2871		return NULL;
2872
2873	spin_lock(&all_mddevs_lock);
2874	if (v == (void*)1)
2875		tmp = all_mddevs.next;
2876	else
2877		tmp = mddev->all_mddevs.next;
2878	if (tmp != &all_mddevs)
2879		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
2880	else {
2881		next_mddev = (void*)2;
2882		*pos = 0x10000;
2883	}
2884	spin_unlock(&all_mddevs_lock);
2885
2886	if (v != (void*)1)
2887		mddev_put(mddev);
2888	return next_mddev;
2889
2890}
2891
2892static void md_seq_stop(struct seq_file *seq, void *v)
2893{
2894	mddev_t *mddev = v;
2895
2896	if (mddev && v != (void*)1 && v != (void*)2)
2897		mddev_put(mddev);
2898}
2899
2900static int md_seq_show(struct seq_file *seq, void *v)
2901{
2902	mddev_t *mddev = v;
2903	sector_t size;
2904	struct list_head *tmp2;
2905	mdk_rdev_t *rdev;
2906	int i;
2907
2908	if (v == (void*)1) {
2909		seq_printf(seq, "Personalities : ");
2910		spin_lock(&pers_lock);
2911		for (i = 0; i < MAX_PERSONALITY; i++)
2912			if (pers[i])
2913				seq_printf(seq, "[%s] ", pers[i]->name);
2914
2915		spin_unlock(&pers_lock);
2916		seq_printf(seq, "\n");
2917		return 0;
2918	}
2919	if (v == (void*)2) {
2920		status_unused(seq);
2921		return 0;
2922	}
2923
2924	if (mddev_lock(mddev)!=0)
2925		return -EINTR;
2926	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
2927		seq_printf(seq, "md%d : %sactive", mdidx(mddev),
2928						mddev->pers ? "" : "in");
2929		if (mddev->pers) {
2930			if (mddev->ro)
2931				seq_printf(seq, " (read-only)");
2932			seq_printf(seq, " %s", mddev->pers->name);
2933		}
2934
2935		size = 0;
2936		ITERATE_RDEV(mddev,rdev,tmp2) {
2937			seq_printf(seq, " %s[%d]",
2938				bdev_partition_name(rdev->bdev), rdev->desc_nr);
2939			if (rdev->faulty) {
2940				seq_printf(seq, "(F)");
2941				continue;
2942			}
2943			size += rdev->size;
2944		}
2945
2946		if (!list_empty(&mddev->disks)) {
2947			if (mddev->pers)
2948				seq_printf(seq, "\n      %llu blocks",
2949					(unsigned long long)mddev->array_size);
2950			else
2951				seq_printf(seq, "\n      %llu blocks",
2952					(unsigned long long)size);
2953		}
2954
2955		if (mddev->pers) {
2956			mddev->pers->status (seq, mddev);
2957	 		seq_printf(seq, "\n      ");
2958			if (mddev->curr_resync > 2)
2959				status_resync (seq, mddev);
2960			else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
2961				seq_printf(seq, "	resync=DELAYED");
2962		}
2963
2964		seq_printf(seq, "\n");
2965	}
2966	mddev_unlock(mddev);
2967
2968	return 0;
2969}
2970
2971static struct seq_operations md_seq_ops = {
2972	.start  = md_seq_start,
2973	.next   = md_seq_next,
2974	.stop   = md_seq_stop,
2975	.show   = md_seq_show,
2976};
2977
2978static int md_seq_open(struct inode *inode, struct file *file)
2979{
2980	int error;
2981
2982	error = seq_open(file, &md_seq_ops);
2983	return error;
2984}
2985
2986static struct file_operations md_seq_fops = {
2987	.open           = md_seq_open,
2988	.read           = seq_read,
2989	.llseek         = seq_lseek,
2990	.release	= seq_release,
2991};
2992
2993int register_md_personality(int pnum, mdk_personality_t *p)
2994{
2995	if (pnum >= MAX_PERSONALITY) {
2996		MD_BUG();
2997		return -EINVAL;
2998	}
2999
3000	spin_lock(&pers_lock);
3001	if (pers[pnum]) {
3002		spin_unlock(&pers_lock);
3003		MD_BUG();
3004		return -EBUSY;
3005	}
3006
3007	pers[pnum] = p;
3008	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3009	spin_unlock(&pers_lock);
3010	return 0;
3011}
3012
3013int unregister_md_personality(int pnum)
3014{
3015	if (pnum >= MAX_PERSONALITY) {
3016		MD_BUG();
3017		return -EINVAL;
3018	}
3019
3020	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3021	spin_lock(&pers_lock);
3022	pers[pnum] = NULL;
3023	spin_unlock(&pers_lock);
3024	return 0;
3025}
3026
3027void md_sync_acct(mdk_rdev_t *rdev, unsigned long nr_sectors)
3028{
3029	rdev->bdev->bd_contains->bd_disk->sync_io += nr_sectors;
3030}
3031
3032static int is_mddev_idle(mddev_t *mddev)
3033{
3034	mdk_rdev_t * rdev;
3035	struct list_head *tmp;
3036	int idle;
3037	unsigned long curr_events;
3038
3039	idle = 1;
3040	ITERATE_RDEV(mddev,rdev,tmp) {
3041		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3042		curr_events = disk_stat_read(disk, read_sectors) +
3043				disk_stat_read(disk, write_sectors) -
3044				disk->sync_io;
3045		if ((curr_events - rdev->last_events) > 32) {
3046			rdev->last_events = curr_events;
3047			idle = 0;
3048		}
3049	}
3050	return idle;
3051}
3052
3053void md_done_sync(mddev_t *mddev, int blocks, int ok)
3054{
3055	/* another "blocks" (512byte) blocks have been synced */
3056	atomic_sub(blocks, &mddev->recovery_active);
3057	wake_up(&mddev->recovery_wait);
3058	if (!ok) {
3059		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3060		md_wakeup_thread(mddev->thread);
3061		// stop recovery, signal do_sync ....
3062	}
3063}
3064
3065
3066void md_write_start(mddev_t *mddev)
3067{
3068	if (!atomic_read(&mddev->writes_pending)) {
3069		mddev_lock_uninterruptible(mddev);
3070		if (mddev->in_sync) {
3071			mddev->in_sync = 0;
3072 			del_timer(&mddev->safemode_timer);
3073			md_update_sb(mddev);
3074		}
3075		atomic_inc(&mddev->writes_pending);
3076		mddev_unlock(mddev);
3077	} else
3078		atomic_inc(&mddev->writes_pending);
3079}
3080
3081void md_write_end(mddev_t *mddev)
3082{
3083	if (atomic_dec_and_test(&mddev->writes_pending)) {
3084		if (mddev->safemode == 2)
3085			md_wakeup_thread(mddev->thread);
3086		else
3087			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3088	}
3089}
3090
3091static inline void md_enter_safemode(mddev_t *mddev)
3092{
3093	mddev_lock_uninterruptible(mddev);
3094	if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3095	    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3096		mddev->in_sync = 1;
3097		md_update_sb(mddev);
3098	}
3099	mddev_unlock(mddev);
3100
3101	if (mddev->safemode == 1)
3102		mddev->safemode = 0;
3103}
3104
3105void md_handle_safemode(mddev_t *mddev)
3106{
3107	if (signal_pending(current)) {
3108		printk(KERN_INFO "md: md%d in immediate safe mode\n",
3109			mdidx(mddev));
3110		mddev->safemode = 2;
3111		flush_signals(current);
3112	}
3113	if (mddev->safemode)
3114		md_enter_safemode(mddev);
3115}
3116
3117
3118DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3119
3120#define SYNC_MARKS	10
3121#define	SYNC_MARK_STEP	(3*HZ)
3122static void md_do_sync(mddev_t *mddev)
3123{
3124	mddev_t *mddev2;
3125	unsigned int max_sectors, currspeed = 0,
3126		j, window;
3127	unsigned long mark[SYNC_MARKS];
3128	unsigned long mark_cnt[SYNC_MARKS];
3129	int last_mark,m;
3130	struct list_head *tmp;
3131	unsigned long last_check;
3132
3133	/* just incase thread restarts... */
3134	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3135		return;
3136
3137	/* we overload curr_resync somewhat here.
3138	 * 0 == not engaged in resync at all
3139	 * 2 == checking that there is no conflict with another sync
3140	 * 1 == like 2, but have yielded to allow conflicting resync to
3141	 *		commense
3142	 * other == active in resync - this many blocks
3143	 */
3144	do {
3145		mddev->curr_resync = 2;
3146
3147		ITERATE_MDDEV(mddev2,tmp) {
3148			if (mddev2 == mddev)
3149				continue;
3150			if (mddev2->curr_resync &&
3151			    match_mddev_units(mddev,mddev2)) {
3152				printk(KERN_INFO "md: delaying resync of md%d"
3153					" until md%d has finished resync (they"
3154				       	" share one or more physical units)\n",
3155				       mdidx(mddev), mdidx(mddev2));
3156				if (mddev < mddev2) {/* arbitrarily yield */
3157					mddev->curr_resync = 1;
3158					wake_up(&resync_wait);
3159				}
3160				if (wait_event_interruptible(resync_wait,
3161							     mddev2->curr_resync < mddev->curr_resync)) {
3162					flush_signals(current);
3163					mddev_put(mddev2);
3164					goto skip;
3165				}
3166			}
3167			if (mddev->curr_resync == 1) {
3168				mddev_put(mddev2);
3169				break;
3170			}
3171		}
3172	} while (mddev->curr_resync < 2);
3173
3174	max_sectors = mddev->size << 1;
3175
3176	printk(KERN_INFO "md: syncing RAID array md%d\n", mdidx(mddev));
3177	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3178		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3179	printk(KERN_INFO "md: using maximum available idle IO bandwith "
3180	       "(but not more than %d KB/sec) for reconstruction.\n",
3181	       sysctl_speed_limit_max);
3182
3183	is_mddev_idle(mddev); /* this also initializes IO event counters */
3184	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3185		j = mddev->recovery_cp;
3186	else
3187		j = 0;
3188	for (m = 0; m < SYNC_MARKS; m++) {
3189		mark[m] = jiffies;
3190		mark_cnt[m] = j;
3191	}
3192	last_mark = 0;
3193	mddev->resync_mark = mark[last_mark];
3194	mddev->resync_mark_cnt = mark_cnt[last_mark];
3195
3196	/*
3197	 * Tune reconstruction:
3198	 */
3199	window = 32*(PAGE_SIZE/512);
3200	printk(KERN_INFO "md: using %dk window, over a total of %d blocks.\n",
3201		window/2,max_sectors/2);
3202
3203	atomic_set(&mddev->recovery_active, 0);
3204	init_waitqueue_head(&mddev->recovery_wait);
3205	last_check = 0;
3206
3207	if (j)
3208		printk(KERN_INFO
3209			"md: resuming recovery of md%d from checkpoint.\n",
3210			mdidx(mddev));
3211
3212	while (j < max_sectors) {
3213		int sectors;
3214
3215		sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
3216		if (sectors < 0) {
3217			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3218			goto out;
3219		}
3220		atomic_add(sectors, &mddev->recovery_active);
3221		j += sectors;
3222		if (j>1) mddev->curr_resync = j;
3223
3224		if (last_check + window > j)
3225			continue;
3226
3227		last_check = j;
3228
3229		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3230		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3231			break;
3232
3233		blk_run_queues();
3234
3235	repeat:
3236		if (jiffies >= mark[last_mark] + SYNC_MARK_STEP ) {
3237			/* step marks */
3238			int next = (last_mark+1) % SYNC_MARKS;
3239
3240			mddev->resync_mark = mark[next];
3241			mddev->resync_mark_cnt = mark_cnt[next];
3242			mark[next] = jiffies;
3243			mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
3244			last_mark = next;
3245		}
3246
3247
3248		if (signal_pending(current)) {
3249			/*
3250			 * got a signal, exit.
3251			 */
3252			printk(KERN_INFO
3253				"md: md_do_sync() got signal ... exiting\n");
3254			flush_signals(current);
3255			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3256			goto out;
3257		}
3258
3259		/*
3260		 * this loop exits only if either when we are slower than
3261		 * the 'hard' speed limit, or the system was IO-idle for
3262		 * a jiffy.
3263		 * the system might be non-idle CPU-wise, but we only care
3264		 * about not overloading the IO subsystem. (things like an
3265		 * e2fsck being done on the RAID array should execute fast)
3266		 */
3267		cond_resched();
3268
3269		currspeed = (j-mddev->resync_mark_cnt)/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
3270
3271		if (currspeed > sysctl_speed_limit_min) {
3272			if ((currspeed > sysctl_speed_limit_max) ||
3273					!is_mddev_idle(mddev)) {
3274				current->state = TASK_INTERRUPTIBLE;
3275				schedule_timeout(HZ/4);
3276				goto repeat;
3277			}
3278		}
3279	}
3280	printk(KERN_INFO "md: md%d: sync done.\n",mdidx(mddev));
3281	/*
3282	 * this also signals 'finished resyncing' to md_stop
3283	 */
3284 out:
3285	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3286
3287	/* tell personality that we are finished */
3288	mddev->pers->sync_request(mddev, max_sectors, 1);
3289
3290	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3291	    mddev->curr_resync > 2 &&
3292	    mddev->curr_resync > mddev->recovery_cp) {
3293		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3294			printk(KERN_INFO
3295				"md: checkpointing recovery of md%d.\n",
3296				mdidx(mddev));
3297			mddev->recovery_cp = mddev->curr_resync;
3298		} else
3299			mddev->recovery_cp = MaxSector;
3300	}
3301
3302	if (mddev->safemode)
3303		md_enter_safemode(mddev);
3304 skip:
3305	mddev->curr_resync = 0;
3306	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3307	md_wakeup_thread(mddev->thread);
3308}
3309
3310
3311/*
3312 * This routine is regularly called by all per-raid-array threads to
3313 * deal with generic issues like resync and super-block update.
3314 * Raid personalities that don't have a thread (linear/raid0) do not
3315 * need this as they never do any recovery or update the superblock.
3316 *
3317 * It does not do any resync itself, but rather "forks" off other threads
3318 * to do that as needed.
3319 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3320 * "->recovery" and create a thread at ->sync_thread.
3321 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3322 * and wakeups up this thread which will reap the thread and finish up.
3323 * This thread also removes any faulty devices (with nr_pending == 0).
3324 *
3325 * The overall approach is:
3326 *  1/ if the superblock needs updating, update it.
3327 *  2/ If a recovery thread is running, don't do anything else.
3328 *  3/ If recovery has finished, clean up, possibly marking spares active.
3329 *  4/ If there are any faulty devices, remove them.
3330 *  5/ If array is degraded, try to add spares devices
3331 *  6/ If array has spares or is not in-sync, start a resync thread.
3332 */
3333void md_check_recovery(mddev_t *mddev)
3334{
3335	mdk_rdev_t *rdev;
3336	struct list_head *rtmp;
3337
3338
3339	dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
3340
3341	if (mddev->ro)
3342		return;
3343	if ( ! (
3344		mddev->sb_dirty ||
3345		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3346		test_bit(MD_RECOVERY_DONE, &mddev->recovery)
3347		))
3348		return;
3349	if (mddev_trylock(mddev)==0) {
3350		int spares =0;
3351		if (mddev->sb_dirty)
3352			md_update_sb(mddev);
3353		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3354		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3355			/* resync/recovery still happening */
3356			goto unlock;
3357		if (mddev->sync_thread) {
3358			/* resync has finished, collect result */
3359			md_unregister_thread(mddev->sync_thread);
3360			mddev->sync_thread = NULL;
3361			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery)) {
3362				/* success...*/
3363				/* activate any spares */
3364				mddev->pers->spare_active(mddev);
3365			}
3366			md_update_sb(mddev);
3367			mddev->recovery = 0;
3368			wake_up(&resync_wait);
3369			goto unlock;
3370		}
3371		if (mddev->recovery) {
3372			/* that's odd.. */
3373			mddev->recovery = 0;
3374			wake_up(&resync_wait);
3375		}
3376
3377		/* no recovery is running.
3378		 * remove any failed drives, then
3379		 * add spares if possible
3380		 */
3381		ITERATE_RDEV(mddev,rdev,rtmp) {
3382			if (rdev->raid_disk >= 0 &&
3383			    rdev->faulty &&
3384			    atomic_read(&rdev->nr_pending)==0) {
3385				mddev->pers->hot_remove_disk(mddev, rdev->raid_disk);
3386				rdev->raid_disk = -1;
3387			}
3388			if (!rdev->faulty && rdev->raid_disk >= 0 && !rdev->in_sync)
3389				spares++;
3390		}
3391		if (mddev->degraded) {
3392			ITERATE_RDEV(mddev,rdev,rtmp)
3393				if (rdev->raid_disk < 0
3394				    && !rdev->faulty) {
3395					if (mddev->pers->hot_add_disk(mddev,rdev))
3396						spares++;
3397					else
3398						break;
3399				}
3400		}
3401
3402		if (!spares && (mddev->recovery_cp == MaxSector )) {
3403			/* nothing we can do ... */
3404			goto unlock;
3405		}
3406		if (mddev->pers->sync_request) {
3407			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3408			if (!spares)
3409				set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3410			mddev->sync_thread = md_register_thread(md_do_sync,
3411								mddev,
3412								"md%d_resync");
3413			if (!mddev->sync_thread) {
3414				printk(KERN_ERR "md%d: could not start resync"
3415					" thread...\n",
3416					mdidx(mddev));
3417				/* leave the spares where they are, it shouldn't hurt */
3418				mddev->recovery = 0;
3419			} else {
3420				md_wakeup_thread(mddev->sync_thread);
3421			}
3422		}
3423	unlock:
3424		mddev_unlock(mddev);
3425	}
3426}
3427
3428int md_notify_reboot(struct notifier_block *this,
3429					unsigned long code, void *x)
3430{
3431	struct list_head *tmp;
3432	mddev_t *mddev;
3433
3434	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3435
3436		printk(KERN_INFO "md: stopping all md devices.\n");
3437
3438		ITERATE_MDDEV(mddev,tmp)
3439			if (mddev_trylock(mddev)==0)
3440				do_md_stop (mddev, 1);
3441		/*
3442		 * certain more exotic SCSI devices are known to be
3443		 * volatile wrt too early system reboots. While the
3444		 * right place to handle this issue is the given
3445		 * driver, we do want to have a safe RAID driver ...
3446		 */
3447		mdelay(1000*1);
3448	}
3449	return NOTIFY_DONE;
3450}
3451
3452struct notifier_block md_notifier = {
3453	.notifier_call	= md_notify_reboot,
3454	.next		= NULL,
3455	.priority	= INT_MAX, /* before any real devices */
3456};
3457
3458static void md_geninit(void)
3459{
3460	struct proc_dir_entry *p;
3461
3462	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3463
3464#ifdef CONFIG_PROC_FS
3465	p = create_proc_entry("mdstat", S_IRUGO, NULL);
3466	if (p)
3467		p->proc_fops = &md_seq_fops;
3468#endif
3469}
3470
3471int __init md_init(void)
3472{
3473	int minor;
3474
3475	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3476			" MD_SB_DISKS=%d\n",
3477			MD_MAJOR_VERSION, MD_MINOR_VERSION,
3478			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3479
3480	if (register_blkdev(MAJOR_NR, "md"))
3481		return -1;
3482
3483	devfs_mk_dir("md");
3484	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3485				md_probe, NULL, NULL);
3486	for (minor=0; minor < MAX_MD_DEVS; ++minor) {
3487		char name[16];
3488		sprintf(name, "md/%d", minor);
3489		devfs_register(NULL, name, DEVFS_FL_DEFAULT, MAJOR_NR, minor,
3490			       S_IFBLK | S_IRUSR | S_IWUSR, &md_fops, NULL);
3491	}
3492
3493	register_reboot_notifier(&md_notifier);
3494	raid_table_header = register_sysctl_table(raid_root_table, 1);
3495
3496	md_geninit();
3497	return (0);
3498}
3499
3500
3501#ifndef MODULE
3502
3503/*
3504 * Searches all registered partitions for autorun RAID arrays
3505 * at boot time.
3506 */
3507static dev_t detected_devices[128];
3508static int dev_cnt;
3509
3510void md_autodetect_dev(dev_t dev)
3511{
3512	if (dev_cnt >= 0 && dev_cnt < 127)
3513		detected_devices[dev_cnt++] = dev;
3514}
3515
3516
3517static void autostart_arrays(void)
3518{
3519	mdk_rdev_t *rdev;
3520	int i;
3521
3522	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3523
3524	for (i = 0; i < dev_cnt; i++) {
3525		dev_t dev = detected_devices[i];
3526
3527		rdev = md_import_device(dev,0, 0);
3528		if (IS_ERR(rdev)) {
3529			printk(KERN_ALERT "md: could not import %s!\n",
3530				partition_name(dev));
3531			continue;
3532		}
3533		if (rdev->faulty) {
3534			MD_BUG();
3535			continue;
3536		}
3537		list_add(&rdev->same_set, &pending_raid_disks);
3538	}
3539	dev_cnt = 0;
3540
3541	autorun_devices();
3542}
3543
3544#endif
3545
3546static __exit void md_exit(void)
3547{
3548	int i;
3549	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3550	for (i=0; i < MAX_MD_DEVS; i++)
3551		devfs_remove("md/%d", i);
3552	devfs_remove("md");
3553
3554	unregister_blkdev(MAJOR_NR,"md");
3555	unregister_reboot_notifier(&md_notifier);
3556	unregister_sysctl_table(raid_table_header);
3557#ifdef CONFIG_PROC_FS
3558	remove_proc_entry("mdstat", NULL);
3559#endif
3560	for (i = 0; i < MAX_MD_DEVS; i++) {
3561		struct gendisk *disk = disks[i];
3562		mddev_t *mddev;
3563		if (!disks[i])
3564			continue;
3565		mddev = disk->private_data;
3566		del_gendisk(disk);
3567		put_disk(disk);
3568		mddev_put(mddev);
3569	}
3570}
3571
3572module_init(md_init)
3573module_exit(md_exit)
3574
3575EXPORT_SYMBOL(register_md_personality);
3576EXPORT_SYMBOL(unregister_md_personality);
3577EXPORT_SYMBOL(md_error);
3578EXPORT_SYMBOL(md_sync_acct);
3579EXPORT_SYMBOL(md_done_sync);
3580EXPORT_SYMBOL(md_write_start);
3581EXPORT_SYMBOL(md_write_end);
3582EXPORT_SYMBOL(md_handle_safemode);
3583EXPORT_SYMBOL(md_register_thread);
3584EXPORT_SYMBOL(md_unregister_thread);
3585EXPORT_SYMBOL(md_wakeup_thread);
3586EXPORT_SYMBOL(md_print_devices);
3587EXPORT_SYMBOL(md_interrupt_thread);
3588EXPORT_SYMBOL(md_check_recovery);
3589MODULE_LICENSE("GPL");
3590