1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGObjCRuntime.h"
15 #include "CGOpenCLRuntime.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "CodeGenModule.h"
19 #include "ConstantEmitter.h"
20 #include "PatternInit.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/OSLog.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsNVPTX.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/IntrinsicsR600.h"
43 #include "llvm/IR/IntrinsicsS390.h"
44 #include "llvm/IR/IntrinsicsWebAssembly.h"
45 #include "llvm/IR/IntrinsicsX86.h"
46 #include "llvm/IR/MDBuilder.h"
47 #include "llvm/IR/MatrixBuilder.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/X86TargetParser.h"
51 #include <sstream>
52 
53 using namespace clang;
54 using namespace CodeGen;
55 using namespace llvm;
56 
57 static
clamp(int64_t Value,int64_t Low,int64_t High)58 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
59   return std::min(High, std::max(Low, Value));
60 }
61 
initializeAlloca(CodeGenFunction & CGF,AllocaInst * AI,Value * Size,Align AlignmentInBytes)62 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
63                              Align AlignmentInBytes) {
64   ConstantInt *Byte;
65   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
66   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
67     // Nothing to initialize.
68     return;
69   case LangOptions::TrivialAutoVarInitKind::Zero:
70     Byte = CGF.Builder.getInt8(0x00);
71     break;
72   case LangOptions::TrivialAutoVarInitKind::Pattern: {
73     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
74     Byte = llvm::dyn_cast<llvm::ConstantInt>(
75         initializationPatternFor(CGF.CGM, Int8));
76     break;
77   }
78   }
79   if (CGF.CGM.stopAutoInit())
80     return;
81   CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
82 }
83 
84 /// getBuiltinLibFunction - Given a builtin id for a function like
85 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)86 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
87                                                      unsigned BuiltinID) {
88   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
89 
90   // Get the name, skip over the __builtin_ prefix (if necessary).
91   StringRef Name;
92   GlobalDecl D(FD);
93 
94   // If the builtin has been declared explicitly with an assembler label,
95   // use the mangled name. This differs from the plain label on platforms
96   // that prefix labels.
97   if (FD->hasAttr<AsmLabelAttr>())
98     Name = getMangledName(D);
99   else
100     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
101 
102   llvm::FunctionType *Ty =
103     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
104 
105   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
106 }
107 
108 /// Emit the conversions required to turn the given value into an
109 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)110 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
111                         QualType T, llvm::IntegerType *IntType) {
112   V = CGF.EmitToMemory(V, T);
113 
114   if (V->getType()->isPointerTy())
115     return CGF.Builder.CreatePtrToInt(V, IntType);
116 
117   assert(V->getType() == IntType);
118   return V;
119 }
120 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)121 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
122                           QualType T, llvm::Type *ResultType) {
123   V = CGF.EmitFromMemory(V, T);
124 
125   if (ResultType->isPointerTy())
126     return CGF.Builder.CreateIntToPtr(V, ResultType);
127 
128   assert(V->getType() == ResultType);
129   return V;
130 }
131 
132 /// Utility to insert an atomic instruction based on Intrinsic::ID
133 /// and the expression node.
MakeBinaryAtomicValue(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)134 static Value *MakeBinaryAtomicValue(
135     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
136     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
137   QualType T = E->getType();
138   assert(E->getArg(0)->getType()->isPointerType());
139   assert(CGF.getContext().hasSameUnqualifiedType(T,
140                                   E->getArg(0)->getType()->getPointeeType()));
141   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
142 
143   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
144   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
145 
146   llvm::IntegerType *IntType =
147     llvm::IntegerType::get(CGF.getLLVMContext(),
148                            CGF.getContext().getTypeSize(T));
149   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
150 
151   llvm::Value *Args[2];
152   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
153   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
154   llvm::Type *ValueType = Args[1]->getType();
155   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
156 
157   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
158       Kind, Args[0], Args[1], Ordering);
159   return EmitFromInt(CGF, Result, T, ValueType);
160 }
161 
EmitNontemporalStore(CodeGenFunction & CGF,const CallExpr * E)162 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
163   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
164   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
165 
166   // Convert the type of the pointer to a pointer to the stored type.
167   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
168   Value *BC = CGF.Builder.CreateBitCast(
169       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
170   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
171   LV.setNontemporal(true);
172   CGF.EmitStoreOfScalar(Val, LV, false);
173   return nullptr;
174 }
175 
EmitNontemporalLoad(CodeGenFunction & CGF,const CallExpr * E)176 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
177   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
178 
179   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
180   LV.setNontemporal(true);
181   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
182 }
183 
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)184 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
185                                llvm::AtomicRMWInst::BinOp Kind,
186                                const CallExpr *E) {
187   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
188 }
189 
190 /// Utility to insert an atomic instruction based Intrinsic::ID and
191 /// the expression node, where the return value is the result of the
192 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)193 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
194                                    llvm::AtomicRMWInst::BinOp Kind,
195                                    const CallExpr *E,
196                                    Instruction::BinaryOps Op,
197                                    bool Invert = false) {
198   QualType T = E->getType();
199   assert(E->getArg(0)->getType()->isPointerType());
200   assert(CGF.getContext().hasSameUnqualifiedType(T,
201                                   E->getArg(0)->getType()->getPointeeType()));
202   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
203 
204   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
205   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
206 
207   llvm::IntegerType *IntType =
208     llvm::IntegerType::get(CGF.getLLVMContext(),
209                            CGF.getContext().getTypeSize(T));
210   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
211 
212   llvm::Value *Args[2];
213   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
214   llvm::Type *ValueType = Args[1]->getType();
215   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
216   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
217 
218   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
219       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
220   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
221   if (Invert)
222     Result =
223         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
224                                 llvm::ConstantInt::getAllOnesValue(IntType));
225   Result = EmitFromInt(CGF, Result, T, ValueType);
226   return RValue::get(Result);
227 }
228 
229 /// Utility to insert an atomic cmpxchg instruction.
230 ///
231 /// @param CGF The current codegen function.
232 /// @param E   Builtin call expression to convert to cmpxchg.
233 ///            arg0 - address to operate on
234 ///            arg1 - value to compare with
235 ///            arg2 - new value
236 /// @param ReturnBool Specifies whether to return success flag of
237 ///                   cmpxchg result or the old value.
238 ///
239 /// @returns result of cmpxchg, according to ReturnBool
240 ///
241 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
242 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
MakeAtomicCmpXchgValue(CodeGenFunction & CGF,const CallExpr * E,bool ReturnBool)243 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
244                                      bool ReturnBool) {
245   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
246   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
247   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
248 
249   llvm::IntegerType *IntType = llvm::IntegerType::get(
250       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
251   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
252 
253   Value *Args[3];
254   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
255   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
256   llvm::Type *ValueType = Args[1]->getType();
257   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
258   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
259 
260   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
261       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
262       llvm::AtomicOrdering::SequentiallyConsistent);
263   if (ReturnBool)
264     // Extract boolean success flag and zext it to int.
265     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
266                                   CGF.ConvertType(E->getType()));
267   else
268     // Extract old value and emit it using the same type as compare value.
269     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
270                        ValueType);
271 }
272 
273 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
274 /// _InterlockedCompareExchange* intrinsics which have the following signature:
275 /// T _InterlockedCompareExchange(T volatile *Destination,
276 ///                               T Exchange,
277 ///                               T Comparand);
278 ///
279 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
280 /// cmpxchg *Destination, Comparand, Exchange.
281 /// So we need to swap Comparand and Exchange when invoking
282 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
283 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
284 /// already swapped.
285 
286 static
EmitAtomicCmpXchgForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering=AtomicOrdering::SequentiallyConsistent)287 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
288     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
289   assert(E->getArg(0)->getType()->isPointerType());
290   assert(CGF.getContext().hasSameUnqualifiedType(
291       E->getType(), E->getArg(0)->getType()->getPointeeType()));
292   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
293                                                  E->getArg(1)->getType()));
294   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
295                                                  E->getArg(2)->getType()));
296 
297   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
298   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
299   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
300 
301   // For Release ordering, the failure ordering should be Monotonic.
302   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
303                          AtomicOrdering::Monotonic :
304                          SuccessOrdering;
305 
306   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
307                    Destination, Comparand, Exchange,
308                    SuccessOrdering, FailureOrdering);
309   Result->setVolatile(true);
310   return CGF.Builder.CreateExtractValue(Result, 0);
311 }
312 
EmitAtomicIncrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)313 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
314     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
315   assert(E->getArg(0)->getType()->isPointerType());
316 
317   auto *IntTy = CGF.ConvertType(E->getType());
318   auto *Result = CGF.Builder.CreateAtomicRMW(
319                    AtomicRMWInst::Add,
320                    CGF.EmitScalarExpr(E->getArg(0)),
321                    ConstantInt::get(IntTy, 1),
322                    Ordering);
323   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
324 }
325 
EmitAtomicDecrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)326 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
327     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
328   assert(E->getArg(0)->getType()->isPointerType());
329 
330   auto *IntTy = CGF.ConvertType(E->getType());
331   auto *Result = CGF.Builder.CreateAtomicRMW(
332                    AtomicRMWInst::Sub,
333                    CGF.EmitScalarExpr(E->getArg(0)),
334                    ConstantInt::get(IntTy, 1),
335                    Ordering);
336   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
337 }
338 
339 // Build a plain volatile load.
EmitISOVolatileLoad(CodeGenFunction & CGF,const CallExpr * E)340 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
341   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
342   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
343   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
344   llvm::Type *ITy =
345       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
346   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
347   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
348   Load->setVolatile(true);
349   return Load;
350 }
351 
352 // Build a plain volatile store.
EmitISOVolatileStore(CodeGenFunction & CGF,const CallExpr * E)353 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
354   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
355   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
356   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
357   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
358   llvm::Type *ITy =
359       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
360   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
361   llvm::StoreInst *Store =
362       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
363   Store->setVolatile(true);
364   return Store;
365 }
366 
367 // Emit a simple mangled intrinsic that has 1 argument and a return type
368 // matching the argument type. Depending on mode, this may be a constrained
369 // floating-point intrinsic.
emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)370 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
371                                 const CallExpr *E, unsigned IntrinsicID,
372                                 unsigned ConstrainedIntrinsicID) {
373   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
374 
375   if (CGF.Builder.getIsFPConstrained()) {
376     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
377     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
378   } else {
379     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
380     return CGF.Builder.CreateCall(F, Src0);
381   }
382 }
383 
384 // Emit an intrinsic that has 2 operands of the same type as its result.
385 // Depending on mode, this may be a constrained floating-point intrinsic.
emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)386 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
387                                 const CallExpr *E, unsigned IntrinsicID,
388                                 unsigned ConstrainedIntrinsicID) {
389   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
390   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
391 
392   if (CGF.Builder.getIsFPConstrained()) {
393     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
394     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
395   } else {
396     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
397     return CGF.Builder.CreateCall(F, { Src0, Src1 });
398   }
399 }
400 
401 // Emit an intrinsic that has 3 operands of the same type as its result.
402 // Depending on mode, this may be a constrained floating-point intrinsic.
emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)403 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
404                                  const CallExpr *E, unsigned IntrinsicID,
405                                  unsigned ConstrainedIntrinsicID) {
406   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
407   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
408   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
409 
410   if (CGF.Builder.getIsFPConstrained()) {
411     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
412     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
413   } else {
414     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
415     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
416   }
417 }
418 
419 // Emit an intrinsic where all operands are of the same type as the result.
420 // Depending on mode, this may be a constrained floating-point intrinsic.
emitCallMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID,llvm::Type * Ty,ArrayRef<Value * > Args)421 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
422                                                 unsigned IntrinsicID,
423                                                 unsigned ConstrainedIntrinsicID,
424                                                 llvm::Type *Ty,
425                                                 ArrayRef<Value *> Args) {
426   Function *F;
427   if (CGF.Builder.getIsFPConstrained())
428     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
429   else
430     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
431 
432   if (CGF.Builder.getIsFPConstrained())
433     return CGF.Builder.CreateConstrainedFPCall(F, Args);
434   else
435     return CGF.Builder.CreateCall(F, Args);
436 }
437 
438 // Emit a simple mangled intrinsic that has 1 argument and a return type
439 // matching the argument type.
emitUnaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)440 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
441                                const CallExpr *E,
442                                unsigned IntrinsicID) {
443   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
444 
445   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
446   return CGF.Builder.CreateCall(F, Src0);
447 }
448 
449 // Emit an intrinsic that has 2 operands of the same type as its result.
emitBinaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)450 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
451                                 const CallExpr *E,
452                                 unsigned IntrinsicID) {
453   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
454   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
455 
456   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
457   return CGF.Builder.CreateCall(F, { Src0, Src1 });
458 }
459 
460 // Emit an intrinsic that has 3 operands of the same type as its result.
emitTernaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)461 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
462                                  const CallExpr *E,
463                                  unsigned IntrinsicID) {
464   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
465   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
466   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
467 
468   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
469   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
470 }
471 
472 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)473 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
474                                const CallExpr *E,
475                                unsigned IntrinsicID) {
476   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
477   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
478 
479   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
480   return CGF.Builder.CreateCall(F, {Src0, Src1});
481 }
482 
483 // Emit an intrinsic that has overloaded integer result and fp operand.
484 static Value *
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)485 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
486                                         unsigned IntrinsicID,
487                                         unsigned ConstrainedIntrinsicID) {
488   llvm::Type *ResultType = CGF.ConvertType(E->getType());
489   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
490 
491   if (CGF.Builder.getIsFPConstrained()) {
492     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
493                                        {ResultType, Src0->getType()});
494     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
495   } else {
496     Function *F =
497         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
498     return CGF.Builder.CreateCall(F, Src0);
499   }
500 }
501 
502 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)503 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
504   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
505   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
506   Call->setDoesNotAccessMemory();
507   return Call;
508 }
509 
510 /// Emit the computation of the sign bit for a floating point value. Returns
511 /// the i1 sign bit value.
EmitSignBit(CodeGenFunction & CGF,Value * V)512 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
513   LLVMContext &C = CGF.CGM.getLLVMContext();
514 
515   llvm::Type *Ty = V->getType();
516   int Width = Ty->getPrimitiveSizeInBits();
517   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
518   V = CGF.Builder.CreateBitCast(V, IntTy);
519   if (Ty->isPPC_FP128Ty()) {
520     // We want the sign bit of the higher-order double. The bitcast we just
521     // did works as if the double-double was stored to memory and then
522     // read as an i128. The "store" will put the higher-order double in the
523     // lower address in both little- and big-Endian modes, but the "load"
524     // will treat those bits as a different part of the i128: the low bits in
525     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
526     // we need to shift the high bits down to the low before truncating.
527     Width >>= 1;
528     if (CGF.getTarget().isBigEndian()) {
529       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
530       V = CGF.Builder.CreateLShr(V, ShiftCst);
531     }
532     // We are truncating value in order to extract the higher-order
533     // double, which we will be using to extract the sign from.
534     IntTy = llvm::IntegerType::get(C, Width);
535     V = CGF.Builder.CreateTrunc(V, IntTy);
536   }
537   Value *Zero = llvm::Constant::getNullValue(IntTy);
538   return CGF.Builder.CreateICmpSLT(V, Zero);
539 }
540 
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * FD,const CallExpr * E,llvm::Constant * calleeValue)541 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
542                               const CallExpr *E, llvm::Constant *calleeValue) {
543   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
544   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
545 }
546 
547 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
548 /// depending on IntrinsicID.
549 ///
550 /// \arg CGF The current codegen function.
551 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
552 /// \arg X The first argument to the llvm.*.with.overflow.*.
553 /// \arg Y The second argument to the llvm.*.with.overflow.*.
554 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
555 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)556 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
557                                           const llvm::Intrinsic::ID IntrinsicID,
558                                           llvm::Value *X, llvm::Value *Y,
559                                           llvm::Value *&Carry) {
560   // Make sure we have integers of the same width.
561   assert(X->getType() == Y->getType() &&
562          "Arguments must be the same type. (Did you forget to make sure both "
563          "arguments have the same integer width?)");
564 
565   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
566   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
567   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
568   return CGF.Builder.CreateExtractValue(Tmp, 0);
569 }
570 
emitRangedBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,int low,int high)571 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
572                                 unsigned IntrinsicID,
573                                 int low, int high) {
574     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
575     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
576     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
577     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
578     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
579     return Call;
580 }
581 
582 namespace {
583   struct WidthAndSignedness {
584     unsigned Width;
585     bool Signed;
586   };
587 }
588 
589 static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext & context,const clang::QualType Type)590 getIntegerWidthAndSignedness(const clang::ASTContext &context,
591                              const clang::QualType Type) {
592   assert(Type->isIntegerType() && "Given type is not an integer.");
593   unsigned Width = Type->isBooleanType()  ? 1
594                    : Type->isExtIntType() ? context.getIntWidth(Type)
595                                           : context.getTypeInfo(Type).Width;
596   bool Signed = Type->isSignedIntegerType();
597   return {Width, Signed};
598 }
599 
600 // Given one or more integer types, this function produces an integer type that
601 // encompasses them: any value in one of the given types could be expressed in
602 // the encompassing type.
603 static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types)604 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
605   assert(Types.size() > 0 && "Empty list of types.");
606 
607   // If any of the given types is signed, we must return a signed type.
608   bool Signed = false;
609   for (const auto &Type : Types) {
610     Signed |= Type.Signed;
611   }
612 
613   // The encompassing type must have a width greater than or equal to the width
614   // of the specified types.  Additionally, if the encompassing type is signed,
615   // its width must be strictly greater than the width of any unsigned types
616   // given.
617   unsigned Width = 0;
618   for (const auto &Type : Types) {
619     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
620     if (Width < MinWidth) {
621       Width = MinWidth;
622     }
623   }
624 
625   return {Width, Signed};
626 }
627 
EmitVAStartEnd(Value * ArgValue,bool IsStart)628 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
629   llvm::Type *DestType = Int8PtrTy;
630   if (ArgValue->getType() != DestType)
631     ArgValue =
632         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
633 
634   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
635   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
636 }
637 
638 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
639 /// __builtin_object_size(p, @p To) is correct
areBOSTypesCompatible(int From,int To)640 static bool areBOSTypesCompatible(int From, int To) {
641   // Note: Our __builtin_object_size implementation currently treats Type=0 and
642   // Type=2 identically. Encoding this implementation detail here may make
643   // improving __builtin_object_size difficult in the future, so it's omitted.
644   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
645 }
646 
647 static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type,llvm::IntegerType * ResType)648 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
649   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
650 }
651 
652 llvm::Value *
evaluateOrEmitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)653 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
654                                                  llvm::IntegerType *ResType,
655                                                  llvm::Value *EmittedE,
656                                                  bool IsDynamic) {
657   uint64_t ObjectSize;
658   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
659     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
660   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
661 }
662 
663 /// Returns a Value corresponding to the size of the given expression.
664 /// This Value may be either of the following:
665 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
666 ///     it)
667 ///   - A call to the @llvm.objectsize intrinsic
668 ///
669 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
670 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
671 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
672 llvm::Value *
emitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)673 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
674                                        llvm::IntegerType *ResType,
675                                        llvm::Value *EmittedE, bool IsDynamic) {
676   // We need to reference an argument if the pointer is a parameter with the
677   // pass_object_size attribute.
678   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
679     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
680     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
681     if (Param != nullptr && PS != nullptr &&
682         areBOSTypesCompatible(PS->getType(), Type)) {
683       auto Iter = SizeArguments.find(Param);
684       assert(Iter != SizeArguments.end());
685 
686       const ImplicitParamDecl *D = Iter->second;
687       auto DIter = LocalDeclMap.find(D);
688       assert(DIter != LocalDeclMap.end());
689 
690       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
691                               getContext().getSizeType(), E->getBeginLoc());
692     }
693   }
694 
695   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
696   // evaluate E for side-effects. In either case, we shouldn't lower to
697   // @llvm.objectsize.
698   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
699     return getDefaultBuiltinObjectSizeResult(Type, ResType);
700 
701   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
702   assert(Ptr->getType()->isPointerTy() &&
703          "Non-pointer passed to __builtin_object_size?");
704 
705   Function *F =
706       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
707 
708   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
709   Value *Min = Builder.getInt1((Type & 2) != 0);
710   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
711   Value *NullIsUnknown = Builder.getTrue();
712   Value *Dynamic = Builder.getInt1(IsDynamic);
713   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
714 }
715 
716 namespace {
717 /// A struct to generically describe a bit test intrinsic.
718 struct BitTest {
719   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
720   enum InterlockingKind : uint8_t {
721     Unlocked,
722     Sequential,
723     Acquire,
724     Release,
725     NoFence
726   };
727 
728   ActionKind Action;
729   InterlockingKind Interlocking;
730   bool Is64Bit;
731 
732   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
733 };
734 } // namespace
735 
decodeBitTestBuiltin(unsigned BuiltinID)736 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
737   switch (BuiltinID) {
738     // Main portable variants.
739   case Builtin::BI_bittest:
740     return {TestOnly, Unlocked, false};
741   case Builtin::BI_bittestandcomplement:
742     return {Complement, Unlocked, false};
743   case Builtin::BI_bittestandreset:
744     return {Reset, Unlocked, false};
745   case Builtin::BI_bittestandset:
746     return {Set, Unlocked, false};
747   case Builtin::BI_interlockedbittestandreset:
748     return {Reset, Sequential, false};
749   case Builtin::BI_interlockedbittestandset:
750     return {Set, Sequential, false};
751 
752     // X86-specific 64-bit variants.
753   case Builtin::BI_bittest64:
754     return {TestOnly, Unlocked, true};
755   case Builtin::BI_bittestandcomplement64:
756     return {Complement, Unlocked, true};
757   case Builtin::BI_bittestandreset64:
758     return {Reset, Unlocked, true};
759   case Builtin::BI_bittestandset64:
760     return {Set, Unlocked, true};
761   case Builtin::BI_interlockedbittestandreset64:
762     return {Reset, Sequential, true};
763   case Builtin::BI_interlockedbittestandset64:
764     return {Set, Sequential, true};
765 
766     // ARM/AArch64-specific ordering variants.
767   case Builtin::BI_interlockedbittestandset_acq:
768     return {Set, Acquire, false};
769   case Builtin::BI_interlockedbittestandset_rel:
770     return {Set, Release, false};
771   case Builtin::BI_interlockedbittestandset_nf:
772     return {Set, NoFence, false};
773   case Builtin::BI_interlockedbittestandreset_acq:
774     return {Reset, Acquire, false};
775   case Builtin::BI_interlockedbittestandreset_rel:
776     return {Reset, Release, false};
777   case Builtin::BI_interlockedbittestandreset_nf:
778     return {Reset, NoFence, false};
779   }
780   llvm_unreachable("expected only bittest intrinsics");
781 }
782 
bitActionToX86BTCode(BitTest::ActionKind A)783 static char bitActionToX86BTCode(BitTest::ActionKind A) {
784   switch (A) {
785   case BitTest::TestOnly:   return '\0';
786   case BitTest::Complement: return 'c';
787   case BitTest::Reset:      return 'r';
788   case BitTest::Set:        return 's';
789   }
790   llvm_unreachable("invalid action");
791 }
792 
EmitX86BitTestIntrinsic(CodeGenFunction & CGF,BitTest BT,const CallExpr * E,Value * BitBase,Value * BitPos)793 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
794                                             BitTest BT,
795                                             const CallExpr *E, Value *BitBase,
796                                             Value *BitPos) {
797   char Action = bitActionToX86BTCode(BT.Action);
798   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
799 
800   // Build the assembly.
801   SmallString<64> Asm;
802   raw_svector_ostream AsmOS(Asm);
803   if (BT.Interlocking != BitTest::Unlocked)
804     AsmOS << "lock ";
805   AsmOS << "bt";
806   if (Action)
807     AsmOS << Action;
808   AsmOS << SizeSuffix << " $2, ($1)";
809 
810   // Build the constraints. FIXME: We should support immediates when possible.
811   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
812   std::string MachineClobbers = CGF.getTarget().getClobbers();
813   if (!MachineClobbers.empty()) {
814     Constraints += ',';
815     Constraints += MachineClobbers;
816   }
817   llvm::IntegerType *IntType = llvm::IntegerType::get(
818       CGF.getLLVMContext(),
819       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
820   llvm::Type *IntPtrType = IntType->getPointerTo();
821   llvm::FunctionType *FTy =
822       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
823 
824   llvm::InlineAsm *IA =
825       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
826   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
827 }
828 
829 static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I)830 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
831   switch (I) {
832   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
833   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
834   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
835   case BitTest::Release:    return llvm::AtomicOrdering::Release;
836   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
837   }
838   llvm_unreachable("invalid interlocking");
839 }
840 
841 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
842 /// bits and a bit position and read and optionally modify the bit at that
843 /// position. The position index can be arbitrarily large, i.e. it can be larger
844 /// than 31 or 63, so we need an indexed load in the general case.
EmitBitTestIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)845 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
846                                          unsigned BuiltinID,
847                                          const CallExpr *E) {
848   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
849   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
850 
851   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
852 
853   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
854   // indexing operation internally. Use them if possible.
855   if (CGF.getTarget().getTriple().isX86())
856     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
857 
858   // Otherwise, use generic code to load one byte and test the bit. Use all but
859   // the bottom three bits as the array index, and the bottom three bits to form
860   // a mask.
861   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
862   Value *ByteIndex = CGF.Builder.CreateAShr(
863       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
864   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
865   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
866                                                  ByteIndex, "bittest.byteaddr"),
867                    CharUnits::One());
868   Value *PosLow =
869       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
870                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
871 
872   // The updating instructions will need a mask.
873   Value *Mask = nullptr;
874   if (BT.Action != BitTest::TestOnly) {
875     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
876                                  "bittest.mask");
877   }
878 
879   // Check the action and ordering of the interlocked intrinsics.
880   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
881 
882   Value *OldByte = nullptr;
883   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
884     // Emit a combined atomicrmw load/store operation for the interlocked
885     // intrinsics.
886     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
887     if (BT.Action == BitTest::Reset) {
888       Mask = CGF.Builder.CreateNot(Mask);
889       RMWOp = llvm::AtomicRMWInst::And;
890     }
891     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
892                                           Ordering);
893   } else {
894     // Emit a plain load for the non-interlocked intrinsics.
895     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
896     Value *NewByte = nullptr;
897     switch (BT.Action) {
898     case BitTest::TestOnly:
899       // Don't store anything.
900       break;
901     case BitTest::Complement:
902       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
903       break;
904     case BitTest::Reset:
905       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
906       break;
907     case BitTest::Set:
908       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
909       break;
910     }
911     if (NewByte)
912       CGF.Builder.CreateStore(NewByte, ByteAddr);
913   }
914 
915   // However we loaded the old byte, either by plain load or atomicrmw, shift
916   // the bit into the low position and mask it to 0 or 1.
917   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
918   return CGF.Builder.CreateAnd(
919       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
920 }
921 
922 namespace {
923 enum class MSVCSetJmpKind {
924   _setjmpex,
925   _setjmp3,
926   _setjmp
927 };
928 }
929 
930 /// MSVC handles setjmp a bit differently on different platforms. On every
931 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
932 /// parameters can be passed as variadic arguments, but we always pass none.
EmitMSVCRTSetJmp(CodeGenFunction & CGF,MSVCSetJmpKind SJKind,const CallExpr * E)933 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
934                                const CallExpr *E) {
935   llvm::Value *Arg1 = nullptr;
936   llvm::Type *Arg1Ty = nullptr;
937   StringRef Name;
938   bool IsVarArg = false;
939   if (SJKind == MSVCSetJmpKind::_setjmp3) {
940     Name = "_setjmp3";
941     Arg1Ty = CGF.Int32Ty;
942     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
943     IsVarArg = true;
944   } else {
945     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
946     Arg1Ty = CGF.Int8PtrTy;
947     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
948       Arg1 = CGF.Builder.CreateCall(
949           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
950     } else
951       Arg1 = CGF.Builder.CreateCall(
952           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
953           llvm::ConstantInt::get(CGF.Int32Ty, 0));
954   }
955 
956   // Mark the call site and declaration with ReturnsTwice.
957   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
958   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
959       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
960       llvm::Attribute::ReturnsTwice);
961   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
962       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
963       ReturnsTwiceAttr, /*Local=*/true);
964 
965   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
966       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
967   llvm::Value *Args[] = {Buf, Arg1};
968   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
969   CB->setAttributes(ReturnsTwiceAttr);
970   return RValue::get(CB);
971 }
972 
973 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
974 // we handle them here.
975 enum class CodeGenFunction::MSVCIntrin {
976   _BitScanForward,
977   _BitScanReverse,
978   _InterlockedAnd,
979   _InterlockedDecrement,
980   _InterlockedExchange,
981   _InterlockedExchangeAdd,
982   _InterlockedExchangeSub,
983   _InterlockedIncrement,
984   _InterlockedOr,
985   _InterlockedXor,
986   _InterlockedExchangeAdd_acq,
987   _InterlockedExchangeAdd_rel,
988   _InterlockedExchangeAdd_nf,
989   _InterlockedExchange_acq,
990   _InterlockedExchange_rel,
991   _InterlockedExchange_nf,
992   _InterlockedCompareExchange_acq,
993   _InterlockedCompareExchange_rel,
994   _InterlockedCompareExchange_nf,
995   _InterlockedOr_acq,
996   _InterlockedOr_rel,
997   _InterlockedOr_nf,
998   _InterlockedXor_acq,
999   _InterlockedXor_rel,
1000   _InterlockedXor_nf,
1001   _InterlockedAnd_acq,
1002   _InterlockedAnd_rel,
1003   _InterlockedAnd_nf,
1004   _InterlockedIncrement_acq,
1005   _InterlockedIncrement_rel,
1006   _InterlockedIncrement_nf,
1007   _InterlockedDecrement_acq,
1008   _InterlockedDecrement_rel,
1009   _InterlockedDecrement_nf,
1010   __fastfail,
1011 };
1012 
EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,const CallExpr * E)1013 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1014                                             const CallExpr *E) {
1015   switch (BuiltinID) {
1016   case MSVCIntrin::_BitScanForward:
1017   case MSVCIntrin::_BitScanReverse: {
1018     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1019 
1020     llvm::Type *ArgType = ArgValue->getType();
1021     llvm::Type *IndexType =
1022       EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
1023     llvm::Type *ResultType = ConvertType(E->getType());
1024 
1025     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1026     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1027     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1028 
1029     BasicBlock *Begin = Builder.GetInsertBlock();
1030     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1031     Builder.SetInsertPoint(End);
1032     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1033 
1034     Builder.SetInsertPoint(Begin);
1035     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1036     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1037     Builder.CreateCondBr(IsZero, End, NotZero);
1038     Result->addIncoming(ResZero, Begin);
1039 
1040     Builder.SetInsertPoint(NotZero);
1041     Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
1042 
1043     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1044       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1045       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1046       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1047       Builder.CreateStore(ZeroCount, IndexAddress, false);
1048     } else {
1049       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1050       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1051 
1052       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1053       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1054       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1055       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1056       Builder.CreateStore(Index, IndexAddress, false);
1057     }
1058     Builder.CreateBr(End);
1059     Result->addIncoming(ResOne, NotZero);
1060 
1061     Builder.SetInsertPoint(End);
1062     return Result;
1063   }
1064   case MSVCIntrin::_InterlockedAnd:
1065     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1066   case MSVCIntrin::_InterlockedExchange:
1067     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1068   case MSVCIntrin::_InterlockedExchangeAdd:
1069     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1070   case MSVCIntrin::_InterlockedExchangeSub:
1071     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1072   case MSVCIntrin::_InterlockedOr:
1073     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1074   case MSVCIntrin::_InterlockedXor:
1075     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1076   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1077     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1078                                  AtomicOrdering::Acquire);
1079   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1080     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1081                                  AtomicOrdering::Release);
1082   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1083     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1084                                  AtomicOrdering::Monotonic);
1085   case MSVCIntrin::_InterlockedExchange_acq:
1086     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1087                                  AtomicOrdering::Acquire);
1088   case MSVCIntrin::_InterlockedExchange_rel:
1089     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1090                                  AtomicOrdering::Release);
1091   case MSVCIntrin::_InterlockedExchange_nf:
1092     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1093                                  AtomicOrdering::Monotonic);
1094   case MSVCIntrin::_InterlockedCompareExchange_acq:
1095     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1096   case MSVCIntrin::_InterlockedCompareExchange_rel:
1097     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1098   case MSVCIntrin::_InterlockedCompareExchange_nf:
1099     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1100   case MSVCIntrin::_InterlockedOr_acq:
1101     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1102                                  AtomicOrdering::Acquire);
1103   case MSVCIntrin::_InterlockedOr_rel:
1104     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1105                                  AtomicOrdering::Release);
1106   case MSVCIntrin::_InterlockedOr_nf:
1107     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1108                                  AtomicOrdering::Monotonic);
1109   case MSVCIntrin::_InterlockedXor_acq:
1110     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1111                                  AtomicOrdering::Acquire);
1112   case MSVCIntrin::_InterlockedXor_rel:
1113     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1114                                  AtomicOrdering::Release);
1115   case MSVCIntrin::_InterlockedXor_nf:
1116     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1117                                  AtomicOrdering::Monotonic);
1118   case MSVCIntrin::_InterlockedAnd_acq:
1119     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1120                                  AtomicOrdering::Acquire);
1121   case MSVCIntrin::_InterlockedAnd_rel:
1122     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1123                                  AtomicOrdering::Release);
1124   case MSVCIntrin::_InterlockedAnd_nf:
1125     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1126                                  AtomicOrdering::Monotonic);
1127   case MSVCIntrin::_InterlockedIncrement_acq:
1128     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1129   case MSVCIntrin::_InterlockedIncrement_rel:
1130     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1131   case MSVCIntrin::_InterlockedIncrement_nf:
1132     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1133   case MSVCIntrin::_InterlockedDecrement_acq:
1134     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1135   case MSVCIntrin::_InterlockedDecrement_rel:
1136     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1137   case MSVCIntrin::_InterlockedDecrement_nf:
1138     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1139 
1140   case MSVCIntrin::_InterlockedDecrement:
1141     return EmitAtomicDecrementValue(*this, E);
1142   case MSVCIntrin::_InterlockedIncrement:
1143     return EmitAtomicIncrementValue(*this, E);
1144 
1145   case MSVCIntrin::__fastfail: {
1146     // Request immediate process termination from the kernel. The instruction
1147     // sequences to do this are documented on MSDN:
1148     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1149     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1150     StringRef Asm, Constraints;
1151     switch (ISA) {
1152     default:
1153       ErrorUnsupported(E, "__fastfail call for this architecture");
1154       break;
1155     case llvm::Triple::x86:
1156     case llvm::Triple::x86_64:
1157       Asm = "int $$0x29";
1158       Constraints = "{cx}";
1159       break;
1160     case llvm::Triple::thumb:
1161       Asm = "udf #251";
1162       Constraints = "{r0}";
1163       break;
1164     case llvm::Triple::aarch64:
1165       Asm = "brk #0xF003";
1166       Constraints = "{w0}";
1167     }
1168     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1169     llvm::InlineAsm *IA =
1170         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1171     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1172         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1173         llvm::Attribute::NoReturn);
1174     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1175     CI->setAttributes(NoReturnAttr);
1176     return CI;
1177   }
1178   }
1179   llvm_unreachable("Incorrect MSVC intrinsic!");
1180 }
1181 
1182 namespace {
1183 // ARC cleanup for __builtin_os_log_format
1184 struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse__anon3067de980411::CallObjCArcUse1185   CallObjCArcUse(llvm::Value *object) : object(object) {}
1186   llvm::Value *object;
1187 
Emit__anon3067de980411::CallObjCArcUse1188   void Emit(CodeGenFunction &CGF, Flags flags) override {
1189     CGF.EmitARCIntrinsicUse(object);
1190   }
1191 };
1192 }
1193 
EmitCheckedArgForBuiltin(const Expr * E,BuiltinCheckKind Kind)1194 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1195                                                  BuiltinCheckKind Kind) {
1196   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1197           && "Unsupported builtin check kind");
1198 
1199   Value *ArgValue = EmitScalarExpr(E);
1200   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1201     return ArgValue;
1202 
1203   SanitizerScope SanScope(this);
1204   Value *Cond = Builder.CreateICmpNE(
1205       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1206   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1207             SanitizerHandler::InvalidBuiltin,
1208             {EmitCheckSourceLocation(E->getExprLoc()),
1209              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1210             None);
1211   return ArgValue;
1212 }
1213 
1214 /// Get the argument type for arguments to os_log_helper.
getOSLogArgType(ASTContext & C,int Size)1215 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1216   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1217   return C.getCanonicalType(UnsignedTy);
1218 }
1219 
generateBuiltinOSLogHelperFunction(const analyze_os_log::OSLogBufferLayout & Layout,CharUnits BufferAlignment)1220 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1221     const analyze_os_log::OSLogBufferLayout &Layout,
1222     CharUnits BufferAlignment) {
1223   ASTContext &Ctx = getContext();
1224 
1225   llvm::SmallString<64> Name;
1226   {
1227     raw_svector_ostream OS(Name);
1228     OS << "__os_log_helper";
1229     OS << "_" << BufferAlignment.getQuantity();
1230     OS << "_" << int(Layout.getSummaryByte());
1231     OS << "_" << int(Layout.getNumArgsByte());
1232     for (const auto &Item : Layout.Items)
1233       OS << "_" << int(Item.getSizeByte()) << "_"
1234          << int(Item.getDescriptorByte());
1235   }
1236 
1237   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1238     return F;
1239 
1240   llvm::SmallVector<QualType, 4> ArgTys;
1241   FunctionArgList Args;
1242   Args.push_back(ImplicitParamDecl::Create(
1243       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1244       ImplicitParamDecl::Other));
1245   ArgTys.emplace_back(Ctx.VoidPtrTy);
1246 
1247   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1248     char Size = Layout.Items[I].getSizeByte();
1249     if (!Size)
1250       continue;
1251 
1252     QualType ArgTy = getOSLogArgType(Ctx, Size);
1253     Args.push_back(ImplicitParamDecl::Create(
1254         Ctx, nullptr, SourceLocation(),
1255         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1256         ImplicitParamDecl::Other));
1257     ArgTys.emplace_back(ArgTy);
1258   }
1259 
1260   QualType ReturnTy = Ctx.VoidTy;
1261   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1262 
1263   // The helper function has linkonce_odr linkage to enable the linker to merge
1264   // identical functions. To ensure the merging always happens, 'noinline' is
1265   // attached to the function when compiling with -Oz.
1266   const CGFunctionInfo &FI =
1267       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1268   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1269   llvm::Function *Fn = llvm::Function::Create(
1270       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1271   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1272   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1273   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1274   Fn->setDoesNotThrow();
1275 
1276   // Attach 'noinline' at -Oz.
1277   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1278     Fn->addFnAttr(llvm::Attribute::NoInline);
1279 
1280   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1281   IdentifierInfo *II = &Ctx.Idents.get(Name);
1282   FunctionDecl *FD = FunctionDecl::Create(
1283       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1284       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1285   // Avoid generating debug location info for the function.
1286   FD->setImplicit();
1287 
1288   StartFunction(FD, ReturnTy, Fn, FI, Args);
1289 
1290   // Create a scope with an artificial location for the body of this function.
1291   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1292 
1293   CharUnits Offset;
1294   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1295                   BufferAlignment);
1296   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1297                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1298   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1299                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1300 
1301   unsigned I = 1;
1302   for (const auto &Item : Layout.Items) {
1303     Builder.CreateStore(
1304         Builder.getInt8(Item.getDescriptorByte()),
1305         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1306     Builder.CreateStore(
1307         Builder.getInt8(Item.getSizeByte()),
1308         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1309 
1310     CharUnits Size = Item.size();
1311     if (!Size.getQuantity())
1312       continue;
1313 
1314     Address Arg = GetAddrOfLocalVar(Args[I]);
1315     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1316     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1317                                  "argDataCast");
1318     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1319     Offset += Size;
1320     ++I;
1321   }
1322 
1323   FinishFunction();
1324 
1325   return Fn;
1326 }
1327 
emitBuiltinOSLogFormat(const CallExpr & E)1328 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1329   assert(E.getNumArgs() >= 2 &&
1330          "__builtin_os_log_format takes at least 2 arguments");
1331   ASTContext &Ctx = getContext();
1332   analyze_os_log::OSLogBufferLayout Layout;
1333   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1334   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1335   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1336 
1337   // Ignore argument 1, the format string. It is not currently used.
1338   CallArgList Args;
1339   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1340 
1341   for (const auto &Item : Layout.Items) {
1342     int Size = Item.getSizeByte();
1343     if (!Size)
1344       continue;
1345 
1346     llvm::Value *ArgVal;
1347 
1348     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1349       uint64_t Val = 0;
1350       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1351         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1352       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1353     } else if (const Expr *TheExpr = Item.getExpr()) {
1354       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1355 
1356       // If a temporary object that requires destruction after the full
1357       // expression is passed, push a lifetime-extended cleanup to extend its
1358       // lifetime to the end of the enclosing block scope.
1359       auto LifetimeExtendObject = [&](const Expr *E) {
1360         E = E->IgnoreParenCasts();
1361         // Extend lifetimes of objects returned by function calls and message
1362         // sends.
1363 
1364         // FIXME: We should do this in other cases in which temporaries are
1365         //        created including arguments of non-ARC types (e.g., C++
1366         //        temporaries).
1367         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1368           return true;
1369         return false;
1370       };
1371 
1372       if (TheExpr->getType()->isObjCRetainableType() &&
1373           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1374         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1375                "Only scalar can be a ObjC retainable type");
1376         if (!isa<Constant>(ArgVal)) {
1377           CleanupKind Cleanup = getARCCleanupKind();
1378           QualType Ty = TheExpr->getType();
1379           Address Alloca = Address::invalid();
1380           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1381           ArgVal = EmitARCRetain(Ty, ArgVal);
1382           Builder.CreateStore(ArgVal, Addr);
1383           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1384                                       CodeGenFunction::destroyARCStrongPrecise,
1385                                       Cleanup & EHCleanup);
1386 
1387           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1388           // argument has to be alive.
1389           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1390             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1391         }
1392       }
1393     } else {
1394       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1395     }
1396 
1397     unsigned ArgValSize =
1398         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1399     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1400                                                      ArgValSize);
1401     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1402     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1403     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1404     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1405     Args.add(RValue::get(ArgVal), ArgTy);
1406   }
1407 
1408   const CGFunctionInfo &FI =
1409       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1410   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1411       Layout, BufAddr.getAlignment());
1412   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1413   return RValue::get(BufAddr.getPointer());
1414 }
1415 
1416 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
isSpecialMixedSignMultiply(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1417 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1418                                        WidthAndSignedness Op1Info,
1419                                        WidthAndSignedness Op2Info,
1420                                        WidthAndSignedness ResultInfo) {
1421   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1422          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1423          Op1Info.Signed != Op2Info.Signed;
1424 }
1425 
1426 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1427 /// the generic checked-binop irgen.
1428 static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1429 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1430                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1431                              WidthAndSignedness Op2Info,
1432                              const clang::Expr *ResultArg, QualType ResultQTy,
1433                              WidthAndSignedness ResultInfo) {
1434   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1435                                     Op2Info, ResultInfo) &&
1436          "Not a mixed-sign multipliction we can specialize");
1437 
1438   // Emit the signed and unsigned operands.
1439   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1440   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1441   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1442   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1443   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1444   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1445 
1446   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1447   if (SignedOpWidth < UnsignedOpWidth)
1448     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1449   if (UnsignedOpWidth < SignedOpWidth)
1450     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1451 
1452   llvm::Type *OpTy = Signed->getType();
1453   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1454   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1455   llvm::Type *ResTy = ResultPtr.getElementType();
1456   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1457 
1458   // Take the absolute value of the signed operand.
1459   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1460   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1461   llvm::Value *AbsSigned =
1462       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1463 
1464   // Perform a checked unsigned multiplication.
1465   llvm::Value *UnsignedOverflow;
1466   llvm::Value *UnsignedResult =
1467       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1468                             Unsigned, UnsignedOverflow);
1469 
1470   llvm::Value *Overflow, *Result;
1471   if (ResultInfo.Signed) {
1472     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1473     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1474     auto IntMax =
1475         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1476     llvm::Value *MaxResult =
1477         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1478                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1479     llvm::Value *SignedOverflow =
1480         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1481     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1482 
1483     // Prepare the signed result (possibly by negating it).
1484     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1485     llvm::Value *SignedResult =
1486         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1487     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1488   } else {
1489     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1490     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1491         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1492     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1493     if (ResultInfo.Width < OpWidth) {
1494       auto IntMax =
1495           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1496       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1497           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1498       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1499     }
1500 
1501     // Negate the product if it would be negative in infinite precision.
1502     Result = CGF.Builder.CreateSelect(
1503         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1504 
1505     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1506   }
1507   assert(Overflow && Result && "Missing overflow or result");
1508 
1509   bool isVolatile =
1510       ResultArg->getType()->getPointeeType().isVolatileQualified();
1511   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1512                           isVolatile);
1513   return RValue::get(Overflow);
1514 }
1515 
dumpRecord(CodeGenFunction & CGF,QualType RType,Value * & RecordPtr,CharUnits Align,llvm::FunctionCallee Func,int Lvl)1516 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1517                                Value *&RecordPtr, CharUnits Align,
1518                                llvm::FunctionCallee Func, int Lvl) {
1519   ASTContext &Context = CGF.getContext();
1520   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1521   std::string Pad = std::string(Lvl * 4, ' ');
1522 
1523   Value *GString =
1524       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1525   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1526 
1527   static llvm::DenseMap<QualType, const char *> Types;
1528   if (Types.empty()) {
1529     Types[Context.CharTy] = "%c";
1530     Types[Context.BoolTy] = "%d";
1531     Types[Context.SignedCharTy] = "%hhd";
1532     Types[Context.UnsignedCharTy] = "%hhu";
1533     Types[Context.IntTy] = "%d";
1534     Types[Context.UnsignedIntTy] = "%u";
1535     Types[Context.LongTy] = "%ld";
1536     Types[Context.UnsignedLongTy] = "%lu";
1537     Types[Context.LongLongTy] = "%lld";
1538     Types[Context.UnsignedLongLongTy] = "%llu";
1539     Types[Context.ShortTy] = "%hd";
1540     Types[Context.UnsignedShortTy] = "%hu";
1541     Types[Context.VoidPtrTy] = "%p";
1542     Types[Context.FloatTy] = "%f";
1543     Types[Context.DoubleTy] = "%f";
1544     Types[Context.LongDoubleTy] = "%Lf";
1545     Types[Context.getPointerType(Context.CharTy)] = "%s";
1546     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1547   }
1548 
1549   for (const auto *FD : RD->fields()) {
1550     Value *FieldPtr = RecordPtr;
1551     if (RD->isUnion())
1552       FieldPtr = CGF.Builder.CreatePointerCast(
1553           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1554     else
1555       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1556                                              FD->getFieldIndex());
1557 
1558     GString = CGF.Builder.CreateGlobalStringPtr(
1559         llvm::Twine(Pad)
1560             .concat(FD->getType().getAsString())
1561             .concat(llvm::Twine(' '))
1562             .concat(FD->getNameAsString())
1563             .concat(" : ")
1564             .str());
1565     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1566     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1567 
1568     QualType CanonicalType =
1569         FD->getType().getUnqualifiedType().getCanonicalType();
1570 
1571     // We check whether we are in a recursive type
1572     if (CanonicalType->isRecordType()) {
1573       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1574       Res = CGF.Builder.CreateAdd(TmpRes, Res);
1575       continue;
1576     }
1577 
1578     // We try to determine the best format to print the current field
1579     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1580                              ? Types[Context.VoidPtrTy]
1581                              : Types[CanonicalType];
1582 
1583     Address FieldAddress = Address(FieldPtr, Align);
1584     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1585 
1586     // FIXME Need to handle bitfield here
1587     GString = CGF.Builder.CreateGlobalStringPtr(
1588         Format.concat(llvm::Twine('\n')).str());
1589     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1590     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1591   }
1592 
1593   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1594   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1595   Res = CGF.Builder.CreateAdd(Res, TmpRes);
1596   return Res;
1597 }
1598 
1599 static bool
TypeRequiresBuiltinLaunderImp(const ASTContext & Ctx,QualType Ty,llvm::SmallPtrSetImpl<const Decl * > & Seen)1600 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1601                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1602   if (const auto *Arr = Ctx.getAsArrayType(Ty))
1603     Ty = Ctx.getBaseElementType(Arr);
1604 
1605   const auto *Record = Ty->getAsCXXRecordDecl();
1606   if (!Record)
1607     return false;
1608 
1609   // We've already checked this type, or are in the process of checking it.
1610   if (!Seen.insert(Record).second)
1611     return false;
1612 
1613   assert(Record->hasDefinition() &&
1614          "Incomplete types should already be diagnosed");
1615 
1616   if (Record->isDynamicClass())
1617     return true;
1618 
1619   for (FieldDecl *F : Record->fields()) {
1620     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1621       return true;
1622   }
1623   return false;
1624 }
1625 
1626 /// Determine if the specified type requires laundering by checking if it is a
1627 /// dynamic class type or contains a subobject which is a dynamic class type.
TypeRequiresBuiltinLaunder(CodeGenModule & CGM,QualType Ty)1628 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1629   if (!CGM.getCodeGenOpts().StrictVTablePointers)
1630     return false;
1631   llvm::SmallPtrSet<const Decl *, 16> Seen;
1632   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1633 }
1634 
emitRotate(const CallExpr * E,bool IsRotateRight)1635 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1636   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1637   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1638 
1639   // The builtin's shift arg may have a different type than the source arg and
1640   // result, but the LLVM intrinsic uses the same type for all values.
1641   llvm::Type *Ty = Src->getType();
1642   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1643 
1644   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1645   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1646   Function *F = CGM.getIntrinsic(IID, Ty);
1647   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1648 }
1649 
EmitBuiltinExpr(const GlobalDecl GD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)1650 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1651                                         const CallExpr *E,
1652                                         ReturnValueSlot ReturnValue) {
1653   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1654   // See if we can constant fold this builtin.  If so, don't emit it at all.
1655   Expr::EvalResult Result;
1656   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1657       !Result.hasSideEffects()) {
1658     if (Result.Val.isInt())
1659       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1660                                                 Result.Val.getInt()));
1661     if (Result.Val.isFloat())
1662       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1663                                                Result.Val.getFloat()));
1664   }
1665 
1666   // If the builtin has been declared explicitly with an assembler label,
1667   // disable the specialized emitting below. Ideally we should communicate the
1668   // rename in IR, or at least avoid generating the intrinsic calls that are
1669   // likely to get lowered to the renamed library functions.
1670   const unsigned BuiltinIDIfNoAsmLabel =
1671       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
1672 
1673   // There are LLVM math intrinsics/instructions corresponding to math library
1674   // functions except the LLVM op will never set errno while the math library
1675   // might. Also, math builtins have the same semantics as their math library
1676   // twins. Thus, we can transform math library and builtin calls to their
1677   // LLVM counterparts if the call is marked 'const' (known to never set errno).
1678   if (FD->hasAttr<ConstAttr>()) {
1679     switch (BuiltinIDIfNoAsmLabel) {
1680     case Builtin::BIceil:
1681     case Builtin::BIceilf:
1682     case Builtin::BIceill:
1683     case Builtin::BI__builtin_ceil:
1684     case Builtin::BI__builtin_ceilf:
1685     case Builtin::BI__builtin_ceilf16:
1686     case Builtin::BI__builtin_ceill:
1687     case Builtin::BI__builtin_ceilf128:
1688       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1689                                    Intrinsic::ceil,
1690                                    Intrinsic::experimental_constrained_ceil));
1691 
1692     case Builtin::BIcopysign:
1693     case Builtin::BIcopysignf:
1694     case Builtin::BIcopysignl:
1695     case Builtin::BI__builtin_copysign:
1696     case Builtin::BI__builtin_copysignf:
1697     case Builtin::BI__builtin_copysignf16:
1698     case Builtin::BI__builtin_copysignl:
1699     case Builtin::BI__builtin_copysignf128:
1700       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1701 
1702     case Builtin::BIcos:
1703     case Builtin::BIcosf:
1704     case Builtin::BIcosl:
1705     case Builtin::BI__builtin_cos:
1706     case Builtin::BI__builtin_cosf:
1707     case Builtin::BI__builtin_cosf16:
1708     case Builtin::BI__builtin_cosl:
1709     case Builtin::BI__builtin_cosf128:
1710       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1711                                    Intrinsic::cos,
1712                                    Intrinsic::experimental_constrained_cos));
1713 
1714     case Builtin::BIexp:
1715     case Builtin::BIexpf:
1716     case Builtin::BIexpl:
1717     case Builtin::BI__builtin_exp:
1718     case Builtin::BI__builtin_expf:
1719     case Builtin::BI__builtin_expf16:
1720     case Builtin::BI__builtin_expl:
1721     case Builtin::BI__builtin_expf128:
1722       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1723                                    Intrinsic::exp,
1724                                    Intrinsic::experimental_constrained_exp));
1725 
1726     case Builtin::BIexp2:
1727     case Builtin::BIexp2f:
1728     case Builtin::BIexp2l:
1729     case Builtin::BI__builtin_exp2:
1730     case Builtin::BI__builtin_exp2f:
1731     case Builtin::BI__builtin_exp2f16:
1732     case Builtin::BI__builtin_exp2l:
1733     case Builtin::BI__builtin_exp2f128:
1734       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1735                                    Intrinsic::exp2,
1736                                    Intrinsic::experimental_constrained_exp2));
1737 
1738     case Builtin::BIfabs:
1739     case Builtin::BIfabsf:
1740     case Builtin::BIfabsl:
1741     case Builtin::BI__builtin_fabs:
1742     case Builtin::BI__builtin_fabsf:
1743     case Builtin::BI__builtin_fabsf16:
1744     case Builtin::BI__builtin_fabsl:
1745     case Builtin::BI__builtin_fabsf128:
1746       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1747 
1748     case Builtin::BIfloor:
1749     case Builtin::BIfloorf:
1750     case Builtin::BIfloorl:
1751     case Builtin::BI__builtin_floor:
1752     case Builtin::BI__builtin_floorf:
1753     case Builtin::BI__builtin_floorf16:
1754     case Builtin::BI__builtin_floorl:
1755     case Builtin::BI__builtin_floorf128:
1756       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1757                                    Intrinsic::floor,
1758                                    Intrinsic::experimental_constrained_floor));
1759 
1760     case Builtin::BIfma:
1761     case Builtin::BIfmaf:
1762     case Builtin::BIfmal:
1763     case Builtin::BI__builtin_fma:
1764     case Builtin::BI__builtin_fmaf:
1765     case Builtin::BI__builtin_fmaf16:
1766     case Builtin::BI__builtin_fmal:
1767     case Builtin::BI__builtin_fmaf128:
1768       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
1769                                    Intrinsic::fma,
1770                                    Intrinsic::experimental_constrained_fma));
1771 
1772     case Builtin::BIfmax:
1773     case Builtin::BIfmaxf:
1774     case Builtin::BIfmaxl:
1775     case Builtin::BI__builtin_fmax:
1776     case Builtin::BI__builtin_fmaxf:
1777     case Builtin::BI__builtin_fmaxf16:
1778     case Builtin::BI__builtin_fmaxl:
1779     case Builtin::BI__builtin_fmaxf128:
1780       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1781                                    Intrinsic::maxnum,
1782                                    Intrinsic::experimental_constrained_maxnum));
1783 
1784     case Builtin::BIfmin:
1785     case Builtin::BIfminf:
1786     case Builtin::BIfminl:
1787     case Builtin::BI__builtin_fmin:
1788     case Builtin::BI__builtin_fminf:
1789     case Builtin::BI__builtin_fminf16:
1790     case Builtin::BI__builtin_fminl:
1791     case Builtin::BI__builtin_fminf128:
1792       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1793                                    Intrinsic::minnum,
1794                                    Intrinsic::experimental_constrained_minnum));
1795 
1796     // fmod() is a special-case. It maps to the frem instruction rather than an
1797     // LLVM intrinsic.
1798     case Builtin::BIfmod:
1799     case Builtin::BIfmodf:
1800     case Builtin::BIfmodl:
1801     case Builtin::BI__builtin_fmod:
1802     case Builtin::BI__builtin_fmodf:
1803     case Builtin::BI__builtin_fmodf16:
1804     case Builtin::BI__builtin_fmodl:
1805     case Builtin::BI__builtin_fmodf128: {
1806       Value *Arg1 = EmitScalarExpr(E->getArg(0));
1807       Value *Arg2 = EmitScalarExpr(E->getArg(1));
1808       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1809     }
1810 
1811     case Builtin::BIlog:
1812     case Builtin::BIlogf:
1813     case Builtin::BIlogl:
1814     case Builtin::BI__builtin_log:
1815     case Builtin::BI__builtin_logf:
1816     case Builtin::BI__builtin_logf16:
1817     case Builtin::BI__builtin_logl:
1818     case Builtin::BI__builtin_logf128:
1819       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1820                                    Intrinsic::log,
1821                                    Intrinsic::experimental_constrained_log));
1822 
1823     case Builtin::BIlog10:
1824     case Builtin::BIlog10f:
1825     case Builtin::BIlog10l:
1826     case Builtin::BI__builtin_log10:
1827     case Builtin::BI__builtin_log10f:
1828     case Builtin::BI__builtin_log10f16:
1829     case Builtin::BI__builtin_log10l:
1830     case Builtin::BI__builtin_log10f128:
1831       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1832                                    Intrinsic::log10,
1833                                    Intrinsic::experimental_constrained_log10));
1834 
1835     case Builtin::BIlog2:
1836     case Builtin::BIlog2f:
1837     case Builtin::BIlog2l:
1838     case Builtin::BI__builtin_log2:
1839     case Builtin::BI__builtin_log2f:
1840     case Builtin::BI__builtin_log2f16:
1841     case Builtin::BI__builtin_log2l:
1842     case Builtin::BI__builtin_log2f128:
1843       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1844                                    Intrinsic::log2,
1845                                    Intrinsic::experimental_constrained_log2));
1846 
1847     case Builtin::BInearbyint:
1848     case Builtin::BInearbyintf:
1849     case Builtin::BInearbyintl:
1850     case Builtin::BI__builtin_nearbyint:
1851     case Builtin::BI__builtin_nearbyintf:
1852     case Builtin::BI__builtin_nearbyintl:
1853     case Builtin::BI__builtin_nearbyintf128:
1854       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1855                                 Intrinsic::nearbyint,
1856                                 Intrinsic::experimental_constrained_nearbyint));
1857 
1858     case Builtin::BIpow:
1859     case Builtin::BIpowf:
1860     case Builtin::BIpowl:
1861     case Builtin::BI__builtin_pow:
1862     case Builtin::BI__builtin_powf:
1863     case Builtin::BI__builtin_powf16:
1864     case Builtin::BI__builtin_powl:
1865     case Builtin::BI__builtin_powf128:
1866       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
1867                                    Intrinsic::pow,
1868                                    Intrinsic::experimental_constrained_pow));
1869 
1870     case Builtin::BIrint:
1871     case Builtin::BIrintf:
1872     case Builtin::BIrintl:
1873     case Builtin::BI__builtin_rint:
1874     case Builtin::BI__builtin_rintf:
1875     case Builtin::BI__builtin_rintf16:
1876     case Builtin::BI__builtin_rintl:
1877     case Builtin::BI__builtin_rintf128:
1878       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1879                                    Intrinsic::rint,
1880                                    Intrinsic::experimental_constrained_rint));
1881 
1882     case Builtin::BIround:
1883     case Builtin::BIroundf:
1884     case Builtin::BIroundl:
1885     case Builtin::BI__builtin_round:
1886     case Builtin::BI__builtin_roundf:
1887     case Builtin::BI__builtin_roundf16:
1888     case Builtin::BI__builtin_roundl:
1889     case Builtin::BI__builtin_roundf128:
1890       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1891                                    Intrinsic::round,
1892                                    Intrinsic::experimental_constrained_round));
1893 
1894     case Builtin::BIsin:
1895     case Builtin::BIsinf:
1896     case Builtin::BIsinl:
1897     case Builtin::BI__builtin_sin:
1898     case Builtin::BI__builtin_sinf:
1899     case Builtin::BI__builtin_sinf16:
1900     case Builtin::BI__builtin_sinl:
1901     case Builtin::BI__builtin_sinf128:
1902       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1903                                    Intrinsic::sin,
1904                                    Intrinsic::experimental_constrained_sin));
1905 
1906     case Builtin::BIsqrt:
1907     case Builtin::BIsqrtf:
1908     case Builtin::BIsqrtl:
1909     case Builtin::BI__builtin_sqrt:
1910     case Builtin::BI__builtin_sqrtf:
1911     case Builtin::BI__builtin_sqrtf16:
1912     case Builtin::BI__builtin_sqrtl:
1913     case Builtin::BI__builtin_sqrtf128:
1914       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1915                                    Intrinsic::sqrt,
1916                                    Intrinsic::experimental_constrained_sqrt));
1917 
1918     case Builtin::BItrunc:
1919     case Builtin::BItruncf:
1920     case Builtin::BItruncl:
1921     case Builtin::BI__builtin_trunc:
1922     case Builtin::BI__builtin_truncf:
1923     case Builtin::BI__builtin_truncf16:
1924     case Builtin::BI__builtin_truncl:
1925     case Builtin::BI__builtin_truncf128:
1926       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
1927                                    Intrinsic::trunc,
1928                                    Intrinsic::experimental_constrained_trunc));
1929 
1930     case Builtin::BIlround:
1931     case Builtin::BIlroundf:
1932     case Builtin::BIlroundl:
1933     case Builtin::BI__builtin_lround:
1934     case Builtin::BI__builtin_lroundf:
1935     case Builtin::BI__builtin_lroundl:
1936     case Builtin::BI__builtin_lroundf128:
1937       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1938           *this, E, Intrinsic::lround,
1939           Intrinsic::experimental_constrained_lround));
1940 
1941     case Builtin::BIllround:
1942     case Builtin::BIllroundf:
1943     case Builtin::BIllroundl:
1944     case Builtin::BI__builtin_llround:
1945     case Builtin::BI__builtin_llroundf:
1946     case Builtin::BI__builtin_llroundl:
1947     case Builtin::BI__builtin_llroundf128:
1948       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1949           *this, E, Intrinsic::llround,
1950           Intrinsic::experimental_constrained_llround));
1951 
1952     case Builtin::BIlrint:
1953     case Builtin::BIlrintf:
1954     case Builtin::BIlrintl:
1955     case Builtin::BI__builtin_lrint:
1956     case Builtin::BI__builtin_lrintf:
1957     case Builtin::BI__builtin_lrintl:
1958     case Builtin::BI__builtin_lrintf128:
1959       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1960           *this, E, Intrinsic::lrint,
1961           Intrinsic::experimental_constrained_lrint));
1962 
1963     case Builtin::BIllrint:
1964     case Builtin::BIllrintf:
1965     case Builtin::BIllrintl:
1966     case Builtin::BI__builtin_llrint:
1967     case Builtin::BI__builtin_llrintf:
1968     case Builtin::BI__builtin_llrintl:
1969     case Builtin::BI__builtin_llrintf128:
1970       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
1971           *this, E, Intrinsic::llrint,
1972           Intrinsic::experimental_constrained_llrint));
1973 
1974     default:
1975       break;
1976     }
1977   }
1978 
1979   switch (BuiltinIDIfNoAsmLabel) {
1980   default: break;
1981   case Builtin::BI__builtin___CFStringMakeConstantString:
1982   case Builtin::BI__builtin___NSStringMakeConstantString:
1983     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1984   case Builtin::BI__builtin_stdarg_start:
1985   case Builtin::BI__builtin_va_start:
1986   case Builtin::BI__va_start:
1987   case Builtin::BI__builtin_va_end:
1988     return RValue::get(
1989         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1990                            ? EmitScalarExpr(E->getArg(0))
1991                            : EmitVAListRef(E->getArg(0)).getPointer(),
1992                        BuiltinID != Builtin::BI__builtin_va_end));
1993   case Builtin::BI__builtin_va_copy: {
1994     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1995     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1996 
1997     llvm::Type *Type = Int8PtrTy;
1998 
1999     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2000     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2001     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2002                                           {DstPtr, SrcPtr}));
2003   }
2004   case Builtin::BI__builtin_abs:
2005   case Builtin::BI__builtin_labs:
2006   case Builtin::BI__builtin_llabs: {
2007     // X < 0 ? -X : X
2008     // The negation has 'nsw' because abs of INT_MIN is undefined.
2009     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2010     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2011     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2012     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2013     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2014     return RValue::get(Result);
2015   }
2016   case Builtin::BI__builtin_complex: {
2017     Value *Real = EmitScalarExpr(E->getArg(0));
2018     Value *Imag = EmitScalarExpr(E->getArg(1));
2019     return RValue::getComplex({Real, Imag});
2020   }
2021   case Builtin::BI__builtin_conj:
2022   case Builtin::BI__builtin_conjf:
2023   case Builtin::BI__builtin_conjl:
2024   case Builtin::BIconj:
2025   case Builtin::BIconjf:
2026   case Builtin::BIconjl: {
2027     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2028     Value *Real = ComplexVal.first;
2029     Value *Imag = ComplexVal.second;
2030     Imag = Builder.CreateFNeg(Imag, "neg");
2031     return RValue::getComplex(std::make_pair(Real, Imag));
2032   }
2033   case Builtin::BI__builtin_creal:
2034   case Builtin::BI__builtin_crealf:
2035   case Builtin::BI__builtin_creall:
2036   case Builtin::BIcreal:
2037   case Builtin::BIcrealf:
2038   case Builtin::BIcreall: {
2039     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2040     return RValue::get(ComplexVal.first);
2041   }
2042 
2043   case Builtin::BI__builtin_dump_struct: {
2044     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2045     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2046         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2047 
2048     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2049     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2050 
2051     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2052     QualType Arg0Type = Arg0->getType()->getPointeeType();
2053 
2054     Value *RecordPtr = EmitScalarExpr(Arg0);
2055     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2056                             {LLVMFuncType, Func}, 0);
2057     return RValue::get(Res);
2058   }
2059 
2060   case Builtin::BI__builtin_preserve_access_index: {
2061     // Only enabled preserved access index region when debuginfo
2062     // is available as debuginfo is needed to preserve user-level
2063     // access pattern.
2064     if (!getDebugInfo()) {
2065       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2066       return RValue::get(EmitScalarExpr(E->getArg(0)));
2067     }
2068 
2069     // Nested builtin_preserve_access_index() not supported
2070     if (IsInPreservedAIRegion) {
2071       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2072       return RValue::get(EmitScalarExpr(E->getArg(0)));
2073     }
2074 
2075     IsInPreservedAIRegion = true;
2076     Value *Res = EmitScalarExpr(E->getArg(0));
2077     IsInPreservedAIRegion = false;
2078     return RValue::get(Res);
2079   }
2080 
2081   case Builtin::BI__builtin_cimag:
2082   case Builtin::BI__builtin_cimagf:
2083   case Builtin::BI__builtin_cimagl:
2084   case Builtin::BIcimag:
2085   case Builtin::BIcimagf:
2086   case Builtin::BIcimagl: {
2087     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2088     return RValue::get(ComplexVal.second);
2089   }
2090 
2091   case Builtin::BI__builtin_clrsb:
2092   case Builtin::BI__builtin_clrsbl:
2093   case Builtin::BI__builtin_clrsbll: {
2094     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2095     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2096 
2097     llvm::Type *ArgType = ArgValue->getType();
2098     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2099 
2100     llvm::Type *ResultType = ConvertType(E->getType());
2101     Value *Zero = llvm::Constant::getNullValue(ArgType);
2102     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2103     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2104     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2105     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2106     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2107     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2108                                    "cast");
2109     return RValue::get(Result);
2110   }
2111   case Builtin::BI__builtin_ctzs:
2112   case Builtin::BI__builtin_ctz:
2113   case Builtin::BI__builtin_ctzl:
2114   case Builtin::BI__builtin_ctzll: {
2115     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2116 
2117     llvm::Type *ArgType = ArgValue->getType();
2118     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2119 
2120     llvm::Type *ResultType = ConvertType(E->getType());
2121     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2122     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2123     if (Result->getType() != ResultType)
2124       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2125                                      "cast");
2126     return RValue::get(Result);
2127   }
2128   case Builtin::BI__builtin_clzs:
2129   case Builtin::BI__builtin_clz:
2130   case Builtin::BI__builtin_clzl:
2131   case Builtin::BI__builtin_clzll: {
2132     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2133 
2134     llvm::Type *ArgType = ArgValue->getType();
2135     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2136 
2137     llvm::Type *ResultType = ConvertType(E->getType());
2138     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2139     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2140     if (Result->getType() != ResultType)
2141       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2142                                      "cast");
2143     return RValue::get(Result);
2144   }
2145   case Builtin::BI__builtin_ffs:
2146   case Builtin::BI__builtin_ffsl:
2147   case Builtin::BI__builtin_ffsll: {
2148     // ffs(x) -> x ? cttz(x) + 1 : 0
2149     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2150 
2151     llvm::Type *ArgType = ArgValue->getType();
2152     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2153 
2154     llvm::Type *ResultType = ConvertType(E->getType());
2155     Value *Tmp =
2156         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2157                           llvm::ConstantInt::get(ArgType, 1));
2158     Value *Zero = llvm::Constant::getNullValue(ArgType);
2159     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2160     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2161     if (Result->getType() != ResultType)
2162       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2163                                      "cast");
2164     return RValue::get(Result);
2165   }
2166   case Builtin::BI__builtin_parity:
2167   case Builtin::BI__builtin_parityl:
2168   case Builtin::BI__builtin_parityll: {
2169     // parity(x) -> ctpop(x) & 1
2170     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2171 
2172     llvm::Type *ArgType = ArgValue->getType();
2173     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2174 
2175     llvm::Type *ResultType = ConvertType(E->getType());
2176     Value *Tmp = Builder.CreateCall(F, ArgValue);
2177     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2178     if (Result->getType() != ResultType)
2179       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2180                                      "cast");
2181     return RValue::get(Result);
2182   }
2183   case Builtin::BI__lzcnt16:
2184   case Builtin::BI__lzcnt:
2185   case Builtin::BI__lzcnt64: {
2186     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2187 
2188     llvm::Type *ArgType = ArgValue->getType();
2189     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2190 
2191     llvm::Type *ResultType = ConvertType(E->getType());
2192     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2193     if (Result->getType() != ResultType)
2194       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2195                                      "cast");
2196     return RValue::get(Result);
2197   }
2198   case Builtin::BI__popcnt16:
2199   case Builtin::BI__popcnt:
2200   case Builtin::BI__popcnt64:
2201   case Builtin::BI__builtin_popcount:
2202   case Builtin::BI__builtin_popcountl:
2203   case Builtin::BI__builtin_popcountll: {
2204     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2205 
2206     llvm::Type *ArgType = ArgValue->getType();
2207     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2208 
2209     llvm::Type *ResultType = ConvertType(E->getType());
2210     Value *Result = Builder.CreateCall(F, ArgValue);
2211     if (Result->getType() != ResultType)
2212       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2213                                      "cast");
2214     return RValue::get(Result);
2215   }
2216   case Builtin::BI__builtin_unpredictable: {
2217     // Always return the argument of __builtin_unpredictable. LLVM does not
2218     // handle this builtin. Metadata for this builtin should be added directly
2219     // to instructions such as branches or switches that use it.
2220     return RValue::get(EmitScalarExpr(E->getArg(0)));
2221   }
2222   case Builtin::BI__builtin_expect: {
2223     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2224     llvm::Type *ArgType = ArgValue->getType();
2225 
2226     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2227     // Don't generate llvm.expect on -O0 as the backend won't use it for
2228     // anything.
2229     // Note, we still IRGen ExpectedValue because it could have side-effects.
2230     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2231       return RValue::get(ArgValue);
2232 
2233     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2234     Value *Result =
2235         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2236     return RValue::get(Result);
2237   }
2238   case Builtin::BI__builtin_expect_with_probability: {
2239     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2240     llvm::Type *ArgType = ArgValue->getType();
2241 
2242     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2243     llvm::APFloat Probability(0.0);
2244     const Expr *ProbArg = E->getArg(2);
2245     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2246     assert(EvalSucceed && "probability should be able to evaluate as float");
2247     (void)EvalSucceed;
2248     bool LoseInfo = false;
2249     Probability.convert(llvm::APFloat::IEEEdouble(),
2250                         llvm::RoundingMode::Dynamic, &LoseInfo);
2251     llvm::Type *Ty = ConvertType(ProbArg->getType());
2252     Constant *Confidence = ConstantFP::get(Ty, Probability);
2253     // Don't generate llvm.expect.with.probability on -O0 as the backend
2254     // won't use it for anything.
2255     // Note, we still IRGen ExpectedValue because it could have side-effects.
2256     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2257       return RValue::get(ArgValue);
2258 
2259     Function *FnExpect =
2260         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2261     Value *Result = Builder.CreateCall(
2262         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2263     return RValue::get(Result);
2264   }
2265   case Builtin::BI__builtin_assume_aligned: {
2266     const Expr *Ptr = E->getArg(0);
2267     Value *PtrValue = EmitScalarExpr(Ptr);
2268     Value *OffsetValue =
2269       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2270 
2271     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2272     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2273     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2274       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2275                                      llvm::Value::MaximumAlignment);
2276 
2277     emitAlignmentAssumption(PtrValue, Ptr,
2278                             /*The expr loc is sufficient.*/ SourceLocation(),
2279                             AlignmentCI, OffsetValue);
2280     return RValue::get(PtrValue);
2281   }
2282   case Builtin::BI__assume:
2283   case Builtin::BI__builtin_assume: {
2284     if (E->getArg(0)->HasSideEffects(getContext()))
2285       return RValue::get(nullptr);
2286 
2287     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2288     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2289     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2290   }
2291   case Builtin::BI__builtin_bswap16:
2292   case Builtin::BI__builtin_bswap32:
2293   case Builtin::BI__builtin_bswap64: {
2294     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2295   }
2296   case Builtin::BI__builtin_bitreverse8:
2297   case Builtin::BI__builtin_bitreverse16:
2298   case Builtin::BI__builtin_bitreverse32:
2299   case Builtin::BI__builtin_bitreverse64: {
2300     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2301   }
2302   case Builtin::BI__builtin_rotateleft8:
2303   case Builtin::BI__builtin_rotateleft16:
2304   case Builtin::BI__builtin_rotateleft32:
2305   case Builtin::BI__builtin_rotateleft64:
2306   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2307   case Builtin::BI_rotl16:
2308   case Builtin::BI_rotl:
2309   case Builtin::BI_lrotl:
2310   case Builtin::BI_rotl64:
2311     return emitRotate(E, false);
2312 
2313   case Builtin::BI__builtin_rotateright8:
2314   case Builtin::BI__builtin_rotateright16:
2315   case Builtin::BI__builtin_rotateright32:
2316   case Builtin::BI__builtin_rotateright64:
2317   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2318   case Builtin::BI_rotr16:
2319   case Builtin::BI_rotr:
2320   case Builtin::BI_lrotr:
2321   case Builtin::BI_rotr64:
2322     return emitRotate(E, true);
2323 
2324   case Builtin::BI__builtin_constant_p: {
2325     llvm::Type *ResultType = ConvertType(E->getType());
2326 
2327     const Expr *Arg = E->getArg(0);
2328     QualType ArgType = Arg->getType();
2329     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2330     // and likely a mistake.
2331     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2332         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2333       // Per the GCC documentation, only numeric constants are recognized after
2334       // inlining.
2335       return RValue::get(ConstantInt::get(ResultType, 0));
2336 
2337     if (Arg->HasSideEffects(getContext()))
2338       // The argument is unevaluated, so be conservative if it might have
2339       // side-effects.
2340       return RValue::get(ConstantInt::get(ResultType, 0));
2341 
2342     Value *ArgValue = EmitScalarExpr(Arg);
2343     if (ArgType->isObjCObjectPointerType()) {
2344       // Convert Objective-C objects to id because we cannot distinguish between
2345       // LLVM types for Obj-C classes as they are opaque.
2346       ArgType = CGM.getContext().getObjCIdType();
2347       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2348     }
2349     Function *F =
2350         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2351     Value *Result = Builder.CreateCall(F, ArgValue);
2352     if (Result->getType() != ResultType)
2353       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2354     return RValue::get(Result);
2355   }
2356   case Builtin::BI__builtin_dynamic_object_size:
2357   case Builtin::BI__builtin_object_size: {
2358     unsigned Type =
2359         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2360     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2361 
2362     // We pass this builtin onto the optimizer so that it can figure out the
2363     // object size in more complex cases.
2364     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2365     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2366                                              /*EmittedE=*/nullptr, IsDynamic));
2367   }
2368   case Builtin::BI__builtin_prefetch: {
2369     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2370     // FIXME: Technically these constants should of type 'int', yes?
2371     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2372       llvm::ConstantInt::get(Int32Ty, 0);
2373     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2374       llvm::ConstantInt::get(Int32Ty, 3);
2375     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2376     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2377     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2378   }
2379   case Builtin::BI__builtin_readcyclecounter: {
2380     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2381     return RValue::get(Builder.CreateCall(F));
2382   }
2383   case Builtin::BI__builtin___clear_cache: {
2384     Value *Begin = EmitScalarExpr(E->getArg(0));
2385     Value *End = EmitScalarExpr(E->getArg(1));
2386     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2387     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2388   }
2389   case Builtin::BI__builtin_trap:
2390     return RValue::get(EmitTrapCall(Intrinsic::trap));
2391   case Builtin::BI__debugbreak:
2392     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2393   case Builtin::BI__builtin_unreachable: {
2394     EmitUnreachable(E->getExprLoc());
2395 
2396     // We do need to preserve an insertion point.
2397     EmitBlock(createBasicBlock("unreachable.cont"));
2398 
2399     return RValue::get(nullptr);
2400   }
2401 
2402   case Builtin::BI__builtin_powi:
2403   case Builtin::BI__builtin_powif:
2404   case Builtin::BI__builtin_powil:
2405     return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2406         *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2407 
2408   case Builtin::BI__builtin_isgreater:
2409   case Builtin::BI__builtin_isgreaterequal:
2410   case Builtin::BI__builtin_isless:
2411   case Builtin::BI__builtin_islessequal:
2412   case Builtin::BI__builtin_islessgreater:
2413   case Builtin::BI__builtin_isunordered: {
2414     // Ordered comparisons: we know the arguments to these are matching scalar
2415     // floating point values.
2416     Value *LHS = EmitScalarExpr(E->getArg(0));
2417     Value *RHS = EmitScalarExpr(E->getArg(1));
2418 
2419     switch (BuiltinID) {
2420     default: llvm_unreachable("Unknown ordered comparison");
2421     case Builtin::BI__builtin_isgreater:
2422       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2423       break;
2424     case Builtin::BI__builtin_isgreaterequal:
2425       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2426       break;
2427     case Builtin::BI__builtin_isless:
2428       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2429       break;
2430     case Builtin::BI__builtin_islessequal:
2431       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2432       break;
2433     case Builtin::BI__builtin_islessgreater:
2434       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2435       break;
2436     case Builtin::BI__builtin_isunordered:
2437       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2438       break;
2439     }
2440     // ZExt bool to int type.
2441     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2442   }
2443   case Builtin::BI__builtin_isnan: {
2444     Value *V = EmitScalarExpr(E->getArg(0));
2445     V = Builder.CreateFCmpUNO(V, V, "cmp");
2446     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2447   }
2448 
2449   case Builtin::BI__builtin_matrix_transpose: {
2450     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2451     Value *MatValue = EmitScalarExpr(E->getArg(0));
2452     MatrixBuilder<CGBuilderTy> MB(Builder);
2453     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
2454                                              MatrixTy->getNumColumns());
2455     return RValue::get(Result);
2456   }
2457 
2458   case Builtin::BI__builtin_matrix_column_major_load: {
2459     MatrixBuilder<CGBuilderTy> MB(Builder);
2460     // Emit everything that isn't dependent on the first parameter type
2461     Value *Stride = EmitScalarExpr(E->getArg(3));
2462     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
2463     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
2464     assert(PtrTy && "arg0 must be of pointer type");
2465     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2466 
2467     Address Src = EmitPointerWithAlignment(E->getArg(0));
2468     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
2469                         E->getArg(0)->getExprLoc(), FD, 0);
2470     Value *Result = MB.CreateColumnMajorLoad(
2471         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
2472         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
2473         "matrix");
2474     return RValue::get(Result);
2475   }
2476 
2477   case Builtin::BI__builtin_matrix_column_major_store: {
2478     MatrixBuilder<CGBuilderTy> MB(Builder);
2479     Value *Matrix = EmitScalarExpr(E->getArg(0));
2480     Address Dst = EmitPointerWithAlignment(E->getArg(1));
2481     Value *Stride = EmitScalarExpr(E->getArg(2));
2482 
2483     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
2484     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
2485     assert(PtrTy && "arg1 must be of pointer type");
2486     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
2487 
2488     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
2489                         E->getArg(1)->getExprLoc(), FD, 0);
2490     Value *Result = MB.CreateColumnMajorStore(
2491         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
2492         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
2493     return RValue::get(Result);
2494   }
2495 
2496   case Builtin::BIfinite:
2497   case Builtin::BI__finite:
2498   case Builtin::BIfinitef:
2499   case Builtin::BI__finitef:
2500   case Builtin::BIfinitel:
2501   case Builtin::BI__finitel:
2502   case Builtin::BI__builtin_isinf:
2503   case Builtin::BI__builtin_isfinite: {
2504     // isinf(x)    --> fabs(x) == infinity
2505     // isfinite(x) --> fabs(x) != infinity
2506     // x != NaN via the ordered compare in either case.
2507     Value *V = EmitScalarExpr(E->getArg(0));
2508     Value *Fabs = EmitFAbs(*this, V);
2509     Constant *Infinity = ConstantFP::getInfinity(V->getType());
2510     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2511                                   ? CmpInst::FCMP_OEQ
2512                                   : CmpInst::FCMP_ONE;
2513     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2514     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2515   }
2516 
2517   case Builtin::BI__builtin_isinf_sign: {
2518     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2519     Value *Arg = EmitScalarExpr(E->getArg(0));
2520     Value *AbsArg = EmitFAbs(*this, Arg);
2521     Value *IsInf = Builder.CreateFCmpOEQ(
2522         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2523     Value *IsNeg = EmitSignBit(*this, Arg);
2524 
2525     llvm::Type *IntTy = ConvertType(E->getType());
2526     Value *Zero = Constant::getNullValue(IntTy);
2527     Value *One = ConstantInt::get(IntTy, 1);
2528     Value *NegativeOne = ConstantInt::get(IntTy, -1);
2529     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2530     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2531     return RValue::get(Result);
2532   }
2533 
2534   case Builtin::BI__builtin_isnormal: {
2535     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2536     Value *V = EmitScalarExpr(E->getArg(0));
2537     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2538 
2539     Value *Abs = EmitFAbs(*this, V);
2540     Value *IsLessThanInf =
2541       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2542     APFloat Smallest = APFloat::getSmallestNormalized(
2543                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2544     Value *IsNormal =
2545       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2546                             "isnormal");
2547     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2548     V = Builder.CreateAnd(V, IsNormal, "and");
2549     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2550   }
2551 
2552   case Builtin::BI__builtin_flt_rounds: {
2553     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
2554 
2555     llvm::Type *ResultType = ConvertType(E->getType());
2556     Value *Result = Builder.CreateCall(F);
2557     if (Result->getType() != ResultType)
2558       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2559                                      "cast");
2560     return RValue::get(Result);
2561   }
2562 
2563   case Builtin::BI__builtin_fpclassify: {
2564     Value *V = EmitScalarExpr(E->getArg(5));
2565     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2566 
2567     // Create Result
2568     BasicBlock *Begin = Builder.GetInsertBlock();
2569     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2570     Builder.SetInsertPoint(End);
2571     PHINode *Result =
2572       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2573                         "fpclassify_result");
2574 
2575     // if (V==0) return FP_ZERO
2576     Builder.SetInsertPoint(Begin);
2577     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2578                                           "iszero");
2579     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2580     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2581     Builder.CreateCondBr(IsZero, End, NotZero);
2582     Result->addIncoming(ZeroLiteral, Begin);
2583 
2584     // if (V != V) return FP_NAN
2585     Builder.SetInsertPoint(NotZero);
2586     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2587     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2588     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2589     Builder.CreateCondBr(IsNan, End, NotNan);
2590     Result->addIncoming(NanLiteral, NotZero);
2591 
2592     // if (fabs(V) == infinity) return FP_INFINITY
2593     Builder.SetInsertPoint(NotNan);
2594     Value *VAbs = EmitFAbs(*this, V);
2595     Value *IsInf =
2596       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2597                             "isinf");
2598     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2599     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2600     Builder.CreateCondBr(IsInf, End, NotInf);
2601     Result->addIncoming(InfLiteral, NotNan);
2602 
2603     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2604     Builder.SetInsertPoint(NotInf);
2605     APFloat Smallest = APFloat::getSmallestNormalized(
2606         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2607     Value *IsNormal =
2608       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2609                             "isnormal");
2610     Value *NormalResult =
2611       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2612                            EmitScalarExpr(E->getArg(3)));
2613     Builder.CreateBr(End);
2614     Result->addIncoming(NormalResult, NotInf);
2615 
2616     // return Result
2617     Builder.SetInsertPoint(End);
2618     return RValue::get(Result);
2619   }
2620 
2621   case Builtin::BIalloca:
2622   case Builtin::BI_alloca:
2623   case Builtin::BI__builtin_alloca: {
2624     Value *Size = EmitScalarExpr(E->getArg(0));
2625     const TargetInfo &TI = getContext().getTargetInfo();
2626     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2627     const Align SuitableAlignmentInBytes =
2628         CGM.getContext()
2629             .toCharUnitsFromBits(TI.getSuitableAlign())
2630             .getAsAlign();
2631     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2632     AI->setAlignment(SuitableAlignmentInBytes);
2633     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
2634     return RValue::get(AI);
2635   }
2636 
2637   case Builtin::BI__builtin_alloca_with_align: {
2638     Value *Size = EmitScalarExpr(E->getArg(0));
2639     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2640     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2641     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2642     const Align AlignmentInBytes =
2643         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
2644     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2645     AI->setAlignment(AlignmentInBytes);
2646     initializeAlloca(*this, AI, Size, AlignmentInBytes);
2647     return RValue::get(AI);
2648   }
2649 
2650   case Builtin::BIbzero:
2651   case Builtin::BI__builtin_bzero: {
2652     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2653     Value *SizeVal = EmitScalarExpr(E->getArg(1));
2654     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2655                         E->getArg(0)->getExprLoc(), FD, 0);
2656     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2657     return RValue::get(nullptr);
2658   }
2659   case Builtin::BImemcpy:
2660   case Builtin::BI__builtin_memcpy:
2661   case Builtin::BImempcpy:
2662   case Builtin::BI__builtin_mempcpy: {
2663     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2664     Address Src = EmitPointerWithAlignment(E->getArg(1));
2665     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2666     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2667                         E->getArg(0)->getExprLoc(), FD, 0);
2668     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2669                         E->getArg(1)->getExprLoc(), FD, 1);
2670     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2671     if (BuiltinID == Builtin::BImempcpy ||
2672         BuiltinID == Builtin::BI__builtin_mempcpy)
2673       return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal));
2674     else
2675       return RValue::get(Dest.getPointer());
2676   }
2677 
2678   case Builtin::BI__builtin_memcpy_inline: {
2679     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2680     Address Src = EmitPointerWithAlignment(E->getArg(1));
2681     uint64_t Size =
2682         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
2683     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2684                         E->getArg(0)->getExprLoc(), FD, 0);
2685     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2686                         E->getArg(1)->getExprLoc(), FD, 1);
2687     Builder.CreateMemCpyInline(Dest, Src, Size);
2688     return RValue::get(nullptr);
2689   }
2690 
2691   case Builtin::BI__builtin_char_memchr:
2692     BuiltinID = Builtin::BI__builtin_memchr;
2693     break;
2694 
2695   case Builtin::BI__builtin___memcpy_chk: {
2696     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2697     Expr::EvalResult SizeResult, DstSizeResult;
2698     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2699         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2700       break;
2701     llvm::APSInt Size = SizeResult.Val.getInt();
2702     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2703     if (Size.ugt(DstSize))
2704       break;
2705     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2706     Address Src = EmitPointerWithAlignment(E->getArg(1));
2707     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2708     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2709     return RValue::get(Dest.getPointer());
2710   }
2711 
2712   case Builtin::BI__builtin_objc_memmove_collectable: {
2713     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2714     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2715     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2716     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2717                                                   DestAddr, SrcAddr, SizeVal);
2718     return RValue::get(DestAddr.getPointer());
2719   }
2720 
2721   case Builtin::BI__builtin___memmove_chk: {
2722     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2723     Expr::EvalResult SizeResult, DstSizeResult;
2724     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2725         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2726       break;
2727     llvm::APSInt Size = SizeResult.Val.getInt();
2728     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2729     if (Size.ugt(DstSize))
2730       break;
2731     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2732     Address Src = EmitPointerWithAlignment(E->getArg(1));
2733     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2734     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2735     return RValue::get(Dest.getPointer());
2736   }
2737 
2738   case Builtin::BImemmove:
2739   case Builtin::BI__builtin_memmove: {
2740     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2741     Address Src = EmitPointerWithAlignment(E->getArg(1));
2742     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2743     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2744                         E->getArg(0)->getExprLoc(), FD, 0);
2745     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2746                         E->getArg(1)->getExprLoc(), FD, 1);
2747     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2748     return RValue::get(Dest.getPointer());
2749   }
2750   case Builtin::BImemset:
2751   case Builtin::BI__builtin_memset: {
2752     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2753     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2754                                          Builder.getInt8Ty());
2755     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2756     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2757                         E->getArg(0)->getExprLoc(), FD, 0);
2758     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2759     return RValue::get(Dest.getPointer());
2760   }
2761   case Builtin::BI__builtin___memset_chk: {
2762     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2763     Expr::EvalResult SizeResult, DstSizeResult;
2764     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2765         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2766       break;
2767     llvm::APSInt Size = SizeResult.Val.getInt();
2768     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2769     if (Size.ugt(DstSize))
2770       break;
2771     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2772     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2773                                          Builder.getInt8Ty());
2774     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2775     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2776     return RValue::get(Dest.getPointer());
2777   }
2778   case Builtin::BI__builtin_wmemcmp: {
2779     // The MSVC runtime library does not provide a definition of wmemcmp, so we
2780     // need an inline implementation.
2781     if (!getTarget().getTriple().isOSMSVCRT())
2782       break;
2783 
2784     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2785 
2786     Value *Dst = EmitScalarExpr(E->getArg(0));
2787     Value *Src = EmitScalarExpr(E->getArg(1));
2788     Value *Size = EmitScalarExpr(E->getArg(2));
2789 
2790     BasicBlock *Entry = Builder.GetInsertBlock();
2791     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2792     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2793     BasicBlock *Next = createBasicBlock("wmemcmp.next");
2794     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2795     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2796     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2797 
2798     EmitBlock(CmpGT);
2799     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2800     DstPhi->addIncoming(Dst, Entry);
2801     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2802     SrcPhi->addIncoming(Src, Entry);
2803     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2804     SizePhi->addIncoming(Size, Entry);
2805     CharUnits WCharAlign =
2806         getContext().getTypeAlignInChars(getContext().WCharTy);
2807     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2808     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2809     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2810     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2811 
2812     EmitBlock(CmpLT);
2813     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2814     Builder.CreateCondBr(DstLtSrc, Exit, Next);
2815 
2816     EmitBlock(Next);
2817     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2818     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2819     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2820     Value *NextSizeEq0 =
2821         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2822     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2823     DstPhi->addIncoming(NextDst, Next);
2824     SrcPhi->addIncoming(NextSrc, Next);
2825     SizePhi->addIncoming(NextSize, Next);
2826 
2827     EmitBlock(Exit);
2828     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2829     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2830     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2831     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2832     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2833     return RValue::get(Ret);
2834   }
2835   case Builtin::BI__builtin_dwarf_cfa: {
2836     // The offset in bytes from the first argument to the CFA.
2837     //
2838     // Why on earth is this in the frontend?  Is there any reason at
2839     // all that the backend can't reasonably determine this while
2840     // lowering llvm.eh.dwarf.cfa()?
2841     //
2842     // TODO: If there's a satisfactory reason, add a target hook for
2843     // this instead of hard-coding 0, which is correct for most targets.
2844     int32_t Offset = 0;
2845 
2846     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2847     return RValue::get(Builder.CreateCall(F,
2848                                       llvm::ConstantInt::get(Int32Ty, Offset)));
2849   }
2850   case Builtin::BI__builtin_return_address: {
2851     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2852                                                    getContext().UnsignedIntTy);
2853     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2854     return RValue::get(Builder.CreateCall(F, Depth));
2855   }
2856   case Builtin::BI_ReturnAddress: {
2857     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2858     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2859   }
2860   case Builtin::BI__builtin_frame_address: {
2861     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2862                                                    getContext().UnsignedIntTy);
2863     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
2864     return RValue::get(Builder.CreateCall(F, Depth));
2865   }
2866   case Builtin::BI__builtin_extract_return_addr: {
2867     Value *Address = EmitScalarExpr(E->getArg(0));
2868     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2869     return RValue::get(Result);
2870   }
2871   case Builtin::BI__builtin_frob_return_addr: {
2872     Value *Address = EmitScalarExpr(E->getArg(0));
2873     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2874     return RValue::get(Result);
2875   }
2876   case Builtin::BI__builtin_dwarf_sp_column: {
2877     llvm::IntegerType *Ty
2878       = cast<llvm::IntegerType>(ConvertType(E->getType()));
2879     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2880     if (Column == -1) {
2881       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2882       return RValue::get(llvm::UndefValue::get(Ty));
2883     }
2884     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2885   }
2886   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2887     Value *Address = EmitScalarExpr(E->getArg(0));
2888     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2889       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2890     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2891   }
2892   case Builtin::BI__builtin_eh_return: {
2893     Value *Int = EmitScalarExpr(E->getArg(0));
2894     Value *Ptr = EmitScalarExpr(E->getArg(1));
2895 
2896     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2897     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2898            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2899     Function *F =
2900         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
2901                                                     : Intrinsic::eh_return_i64);
2902     Builder.CreateCall(F, {Int, Ptr});
2903     Builder.CreateUnreachable();
2904 
2905     // We do need to preserve an insertion point.
2906     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2907 
2908     return RValue::get(nullptr);
2909   }
2910   case Builtin::BI__builtin_unwind_init: {
2911     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2912     return RValue::get(Builder.CreateCall(F));
2913   }
2914   case Builtin::BI__builtin_extend_pointer: {
2915     // Extends a pointer to the size of an _Unwind_Word, which is
2916     // uint64_t on all platforms.  Generally this gets poked into a
2917     // register and eventually used as an address, so if the
2918     // addressing registers are wider than pointers and the platform
2919     // doesn't implicitly ignore high-order bits when doing
2920     // addressing, we need to make sure we zext / sext based on
2921     // the platform's expectations.
2922     //
2923     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2924 
2925     // Cast the pointer to intptr_t.
2926     Value *Ptr = EmitScalarExpr(E->getArg(0));
2927     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2928 
2929     // If that's 64 bits, we're done.
2930     if (IntPtrTy->getBitWidth() == 64)
2931       return RValue::get(Result);
2932 
2933     // Otherwise, ask the codegen data what to do.
2934     if (getTargetHooks().extendPointerWithSExt())
2935       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2936     else
2937       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2938   }
2939   case Builtin::BI__builtin_setjmp: {
2940     // Buffer is a void**.
2941     Address Buf = EmitPointerWithAlignment(E->getArg(0));
2942 
2943     // Store the frame pointer to the setjmp buffer.
2944     Value *FrameAddr = Builder.CreateCall(
2945         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
2946         ConstantInt::get(Int32Ty, 0));
2947     Builder.CreateStore(FrameAddr, Buf);
2948 
2949     // Store the stack pointer to the setjmp buffer.
2950     Value *StackAddr =
2951         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2952     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
2953     Builder.CreateStore(StackAddr, StackSaveSlot);
2954 
2955     // Call LLVM's EH setjmp, which is lightweight.
2956     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2957     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2958     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2959   }
2960   case Builtin::BI__builtin_longjmp: {
2961     Value *Buf = EmitScalarExpr(E->getArg(0));
2962     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2963 
2964     // Call LLVM's EH longjmp, which is lightweight.
2965     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2966 
2967     // longjmp doesn't return; mark this as unreachable.
2968     Builder.CreateUnreachable();
2969 
2970     // We do need to preserve an insertion point.
2971     EmitBlock(createBasicBlock("longjmp.cont"));
2972 
2973     return RValue::get(nullptr);
2974   }
2975   case Builtin::BI__builtin_launder: {
2976     const Expr *Arg = E->getArg(0);
2977     QualType ArgTy = Arg->getType()->getPointeeType();
2978     Value *Ptr = EmitScalarExpr(Arg);
2979     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2980       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2981 
2982     return RValue::get(Ptr);
2983   }
2984   case Builtin::BI__sync_fetch_and_add:
2985   case Builtin::BI__sync_fetch_and_sub:
2986   case Builtin::BI__sync_fetch_and_or:
2987   case Builtin::BI__sync_fetch_and_and:
2988   case Builtin::BI__sync_fetch_and_xor:
2989   case Builtin::BI__sync_fetch_and_nand:
2990   case Builtin::BI__sync_add_and_fetch:
2991   case Builtin::BI__sync_sub_and_fetch:
2992   case Builtin::BI__sync_and_and_fetch:
2993   case Builtin::BI__sync_or_and_fetch:
2994   case Builtin::BI__sync_xor_and_fetch:
2995   case Builtin::BI__sync_nand_and_fetch:
2996   case Builtin::BI__sync_val_compare_and_swap:
2997   case Builtin::BI__sync_bool_compare_and_swap:
2998   case Builtin::BI__sync_lock_test_and_set:
2999   case Builtin::BI__sync_lock_release:
3000   case Builtin::BI__sync_swap:
3001     llvm_unreachable("Shouldn't make it through sema");
3002   case Builtin::BI__sync_fetch_and_add_1:
3003   case Builtin::BI__sync_fetch_and_add_2:
3004   case Builtin::BI__sync_fetch_and_add_4:
3005   case Builtin::BI__sync_fetch_and_add_8:
3006   case Builtin::BI__sync_fetch_and_add_16:
3007     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3008   case Builtin::BI__sync_fetch_and_sub_1:
3009   case Builtin::BI__sync_fetch_and_sub_2:
3010   case Builtin::BI__sync_fetch_and_sub_4:
3011   case Builtin::BI__sync_fetch_and_sub_8:
3012   case Builtin::BI__sync_fetch_and_sub_16:
3013     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3014   case Builtin::BI__sync_fetch_and_or_1:
3015   case Builtin::BI__sync_fetch_and_or_2:
3016   case Builtin::BI__sync_fetch_and_or_4:
3017   case Builtin::BI__sync_fetch_and_or_8:
3018   case Builtin::BI__sync_fetch_and_or_16:
3019     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3020   case Builtin::BI__sync_fetch_and_and_1:
3021   case Builtin::BI__sync_fetch_and_and_2:
3022   case Builtin::BI__sync_fetch_and_and_4:
3023   case Builtin::BI__sync_fetch_and_and_8:
3024   case Builtin::BI__sync_fetch_and_and_16:
3025     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3026   case Builtin::BI__sync_fetch_and_xor_1:
3027   case Builtin::BI__sync_fetch_and_xor_2:
3028   case Builtin::BI__sync_fetch_and_xor_4:
3029   case Builtin::BI__sync_fetch_and_xor_8:
3030   case Builtin::BI__sync_fetch_and_xor_16:
3031     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3032   case Builtin::BI__sync_fetch_and_nand_1:
3033   case Builtin::BI__sync_fetch_and_nand_2:
3034   case Builtin::BI__sync_fetch_and_nand_4:
3035   case Builtin::BI__sync_fetch_and_nand_8:
3036   case Builtin::BI__sync_fetch_and_nand_16:
3037     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3038 
3039   // Clang extensions: not overloaded yet.
3040   case Builtin::BI__sync_fetch_and_min:
3041     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3042   case Builtin::BI__sync_fetch_and_max:
3043     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3044   case Builtin::BI__sync_fetch_and_umin:
3045     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3046   case Builtin::BI__sync_fetch_and_umax:
3047     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3048 
3049   case Builtin::BI__sync_add_and_fetch_1:
3050   case Builtin::BI__sync_add_and_fetch_2:
3051   case Builtin::BI__sync_add_and_fetch_4:
3052   case Builtin::BI__sync_add_and_fetch_8:
3053   case Builtin::BI__sync_add_and_fetch_16:
3054     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3055                                 llvm::Instruction::Add);
3056   case Builtin::BI__sync_sub_and_fetch_1:
3057   case Builtin::BI__sync_sub_and_fetch_2:
3058   case Builtin::BI__sync_sub_and_fetch_4:
3059   case Builtin::BI__sync_sub_and_fetch_8:
3060   case Builtin::BI__sync_sub_and_fetch_16:
3061     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3062                                 llvm::Instruction::Sub);
3063   case Builtin::BI__sync_and_and_fetch_1:
3064   case Builtin::BI__sync_and_and_fetch_2:
3065   case Builtin::BI__sync_and_and_fetch_4:
3066   case Builtin::BI__sync_and_and_fetch_8:
3067   case Builtin::BI__sync_and_and_fetch_16:
3068     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3069                                 llvm::Instruction::And);
3070   case Builtin::BI__sync_or_and_fetch_1:
3071   case Builtin::BI__sync_or_and_fetch_2:
3072   case Builtin::BI__sync_or_and_fetch_4:
3073   case Builtin::BI__sync_or_and_fetch_8:
3074   case Builtin::BI__sync_or_and_fetch_16:
3075     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3076                                 llvm::Instruction::Or);
3077   case Builtin::BI__sync_xor_and_fetch_1:
3078   case Builtin::BI__sync_xor_and_fetch_2:
3079   case Builtin::BI__sync_xor_and_fetch_4:
3080   case Builtin::BI__sync_xor_and_fetch_8:
3081   case Builtin::BI__sync_xor_and_fetch_16:
3082     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3083                                 llvm::Instruction::Xor);
3084   case Builtin::BI__sync_nand_and_fetch_1:
3085   case Builtin::BI__sync_nand_and_fetch_2:
3086   case Builtin::BI__sync_nand_and_fetch_4:
3087   case Builtin::BI__sync_nand_and_fetch_8:
3088   case Builtin::BI__sync_nand_and_fetch_16:
3089     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3090                                 llvm::Instruction::And, true);
3091 
3092   case Builtin::BI__sync_val_compare_and_swap_1:
3093   case Builtin::BI__sync_val_compare_and_swap_2:
3094   case Builtin::BI__sync_val_compare_and_swap_4:
3095   case Builtin::BI__sync_val_compare_and_swap_8:
3096   case Builtin::BI__sync_val_compare_and_swap_16:
3097     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3098 
3099   case Builtin::BI__sync_bool_compare_and_swap_1:
3100   case Builtin::BI__sync_bool_compare_and_swap_2:
3101   case Builtin::BI__sync_bool_compare_and_swap_4:
3102   case Builtin::BI__sync_bool_compare_and_swap_8:
3103   case Builtin::BI__sync_bool_compare_and_swap_16:
3104     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3105 
3106   case Builtin::BI__sync_swap_1:
3107   case Builtin::BI__sync_swap_2:
3108   case Builtin::BI__sync_swap_4:
3109   case Builtin::BI__sync_swap_8:
3110   case Builtin::BI__sync_swap_16:
3111     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3112 
3113   case Builtin::BI__sync_lock_test_and_set_1:
3114   case Builtin::BI__sync_lock_test_and_set_2:
3115   case Builtin::BI__sync_lock_test_and_set_4:
3116   case Builtin::BI__sync_lock_test_and_set_8:
3117   case Builtin::BI__sync_lock_test_and_set_16:
3118     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3119 
3120   case Builtin::BI__sync_lock_release_1:
3121   case Builtin::BI__sync_lock_release_2:
3122   case Builtin::BI__sync_lock_release_4:
3123   case Builtin::BI__sync_lock_release_8:
3124   case Builtin::BI__sync_lock_release_16: {
3125     Value *Ptr = EmitScalarExpr(E->getArg(0));
3126     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3127     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3128     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3129                                              StoreSize.getQuantity() * 8);
3130     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3131     llvm::StoreInst *Store =
3132       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3133                                  StoreSize);
3134     Store->setAtomic(llvm::AtomicOrdering::Release);
3135     return RValue::get(nullptr);
3136   }
3137 
3138   case Builtin::BI__sync_synchronize: {
3139     // We assume this is supposed to correspond to a C++0x-style
3140     // sequentially-consistent fence (i.e. this is only usable for
3141     // synchronization, not device I/O or anything like that). This intrinsic
3142     // is really badly designed in the sense that in theory, there isn't
3143     // any way to safely use it... but in practice, it mostly works
3144     // to use it with non-atomic loads and stores to get acquire/release
3145     // semantics.
3146     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3147     return RValue::get(nullptr);
3148   }
3149 
3150   case Builtin::BI__builtin_nontemporal_load:
3151     return RValue::get(EmitNontemporalLoad(*this, E));
3152   case Builtin::BI__builtin_nontemporal_store:
3153     return RValue::get(EmitNontemporalStore(*this, E));
3154   case Builtin::BI__c11_atomic_is_lock_free:
3155   case Builtin::BI__atomic_is_lock_free: {
3156     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3157     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3158     // _Atomic(T) is always properly-aligned.
3159     const char *LibCallName = "__atomic_is_lock_free";
3160     CallArgList Args;
3161     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3162              getContext().getSizeType());
3163     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3164       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3165                getContext().VoidPtrTy);
3166     else
3167       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3168                getContext().VoidPtrTy);
3169     const CGFunctionInfo &FuncInfo =
3170         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3171     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3172     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3173     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3174                     ReturnValueSlot(), Args);
3175   }
3176 
3177   case Builtin::BI__atomic_test_and_set: {
3178     // Look at the argument type to determine whether this is a volatile
3179     // operation. The parameter type is always volatile.
3180     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3181     bool Volatile =
3182         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3183 
3184     Value *Ptr = EmitScalarExpr(E->getArg(0));
3185     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3186     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3187     Value *NewVal = Builder.getInt8(1);
3188     Value *Order = EmitScalarExpr(E->getArg(1));
3189     if (isa<llvm::ConstantInt>(Order)) {
3190       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3191       AtomicRMWInst *Result = nullptr;
3192       switch (ord) {
3193       case 0:  // memory_order_relaxed
3194       default: // invalid order
3195         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3196                                          llvm::AtomicOrdering::Monotonic);
3197         break;
3198       case 1: // memory_order_consume
3199       case 2: // memory_order_acquire
3200         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3201                                          llvm::AtomicOrdering::Acquire);
3202         break;
3203       case 3: // memory_order_release
3204         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3205                                          llvm::AtomicOrdering::Release);
3206         break;
3207       case 4: // memory_order_acq_rel
3208 
3209         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3210                                          llvm::AtomicOrdering::AcquireRelease);
3211         break;
3212       case 5: // memory_order_seq_cst
3213         Result = Builder.CreateAtomicRMW(
3214             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3215             llvm::AtomicOrdering::SequentiallyConsistent);
3216         break;
3217       }
3218       Result->setVolatile(Volatile);
3219       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3220     }
3221 
3222     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3223 
3224     llvm::BasicBlock *BBs[5] = {
3225       createBasicBlock("monotonic", CurFn),
3226       createBasicBlock("acquire", CurFn),
3227       createBasicBlock("release", CurFn),
3228       createBasicBlock("acqrel", CurFn),
3229       createBasicBlock("seqcst", CurFn)
3230     };
3231     llvm::AtomicOrdering Orders[5] = {
3232         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3233         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3234         llvm::AtomicOrdering::SequentiallyConsistent};
3235 
3236     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3237     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3238 
3239     Builder.SetInsertPoint(ContBB);
3240     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3241 
3242     for (unsigned i = 0; i < 5; ++i) {
3243       Builder.SetInsertPoint(BBs[i]);
3244       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3245                                                    Ptr, NewVal, Orders[i]);
3246       RMW->setVolatile(Volatile);
3247       Result->addIncoming(RMW, BBs[i]);
3248       Builder.CreateBr(ContBB);
3249     }
3250 
3251     SI->addCase(Builder.getInt32(0), BBs[0]);
3252     SI->addCase(Builder.getInt32(1), BBs[1]);
3253     SI->addCase(Builder.getInt32(2), BBs[1]);
3254     SI->addCase(Builder.getInt32(3), BBs[2]);
3255     SI->addCase(Builder.getInt32(4), BBs[3]);
3256     SI->addCase(Builder.getInt32(5), BBs[4]);
3257 
3258     Builder.SetInsertPoint(ContBB);
3259     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3260   }
3261 
3262   case Builtin::BI__atomic_clear: {
3263     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3264     bool Volatile =
3265         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3266 
3267     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3268     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3269     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3270     Value *NewVal = Builder.getInt8(0);
3271     Value *Order = EmitScalarExpr(E->getArg(1));
3272     if (isa<llvm::ConstantInt>(Order)) {
3273       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3274       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3275       switch (ord) {
3276       case 0:  // memory_order_relaxed
3277       default: // invalid order
3278         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3279         break;
3280       case 3:  // memory_order_release
3281         Store->setOrdering(llvm::AtomicOrdering::Release);
3282         break;
3283       case 5:  // memory_order_seq_cst
3284         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3285         break;
3286       }
3287       return RValue::get(nullptr);
3288     }
3289 
3290     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3291 
3292     llvm::BasicBlock *BBs[3] = {
3293       createBasicBlock("monotonic", CurFn),
3294       createBasicBlock("release", CurFn),
3295       createBasicBlock("seqcst", CurFn)
3296     };
3297     llvm::AtomicOrdering Orders[3] = {
3298         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3299         llvm::AtomicOrdering::SequentiallyConsistent};
3300 
3301     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3302     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3303 
3304     for (unsigned i = 0; i < 3; ++i) {
3305       Builder.SetInsertPoint(BBs[i]);
3306       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3307       Store->setOrdering(Orders[i]);
3308       Builder.CreateBr(ContBB);
3309     }
3310 
3311     SI->addCase(Builder.getInt32(0), BBs[0]);
3312     SI->addCase(Builder.getInt32(3), BBs[1]);
3313     SI->addCase(Builder.getInt32(5), BBs[2]);
3314 
3315     Builder.SetInsertPoint(ContBB);
3316     return RValue::get(nullptr);
3317   }
3318 
3319   case Builtin::BI__atomic_thread_fence:
3320   case Builtin::BI__atomic_signal_fence:
3321   case Builtin::BI__c11_atomic_thread_fence:
3322   case Builtin::BI__c11_atomic_signal_fence: {
3323     llvm::SyncScope::ID SSID;
3324     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3325         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3326       SSID = llvm::SyncScope::SingleThread;
3327     else
3328       SSID = llvm::SyncScope::System;
3329     Value *Order = EmitScalarExpr(E->getArg(0));
3330     if (isa<llvm::ConstantInt>(Order)) {
3331       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3332       switch (ord) {
3333       case 0:  // memory_order_relaxed
3334       default: // invalid order
3335         break;
3336       case 1:  // memory_order_consume
3337       case 2:  // memory_order_acquire
3338         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3339         break;
3340       case 3:  // memory_order_release
3341         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3342         break;
3343       case 4:  // memory_order_acq_rel
3344         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3345         break;
3346       case 5:  // memory_order_seq_cst
3347         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3348         break;
3349       }
3350       return RValue::get(nullptr);
3351     }
3352 
3353     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
3354     AcquireBB = createBasicBlock("acquire", CurFn);
3355     ReleaseBB = createBasicBlock("release", CurFn);
3356     AcqRelBB = createBasicBlock("acqrel", CurFn);
3357     SeqCstBB = createBasicBlock("seqcst", CurFn);
3358     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3359 
3360     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3361     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
3362 
3363     Builder.SetInsertPoint(AcquireBB);
3364     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3365     Builder.CreateBr(ContBB);
3366     SI->addCase(Builder.getInt32(1), AcquireBB);
3367     SI->addCase(Builder.getInt32(2), AcquireBB);
3368 
3369     Builder.SetInsertPoint(ReleaseBB);
3370     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3371     Builder.CreateBr(ContBB);
3372     SI->addCase(Builder.getInt32(3), ReleaseBB);
3373 
3374     Builder.SetInsertPoint(AcqRelBB);
3375     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3376     Builder.CreateBr(ContBB);
3377     SI->addCase(Builder.getInt32(4), AcqRelBB);
3378 
3379     Builder.SetInsertPoint(SeqCstBB);
3380     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
3381     Builder.CreateBr(ContBB);
3382     SI->addCase(Builder.getInt32(5), SeqCstBB);
3383 
3384     Builder.SetInsertPoint(ContBB);
3385     return RValue::get(nullptr);
3386   }
3387 
3388   case Builtin::BI__builtin_signbit:
3389   case Builtin::BI__builtin_signbitf:
3390   case Builtin::BI__builtin_signbitl: {
3391     return RValue::get(
3392         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
3393                            ConvertType(E->getType())));
3394   }
3395   case Builtin::BI__warn_memset_zero_len:
3396     return RValue::getIgnored();
3397   case Builtin::BI__annotation: {
3398     // Re-encode each wide string to UTF8 and make an MDString.
3399     SmallVector<Metadata *, 1> Strings;
3400     for (const Expr *Arg : E->arguments()) {
3401       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
3402       assert(Str->getCharByteWidth() == 2);
3403       StringRef WideBytes = Str->getBytes();
3404       std::string StrUtf8;
3405       if (!convertUTF16ToUTF8String(
3406               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
3407         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
3408         continue;
3409       }
3410       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
3411     }
3412 
3413     // Build and MDTuple of MDStrings and emit the intrinsic call.
3414     llvm::Function *F =
3415         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
3416     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
3417     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
3418     return RValue::getIgnored();
3419   }
3420   case Builtin::BI__builtin_annotation: {
3421     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
3422     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
3423                                       AnnVal->getType());
3424 
3425     // Get the annotation string, go through casts. Sema requires this to be a
3426     // non-wide string literal, potentially casted, so the cast<> is safe.
3427     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
3428     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
3429     return RValue::get(
3430         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
3431   }
3432   case Builtin::BI__builtin_addcb:
3433   case Builtin::BI__builtin_addcs:
3434   case Builtin::BI__builtin_addc:
3435   case Builtin::BI__builtin_addcl:
3436   case Builtin::BI__builtin_addcll:
3437   case Builtin::BI__builtin_subcb:
3438   case Builtin::BI__builtin_subcs:
3439   case Builtin::BI__builtin_subc:
3440   case Builtin::BI__builtin_subcl:
3441   case Builtin::BI__builtin_subcll: {
3442 
3443     // We translate all of these builtins from expressions of the form:
3444     //   int x = ..., y = ..., carryin = ..., carryout, result;
3445     //   result = __builtin_addc(x, y, carryin, &carryout);
3446     //
3447     // to LLVM IR of the form:
3448     //
3449     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
3450     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
3451     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
3452     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
3453     //                                                       i32 %carryin)
3454     //   %result = extractvalue {i32, i1} %tmp2, 0
3455     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3456     //   %tmp3 = or i1 %carry1, %carry2
3457     //   %tmp4 = zext i1 %tmp3 to i32
3458     //   store i32 %tmp4, i32* %carryout
3459 
3460     // Scalarize our inputs.
3461     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3462     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3463     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3464     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3465 
3466     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3467     llvm::Intrinsic::ID IntrinsicId;
3468     switch (BuiltinID) {
3469     default: llvm_unreachable("Unknown multiprecision builtin id.");
3470     case Builtin::BI__builtin_addcb:
3471     case Builtin::BI__builtin_addcs:
3472     case Builtin::BI__builtin_addc:
3473     case Builtin::BI__builtin_addcl:
3474     case Builtin::BI__builtin_addcll:
3475       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3476       break;
3477     case Builtin::BI__builtin_subcb:
3478     case Builtin::BI__builtin_subcs:
3479     case Builtin::BI__builtin_subc:
3480     case Builtin::BI__builtin_subcl:
3481     case Builtin::BI__builtin_subcll:
3482       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3483       break;
3484     }
3485 
3486     // Construct our resulting LLVM IR expression.
3487     llvm::Value *Carry1;
3488     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3489                                               X, Y, Carry1);
3490     llvm::Value *Carry2;
3491     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3492                                               Sum1, Carryin, Carry2);
3493     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3494                                                X->getType());
3495     Builder.CreateStore(CarryOut, CarryOutPtr);
3496     return RValue::get(Sum2);
3497   }
3498 
3499   case Builtin::BI__builtin_add_overflow:
3500   case Builtin::BI__builtin_sub_overflow:
3501   case Builtin::BI__builtin_mul_overflow: {
3502     const clang::Expr *LeftArg = E->getArg(0);
3503     const clang::Expr *RightArg = E->getArg(1);
3504     const clang::Expr *ResultArg = E->getArg(2);
3505 
3506     clang::QualType ResultQTy =
3507         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3508 
3509     WidthAndSignedness LeftInfo =
3510         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3511     WidthAndSignedness RightInfo =
3512         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3513     WidthAndSignedness ResultInfo =
3514         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3515 
3516     // Handle mixed-sign multiplication as a special case, because adding
3517     // runtime or backend support for our generic irgen would be too expensive.
3518     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3519       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3520                                           RightInfo, ResultArg, ResultQTy,
3521                                           ResultInfo);
3522 
3523     WidthAndSignedness EncompassingInfo =
3524         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3525 
3526     llvm::Type *EncompassingLLVMTy =
3527         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3528 
3529     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3530 
3531     llvm::Intrinsic::ID IntrinsicId;
3532     switch (BuiltinID) {
3533     default:
3534       llvm_unreachable("Unknown overflow builtin id.");
3535     case Builtin::BI__builtin_add_overflow:
3536       IntrinsicId = EncompassingInfo.Signed
3537                         ? llvm::Intrinsic::sadd_with_overflow
3538                         : llvm::Intrinsic::uadd_with_overflow;
3539       break;
3540     case Builtin::BI__builtin_sub_overflow:
3541       IntrinsicId = EncompassingInfo.Signed
3542                         ? llvm::Intrinsic::ssub_with_overflow
3543                         : llvm::Intrinsic::usub_with_overflow;
3544       break;
3545     case Builtin::BI__builtin_mul_overflow:
3546       IntrinsicId = EncompassingInfo.Signed
3547                         ? llvm::Intrinsic::smul_with_overflow
3548                         : llvm::Intrinsic::umul_with_overflow;
3549       break;
3550     }
3551 
3552     llvm::Value *Left = EmitScalarExpr(LeftArg);
3553     llvm::Value *Right = EmitScalarExpr(RightArg);
3554     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3555 
3556     // Extend each operand to the encompassing type.
3557     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3558     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3559 
3560     // Perform the operation on the extended values.
3561     llvm::Value *Overflow, *Result;
3562     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3563 
3564     if (EncompassingInfo.Width > ResultInfo.Width) {
3565       // The encompassing type is wider than the result type, so we need to
3566       // truncate it.
3567       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3568 
3569       // To see if the truncation caused an overflow, we will extend
3570       // the result and then compare it to the original result.
3571       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3572           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3573       llvm::Value *TruncationOverflow =
3574           Builder.CreateICmpNE(Result, ResultTruncExt);
3575 
3576       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3577       Result = ResultTrunc;
3578     }
3579 
3580     // Finally, store the result using the pointer.
3581     bool isVolatile =
3582       ResultArg->getType()->getPointeeType().isVolatileQualified();
3583     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3584 
3585     return RValue::get(Overflow);
3586   }
3587 
3588   case Builtin::BI__builtin_uadd_overflow:
3589   case Builtin::BI__builtin_uaddl_overflow:
3590   case Builtin::BI__builtin_uaddll_overflow:
3591   case Builtin::BI__builtin_usub_overflow:
3592   case Builtin::BI__builtin_usubl_overflow:
3593   case Builtin::BI__builtin_usubll_overflow:
3594   case Builtin::BI__builtin_umul_overflow:
3595   case Builtin::BI__builtin_umull_overflow:
3596   case Builtin::BI__builtin_umulll_overflow:
3597   case Builtin::BI__builtin_sadd_overflow:
3598   case Builtin::BI__builtin_saddl_overflow:
3599   case Builtin::BI__builtin_saddll_overflow:
3600   case Builtin::BI__builtin_ssub_overflow:
3601   case Builtin::BI__builtin_ssubl_overflow:
3602   case Builtin::BI__builtin_ssubll_overflow:
3603   case Builtin::BI__builtin_smul_overflow:
3604   case Builtin::BI__builtin_smull_overflow:
3605   case Builtin::BI__builtin_smulll_overflow: {
3606 
3607     // We translate all of these builtins directly to the relevant llvm IR node.
3608 
3609     // Scalarize our inputs.
3610     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3611     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3612     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3613 
3614     // Decide which of the overflow intrinsics we are lowering to:
3615     llvm::Intrinsic::ID IntrinsicId;
3616     switch (BuiltinID) {
3617     default: llvm_unreachable("Unknown overflow builtin id.");
3618     case Builtin::BI__builtin_uadd_overflow:
3619     case Builtin::BI__builtin_uaddl_overflow:
3620     case Builtin::BI__builtin_uaddll_overflow:
3621       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3622       break;
3623     case Builtin::BI__builtin_usub_overflow:
3624     case Builtin::BI__builtin_usubl_overflow:
3625     case Builtin::BI__builtin_usubll_overflow:
3626       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3627       break;
3628     case Builtin::BI__builtin_umul_overflow:
3629     case Builtin::BI__builtin_umull_overflow:
3630     case Builtin::BI__builtin_umulll_overflow:
3631       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3632       break;
3633     case Builtin::BI__builtin_sadd_overflow:
3634     case Builtin::BI__builtin_saddl_overflow:
3635     case Builtin::BI__builtin_saddll_overflow:
3636       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3637       break;
3638     case Builtin::BI__builtin_ssub_overflow:
3639     case Builtin::BI__builtin_ssubl_overflow:
3640     case Builtin::BI__builtin_ssubll_overflow:
3641       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3642       break;
3643     case Builtin::BI__builtin_smul_overflow:
3644     case Builtin::BI__builtin_smull_overflow:
3645     case Builtin::BI__builtin_smulll_overflow:
3646       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3647       break;
3648     }
3649 
3650 
3651     llvm::Value *Carry;
3652     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3653     Builder.CreateStore(Sum, SumOutPtr);
3654 
3655     return RValue::get(Carry);
3656   }
3657   case Builtin::BI__builtin_addressof:
3658     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
3659   case Builtin::BI__builtin_operator_new:
3660     return EmitBuiltinNewDeleteCall(
3661         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3662   case Builtin::BI__builtin_operator_delete:
3663     return EmitBuiltinNewDeleteCall(
3664         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3665 
3666   case Builtin::BI__builtin_is_aligned:
3667     return EmitBuiltinIsAligned(E);
3668   case Builtin::BI__builtin_align_up:
3669     return EmitBuiltinAlignTo(E, true);
3670   case Builtin::BI__builtin_align_down:
3671     return EmitBuiltinAlignTo(E, false);
3672 
3673   case Builtin::BI__noop:
3674     // __noop always evaluates to an integer literal zero.
3675     return RValue::get(ConstantInt::get(IntTy, 0));
3676   case Builtin::BI__builtin_call_with_static_chain: {
3677     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3678     const Expr *Chain = E->getArg(1);
3679     return EmitCall(Call->getCallee()->getType(),
3680                     EmitCallee(Call->getCallee()), Call, ReturnValue,
3681                     EmitScalarExpr(Chain));
3682   }
3683   case Builtin::BI_InterlockedExchange8:
3684   case Builtin::BI_InterlockedExchange16:
3685   case Builtin::BI_InterlockedExchange:
3686   case Builtin::BI_InterlockedExchangePointer:
3687     return RValue::get(
3688         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3689   case Builtin::BI_InterlockedCompareExchangePointer:
3690   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3691     llvm::Type *RTy;
3692     llvm::IntegerType *IntType =
3693       IntegerType::get(getLLVMContext(),
3694                        getContext().getTypeSize(E->getType()));
3695     llvm::Type *IntPtrType = IntType->getPointerTo();
3696 
3697     llvm::Value *Destination =
3698       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3699 
3700     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3701     RTy = Exchange->getType();
3702     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3703 
3704     llvm::Value *Comparand =
3705       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3706 
3707     auto Ordering =
3708       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3709       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3710 
3711     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3712                                               Ordering, Ordering);
3713     Result->setVolatile(true);
3714 
3715     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3716                                                                          0),
3717                                               RTy));
3718   }
3719   case Builtin::BI_InterlockedCompareExchange8:
3720   case Builtin::BI_InterlockedCompareExchange16:
3721   case Builtin::BI_InterlockedCompareExchange:
3722   case Builtin::BI_InterlockedCompareExchange64:
3723     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3724   case Builtin::BI_InterlockedIncrement16:
3725   case Builtin::BI_InterlockedIncrement:
3726     return RValue::get(
3727         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3728   case Builtin::BI_InterlockedDecrement16:
3729   case Builtin::BI_InterlockedDecrement:
3730     return RValue::get(
3731         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3732   case Builtin::BI_InterlockedAnd8:
3733   case Builtin::BI_InterlockedAnd16:
3734   case Builtin::BI_InterlockedAnd:
3735     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3736   case Builtin::BI_InterlockedExchangeAdd8:
3737   case Builtin::BI_InterlockedExchangeAdd16:
3738   case Builtin::BI_InterlockedExchangeAdd:
3739     return RValue::get(
3740         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3741   case Builtin::BI_InterlockedExchangeSub8:
3742   case Builtin::BI_InterlockedExchangeSub16:
3743   case Builtin::BI_InterlockedExchangeSub:
3744     return RValue::get(
3745         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3746   case Builtin::BI_InterlockedOr8:
3747   case Builtin::BI_InterlockedOr16:
3748   case Builtin::BI_InterlockedOr:
3749     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3750   case Builtin::BI_InterlockedXor8:
3751   case Builtin::BI_InterlockedXor16:
3752   case Builtin::BI_InterlockedXor:
3753     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3754 
3755   case Builtin::BI_bittest64:
3756   case Builtin::BI_bittest:
3757   case Builtin::BI_bittestandcomplement64:
3758   case Builtin::BI_bittestandcomplement:
3759   case Builtin::BI_bittestandreset64:
3760   case Builtin::BI_bittestandreset:
3761   case Builtin::BI_bittestandset64:
3762   case Builtin::BI_bittestandset:
3763   case Builtin::BI_interlockedbittestandreset:
3764   case Builtin::BI_interlockedbittestandreset64:
3765   case Builtin::BI_interlockedbittestandset64:
3766   case Builtin::BI_interlockedbittestandset:
3767   case Builtin::BI_interlockedbittestandset_acq:
3768   case Builtin::BI_interlockedbittestandset_rel:
3769   case Builtin::BI_interlockedbittestandset_nf:
3770   case Builtin::BI_interlockedbittestandreset_acq:
3771   case Builtin::BI_interlockedbittestandreset_rel:
3772   case Builtin::BI_interlockedbittestandreset_nf:
3773     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3774 
3775     // These builtins exist to emit regular volatile loads and stores not
3776     // affected by the -fms-volatile setting.
3777   case Builtin::BI__iso_volatile_load8:
3778   case Builtin::BI__iso_volatile_load16:
3779   case Builtin::BI__iso_volatile_load32:
3780   case Builtin::BI__iso_volatile_load64:
3781     return RValue::get(EmitISOVolatileLoad(*this, E));
3782   case Builtin::BI__iso_volatile_store8:
3783   case Builtin::BI__iso_volatile_store16:
3784   case Builtin::BI__iso_volatile_store32:
3785   case Builtin::BI__iso_volatile_store64:
3786     return RValue::get(EmitISOVolatileStore(*this, E));
3787 
3788   case Builtin::BI__exception_code:
3789   case Builtin::BI_exception_code:
3790     return RValue::get(EmitSEHExceptionCode());
3791   case Builtin::BI__exception_info:
3792   case Builtin::BI_exception_info:
3793     return RValue::get(EmitSEHExceptionInfo());
3794   case Builtin::BI__abnormal_termination:
3795   case Builtin::BI_abnormal_termination:
3796     return RValue::get(EmitSEHAbnormalTermination());
3797   case Builtin::BI_setjmpex:
3798     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
3799         E->getArg(0)->getType()->isPointerType())
3800       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3801     break;
3802   case Builtin::BI_setjmp:
3803     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
3804         E->getArg(0)->getType()->isPointerType()) {
3805       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3806         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3807       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3808         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3809       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3810     }
3811     break;
3812 
3813   case Builtin::BI__GetExceptionInfo: {
3814     if (llvm::GlobalVariable *GV =
3815             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3816       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3817     break;
3818   }
3819 
3820   case Builtin::BI__fastfail:
3821     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3822 
3823   case Builtin::BI__builtin_coro_size: {
3824     auto & Context = getContext();
3825     auto SizeTy = Context.getSizeType();
3826     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3827     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3828     return RValue::get(Builder.CreateCall(F));
3829   }
3830 
3831   case Builtin::BI__builtin_coro_id:
3832     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3833   case Builtin::BI__builtin_coro_promise:
3834     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3835   case Builtin::BI__builtin_coro_resume:
3836     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3837   case Builtin::BI__builtin_coro_frame:
3838     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3839   case Builtin::BI__builtin_coro_noop:
3840     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3841   case Builtin::BI__builtin_coro_free:
3842     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3843   case Builtin::BI__builtin_coro_destroy:
3844     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3845   case Builtin::BI__builtin_coro_done:
3846     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3847   case Builtin::BI__builtin_coro_alloc:
3848     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3849   case Builtin::BI__builtin_coro_begin:
3850     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3851   case Builtin::BI__builtin_coro_end:
3852     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3853   case Builtin::BI__builtin_coro_suspend:
3854     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3855   case Builtin::BI__builtin_coro_param:
3856     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3857 
3858   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3859   case Builtin::BIread_pipe:
3860   case Builtin::BIwrite_pipe: {
3861     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3862           *Arg1 = EmitScalarExpr(E->getArg(1));
3863     CGOpenCLRuntime OpenCLRT(CGM);
3864     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3865     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3866 
3867     // Type of the generic packet parameter.
3868     unsigned GenericAS =
3869         getContext().getTargetAddressSpace(LangAS::opencl_generic);
3870     llvm::Type *I8PTy = llvm::PointerType::get(
3871         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3872 
3873     // Testing which overloaded version we should generate the call for.
3874     if (2U == E->getNumArgs()) {
3875       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3876                                                              : "__write_pipe_2";
3877       // Creating a generic function type to be able to call with any builtin or
3878       // user defined type.
3879       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3880       llvm::FunctionType *FTy = llvm::FunctionType::get(
3881           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3882       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3883       return RValue::get(
3884           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3885                              {Arg0, BCast, PacketSize, PacketAlign}));
3886     } else {
3887       assert(4 == E->getNumArgs() &&
3888              "Illegal number of parameters to pipe function");
3889       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3890                                                              : "__write_pipe_4";
3891 
3892       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3893                               Int32Ty, Int32Ty};
3894       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3895             *Arg3 = EmitScalarExpr(E->getArg(3));
3896       llvm::FunctionType *FTy = llvm::FunctionType::get(
3897           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3898       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3899       // We know the third argument is an integer type, but we may need to cast
3900       // it to i32.
3901       if (Arg2->getType() != Int32Ty)
3902         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3903       return RValue::get(Builder.CreateCall(
3904           CGM.CreateRuntimeFunction(FTy, Name),
3905           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3906     }
3907   }
3908   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3909   // functions
3910   case Builtin::BIreserve_read_pipe:
3911   case Builtin::BIreserve_write_pipe:
3912   case Builtin::BIwork_group_reserve_read_pipe:
3913   case Builtin::BIwork_group_reserve_write_pipe:
3914   case Builtin::BIsub_group_reserve_read_pipe:
3915   case Builtin::BIsub_group_reserve_write_pipe: {
3916     // Composing the mangled name for the function.
3917     const char *Name;
3918     if (BuiltinID == Builtin::BIreserve_read_pipe)
3919       Name = "__reserve_read_pipe";
3920     else if (BuiltinID == Builtin::BIreserve_write_pipe)
3921       Name = "__reserve_write_pipe";
3922     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3923       Name = "__work_group_reserve_read_pipe";
3924     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3925       Name = "__work_group_reserve_write_pipe";
3926     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3927       Name = "__sub_group_reserve_read_pipe";
3928     else
3929       Name = "__sub_group_reserve_write_pipe";
3930 
3931     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3932           *Arg1 = EmitScalarExpr(E->getArg(1));
3933     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3934     CGOpenCLRuntime OpenCLRT(CGM);
3935     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3936     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3937 
3938     // Building the generic function prototype.
3939     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3940     llvm::FunctionType *FTy = llvm::FunctionType::get(
3941         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3942     // We know the second argument is an integer type, but we may need to cast
3943     // it to i32.
3944     if (Arg1->getType() != Int32Ty)
3945       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3946     return RValue::get(
3947         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3948                            {Arg0, Arg1, PacketSize, PacketAlign}));
3949   }
3950   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3951   // functions
3952   case Builtin::BIcommit_read_pipe:
3953   case Builtin::BIcommit_write_pipe:
3954   case Builtin::BIwork_group_commit_read_pipe:
3955   case Builtin::BIwork_group_commit_write_pipe:
3956   case Builtin::BIsub_group_commit_read_pipe:
3957   case Builtin::BIsub_group_commit_write_pipe: {
3958     const char *Name;
3959     if (BuiltinID == Builtin::BIcommit_read_pipe)
3960       Name = "__commit_read_pipe";
3961     else if (BuiltinID == Builtin::BIcommit_write_pipe)
3962       Name = "__commit_write_pipe";
3963     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3964       Name = "__work_group_commit_read_pipe";
3965     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3966       Name = "__work_group_commit_write_pipe";
3967     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3968       Name = "__sub_group_commit_read_pipe";
3969     else
3970       Name = "__sub_group_commit_write_pipe";
3971 
3972     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3973           *Arg1 = EmitScalarExpr(E->getArg(1));
3974     CGOpenCLRuntime OpenCLRT(CGM);
3975     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3976     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3977 
3978     // Building the generic function prototype.
3979     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3980     llvm::FunctionType *FTy =
3981         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3982                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3983 
3984     return RValue::get(
3985         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3986                            {Arg0, Arg1, PacketSize, PacketAlign}));
3987   }
3988   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3989   case Builtin::BIget_pipe_num_packets:
3990   case Builtin::BIget_pipe_max_packets: {
3991     const char *BaseName;
3992     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
3993     if (BuiltinID == Builtin::BIget_pipe_num_packets)
3994       BaseName = "__get_pipe_num_packets";
3995     else
3996       BaseName = "__get_pipe_max_packets";
3997     std::string Name = std::string(BaseName) +
3998                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3999 
4000     // Building the generic function prototype.
4001     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4002     CGOpenCLRuntime OpenCLRT(CGM);
4003     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4004     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4005     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4006     llvm::FunctionType *FTy = llvm::FunctionType::get(
4007         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4008 
4009     return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4010                                           {Arg0, PacketSize, PacketAlign}));
4011   }
4012 
4013   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4014   case Builtin::BIto_global:
4015   case Builtin::BIto_local:
4016   case Builtin::BIto_private: {
4017     auto Arg0 = EmitScalarExpr(E->getArg(0));
4018     auto NewArgT = llvm::PointerType::get(Int8Ty,
4019       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4020     auto NewRetT = llvm::PointerType::get(Int8Ty,
4021       CGM.getContext().getTargetAddressSpace(
4022         E->getType()->getPointeeType().getAddressSpace()));
4023     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4024     llvm::Value *NewArg;
4025     if (Arg0->getType()->getPointerAddressSpace() !=
4026         NewArgT->getPointerAddressSpace())
4027       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4028     else
4029       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4030     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4031     auto NewCall =
4032         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4033     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4034       ConvertType(E->getType())));
4035   }
4036 
4037   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4038   // It contains four different overload formats specified in Table 6.13.17.1.
4039   case Builtin::BIenqueue_kernel: {
4040     StringRef Name; // Generated function call name
4041     unsigned NumArgs = E->getNumArgs();
4042 
4043     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4044     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4045         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4046 
4047     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4048     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4049     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4050     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4051     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4052 
4053     if (NumArgs == 4) {
4054       // The most basic form of the call with parameters:
4055       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4056       Name = "__enqueue_kernel_basic";
4057       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4058                               GenericVoidPtrTy};
4059       llvm::FunctionType *FTy = llvm::FunctionType::get(
4060           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4061 
4062       auto Info =
4063           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4064       llvm::Value *Kernel =
4065           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4066       llvm::Value *Block =
4067           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4068 
4069       AttrBuilder B;
4070       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4071       llvm::AttributeList ByValAttrSet =
4072           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4073 
4074       auto RTCall =
4075           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4076                              {Queue, Flags, Range, Kernel, Block});
4077       RTCall->setAttributes(ByValAttrSet);
4078       return RValue::get(RTCall);
4079     }
4080     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4081 
4082     // Create a temporary array to hold the sizes of local pointer arguments
4083     // for the block. \p First is the position of the first size argument.
4084     auto CreateArrayForSizeVar = [=](unsigned First)
4085         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4086       llvm::APInt ArraySize(32, NumArgs - First);
4087       QualType SizeArrayTy = getContext().getConstantArrayType(
4088           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4089           /*IndexTypeQuals=*/0);
4090       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4091       llvm::Value *TmpPtr = Tmp.getPointer();
4092       llvm::Value *TmpSize = EmitLifetimeStart(
4093           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4094       llvm::Value *ElemPtr;
4095       // Each of the following arguments specifies the size of the corresponding
4096       // argument passed to the enqueued block.
4097       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4098       for (unsigned I = First; I < NumArgs; ++I) {
4099         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4100         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
4101         if (I == First)
4102           ElemPtr = GEP;
4103         auto *V =
4104             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4105         Builder.CreateAlignedStore(
4106             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4107       }
4108       return std::tie(ElemPtr, TmpSize, TmpPtr);
4109     };
4110 
4111     // Could have events and/or varargs.
4112     if (E->getArg(3)->getType()->isBlockPointerType()) {
4113       // No events passed, but has variadic arguments.
4114       Name = "__enqueue_kernel_varargs";
4115       auto Info =
4116           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4117       llvm::Value *Kernel =
4118           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4119       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4120       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4121       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4122 
4123       // Create a vector of the arguments, as well as a constant value to
4124       // express to the runtime the number of variadic arguments.
4125       llvm::Value *const Args[] = {Queue,  Flags,
4126                                    Range,  Kernel,
4127                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4128                                    ElemPtr};
4129       llvm::Type *const ArgTys[] = {
4130           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4131           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4132 
4133       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4134       auto Call = RValue::get(
4135           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4136       if (TmpSize)
4137         EmitLifetimeEnd(TmpSize, TmpPtr);
4138       return Call;
4139     }
4140     // Any calls now have event arguments passed.
4141     if (NumArgs >= 7) {
4142       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4143       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4144           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4145 
4146       llvm::Value *NumEvents =
4147           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4148 
4149       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4150       // to be a null pointer constant (including `0` literal), we can take it
4151       // into account and emit null pointer directly.
4152       llvm::Value *EventWaitList = nullptr;
4153       if (E->getArg(4)->isNullPointerConstant(
4154               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4155         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4156       } else {
4157         EventWaitList = E->getArg(4)->getType()->isArrayType()
4158                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4159                         : EmitScalarExpr(E->getArg(4));
4160         // Convert to generic address space.
4161         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4162       }
4163       llvm::Value *EventRet = nullptr;
4164       if (E->getArg(5)->isNullPointerConstant(
4165               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4166         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4167       } else {
4168         EventRet =
4169             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4170       }
4171 
4172       auto Info =
4173           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4174       llvm::Value *Kernel =
4175           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4176       llvm::Value *Block =
4177           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4178 
4179       std::vector<llvm::Type *> ArgTys = {
4180           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4181           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4182 
4183       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4184                                          NumEvents, EventWaitList, EventRet,
4185                                          Kernel,    Block};
4186 
4187       if (NumArgs == 7) {
4188         // Has events but no variadics.
4189         Name = "__enqueue_kernel_basic_events";
4190         llvm::FunctionType *FTy = llvm::FunctionType::get(
4191             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4192         return RValue::get(
4193             Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4194                                llvm::ArrayRef<llvm::Value *>(Args)));
4195       }
4196       // Has event info and variadics
4197       // Pass the number of variadics to the runtime function too.
4198       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4199       ArgTys.push_back(Int32Ty);
4200       Name = "__enqueue_kernel_events_varargs";
4201 
4202       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4203       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4204       Args.push_back(ElemPtr);
4205       ArgTys.push_back(ElemPtr->getType());
4206 
4207       llvm::FunctionType *FTy = llvm::FunctionType::get(
4208           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4209       auto Call =
4210           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
4211                                          llvm::ArrayRef<llvm::Value *>(Args)));
4212       if (TmpSize)
4213         EmitLifetimeEnd(TmpSize, TmpPtr);
4214       return Call;
4215     }
4216     LLVM_FALLTHROUGH;
4217   }
4218   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4219   // parameter.
4220   case Builtin::BIget_kernel_work_group_size: {
4221     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4222         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4223     auto Info =
4224         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4225     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4226     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4227     return RValue::get(Builder.CreateCall(
4228         CGM.CreateRuntimeFunction(
4229             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4230                                     false),
4231             "__get_kernel_work_group_size_impl"),
4232         {Kernel, Arg}));
4233   }
4234   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4235     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4236         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4237     auto Info =
4238         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4239     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4240     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4241     return RValue::get(Builder.CreateCall(
4242         CGM.CreateRuntimeFunction(
4243             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4244                                     false),
4245             "__get_kernel_preferred_work_group_size_multiple_impl"),
4246         {Kernel, Arg}));
4247   }
4248   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4249   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4250     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4251         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4252     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4253     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4254     auto Info =
4255         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4256     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4257     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4258     const char *Name =
4259         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4260             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4261             : "__get_kernel_sub_group_count_for_ndrange_impl";
4262     return RValue::get(Builder.CreateCall(
4263         CGM.CreateRuntimeFunction(
4264             llvm::FunctionType::get(
4265                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4266                 false),
4267             Name),
4268         {NDRange, Kernel, Block}));
4269   }
4270 
4271   case Builtin::BI__builtin_store_half:
4272   case Builtin::BI__builtin_store_halff: {
4273     Value *Val = EmitScalarExpr(E->getArg(0));
4274     Address Address = EmitPointerWithAlignment(E->getArg(1));
4275     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4276     return RValue::get(Builder.CreateStore(HalfVal, Address));
4277   }
4278   case Builtin::BI__builtin_load_half: {
4279     Address Address = EmitPointerWithAlignment(E->getArg(0));
4280     Value *HalfVal = Builder.CreateLoad(Address);
4281     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4282   }
4283   case Builtin::BI__builtin_load_halff: {
4284     Address Address = EmitPointerWithAlignment(E->getArg(0));
4285     Value *HalfVal = Builder.CreateLoad(Address);
4286     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4287   }
4288   case Builtin::BIprintf:
4289     if (getTarget().getTriple().isNVPTX())
4290       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4291     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4292         getLangOpts().HIP)
4293       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4294     break;
4295   case Builtin::BI__builtin_canonicalize:
4296   case Builtin::BI__builtin_canonicalizef:
4297   case Builtin::BI__builtin_canonicalizef16:
4298   case Builtin::BI__builtin_canonicalizel:
4299     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4300 
4301   case Builtin::BI__builtin_thread_pointer: {
4302     if (!getContext().getTargetInfo().isTLSSupported())
4303       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4304     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4305     break;
4306   }
4307   case Builtin::BI__builtin_os_log_format:
4308     return emitBuiltinOSLogFormat(*E);
4309 
4310   case Builtin::BI__xray_customevent: {
4311     if (!ShouldXRayInstrumentFunction())
4312       return RValue::getIgnored();
4313 
4314     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4315             XRayInstrKind::Custom))
4316       return RValue::getIgnored();
4317 
4318     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4319       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4320         return RValue::getIgnored();
4321 
4322     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4323     auto FTy = F->getFunctionType();
4324     auto Arg0 = E->getArg(0);
4325     auto Arg0Val = EmitScalarExpr(Arg0);
4326     auto Arg0Ty = Arg0->getType();
4327     auto PTy0 = FTy->getParamType(0);
4328     if (PTy0 != Arg0Val->getType()) {
4329       if (Arg0Ty->isArrayType())
4330         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4331       else
4332         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4333     }
4334     auto Arg1 = EmitScalarExpr(E->getArg(1));
4335     auto PTy1 = FTy->getParamType(1);
4336     if (PTy1 != Arg1->getType())
4337       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4338     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4339   }
4340 
4341   case Builtin::BI__xray_typedevent: {
4342     // TODO: There should be a way to always emit events even if the current
4343     // function is not instrumented. Losing events in a stream can cripple
4344     // a trace.
4345     if (!ShouldXRayInstrumentFunction())
4346       return RValue::getIgnored();
4347 
4348     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4349             XRayInstrKind::Typed))
4350       return RValue::getIgnored();
4351 
4352     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4353       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
4354         return RValue::getIgnored();
4355 
4356     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
4357     auto FTy = F->getFunctionType();
4358     auto Arg0 = EmitScalarExpr(E->getArg(0));
4359     auto PTy0 = FTy->getParamType(0);
4360     if (PTy0 != Arg0->getType())
4361       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
4362     auto Arg1 = E->getArg(1);
4363     auto Arg1Val = EmitScalarExpr(Arg1);
4364     auto Arg1Ty = Arg1->getType();
4365     auto PTy1 = FTy->getParamType(1);
4366     if (PTy1 != Arg1Val->getType()) {
4367       if (Arg1Ty->isArrayType())
4368         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
4369       else
4370         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
4371     }
4372     auto Arg2 = EmitScalarExpr(E->getArg(2));
4373     auto PTy2 = FTy->getParamType(2);
4374     if (PTy2 != Arg2->getType())
4375       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
4376     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
4377   }
4378 
4379   case Builtin::BI__builtin_ms_va_start:
4380   case Builtin::BI__builtin_ms_va_end:
4381     return RValue::get(
4382         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
4383                        BuiltinID == Builtin::BI__builtin_ms_va_start));
4384 
4385   case Builtin::BI__builtin_ms_va_copy: {
4386     // Lower this manually. We can't reliably determine whether or not any
4387     // given va_copy() is for a Win64 va_list from the calling convention
4388     // alone, because it's legal to do this from a System V ABI function.
4389     // With opaque pointer types, we won't have enough information in LLVM
4390     // IR to determine this from the argument types, either. Best to do it
4391     // now, while we have enough information.
4392     Address DestAddr = EmitMSVAListRef(E->getArg(0));
4393     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
4394 
4395     llvm::Type *BPP = Int8PtrPtrTy;
4396 
4397     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
4398                        DestAddr.getAlignment());
4399     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
4400                       SrcAddr.getAlignment());
4401 
4402     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
4403     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
4404   }
4405   }
4406 
4407   // If this is an alias for a lib function (e.g. __builtin_sin), emit
4408   // the call using the normal call path, but using the unmangled
4409   // version of the function name.
4410   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
4411     return emitLibraryCall(*this, FD, E,
4412                            CGM.getBuiltinLibFunction(FD, BuiltinID));
4413 
4414   // If this is a predefined lib function (e.g. malloc), emit the call
4415   // using exactly the normal call path.
4416   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
4417     return emitLibraryCall(*this, FD, E,
4418                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
4419 
4420   // Check that a call to a target specific builtin has the correct target
4421   // features.
4422   // This is down here to avoid non-target specific builtins, however, if
4423   // generic builtins start to require generic target features then we
4424   // can move this up to the beginning of the function.
4425   checkTargetFeatures(E, FD);
4426 
4427   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
4428     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
4429 
4430   // See if we have a target specific intrinsic.
4431   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
4432   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
4433   StringRef Prefix =
4434       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
4435   if (!Prefix.empty()) {
4436     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
4437     // NOTE we don't need to perform a compatibility flag check here since the
4438     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
4439     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
4440     if (IntrinsicID == Intrinsic::not_intrinsic)
4441       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
4442   }
4443 
4444   if (IntrinsicID != Intrinsic::not_intrinsic) {
4445     SmallVector<Value*, 16> Args;
4446 
4447     // Find out if any arguments are required to be integer constant
4448     // expressions.
4449     unsigned ICEArguments = 0;
4450     ASTContext::GetBuiltinTypeError Error;
4451     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4452     assert(Error == ASTContext::GE_None && "Should not codegen an error");
4453 
4454     Function *F = CGM.getIntrinsic(IntrinsicID);
4455     llvm::FunctionType *FTy = F->getFunctionType();
4456 
4457     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
4458       Value *ArgValue;
4459       // If this is a normal argument, just emit it as a scalar.
4460       if ((ICEArguments & (1 << i)) == 0) {
4461         ArgValue = EmitScalarExpr(E->getArg(i));
4462       } else {
4463         // If this is required to be a constant, constant fold it so that we
4464         // know that the generated intrinsic gets a ConstantInt.
4465         ArgValue = llvm::ConstantInt::get(
4466             getLLVMContext(),
4467             *E->getArg(i)->getIntegerConstantExpr(getContext()));
4468       }
4469 
4470       // If the intrinsic arg type is different from the builtin arg type
4471       // we need to do a bit cast.
4472       llvm::Type *PTy = FTy->getParamType(i);
4473       if (PTy != ArgValue->getType()) {
4474         // XXX - vector of pointers?
4475         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
4476           if (PtrTy->getAddressSpace() !=
4477               ArgValue->getType()->getPointerAddressSpace()) {
4478             ArgValue = Builder.CreateAddrSpaceCast(
4479               ArgValue,
4480               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
4481           }
4482         }
4483 
4484         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
4485                "Must be able to losslessly bit cast to param");
4486         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
4487       }
4488 
4489       Args.push_back(ArgValue);
4490     }
4491 
4492     Value *V = Builder.CreateCall(F, Args);
4493     QualType BuiltinRetType = E->getType();
4494 
4495     llvm::Type *RetTy = VoidTy;
4496     if (!BuiltinRetType->isVoidType())
4497       RetTy = ConvertType(BuiltinRetType);
4498 
4499     if (RetTy != V->getType()) {
4500       // XXX - vector of pointers?
4501       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4502         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4503           V = Builder.CreateAddrSpaceCast(
4504             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4505         }
4506       }
4507 
4508       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4509              "Must be able to losslessly bit cast result type");
4510       V = Builder.CreateBitCast(V, RetTy);
4511     }
4512 
4513     return RValue::get(V);
4514   }
4515 
4516   // Some target-specific builtins can have aggregate return values, e.g.
4517   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
4518   // ReturnValue to be non-null, so that the target-specific emission code can
4519   // always just emit into it.
4520   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
4521   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
4522     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
4523     ReturnValue = ReturnValueSlot(DestPtr, false);
4524   }
4525 
4526   // Now see if we can emit a target-specific builtin.
4527   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
4528     switch (EvalKind) {
4529     case TEK_Scalar:
4530       return RValue::get(V);
4531     case TEK_Aggregate:
4532       return RValue::getAggregate(ReturnValue.getValue(),
4533                                   ReturnValue.isVolatile());
4534     case TEK_Complex:
4535       llvm_unreachable("No current target builtin returns complex");
4536     }
4537     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
4538   }
4539 
4540   ErrorUnsupported(E, "builtin function");
4541 
4542   // Unknown builtin, for now just dump it out and return undef.
4543   return GetUndefRValue(E->getType());
4544 }
4545 
EmitTargetArchBuiltinExpr(CodeGenFunction * CGF,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)4546 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4547                                         unsigned BuiltinID, const CallExpr *E,
4548                                         ReturnValueSlot ReturnValue,
4549                                         llvm::Triple::ArchType Arch) {
4550   switch (Arch) {
4551   case llvm::Triple::arm:
4552   case llvm::Triple::armeb:
4553   case llvm::Triple::thumb:
4554   case llvm::Triple::thumbeb:
4555     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
4556   case llvm::Triple::aarch64:
4557   case llvm::Triple::aarch64_32:
4558   case llvm::Triple::aarch64_be:
4559     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4560   case llvm::Triple::bpfeb:
4561   case llvm::Triple::bpfel:
4562     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
4563   case llvm::Triple::x86:
4564   case llvm::Triple::x86_64:
4565     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4566   case llvm::Triple::ppc:
4567   case llvm::Triple::ppc64:
4568   case llvm::Triple::ppc64le:
4569     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4570   case llvm::Triple::r600:
4571   case llvm::Triple::amdgcn:
4572     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4573   case llvm::Triple::systemz:
4574     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4575   case llvm::Triple::nvptx:
4576   case llvm::Triple::nvptx64:
4577     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4578   case llvm::Triple::wasm32:
4579   case llvm::Triple::wasm64:
4580     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4581   case llvm::Triple::hexagon:
4582     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4583   default:
4584     return nullptr;
4585   }
4586 }
4587 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)4588 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4589                                               const CallExpr *E,
4590                                               ReturnValueSlot ReturnValue) {
4591   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4592     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4593     return EmitTargetArchBuiltinExpr(
4594         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4595         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
4596   }
4597 
4598   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
4599                                    getTarget().getTriple().getArch());
4600 }
4601 
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool HasLegalHalfType=true,bool V1Ty=false,bool AllowBFloatArgsAndRet=true)4602 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
4603                                           NeonTypeFlags TypeFlags,
4604                                           bool HasLegalHalfType = true,
4605                                           bool V1Ty = false,
4606                                           bool AllowBFloatArgsAndRet = true) {
4607   int IsQuad = TypeFlags.isQuad();
4608   switch (TypeFlags.getEltType()) {
4609   case NeonTypeFlags::Int8:
4610   case NeonTypeFlags::Poly8:
4611     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4612   case NeonTypeFlags::Int16:
4613   case NeonTypeFlags::Poly16:
4614     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4615   case NeonTypeFlags::BFloat16:
4616     if (AllowBFloatArgsAndRet)
4617       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
4618     else
4619       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4620   case NeonTypeFlags::Float16:
4621     if (HasLegalHalfType)
4622       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4623     else
4624       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4625   case NeonTypeFlags::Int32:
4626     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4627   case NeonTypeFlags::Int64:
4628   case NeonTypeFlags::Poly64:
4629     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4630   case NeonTypeFlags::Poly128:
4631     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4632     // There is a lot of i128 and f128 API missing.
4633     // so we use v16i8 to represent poly128 and get pattern matched.
4634     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
4635   case NeonTypeFlags::Float32:
4636     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4637   case NeonTypeFlags::Float64:
4638     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4639   }
4640   llvm_unreachable("Unknown vector element type!");
4641 }
4642 
GetFloatNeonType(CodeGenFunction * CGF,NeonTypeFlags IntTypeFlags)4643 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4644                                           NeonTypeFlags IntTypeFlags) {
4645   int IsQuad = IntTypeFlags.isQuad();
4646   switch (IntTypeFlags.getEltType()) {
4647   case NeonTypeFlags::Int16:
4648     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
4649   case NeonTypeFlags::Int32:
4650     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
4651   case NeonTypeFlags::Int64:
4652     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
4653   default:
4654     llvm_unreachable("Type can't be converted to floating-point!");
4655   }
4656 }
4657 
EmitNeonSplat(Value * V,Constant * C,const ElementCount & Count)4658 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
4659                                       const ElementCount &Count) {
4660   Value *SV = llvm::ConstantVector::getSplat(Count, C);
4661   return Builder.CreateShuffleVector(V, V, SV, "lane");
4662 }
4663 
EmitNeonSplat(Value * V,Constant * C)4664 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4665   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
4666   return EmitNeonSplat(V, C, EC);
4667 }
4668 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)4669 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4670                                      const char *name,
4671                                      unsigned shift, bool rightshift) {
4672   unsigned j = 0;
4673   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4674        ai != ae; ++ai, ++j) {
4675     if (F->isConstrainedFPIntrinsic())
4676       if (ai->getType()->isMetadataTy())
4677         continue;
4678     if (shift > 0 && shift == j)
4679       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4680     else
4681       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4682   }
4683 
4684   if (F->isConstrainedFPIntrinsic())
4685     return Builder.CreateConstrainedFPCall(F, Ops, name);
4686   else
4687     return Builder.CreateCall(F, Ops, name);
4688 }
4689 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)4690 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4691                                             bool neg) {
4692   int SV = cast<ConstantInt>(V)->getSExtValue();
4693   return ConstantInt::get(Ty, neg ? -SV : SV);
4694 }
4695 
4696 // Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)4697 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4698                                           llvm::Type *Ty, bool usgn,
4699                                           const char *name) {
4700   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4701 
4702   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4703   int EltSize = VTy->getScalarSizeInBits();
4704 
4705   Vec = Builder.CreateBitCast(Vec, Ty);
4706 
4707   // lshr/ashr are undefined when the shift amount is equal to the vector
4708   // element size.
4709   if (ShiftAmt == EltSize) {
4710     if (usgn) {
4711       // Right-shifting an unsigned value by its size yields 0.
4712       return llvm::ConstantAggregateZero::get(VTy);
4713     } else {
4714       // Right-shifting a signed value by its size is equivalent
4715       // to a shift of size-1.
4716       --ShiftAmt;
4717       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4718     }
4719   }
4720 
4721   Shift = EmitNeonShiftVector(Shift, Ty, false);
4722   if (usgn)
4723     return Builder.CreateLShr(Vec, Shift, name);
4724   else
4725     return Builder.CreateAShr(Vec, Shift, name);
4726 }
4727 
4728 enum {
4729   AddRetType = (1 << 0),
4730   Add1ArgType = (1 << 1),
4731   Add2ArgTypes = (1 << 2),
4732 
4733   VectorizeRetType = (1 << 3),
4734   VectorizeArgTypes = (1 << 4),
4735 
4736   InventFloatType = (1 << 5),
4737   UnsignedAlts = (1 << 6),
4738 
4739   Use64BitVectors = (1 << 7),
4740   Use128BitVectors = (1 << 8),
4741 
4742   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4743   VectorRet = AddRetType | VectorizeRetType,
4744   VectorRetGetArgs01 =
4745       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4746   FpCmpzModifiers =
4747       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4748 };
4749 
4750 namespace {
4751 struct ARMVectorIntrinsicInfo {
4752   const char *NameHint;
4753   unsigned BuiltinID;
4754   unsigned LLVMIntrinsic;
4755   unsigned AltLLVMIntrinsic;
4756   uint64_t TypeModifier;
4757 
operator <__anon3067de980811::ARMVectorIntrinsicInfo4758   bool operator<(unsigned RHSBuiltinID) const {
4759     return BuiltinID < RHSBuiltinID;
4760   }
operator <__anon3067de980811::ARMVectorIntrinsicInfo4761   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
4762     return BuiltinID < TE.BuiltinID;
4763   }
4764 };
4765 } // end anonymous namespace
4766 
4767 #define NEONMAP0(NameBase) \
4768   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4769 
4770 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4771   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4772       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4773 
4774 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4775   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4776       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4777       TypeModifier }
4778 
4779 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4780   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
4781   NEONMAP0(splat_lane_v),
4782   NEONMAP0(splat_laneq_v),
4783   NEONMAP0(splatq_lane_v),
4784   NEONMAP0(splatq_laneq_v),
4785   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4786   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4787   NEONMAP1(vabs_v, arm_neon_vabs, 0),
4788   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4789   NEONMAP0(vaddhn_v),
4790   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4791   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4792   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4793   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4794   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
4795   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
4796   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
4797   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
4798   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
4799   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4800   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4801   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4802   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4803   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
4804   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
4805   NEONMAP1(vcage_v, arm_neon_vacge, 0),
4806   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4807   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4808   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4809   NEONMAP1(vcale_v, arm_neon_vacge, 0),
4810   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4811   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4812   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4813   NEONMAP0(vceqz_v),
4814   NEONMAP0(vceqzq_v),
4815   NEONMAP0(vcgez_v),
4816   NEONMAP0(vcgezq_v),
4817   NEONMAP0(vcgtz_v),
4818   NEONMAP0(vcgtzq_v),
4819   NEONMAP0(vclez_v),
4820   NEONMAP0(vclezq_v),
4821   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4822   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4823   NEONMAP0(vcltz_v),
4824   NEONMAP0(vcltzq_v),
4825   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4826   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4827   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4828   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4829   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4830   NEONMAP0(vcvt_f16_v),
4831   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4832   NEONMAP0(vcvt_f32_v),
4833   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4834   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4835   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4836   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4837   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4838   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4839   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4840   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4841   NEONMAP0(vcvt_s16_v),
4842   NEONMAP0(vcvt_s32_v),
4843   NEONMAP0(vcvt_s64_v),
4844   NEONMAP0(vcvt_u16_v),
4845   NEONMAP0(vcvt_u32_v),
4846   NEONMAP0(vcvt_u64_v),
4847   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4848   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4849   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4850   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4851   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4852   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4853   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4854   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4855   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4856   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4857   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4858   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4859   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
4860   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4861   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4862   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4863   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4864   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4865   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4866   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4867   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4868   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4869   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4870   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4871   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4872   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4873   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4874   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4875   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4876   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4877   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4878   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4879   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4880   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4881   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4882   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4883   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4884   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4885   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4886   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4887   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4888   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4889   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4890   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4891   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4892   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4893   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4894   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4895   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4896   NEONMAP0(vcvtq_f16_v),
4897   NEONMAP0(vcvtq_f32_v),
4898   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4899   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4900   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4901   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4902   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4903   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4904   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4905   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4906   NEONMAP0(vcvtq_s16_v),
4907   NEONMAP0(vcvtq_s32_v),
4908   NEONMAP0(vcvtq_s64_v),
4909   NEONMAP0(vcvtq_u16_v),
4910   NEONMAP0(vcvtq_u32_v),
4911   NEONMAP0(vcvtq_u64_v),
4912   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4913   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4914   NEONMAP0(vext_v),
4915   NEONMAP0(vextq_v),
4916   NEONMAP0(vfma_v),
4917   NEONMAP0(vfmaq_v),
4918   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4919   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4920   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4921   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4922   NEONMAP0(vld1_dup_v),
4923   NEONMAP1(vld1_v, arm_neon_vld1, 0),
4924   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4925   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4926   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4927   NEONMAP0(vld1q_dup_v),
4928   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4929   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4930   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4931   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4932   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4933   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4934   NEONMAP1(vld2_v, arm_neon_vld2, 0),
4935   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4936   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4937   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4938   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4939   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4940   NEONMAP1(vld3_v, arm_neon_vld3, 0),
4941   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4942   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4943   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4944   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4945   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4946   NEONMAP1(vld4_v, arm_neon_vld4, 0),
4947   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4948   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4949   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4950   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4951   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4952   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4953   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4954   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4955   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4956   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4957   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4958   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
4959   NEONMAP0(vmovl_v),
4960   NEONMAP0(vmovn_v),
4961   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4962   NEONMAP0(vmull_v),
4963   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4964   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4965   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4966   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4967   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4968   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4969   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4970   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4971   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4972   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4973   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4974   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4975   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
4976   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
4977   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
4978   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4979   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4980   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4981   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4982   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4983   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4984   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4985   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4986   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4987   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4988   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4989   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4990   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4991   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4992   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4993   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4994   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4995   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4996   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
4997   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4998   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4999   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5000   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5001   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5002   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5003   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5004   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5005   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5006   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5007   NEONMAP0(vrndi_v),
5008   NEONMAP0(vrndiq_v),
5009   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5010   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5011   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5012   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5013   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5014   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5015   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5016   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5017   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5018   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5019   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5020   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5021   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5022   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5023   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5024   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5025   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5026   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5027   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5028   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5029   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5030   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5031   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5032   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5033   NEONMAP0(vshl_n_v),
5034   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5035   NEONMAP0(vshll_n_v),
5036   NEONMAP0(vshlq_n_v),
5037   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5038   NEONMAP0(vshr_n_v),
5039   NEONMAP0(vshrn_n_v),
5040   NEONMAP0(vshrq_n_v),
5041   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5042   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5043   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5044   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5045   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5046   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5047   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5048   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5049   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5050   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5051   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5052   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5053   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5054   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5055   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5056   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5057   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5058   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5059   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5060   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5061   NEONMAP0(vsubhn_v),
5062   NEONMAP0(vtrn_v),
5063   NEONMAP0(vtrnq_v),
5064   NEONMAP0(vtst_v),
5065   NEONMAP0(vtstq_v),
5066   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5067   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5068   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5069   NEONMAP0(vuzp_v),
5070   NEONMAP0(vuzpq_v),
5071   NEONMAP0(vzip_v),
5072   NEONMAP0(vzipq_v)
5073 };
5074 
5075 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5076   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5077   NEONMAP0(splat_lane_v),
5078   NEONMAP0(splat_laneq_v),
5079   NEONMAP0(splatq_lane_v),
5080   NEONMAP0(splatq_laneq_v),
5081   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5082   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5083   NEONMAP0(vaddhn_v),
5084   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5085   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5086   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5087   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5088   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5089   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5090   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5091   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5092   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5093   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5094   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5095   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5096   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5097   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5098   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5099   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5100   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5101   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5102   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5103   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5104   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5105   NEONMAP0(vceqz_v),
5106   NEONMAP0(vceqzq_v),
5107   NEONMAP0(vcgez_v),
5108   NEONMAP0(vcgezq_v),
5109   NEONMAP0(vcgtz_v),
5110   NEONMAP0(vcgtzq_v),
5111   NEONMAP0(vclez_v),
5112   NEONMAP0(vclezq_v),
5113   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5114   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5115   NEONMAP0(vcltz_v),
5116   NEONMAP0(vcltzq_v),
5117   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5118   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5119   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5120   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5121   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5122   NEONMAP0(vcvt_f16_v),
5123   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5124   NEONMAP0(vcvt_f32_v),
5125   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5126   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5127   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5128   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5129   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5130   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5131   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5132   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5133   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5134   NEONMAP0(vcvtq_f16_v),
5135   NEONMAP0(vcvtq_f32_v),
5136   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5137   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5138   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5139   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5140   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5141   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5142   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5143   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5144   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5145   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5146   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5147   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5148   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5149   NEONMAP0(vext_v),
5150   NEONMAP0(vextq_v),
5151   NEONMAP0(vfma_v),
5152   NEONMAP0(vfmaq_v),
5153   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5154   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5155   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5156   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5157   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5158   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5159   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5160   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5161   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5162   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5163   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5164   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5165   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5166   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5167   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5168   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5169   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5170   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5171   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5172   NEONMAP0(vmovl_v),
5173   NEONMAP0(vmovn_v),
5174   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5175   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5176   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5177   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5178   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5179   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5180   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5181   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5182   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5183   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5184   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5185   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5186   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5187   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5188   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5189   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5190   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5191   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5192   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5193   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5194   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5195   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5196   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5197   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5198   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5199   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5200   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5201   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5202   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5203   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5204   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5205   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5206   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5207   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5208   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5209   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5210   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5211   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5212   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5213   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5214   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5215   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5216   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5217   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5218   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5219   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5220   NEONMAP0(vrndi_v),
5221   NEONMAP0(vrndiq_v),
5222   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5223   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5224   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5225   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5226   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5227   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5228   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5229   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5230   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5231   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5232   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5233   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5234   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5235   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5236   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5237   NEONMAP0(vshl_n_v),
5238   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5239   NEONMAP0(vshll_n_v),
5240   NEONMAP0(vshlq_n_v),
5241   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5242   NEONMAP0(vshr_n_v),
5243   NEONMAP0(vshrn_n_v),
5244   NEONMAP0(vshrq_n_v),
5245   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5246   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5247   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5248   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5249   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5250   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5251   NEONMAP0(vsubhn_v),
5252   NEONMAP0(vtst_v),
5253   NEONMAP0(vtstq_v),
5254   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5255   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5256   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5257 };
5258 
5259 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5260   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5261   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5262   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5263   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5264   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5265   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5266   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5267   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5268   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5269   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5270   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5271   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5272   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5273   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5274   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5275   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5276   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5277   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5278   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5279   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5280   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5281   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5282   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5283   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5284   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5285   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5286   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5287   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5288   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5289   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5290   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5291   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5292   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5293   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5294   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
5295   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5296   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5297   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5298   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5299   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5300   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5301   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5302   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5303   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5304   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5305   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5306   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5307   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5308   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5309   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5310   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5311   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5312   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5313   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
5314   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5315   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5316   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5317   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5318   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5319   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5320   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5321   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5322   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
5323   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
5324   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5325   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5326   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5327   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5328   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5329   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5330   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5331   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5332   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
5333   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
5334   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
5335   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
5336   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
5337   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5338   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5339   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5340   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
5341   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5342   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
5343   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5344   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
5345   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
5346   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
5347   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5348   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
5349   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
5350   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
5351   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5352   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5353   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
5354   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
5355   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
5356   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
5357   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
5358   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
5359   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
5360   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
5361   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
5362   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
5363   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
5364   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
5365   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5366   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5367   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
5368   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
5369   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
5370   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5371   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
5372   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5373   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
5374   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
5375   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
5376   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
5377   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
5378   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5379   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5380   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
5381   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
5382   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
5383   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
5384   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
5385   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
5386   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
5387   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
5388   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5389   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5390   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
5391   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
5392   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
5393   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5394   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
5395   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5396   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5397   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5398   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5399   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
5400   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
5401   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5402   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5403   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
5404   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
5405   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
5406   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
5407   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
5408   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
5409   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5410   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
5411   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
5412   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
5413   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
5414   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5415   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5416   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
5417   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
5418   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
5419   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5420   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
5421   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5422   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5423   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
5424   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
5425   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
5426   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
5427   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
5428   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
5429   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
5430   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
5431   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
5432   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
5433   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
5434   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
5435   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
5436   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
5437   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
5438   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
5439   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
5440   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
5441   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
5442   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
5443   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
5444   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
5445   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
5446   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
5447   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5448   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
5449   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
5450   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
5451   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
5452   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
5453   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5454   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
5455   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
5456   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
5457   // FP16 scalar intrinisics go here.
5458   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
5459   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5460   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5461   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5462   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5463   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5464   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5465   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5466   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
5467   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5468   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
5469   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5470   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
5471   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5472   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
5473   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5474   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
5475   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5476   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
5477   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5478   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
5479   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5480   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
5481   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5482   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
5483   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5484   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
5485   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5486   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
5487   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
5488   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
5489   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
5490   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
5491   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
5492 };
5493 
5494 #undef NEONMAP0
5495 #undef NEONMAP1
5496 #undef NEONMAP2
5497 
5498 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
5499   {                                                                            \
5500     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
5501         TypeModifier                                                           \
5502   }
5503 
5504 #define SVEMAP2(NameBase, TypeModifier)                                        \
5505   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
5506 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
5507 #define GET_SVE_LLVM_INTRINSIC_MAP
5508 #include "clang/Basic/arm_sve_builtin_cg.inc"
5509 #undef GET_SVE_LLVM_INTRINSIC_MAP
5510 };
5511 
5512 #undef SVEMAP1
5513 #undef SVEMAP2
5514 
5515 static bool NEONSIMDIntrinsicsProvenSorted = false;
5516 
5517 static bool AArch64SIMDIntrinsicsProvenSorted = false;
5518 static bool AArch64SISDIntrinsicsProvenSorted = false;
5519 static bool AArch64SVEIntrinsicsProvenSorted = false;
5520 
5521 static const ARMVectorIntrinsicInfo *
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)5522 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
5523                             unsigned BuiltinID, bool &MapProvenSorted) {
5524 
5525 #ifndef NDEBUG
5526   if (!MapProvenSorted) {
5527     assert(llvm::is_sorted(IntrinsicMap));
5528     MapProvenSorted = true;
5529   }
5530 #endif
5531 
5532   const ARMVectorIntrinsicInfo *Builtin =
5533       llvm::lower_bound(IntrinsicMap, BuiltinID);
5534 
5535   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
5536     return Builtin;
5537 
5538   return nullptr;
5539 }
5540 
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)5541 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
5542                                                    unsigned Modifier,
5543                                                    llvm::Type *ArgType,
5544                                                    const CallExpr *E) {
5545   int VectorSize = 0;
5546   if (Modifier & Use64BitVectors)
5547     VectorSize = 64;
5548   else if (Modifier & Use128BitVectors)
5549     VectorSize = 128;
5550 
5551   // Return type.
5552   SmallVector<llvm::Type *, 3> Tys;
5553   if (Modifier & AddRetType) {
5554     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5555     if (Modifier & VectorizeRetType)
5556       Ty = llvm::FixedVectorType::get(
5557           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
5558 
5559     Tys.push_back(Ty);
5560   }
5561 
5562   // Arguments.
5563   if (Modifier & VectorizeArgTypes) {
5564     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
5565     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
5566   }
5567 
5568   if (Modifier & (Add1ArgType | Add2ArgTypes))
5569     Tys.push_back(ArgType);
5570 
5571   if (Modifier & Add2ArgTypes)
5572     Tys.push_back(ArgType);
5573 
5574   if (Modifier & InventFloatType)
5575     Tys.push_back(FloatTy);
5576 
5577   return CGM.getIntrinsic(IntrinsicID, Tys);
5578 }
5579 
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const ARMVectorIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)5580 static Value *EmitCommonNeonSISDBuiltinExpr(
5581     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
5582     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
5583   unsigned BuiltinID = SISDInfo.BuiltinID;
5584   unsigned int Int = SISDInfo.LLVMIntrinsic;
5585   unsigned Modifier = SISDInfo.TypeModifier;
5586   const char *s = SISDInfo.NameHint;
5587 
5588   switch (BuiltinID) {
5589   case NEON::BI__builtin_neon_vcled_s64:
5590   case NEON::BI__builtin_neon_vcled_u64:
5591   case NEON::BI__builtin_neon_vcles_f32:
5592   case NEON::BI__builtin_neon_vcled_f64:
5593   case NEON::BI__builtin_neon_vcltd_s64:
5594   case NEON::BI__builtin_neon_vcltd_u64:
5595   case NEON::BI__builtin_neon_vclts_f32:
5596   case NEON::BI__builtin_neon_vcltd_f64:
5597   case NEON::BI__builtin_neon_vcales_f32:
5598   case NEON::BI__builtin_neon_vcaled_f64:
5599   case NEON::BI__builtin_neon_vcalts_f32:
5600   case NEON::BI__builtin_neon_vcaltd_f64:
5601     // Only one direction of comparisons actually exist, cmle is actually a cmge
5602     // with swapped operands. The table gives us the right intrinsic but we
5603     // still need to do the swap.
5604     std::swap(Ops[0], Ops[1]);
5605     break;
5606   }
5607 
5608   assert(Int && "Generic code assumes a valid intrinsic");
5609 
5610   // Determine the type(s) of this overloaded AArch64 intrinsic.
5611   const Expr *Arg = E->getArg(0);
5612   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5613   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5614 
5615   int j = 0;
5616   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5617   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5618        ai != ae; ++ai, ++j) {
5619     llvm::Type *ArgTy = ai->getType();
5620     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5621              ArgTy->getPrimitiveSizeInBits())
5622       continue;
5623 
5624     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5625     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5626     // it before inserting.
5627     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
5628         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
5629     Ops[j] =
5630         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5631   }
5632 
5633   Value *Result = CGF.EmitNeonCall(F, Ops, s);
5634   llvm::Type *ResultType = CGF.ConvertType(E->getType());
5635   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
5636       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
5637     return CGF.Builder.CreateExtractElement(Result, C0);
5638 
5639   return CGF.Builder.CreateBitCast(Result, ResultType, s);
5640 }
5641 
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,Address PtrOp0,Address PtrOp1,llvm::Triple::ArchType Arch)5642 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5643     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5644     const char *NameHint, unsigned Modifier, const CallExpr *E,
5645     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5646     llvm::Triple::ArchType Arch) {
5647   // Get the last argument, which specifies the vector type.
5648   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5649   Optional<llvm::APSInt> NeonTypeConst =
5650       Arg->getIntegerConstantExpr(getContext());
5651   if (!NeonTypeConst)
5652     return nullptr;
5653 
5654   // Determine the type of this overloaded NEON intrinsic.
5655   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
5656   bool Usgn = Type.isUnsigned();
5657   bool Quad = Type.isQuad();
5658   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5659   const bool AllowBFloatArgsAndRet =
5660       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
5661 
5662   llvm::FixedVectorType *VTy =
5663       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
5664   llvm::Type *Ty = VTy;
5665   if (!Ty)
5666     return nullptr;
5667 
5668   auto getAlignmentValue32 = [&](Address addr) -> Value* {
5669     return Builder.getInt32(addr.getAlignment().getQuantity());
5670   };
5671 
5672   unsigned Int = LLVMIntrinsic;
5673   if ((Modifier & UnsignedAlts) && !Usgn)
5674     Int = AltLLVMIntrinsic;
5675 
5676   switch (BuiltinID) {
5677   default: break;
5678   case NEON::BI__builtin_neon_splat_lane_v:
5679   case NEON::BI__builtin_neon_splat_laneq_v:
5680   case NEON::BI__builtin_neon_splatq_lane_v:
5681   case NEON::BI__builtin_neon_splatq_laneq_v: {
5682     auto NumElements = VTy->getElementCount();
5683     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
5684       NumElements = NumElements * 2;
5685     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
5686       NumElements = NumElements.divideCoefficientBy(2);
5687 
5688     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
5689     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
5690   }
5691   case NEON::BI__builtin_neon_vpadd_v:
5692   case NEON::BI__builtin_neon_vpaddq_v:
5693     // We don't allow fp/int overloading of intrinsics.
5694     if (VTy->getElementType()->isFloatingPointTy() &&
5695         Int == Intrinsic::aarch64_neon_addp)
5696       Int = Intrinsic::aarch64_neon_faddp;
5697     break;
5698   case NEON::BI__builtin_neon_vabs_v:
5699   case NEON::BI__builtin_neon_vabsq_v:
5700     if (VTy->getElementType()->isFloatingPointTy())
5701       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5702     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5703   case NEON::BI__builtin_neon_vaddhn_v: {
5704     llvm::FixedVectorType *SrcTy =
5705         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
5706 
5707     // %sum = add <4 x i32> %lhs, %rhs
5708     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5709     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5710     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5711 
5712     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5713     Constant *ShiftAmt =
5714         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5715     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5716 
5717     // %res = trunc <4 x i32> %high to <4 x i16>
5718     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5719   }
5720   case NEON::BI__builtin_neon_vcale_v:
5721   case NEON::BI__builtin_neon_vcaleq_v:
5722   case NEON::BI__builtin_neon_vcalt_v:
5723   case NEON::BI__builtin_neon_vcaltq_v:
5724     std::swap(Ops[0], Ops[1]);
5725     LLVM_FALLTHROUGH;
5726   case NEON::BI__builtin_neon_vcage_v:
5727   case NEON::BI__builtin_neon_vcageq_v:
5728   case NEON::BI__builtin_neon_vcagt_v:
5729   case NEON::BI__builtin_neon_vcagtq_v: {
5730     llvm::Type *Ty;
5731     switch (VTy->getScalarSizeInBits()) {
5732     default: llvm_unreachable("unexpected type");
5733     case 32:
5734       Ty = FloatTy;
5735       break;
5736     case 64:
5737       Ty = DoubleTy;
5738       break;
5739     case 16:
5740       Ty = HalfTy;
5741       break;
5742     }
5743     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
5744     llvm::Type *Tys[] = { VTy, VecFlt };
5745     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5746     return EmitNeonCall(F, Ops, NameHint);
5747   }
5748   case NEON::BI__builtin_neon_vceqz_v:
5749   case NEON::BI__builtin_neon_vceqzq_v:
5750     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5751                                          ICmpInst::ICMP_EQ, "vceqz");
5752   case NEON::BI__builtin_neon_vcgez_v:
5753   case NEON::BI__builtin_neon_vcgezq_v:
5754     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5755                                          ICmpInst::ICMP_SGE, "vcgez");
5756   case NEON::BI__builtin_neon_vclez_v:
5757   case NEON::BI__builtin_neon_vclezq_v:
5758     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5759                                          ICmpInst::ICMP_SLE, "vclez");
5760   case NEON::BI__builtin_neon_vcgtz_v:
5761   case NEON::BI__builtin_neon_vcgtzq_v:
5762     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5763                                          ICmpInst::ICMP_SGT, "vcgtz");
5764   case NEON::BI__builtin_neon_vcltz_v:
5765   case NEON::BI__builtin_neon_vcltzq_v:
5766     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5767                                          ICmpInst::ICMP_SLT, "vcltz");
5768   case NEON::BI__builtin_neon_vclz_v:
5769   case NEON::BI__builtin_neon_vclzq_v:
5770     // We generate target-independent intrinsic, which needs a second argument
5771     // for whether or not clz of zero is undefined; on ARM it isn't.
5772     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5773     break;
5774   case NEON::BI__builtin_neon_vcvt_f32_v:
5775   case NEON::BI__builtin_neon_vcvtq_f32_v:
5776     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5777     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5778                      HasLegalHalfType);
5779     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5780                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5781   case NEON::BI__builtin_neon_vcvt_f16_v:
5782   case NEON::BI__builtin_neon_vcvtq_f16_v:
5783     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5784     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5785                      HasLegalHalfType);
5786     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5787                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5788   case NEON::BI__builtin_neon_vcvt_n_f16_v:
5789   case NEON::BI__builtin_neon_vcvt_n_f32_v:
5790   case NEON::BI__builtin_neon_vcvt_n_f64_v:
5791   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5792   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5793   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5794     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5795     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5796     Function *F = CGM.getIntrinsic(Int, Tys);
5797     return EmitNeonCall(F, Ops, "vcvt_n");
5798   }
5799   case NEON::BI__builtin_neon_vcvt_n_s16_v:
5800   case NEON::BI__builtin_neon_vcvt_n_s32_v:
5801   case NEON::BI__builtin_neon_vcvt_n_u16_v:
5802   case NEON::BI__builtin_neon_vcvt_n_u32_v:
5803   case NEON::BI__builtin_neon_vcvt_n_s64_v:
5804   case NEON::BI__builtin_neon_vcvt_n_u64_v:
5805   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5806   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5807   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5808   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5809   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5810   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5811     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5812     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5813     return EmitNeonCall(F, Ops, "vcvt_n");
5814   }
5815   case NEON::BI__builtin_neon_vcvt_s32_v:
5816   case NEON::BI__builtin_neon_vcvt_u32_v:
5817   case NEON::BI__builtin_neon_vcvt_s64_v:
5818   case NEON::BI__builtin_neon_vcvt_u64_v:
5819   case NEON::BI__builtin_neon_vcvt_s16_v:
5820   case NEON::BI__builtin_neon_vcvt_u16_v:
5821   case NEON::BI__builtin_neon_vcvtq_s32_v:
5822   case NEON::BI__builtin_neon_vcvtq_u32_v:
5823   case NEON::BI__builtin_neon_vcvtq_s64_v:
5824   case NEON::BI__builtin_neon_vcvtq_u64_v:
5825   case NEON::BI__builtin_neon_vcvtq_s16_v:
5826   case NEON::BI__builtin_neon_vcvtq_u16_v: {
5827     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5828     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5829                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5830   }
5831   case NEON::BI__builtin_neon_vcvta_s16_v:
5832   case NEON::BI__builtin_neon_vcvta_s32_v:
5833   case NEON::BI__builtin_neon_vcvta_s64_v:
5834   case NEON::BI__builtin_neon_vcvta_u16_v:
5835   case NEON::BI__builtin_neon_vcvta_u32_v:
5836   case NEON::BI__builtin_neon_vcvta_u64_v:
5837   case NEON::BI__builtin_neon_vcvtaq_s16_v:
5838   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5839   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5840   case NEON::BI__builtin_neon_vcvtaq_u16_v:
5841   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5842   case NEON::BI__builtin_neon_vcvtaq_u64_v:
5843   case NEON::BI__builtin_neon_vcvtn_s16_v:
5844   case NEON::BI__builtin_neon_vcvtn_s32_v:
5845   case NEON::BI__builtin_neon_vcvtn_s64_v:
5846   case NEON::BI__builtin_neon_vcvtn_u16_v:
5847   case NEON::BI__builtin_neon_vcvtn_u32_v:
5848   case NEON::BI__builtin_neon_vcvtn_u64_v:
5849   case NEON::BI__builtin_neon_vcvtnq_s16_v:
5850   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5851   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5852   case NEON::BI__builtin_neon_vcvtnq_u16_v:
5853   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5854   case NEON::BI__builtin_neon_vcvtnq_u64_v:
5855   case NEON::BI__builtin_neon_vcvtp_s16_v:
5856   case NEON::BI__builtin_neon_vcvtp_s32_v:
5857   case NEON::BI__builtin_neon_vcvtp_s64_v:
5858   case NEON::BI__builtin_neon_vcvtp_u16_v:
5859   case NEON::BI__builtin_neon_vcvtp_u32_v:
5860   case NEON::BI__builtin_neon_vcvtp_u64_v:
5861   case NEON::BI__builtin_neon_vcvtpq_s16_v:
5862   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5863   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5864   case NEON::BI__builtin_neon_vcvtpq_u16_v:
5865   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5866   case NEON::BI__builtin_neon_vcvtpq_u64_v:
5867   case NEON::BI__builtin_neon_vcvtm_s16_v:
5868   case NEON::BI__builtin_neon_vcvtm_s32_v:
5869   case NEON::BI__builtin_neon_vcvtm_s64_v:
5870   case NEON::BI__builtin_neon_vcvtm_u16_v:
5871   case NEON::BI__builtin_neon_vcvtm_u32_v:
5872   case NEON::BI__builtin_neon_vcvtm_u64_v:
5873   case NEON::BI__builtin_neon_vcvtmq_s16_v:
5874   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5875   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5876   case NEON::BI__builtin_neon_vcvtmq_u16_v:
5877   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5878   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5879     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5880     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5881   }
5882   case NEON::BI__builtin_neon_vcvtx_f32_v: {
5883     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
5884     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5885 
5886   }
5887   case NEON::BI__builtin_neon_vext_v:
5888   case NEON::BI__builtin_neon_vextq_v: {
5889     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5890     SmallVector<int, 16> Indices;
5891     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5892       Indices.push_back(i+CV);
5893 
5894     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5895     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5896     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5897   }
5898   case NEON::BI__builtin_neon_vfma_v:
5899   case NEON::BI__builtin_neon_vfmaq_v: {
5900     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5901     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5902     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5903 
5904     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5905     return emitCallMaybeConstrainedFPBuiltin(
5906         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
5907         {Ops[1], Ops[2], Ops[0]});
5908   }
5909   case NEON::BI__builtin_neon_vld1_v:
5910   case NEON::BI__builtin_neon_vld1q_v: {
5911     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5912     Ops.push_back(getAlignmentValue32(PtrOp0));
5913     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5914   }
5915   case NEON::BI__builtin_neon_vld1_x2_v:
5916   case NEON::BI__builtin_neon_vld1q_x2_v:
5917   case NEON::BI__builtin_neon_vld1_x3_v:
5918   case NEON::BI__builtin_neon_vld1q_x3_v:
5919   case NEON::BI__builtin_neon_vld1_x4_v:
5920   case NEON::BI__builtin_neon_vld1q_x4_v: {
5921     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
5922     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5923     llvm::Type *Tys[2] = { VTy, PTy };
5924     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5925     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5926     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5927     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5928     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5929   }
5930   case NEON::BI__builtin_neon_vld2_v:
5931   case NEON::BI__builtin_neon_vld2q_v:
5932   case NEON::BI__builtin_neon_vld3_v:
5933   case NEON::BI__builtin_neon_vld3q_v:
5934   case NEON::BI__builtin_neon_vld4_v:
5935   case NEON::BI__builtin_neon_vld4q_v:
5936   case NEON::BI__builtin_neon_vld2_dup_v:
5937   case NEON::BI__builtin_neon_vld2q_dup_v:
5938   case NEON::BI__builtin_neon_vld3_dup_v:
5939   case NEON::BI__builtin_neon_vld3q_dup_v:
5940   case NEON::BI__builtin_neon_vld4_dup_v:
5941   case NEON::BI__builtin_neon_vld4q_dup_v: {
5942     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5943     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5944     Value *Align = getAlignmentValue32(PtrOp1);
5945     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5946     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5947     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5948     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5949   }
5950   case NEON::BI__builtin_neon_vld1_dup_v:
5951   case NEON::BI__builtin_neon_vld1q_dup_v: {
5952     Value *V = UndefValue::get(Ty);
5953     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5954     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5955     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5956     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5957     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5958     return EmitNeonSplat(Ops[0], CI);
5959   }
5960   case NEON::BI__builtin_neon_vld2_lane_v:
5961   case NEON::BI__builtin_neon_vld2q_lane_v:
5962   case NEON::BI__builtin_neon_vld3_lane_v:
5963   case NEON::BI__builtin_neon_vld3q_lane_v:
5964   case NEON::BI__builtin_neon_vld4_lane_v:
5965   case NEON::BI__builtin_neon_vld4q_lane_v: {
5966     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5967     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5968     for (unsigned I = 2; I < Ops.size() - 1; ++I)
5969       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5970     Ops.push_back(getAlignmentValue32(PtrOp1));
5971     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5972     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5973     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5974     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5975   }
5976   case NEON::BI__builtin_neon_vmovl_v: {
5977     llvm::FixedVectorType *DTy =
5978         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
5979     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5980     if (Usgn)
5981       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5982     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5983   }
5984   case NEON::BI__builtin_neon_vmovn_v: {
5985     llvm::FixedVectorType *QTy =
5986         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
5987     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5988     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5989   }
5990   case NEON::BI__builtin_neon_vmull_v:
5991     // FIXME: the integer vmull operations could be emitted in terms of pure
5992     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5993     // hoisting the exts outside loops. Until global ISel comes along that can
5994     // see through such movement this leads to bad CodeGen. So we need an
5995     // intrinsic for now.
5996     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5997     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5998     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5999   case NEON::BI__builtin_neon_vpadal_v:
6000   case NEON::BI__builtin_neon_vpadalq_v: {
6001     // The source operand type has twice as many elements of half the size.
6002     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6003     llvm::Type *EltTy =
6004       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6005     auto *NarrowTy =
6006         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6007     llvm::Type *Tys[2] = { Ty, NarrowTy };
6008     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6009   }
6010   case NEON::BI__builtin_neon_vpaddl_v:
6011   case NEON::BI__builtin_neon_vpaddlq_v: {
6012     // The source operand type has twice as many elements of half the size.
6013     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6014     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6015     auto *NarrowTy =
6016         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6017     llvm::Type *Tys[2] = { Ty, NarrowTy };
6018     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6019   }
6020   case NEON::BI__builtin_neon_vqdmlal_v:
6021   case NEON::BI__builtin_neon_vqdmlsl_v: {
6022     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6023     Ops[1] =
6024         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6025     Ops.resize(2);
6026     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6027   }
6028   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6029   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6030   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6031   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6032     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6033     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6034         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6035       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6036                                        RTy->getNumElements() * 2);
6037     llvm::Type *Tys[2] = {
6038         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6039                                              /*isQuad*/ false))};
6040     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6041   }
6042   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6043   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6044   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6045   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6046     llvm::Type *Tys[2] = {
6047         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6048                                             /*isQuad*/ true))};
6049     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6050   }
6051   case NEON::BI__builtin_neon_vqshl_n_v:
6052   case NEON::BI__builtin_neon_vqshlq_n_v:
6053     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6054                         1, false);
6055   case NEON::BI__builtin_neon_vqshlu_n_v:
6056   case NEON::BI__builtin_neon_vqshluq_n_v:
6057     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6058                         1, false);
6059   case NEON::BI__builtin_neon_vrecpe_v:
6060   case NEON::BI__builtin_neon_vrecpeq_v:
6061   case NEON::BI__builtin_neon_vrsqrte_v:
6062   case NEON::BI__builtin_neon_vrsqrteq_v:
6063     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6064     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6065   case NEON::BI__builtin_neon_vrndi_v:
6066   case NEON::BI__builtin_neon_vrndiq_v:
6067     Int = Builder.getIsFPConstrained()
6068               ? Intrinsic::experimental_constrained_nearbyint
6069               : Intrinsic::nearbyint;
6070     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6071   case NEON::BI__builtin_neon_vrshr_n_v:
6072   case NEON::BI__builtin_neon_vrshrq_n_v:
6073     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6074                         1, true);
6075   case NEON::BI__builtin_neon_vshl_n_v:
6076   case NEON::BI__builtin_neon_vshlq_n_v:
6077     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6078     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6079                              "vshl_n");
6080   case NEON::BI__builtin_neon_vshll_n_v: {
6081     llvm::FixedVectorType *SrcTy =
6082         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6083     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6084     if (Usgn)
6085       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6086     else
6087       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6088     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6089     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6090   }
6091   case NEON::BI__builtin_neon_vshrn_n_v: {
6092     llvm::FixedVectorType *SrcTy =
6093         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6094     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6095     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6096     if (Usgn)
6097       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6098     else
6099       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6100     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6101   }
6102   case NEON::BI__builtin_neon_vshr_n_v:
6103   case NEON::BI__builtin_neon_vshrq_n_v:
6104     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6105   case NEON::BI__builtin_neon_vst1_v:
6106   case NEON::BI__builtin_neon_vst1q_v:
6107   case NEON::BI__builtin_neon_vst2_v:
6108   case NEON::BI__builtin_neon_vst2q_v:
6109   case NEON::BI__builtin_neon_vst3_v:
6110   case NEON::BI__builtin_neon_vst3q_v:
6111   case NEON::BI__builtin_neon_vst4_v:
6112   case NEON::BI__builtin_neon_vst4q_v:
6113   case NEON::BI__builtin_neon_vst2_lane_v:
6114   case NEON::BI__builtin_neon_vst2q_lane_v:
6115   case NEON::BI__builtin_neon_vst3_lane_v:
6116   case NEON::BI__builtin_neon_vst3q_lane_v:
6117   case NEON::BI__builtin_neon_vst4_lane_v:
6118   case NEON::BI__builtin_neon_vst4q_lane_v: {
6119     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6120     Ops.push_back(getAlignmentValue32(PtrOp0));
6121     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6122   }
6123   case NEON::BI__builtin_neon_vst1_x2_v:
6124   case NEON::BI__builtin_neon_vst1q_x2_v:
6125   case NEON::BI__builtin_neon_vst1_x3_v:
6126   case NEON::BI__builtin_neon_vst1q_x3_v:
6127   case NEON::BI__builtin_neon_vst1_x4_v:
6128   case NEON::BI__builtin_neon_vst1q_x4_v: {
6129     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6130     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6131     // in AArch64 it comes last. We may want to stick to one or another.
6132     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6133         Arch == llvm::Triple::aarch64_32) {
6134       llvm::Type *Tys[2] = { VTy, PTy };
6135       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6136       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6137     }
6138     llvm::Type *Tys[2] = { PTy, VTy };
6139     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6140   }
6141   case NEON::BI__builtin_neon_vsubhn_v: {
6142     llvm::FixedVectorType *SrcTy =
6143         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6144 
6145     // %sum = add <4 x i32> %lhs, %rhs
6146     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6147     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6148     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6149 
6150     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6151     Constant *ShiftAmt =
6152         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6153     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6154 
6155     // %res = trunc <4 x i32> %high to <4 x i16>
6156     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6157   }
6158   case NEON::BI__builtin_neon_vtrn_v:
6159   case NEON::BI__builtin_neon_vtrnq_v: {
6160     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6161     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6162     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6163     Value *SV = nullptr;
6164 
6165     for (unsigned vi = 0; vi != 2; ++vi) {
6166       SmallVector<int, 16> Indices;
6167       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6168         Indices.push_back(i+vi);
6169         Indices.push_back(i+e+vi);
6170       }
6171       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6172       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6173       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6174     }
6175     return SV;
6176   }
6177   case NEON::BI__builtin_neon_vtst_v:
6178   case NEON::BI__builtin_neon_vtstq_v: {
6179     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6180     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6181     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6182     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6183                                 ConstantAggregateZero::get(Ty));
6184     return Builder.CreateSExt(Ops[0], Ty, "vtst");
6185   }
6186   case NEON::BI__builtin_neon_vuzp_v:
6187   case NEON::BI__builtin_neon_vuzpq_v: {
6188     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6189     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6190     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6191     Value *SV = nullptr;
6192 
6193     for (unsigned vi = 0; vi != 2; ++vi) {
6194       SmallVector<int, 16> Indices;
6195       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6196         Indices.push_back(2*i+vi);
6197 
6198       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6199       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6200       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6201     }
6202     return SV;
6203   }
6204   case NEON::BI__builtin_neon_vzip_v:
6205   case NEON::BI__builtin_neon_vzipq_v: {
6206     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6207     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6208     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6209     Value *SV = nullptr;
6210 
6211     for (unsigned vi = 0; vi != 2; ++vi) {
6212       SmallVector<int, 16> Indices;
6213       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6214         Indices.push_back((i + vi*e) >> 1);
6215         Indices.push_back(((i + vi*e) >> 1)+e);
6216       }
6217       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6218       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6219       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6220     }
6221     return SV;
6222   }
6223   case NEON::BI__builtin_neon_vdot_v:
6224   case NEON::BI__builtin_neon_vdotq_v: {
6225     auto *InputTy =
6226         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6227     llvm::Type *Tys[2] = { Ty, InputTy };
6228     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6229     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6230   }
6231   case NEON::BI__builtin_neon_vfmlal_low_v:
6232   case NEON::BI__builtin_neon_vfmlalq_low_v: {
6233     auto *InputTy =
6234         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6235     llvm::Type *Tys[2] = { Ty, InputTy };
6236     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6237   }
6238   case NEON::BI__builtin_neon_vfmlsl_low_v:
6239   case NEON::BI__builtin_neon_vfmlslq_low_v: {
6240     auto *InputTy =
6241         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6242     llvm::Type *Tys[2] = { Ty, InputTy };
6243     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6244   }
6245   case NEON::BI__builtin_neon_vfmlal_high_v:
6246   case NEON::BI__builtin_neon_vfmlalq_high_v: {
6247     auto *InputTy =
6248         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6249     llvm::Type *Tys[2] = { Ty, InputTy };
6250     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6251   }
6252   case NEON::BI__builtin_neon_vfmlsl_high_v:
6253   case NEON::BI__builtin_neon_vfmlslq_high_v: {
6254     auto *InputTy =
6255         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6256     llvm::Type *Tys[2] = { Ty, InputTy };
6257     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
6258   }
6259   case NEON::BI__builtin_neon_vmmlaq_v: {
6260     auto *InputTy =
6261         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6262     llvm::Type *Tys[2] = { Ty, InputTy };
6263     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6264     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
6265   }
6266   case NEON::BI__builtin_neon_vusmmlaq_v: {
6267     auto *InputTy =
6268         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6269     llvm::Type *Tys[2] = { Ty, InputTy };
6270     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
6271   }
6272   case NEON::BI__builtin_neon_vusdot_v:
6273   case NEON::BI__builtin_neon_vusdotq_v: {
6274     auto *InputTy =
6275         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6276     llvm::Type *Tys[2] = { Ty, InputTy };
6277     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
6278   }
6279   case NEON::BI__builtin_neon_vbfdot_v:
6280   case NEON::BI__builtin_neon_vbfdotq_v: {
6281     llvm::Type *InputTy =
6282         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
6283     llvm::Type *Tys[2] = { Ty, InputTy };
6284     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
6285   }
6286   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
6287     llvm::Type *Tys[1] = { Ty };
6288     Function *F = CGM.getIntrinsic(Int, Tys);
6289     return EmitNeonCall(F, Ops, "vcvtfp2bf");
6290   }
6291 
6292   }
6293 
6294   assert(Int && "Expected valid intrinsic number");
6295 
6296   // Determine the type(s) of this overloaded AArch64 intrinsic.
6297   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
6298 
6299   Value *Result = EmitNeonCall(F, Ops, NameHint);
6300   llvm::Type *ResultType = ConvertType(E->getType());
6301   // AArch64 intrinsic one-element vector type cast to
6302   // scalar type expected by the builtin
6303   return Builder.CreateBitCast(Result, ResultType, NameHint);
6304 }
6305 
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)6306 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
6307     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
6308     const CmpInst::Predicate Ip, const Twine &Name) {
6309   llvm::Type *OTy = Op->getType();
6310 
6311   // FIXME: this is utterly horrific. We should not be looking at previous
6312   // codegen context to find out what needs doing. Unfortunately TableGen
6313   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
6314   // (etc).
6315   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
6316     OTy = BI->getOperand(0)->getType();
6317 
6318   Op = Builder.CreateBitCast(Op, OTy);
6319   if (OTy->getScalarType()->isFloatingPointTy()) {
6320     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
6321   } else {
6322     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
6323   }
6324   return Builder.CreateSExt(Op, Ty, Name);
6325 }
6326 
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)6327 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
6328                                  Value *ExtOp, Value *IndexOp,
6329                                  llvm::Type *ResTy, unsigned IntID,
6330                                  const char *Name) {
6331   SmallVector<Value *, 2> TblOps;
6332   if (ExtOp)
6333     TblOps.push_back(ExtOp);
6334 
6335   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
6336   SmallVector<int, 16> Indices;
6337   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
6338   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
6339     Indices.push_back(2*i);
6340     Indices.push_back(2*i+1);
6341   }
6342 
6343   int PairPos = 0, End = Ops.size() - 1;
6344   while (PairPos < End) {
6345     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6346                                                      Ops[PairPos+1], Indices,
6347                                                      Name));
6348     PairPos += 2;
6349   }
6350 
6351   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
6352   // of the 128-bit lookup table with zero.
6353   if (PairPos == End) {
6354     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
6355     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
6356                                                      ZeroTbl, Indices, Name));
6357   }
6358 
6359   Function *TblF;
6360   TblOps.push_back(IndexOp);
6361   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
6362 
6363   return CGF.EmitNeonCall(TblF, TblOps, Name);
6364 }
6365 
GetValueForARMHint(unsigned BuiltinID)6366 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
6367   unsigned Value;
6368   switch (BuiltinID) {
6369   default:
6370     return nullptr;
6371   case ARM::BI__builtin_arm_nop:
6372     Value = 0;
6373     break;
6374   case ARM::BI__builtin_arm_yield:
6375   case ARM::BI__yield:
6376     Value = 1;
6377     break;
6378   case ARM::BI__builtin_arm_wfe:
6379   case ARM::BI__wfe:
6380     Value = 2;
6381     break;
6382   case ARM::BI__builtin_arm_wfi:
6383   case ARM::BI__wfi:
6384     Value = 3;
6385     break;
6386   case ARM::BI__builtin_arm_sev:
6387   case ARM::BI__sev:
6388     Value = 4;
6389     break;
6390   case ARM::BI__builtin_arm_sevl:
6391   case ARM::BI__sevl:
6392     Value = 5;
6393     break;
6394   }
6395 
6396   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
6397                             llvm::ConstantInt::get(Int32Ty, Value));
6398 }
6399 
6400 enum SpecialRegisterAccessKind {
6401   NormalRead,
6402   VolatileRead,
6403   Write,
6404 };
6405 
6406 // Generates the IR for the read/write special register builtin,
6407 // ValueType is the type of the value that is to be written or read,
6408 // RegisterType is the type of the register being written to or read from.
EmitSpecialRegisterBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,SpecialRegisterAccessKind AccessKind,StringRef SysReg="")6409 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
6410                                          const CallExpr *E,
6411                                          llvm::Type *RegisterType,
6412                                          llvm::Type *ValueType,
6413                                          SpecialRegisterAccessKind AccessKind,
6414                                          StringRef SysReg = "") {
6415   // write and register intrinsics only support 32 and 64 bit operations.
6416   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
6417           && "Unsupported size for register.");
6418 
6419   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6420   CodeGen::CodeGenModule &CGM = CGF.CGM;
6421   LLVMContext &Context = CGM.getLLVMContext();
6422 
6423   if (SysReg.empty()) {
6424     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
6425     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
6426   }
6427 
6428   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
6429   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6430   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6431 
6432   llvm::Type *Types[] = { RegisterType };
6433 
6434   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
6435   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
6436             && "Can't fit 64-bit value in 32-bit register");
6437 
6438   if (AccessKind != Write) {
6439     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
6440     llvm::Function *F = CGM.getIntrinsic(
6441         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
6442                                    : llvm::Intrinsic::read_register,
6443         Types);
6444     llvm::Value *Call = Builder.CreateCall(F, Metadata);
6445 
6446     if (MixedTypes)
6447       // Read into 64 bit register and then truncate result to 32 bit.
6448       return Builder.CreateTrunc(Call, ValueType);
6449 
6450     if (ValueType->isPointerTy())
6451       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
6452       return Builder.CreateIntToPtr(Call, ValueType);
6453 
6454     return Call;
6455   }
6456 
6457   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
6458   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
6459   if (MixedTypes) {
6460     // Extend 32 bit write value to 64 bit to pass to write.
6461     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
6462     return Builder.CreateCall(F, { Metadata, ArgValue });
6463   }
6464 
6465   if (ValueType->isPointerTy()) {
6466     // Have VoidPtrTy ArgValue but want to return an i32/i64.
6467     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
6468     return Builder.CreateCall(F, { Metadata, ArgValue });
6469   }
6470 
6471   return Builder.CreateCall(F, { Metadata, ArgValue });
6472 }
6473 
6474 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
6475 /// argument that specifies the vector type.
HasExtraNeonArgument(unsigned BuiltinID)6476 static bool HasExtraNeonArgument(unsigned BuiltinID) {
6477   switch (BuiltinID) {
6478   default: break;
6479   case NEON::BI__builtin_neon_vget_lane_i8:
6480   case NEON::BI__builtin_neon_vget_lane_i16:
6481   case NEON::BI__builtin_neon_vget_lane_bf16:
6482   case NEON::BI__builtin_neon_vget_lane_i32:
6483   case NEON::BI__builtin_neon_vget_lane_i64:
6484   case NEON::BI__builtin_neon_vget_lane_f32:
6485   case NEON::BI__builtin_neon_vgetq_lane_i8:
6486   case NEON::BI__builtin_neon_vgetq_lane_i16:
6487   case NEON::BI__builtin_neon_vgetq_lane_bf16:
6488   case NEON::BI__builtin_neon_vgetq_lane_i32:
6489   case NEON::BI__builtin_neon_vgetq_lane_i64:
6490   case NEON::BI__builtin_neon_vgetq_lane_f32:
6491   case NEON::BI__builtin_neon_vduph_lane_bf16:
6492   case NEON::BI__builtin_neon_vduph_laneq_bf16:
6493   case NEON::BI__builtin_neon_vset_lane_i8:
6494   case NEON::BI__builtin_neon_vset_lane_i16:
6495   case NEON::BI__builtin_neon_vset_lane_bf16:
6496   case NEON::BI__builtin_neon_vset_lane_i32:
6497   case NEON::BI__builtin_neon_vset_lane_i64:
6498   case NEON::BI__builtin_neon_vset_lane_f32:
6499   case NEON::BI__builtin_neon_vsetq_lane_i8:
6500   case NEON::BI__builtin_neon_vsetq_lane_i16:
6501   case NEON::BI__builtin_neon_vsetq_lane_bf16:
6502   case NEON::BI__builtin_neon_vsetq_lane_i32:
6503   case NEON::BI__builtin_neon_vsetq_lane_i64:
6504   case NEON::BI__builtin_neon_vsetq_lane_f32:
6505   case NEON::BI__builtin_neon_vsha1h_u32:
6506   case NEON::BI__builtin_neon_vsha1cq_u32:
6507   case NEON::BI__builtin_neon_vsha1pq_u32:
6508   case NEON::BI__builtin_neon_vsha1mq_u32:
6509   case NEON::BI__builtin_neon_vcvth_bf16_f32:
6510   case clang::ARM::BI_MoveToCoprocessor:
6511   case clang::ARM::BI_MoveToCoprocessor2:
6512     return false;
6513   }
6514   return true;
6515 }
6516 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)6517 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
6518                                            const CallExpr *E,
6519                                            ReturnValueSlot ReturnValue,
6520                                            llvm::Triple::ArchType Arch) {
6521   if (auto Hint = GetValueForARMHint(BuiltinID))
6522     return Hint;
6523 
6524   if (BuiltinID == ARM::BI__emit) {
6525     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
6526     llvm::FunctionType *FTy =
6527         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
6528 
6529     Expr::EvalResult Result;
6530     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6531       llvm_unreachable("Sema will ensure that the parameter is constant");
6532 
6533     llvm::APSInt Value = Result.Val.getInt();
6534     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
6535 
6536     llvm::InlineAsm *Emit =
6537         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
6538                                  /*hasSideEffects=*/true)
6539                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
6540                                  /*hasSideEffects=*/true);
6541 
6542     return Builder.CreateCall(Emit);
6543   }
6544 
6545   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
6546     Value *Option = EmitScalarExpr(E->getArg(0));
6547     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
6548   }
6549 
6550   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
6551     Value *Address = EmitScalarExpr(E->getArg(0));
6552     Value *RW      = EmitScalarExpr(E->getArg(1));
6553     Value *IsData  = EmitScalarExpr(E->getArg(2));
6554 
6555     // Locality is not supported on ARM target
6556     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
6557 
6558     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
6559     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6560   }
6561 
6562   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
6563     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6564     return Builder.CreateCall(
6565         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6566   }
6567 
6568   if (BuiltinID == ARM::BI__builtin_arm_cls) {
6569     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6570     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
6571   }
6572   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
6573     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6574     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
6575                               "cls");
6576   }
6577 
6578   if (BuiltinID == ARM::BI__clear_cache) {
6579     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6580     const FunctionDecl *FD = E->getDirectCallee();
6581     Value *Ops[2];
6582     for (unsigned i = 0; i < 2; i++)
6583       Ops[i] = EmitScalarExpr(E->getArg(i));
6584     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6585     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6586     StringRef Name = FD->getName();
6587     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6588   }
6589 
6590   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
6591       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
6592     Function *F;
6593 
6594     switch (BuiltinID) {
6595     default: llvm_unreachable("unexpected builtin");
6596     case ARM::BI__builtin_arm_mcrr:
6597       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
6598       break;
6599     case ARM::BI__builtin_arm_mcrr2:
6600       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
6601       break;
6602     }
6603 
6604     // MCRR{2} instruction has 5 operands but
6605     // the intrinsic has 4 because Rt and Rt2
6606     // are represented as a single unsigned 64
6607     // bit integer in the intrinsic definition
6608     // but internally it's represented as 2 32
6609     // bit integers.
6610 
6611     Value *Coproc = EmitScalarExpr(E->getArg(0));
6612     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6613     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
6614     Value *CRm = EmitScalarExpr(E->getArg(3));
6615 
6616     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6617     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
6618     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
6619     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
6620 
6621     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
6622   }
6623 
6624   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
6625       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
6626     Function *F;
6627 
6628     switch (BuiltinID) {
6629     default: llvm_unreachable("unexpected builtin");
6630     case ARM::BI__builtin_arm_mrrc:
6631       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
6632       break;
6633     case ARM::BI__builtin_arm_mrrc2:
6634       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
6635       break;
6636     }
6637 
6638     Value *Coproc = EmitScalarExpr(E->getArg(0));
6639     Value *Opc1 = EmitScalarExpr(E->getArg(1));
6640     Value *CRm  = EmitScalarExpr(E->getArg(2));
6641     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
6642 
6643     // Returns an unsigned 64 bit integer, represented
6644     // as two 32 bit integers.
6645 
6646     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
6647     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
6648     Rt = Builder.CreateZExt(Rt, Int64Ty);
6649     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
6650 
6651     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
6652     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
6653     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
6654 
6655     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
6656   }
6657 
6658   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
6659       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
6660         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
6661        getContext().getTypeSize(E->getType()) == 64) ||
6662       BuiltinID == ARM::BI__ldrexd) {
6663     Function *F;
6664 
6665     switch (BuiltinID) {
6666     default: llvm_unreachable("unexpected builtin");
6667     case ARM::BI__builtin_arm_ldaex:
6668       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
6669       break;
6670     case ARM::BI__builtin_arm_ldrexd:
6671     case ARM::BI__builtin_arm_ldrex:
6672     case ARM::BI__ldrexd:
6673       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
6674       break;
6675     }
6676 
6677     Value *LdPtr = EmitScalarExpr(E->getArg(0));
6678     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6679                                     "ldrexd");
6680 
6681     Value *Val0 = Builder.CreateExtractValue(Val, 1);
6682     Value *Val1 = Builder.CreateExtractValue(Val, 0);
6683     Val0 = Builder.CreateZExt(Val0, Int64Ty);
6684     Val1 = Builder.CreateZExt(Val1, Int64Ty);
6685 
6686     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
6687     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6688     Val = Builder.CreateOr(Val, Val1);
6689     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6690   }
6691 
6692   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
6693       BuiltinID == ARM::BI__builtin_arm_ldaex) {
6694     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6695 
6696     QualType Ty = E->getType();
6697     llvm::Type *RealResTy = ConvertType(Ty);
6698     llvm::Type *PtrTy = llvm::IntegerType::get(
6699         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6700     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6701 
6702     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6703                                        ? Intrinsic::arm_ldaex
6704                                        : Intrinsic::arm_ldrex,
6705                                    PtrTy);
6706     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6707 
6708     if (RealResTy->isPointerTy())
6709       return Builder.CreateIntToPtr(Val, RealResTy);
6710     else {
6711       llvm::Type *IntResTy = llvm::IntegerType::get(
6712           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6713       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6714       return Builder.CreateBitCast(Val, RealResTy);
6715     }
6716   }
6717 
6718   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6719       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6720         BuiltinID == ARM::BI__builtin_arm_strex) &&
6721        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6722     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6723                                        ? Intrinsic::arm_stlexd
6724                                        : Intrinsic::arm_strexd);
6725     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6726 
6727     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6728     Value *Val = EmitScalarExpr(E->getArg(0));
6729     Builder.CreateStore(Val, Tmp);
6730 
6731     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6732     Val = Builder.CreateLoad(LdPtr);
6733 
6734     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6735     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6736     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6737     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6738   }
6739 
6740   if (BuiltinID == ARM::BI__builtin_arm_strex ||
6741       BuiltinID == ARM::BI__builtin_arm_stlex) {
6742     Value *StoreVal = EmitScalarExpr(E->getArg(0));
6743     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6744 
6745     QualType Ty = E->getArg(0)->getType();
6746     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6747                                                  getContext().getTypeSize(Ty));
6748     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6749 
6750     if (StoreVal->getType()->isPointerTy())
6751       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6752     else {
6753       llvm::Type *IntTy = llvm::IntegerType::get(
6754           getLLVMContext(),
6755           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6756       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6757       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6758     }
6759 
6760     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6761                                        ? Intrinsic::arm_stlex
6762                                        : Intrinsic::arm_strex,
6763                                    StoreAddr->getType());
6764     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6765   }
6766 
6767   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6768     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6769     return Builder.CreateCall(F);
6770   }
6771 
6772   // CRC32
6773   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6774   switch (BuiltinID) {
6775   case ARM::BI__builtin_arm_crc32b:
6776     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6777   case ARM::BI__builtin_arm_crc32cb:
6778     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6779   case ARM::BI__builtin_arm_crc32h:
6780     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6781   case ARM::BI__builtin_arm_crc32ch:
6782     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6783   case ARM::BI__builtin_arm_crc32w:
6784   case ARM::BI__builtin_arm_crc32d:
6785     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6786   case ARM::BI__builtin_arm_crc32cw:
6787   case ARM::BI__builtin_arm_crc32cd:
6788     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6789   }
6790 
6791   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6792     Value *Arg0 = EmitScalarExpr(E->getArg(0));
6793     Value *Arg1 = EmitScalarExpr(E->getArg(1));
6794 
6795     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6796     // intrinsics, hence we need different codegen for these cases.
6797     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6798         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6799       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6800       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6801       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6802       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6803 
6804       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6805       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6806       return Builder.CreateCall(F, {Res, Arg1b});
6807     } else {
6808       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6809 
6810       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6811       return Builder.CreateCall(F, {Arg0, Arg1});
6812     }
6813   }
6814 
6815   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6816       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6817       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6818       BuiltinID == ARM::BI__builtin_arm_wsr ||
6819       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6820       BuiltinID == ARM::BI__builtin_arm_wsrp) {
6821 
6822     SpecialRegisterAccessKind AccessKind = Write;
6823     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6824         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6825         BuiltinID == ARM::BI__builtin_arm_rsrp)
6826       AccessKind = VolatileRead;
6827 
6828     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6829                             BuiltinID == ARM::BI__builtin_arm_wsrp;
6830 
6831     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6832                    BuiltinID == ARM::BI__builtin_arm_wsr64;
6833 
6834     llvm::Type *ValueType;
6835     llvm::Type *RegisterType;
6836     if (IsPointerBuiltin) {
6837       ValueType = VoidPtrTy;
6838       RegisterType = Int32Ty;
6839     } else if (Is64Bit) {
6840       ValueType = RegisterType = Int64Ty;
6841     } else {
6842       ValueType = RegisterType = Int32Ty;
6843     }
6844 
6845     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
6846                                       AccessKind);
6847   }
6848 
6849   // Deal with MVE builtins
6850   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6851     return Result;
6852   // Handle CDE builtins
6853   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
6854     return Result;
6855 
6856   // Find out if any arguments are required to be integer constant
6857   // expressions.
6858   unsigned ICEArguments = 0;
6859   ASTContext::GetBuiltinTypeError Error;
6860   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6861   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6862 
6863   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6864     return Builder.getInt32(addr.getAlignment().getQuantity());
6865   };
6866 
6867   Address PtrOp0 = Address::invalid();
6868   Address PtrOp1 = Address::invalid();
6869   SmallVector<Value*, 4> Ops;
6870   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6871   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6872   for (unsigned i = 0, e = NumArgs; i != e; i++) {
6873     if (i == 0) {
6874       switch (BuiltinID) {
6875       case NEON::BI__builtin_neon_vld1_v:
6876       case NEON::BI__builtin_neon_vld1q_v:
6877       case NEON::BI__builtin_neon_vld1q_lane_v:
6878       case NEON::BI__builtin_neon_vld1_lane_v:
6879       case NEON::BI__builtin_neon_vld1_dup_v:
6880       case NEON::BI__builtin_neon_vld1q_dup_v:
6881       case NEON::BI__builtin_neon_vst1_v:
6882       case NEON::BI__builtin_neon_vst1q_v:
6883       case NEON::BI__builtin_neon_vst1q_lane_v:
6884       case NEON::BI__builtin_neon_vst1_lane_v:
6885       case NEON::BI__builtin_neon_vst2_v:
6886       case NEON::BI__builtin_neon_vst2q_v:
6887       case NEON::BI__builtin_neon_vst2_lane_v:
6888       case NEON::BI__builtin_neon_vst2q_lane_v:
6889       case NEON::BI__builtin_neon_vst3_v:
6890       case NEON::BI__builtin_neon_vst3q_v:
6891       case NEON::BI__builtin_neon_vst3_lane_v:
6892       case NEON::BI__builtin_neon_vst3q_lane_v:
6893       case NEON::BI__builtin_neon_vst4_v:
6894       case NEON::BI__builtin_neon_vst4q_v:
6895       case NEON::BI__builtin_neon_vst4_lane_v:
6896       case NEON::BI__builtin_neon_vst4q_lane_v:
6897         // Get the alignment for the argument in addition to the value;
6898         // we'll use it later.
6899         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6900         Ops.push_back(PtrOp0.getPointer());
6901         continue;
6902       }
6903     }
6904     if (i == 1) {
6905       switch (BuiltinID) {
6906       case NEON::BI__builtin_neon_vld2_v:
6907       case NEON::BI__builtin_neon_vld2q_v:
6908       case NEON::BI__builtin_neon_vld3_v:
6909       case NEON::BI__builtin_neon_vld3q_v:
6910       case NEON::BI__builtin_neon_vld4_v:
6911       case NEON::BI__builtin_neon_vld4q_v:
6912       case NEON::BI__builtin_neon_vld2_lane_v:
6913       case NEON::BI__builtin_neon_vld2q_lane_v:
6914       case NEON::BI__builtin_neon_vld3_lane_v:
6915       case NEON::BI__builtin_neon_vld3q_lane_v:
6916       case NEON::BI__builtin_neon_vld4_lane_v:
6917       case NEON::BI__builtin_neon_vld4q_lane_v:
6918       case NEON::BI__builtin_neon_vld2_dup_v:
6919       case NEON::BI__builtin_neon_vld2q_dup_v:
6920       case NEON::BI__builtin_neon_vld3_dup_v:
6921       case NEON::BI__builtin_neon_vld3q_dup_v:
6922       case NEON::BI__builtin_neon_vld4_dup_v:
6923       case NEON::BI__builtin_neon_vld4q_dup_v:
6924         // Get the alignment for the argument in addition to the value;
6925         // we'll use it later.
6926         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6927         Ops.push_back(PtrOp1.getPointer());
6928         continue;
6929       }
6930     }
6931 
6932     if ((ICEArguments & (1 << i)) == 0) {
6933       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6934     } else {
6935       // If this is required to be a constant, constant fold it so that we know
6936       // that the generated intrinsic gets a ConstantInt.
6937       Ops.push_back(llvm::ConstantInt::get(
6938           getLLVMContext(),
6939           *E->getArg(i)->getIntegerConstantExpr(getContext())));
6940     }
6941   }
6942 
6943   switch (BuiltinID) {
6944   default: break;
6945 
6946   case NEON::BI__builtin_neon_vget_lane_i8:
6947   case NEON::BI__builtin_neon_vget_lane_i16:
6948   case NEON::BI__builtin_neon_vget_lane_i32:
6949   case NEON::BI__builtin_neon_vget_lane_i64:
6950   case NEON::BI__builtin_neon_vget_lane_bf16:
6951   case NEON::BI__builtin_neon_vget_lane_f32:
6952   case NEON::BI__builtin_neon_vgetq_lane_i8:
6953   case NEON::BI__builtin_neon_vgetq_lane_i16:
6954   case NEON::BI__builtin_neon_vgetq_lane_i32:
6955   case NEON::BI__builtin_neon_vgetq_lane_i64:
6956   case NEON::BI__builtin_neon_vgetq_lane_bf16:
6957   case NEON::BI__builtin_neon_vgetq_lane_f32:
6958   case NEON::BI__builtin_neon_vduph_lane_bf16:
6959   case NEON::BI__builtin_neon_vduph_laneq_bf16:
6960     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6961 
6962   case NEON::BI__builtin_neon_vrndns_f32: {
6963     Value *Arg = EmitScalarExpr(E->getArg(0));
6964     llvm::Type *Tys[] = {Arg->getType()};
6965     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6966     return Builder.CreateCall(F, {Arg}, "vrndn"); }
6967 
6968   case NEON::BI__builtin_neon_vset_lane_i8:
6969   case NEON::BI__builtin_neon_vset_lane_i16:
6970   case NEON::BI__builtin_neon_vset_lane_i32:
6971   case NEON::BI__builtin_neon_vset_lane_i64:
6972   case NEON::BI__builtin_neon_vset_lane_bf16:
6973   case NEON::BI__builtin_neon_vset_lane_f32:
6974   case NEON::BI__builtin_neon_vsetq_lane_i8:
6975   case NEON::BI__builtin_neon_vsetq_lane_i16:
6976   case NEON::BI__builtin_neon_vsetq_lane_i32:
6977   case NEON::BI__builtin_neon_vsetq_lane_i64:
6978   case NEON::BI__builtin_neon_vsetq_lane_bf16:
6979   case NEON::BI__builtin_neon_vsetq_lane_f32:
6980     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6981 
6982   case NEON::BI__builtin_neon_vsha1h_u32:
6983     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6984                         "vsha1h");
6985   case NEON::BI__builtin_neon_vsha1cq_u32:
6986     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6987                         "vsha1h");
6988   case NEON::BI__builtin_neon_vsha1pq_u32:
6989     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6990                         "vsha1h");
6991   case NEON::BI__builtin_neon_vsha1mq_u32:
6992     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6993                         "vsha1h");
6994 
6995   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
6996     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
6997                         "vcvtbfp2bf");
6998   }
6999 
7000   // The ARM _MoveToCoprocessor builtins put the input register value as
7001   // the first argument, but the LLVM intrinsic expects it as the third one.
7002   case ARM::BI_MoveToCoprocessor:
7003   case ARM::BI_MoveToCoprocessor2: {
7004     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7005                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7006     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7007                                   Ops[3], Ops[4], Ops[5]});
7008   }
7009   case ARM::BI_BitScanForward:
7010   case ARM::BI_BitScanForward64:
7011     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
7012   case ARM::BI_BitScanReverse:
7013   case ARM::BI_BitScanReverse64:
7014     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
7015 
7016   case ARM::BI_InterlockedAnd64:
7017     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
7018   case ARM::BI_InterlockedExchange64:
7019     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
7020   case ARM::BI_InterlockedExchangeAdd64:
7021     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
7022   case ARM::BI_InterlockedExchangeSub64:
7023     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
7024   case ARM::BI_InterlockedOr64:
7025     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
7026   case ARM::BI_InterlockedXor64:
7027     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
7028   case ARM::BI_InterlockedDecrement64:
7029     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
7030   case ARM::BI_InterlockedIncrement64:
7031     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
7032   case ARM::BI_InterlockedExchangeAdd8_acq:
7033   case ARM::BI_InterlockedExchangeAdd16_acq:
7034   case ARM::BI_InterlockedExchangeAdd_acq:
7035   case ARM::BI_InterlockedExchangeAdd64_acq:
7036     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
7037   case ARM::BI_InterlockedExchangeAdd8_rel:
7038   case ARM::BI_InterlockedExchangeAdd16_rel:
7039   case ARM::BI_InterlockedExchangeAdd_rel:
7040   case ARM::BI_InterlockedExchangeAdd64_rel:
7041     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
7042   case ARM::BI_InterlockedExchangeAdd8_nf:
7043   case ARM::BI_InterlockedExchangeAdd16_nf:
7044   case ARM::BI_InterlockedExchangeAdd_nf:
7045   case ARM::BI_InterlockedExchangeAdd64_nf:
7046     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
7047   case ARM::BI_InterlockedExchange8_acq:
7048   case ARM::BI_InterlockedExchange16_acq:
7049   case ARM::BI_InterlockedExchange_acq:
7050   case ARM::BI_InterlockedExchange64_acq:
7051     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
7052   case ARM::BI_InterlockedExchange8_rel:
7053   case ARM::BI_InterlockedExchange16_rel:
7054   case ARM::BI_InterlockedExchange_rel:
7055   case ARM::BI_InterlockedExchange64_rel:
7056     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
7057   case ARM::BI_InterlockedExchange8_nf:
7058   case ARM::BI_InterlockedExchange16_nf:
7059   case ARM::BI_InterlockedExchange_nf:
7060   case ARM::BI_InterlockedExchange64_nf:
7061     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
7062   case ARM::BI_InterlockedCompareExchange8_acq:
7063   case ARM::BI_InterlockedCompareExchange16_acq:
7064   case ARM::BI_InterlockedCompareExchange_acq:
7065   case ARM::BI_InterlockedCompareExchange64_acq:
7066     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
7067   case ARM::BI_InterlockedCompareExchange8_rel:
7068   case ARM::BI_InterlockedCompareExchange16_rel:
7069   case ARM::BI_InterlockedCompareExchange_rel:
7070   case ARM::BI_InterlockedCompareExchange64_rel:
7071     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
7072   case ARM::BI_InterlockedCompareExchange8_nf:
7073   case ARM::BI_InterlockedCompareExchange16_nf:
7074   case ARM::BI_InterlockedCompareExchange_nf:
7075   case ARM::BI_InterlockedCompareExchange64_nf:
7076     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
7077   case ARM::BI_InterlockedOr8_acq:
7078   case ARM::BI_InterlockedOr16_acq:
7079   case ARM::BI_InterlockedOr_acq:
7080   case ARM::BI_InterlockedOr64_acq:
7081     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
7082   case ARM::BI_InterlockedOr8_rel:
7083   case ARM::BI_InterlockedOr16_rel:
7084   case ARM::BI_InterlockedOr_rel:
7085   case ARM::BI_InterlockedOr64_rel:
7086     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
7087   case ARM::BI_InterlockedOr8_nf:
7088   case ARM::BI_InterlockedOr16_nf:
7089   case ARM::BI_InterlockedOr_nf:
7090   case ARM::BI_InterlockedOr64_nf:
7091     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
7092   case ARM::BI_InterlockedXor8_acq:
7093   case ARM::BI_InterlockedXor16_acq:
7094   case ARM::BI_InterlockedXor_acq:
7095   case ARM::BI_InterlockedXor64_acq:
7096     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
7097   case ARM::BI_InterlockedXor8_rel:
7098   case ARM::BI_InterlockedXor16_rel:
7099   case ARM::BI_InterlockedXor_rel:
7100   case ARM::BI_InterlockedXor64_rel:
7101     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
7102   case ARM::BI_InterlockedXor8_nf:
7103   case ARM::BI_InterlockedXor16_nf:
7104   case ARM::BI_InterlockedXor_nf:
7105   case ARM::BI_InterlockedXor64_nf:
7106     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
7107   case ARM::BI_InterlockedAnd8_acq:
7108   case ARM::BI_InterlockedAnd16_acq:
7109   case ARM::BI_InterlockedAnd_acq:
7110   case ARM::BI_InterlockedAnd64_acq:
7111     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
7112   case ARM::BI_InterlockedAnd8_rel:
7113   case ARM::BI_InterlockedAnd16_rel:
7114   case ARM::BI_InterlockedAnd_rel:
7115   case ARM::BI_InterlockedAnd64_rel:
7116     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
7117   case ARM::BI_InterlockedAnd8_nf:
7118   case ARM::BI_InterlockedAnd16_nf:
7119   case ARM::BI_InterlockedAnd_nf:
7120   case ARM::BI_InterlockedAnd64_nf:
7121     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
7122   case ARM::BI_InterlockedIncrement16_acq:
7123   case ARM::BI_InterlockedIncrement_acq:
7124   case ARM::BI_InterlockedIncrement64_acq:
7125     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
7126   case ARM::BI_InterlockedIncrement16_rel:
7127   case ARM::BI_InterlockedIncrement_rel:
7128   case ARM::BI_InterlockedIncrement64_rel:
7129     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
7130   case ARM::BI_InterlockedIncrement16_nf:
7131   case ARM::BI_InterlockedIncrement_nf:
7132   case ARM::BI_InterlockedIncrement64_nf:
7133     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
7134   case ARM::BI_InterlockedDecrement16_acq:
7135   case ARM::BI_InterlockedDecrement_acq:
7136   case ARM::BI_InterlockedDecrement64_acq:
7137     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
7138   case ARM::BI_InterlockedDecrement16_rel:
7139   case ARM::BI_InterlockedDecrement_rel:
7140   case ARM::BI_InterlockedDecrement64_rel:
7141     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
7142   case ARM::BI_InterlockedDecrement16_nf:
7143   case ARM::BI_InterlockedDecrement_nf:
7144   case ARM::BI_InterlockedDecrement64_nf:
7145     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
7146   }
7147 
7148   // Get the last argument, which specifies the vector type.
7149   assert(HasExtraArg);
7150   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7151   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7152   if (!Result)
7153     return nullptr;
7154 
7155   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7156       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7157     // Determine the overloaded type of this builtin.
7158     llvm::Type *Ty;
7159     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7160       Ty = FloatTy;
7161     else
7162       Ty = DoubleTy;
7163 
7164     // Determine whether this is an unsigned conversion or not.
7165     bool usgn = Result->getZExtValue() == 1;
7166     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7167 
7168     // Call the appropriate intrinsic.
7169     Function *F = CGM.getIntrinsic(Int, Ty);
7170     return Builder.CreateCall(F, Ops, "vcvtr");
7171   }
7172 
7173   // Determine the type of this overloaded NEON intrinsic.
7174   NeonTypeFlags Type = Result->getZExtValue();
7175   bool usgn = Type.isUnsigned();
7176   bool rightShift = false;
7177 
7178   llvm::FixedVectorType *VTy =
7179       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7180                   getTarget().hasBFloat16Type());
7181   llvm::Type *Ty = VTy;
7182   if (!Ty)
7183     return nullptr;
7184 
7185   // Many NEON builtins have identical semantics and uses in ARM and
7186   // AArch64. Emit these in a single function.
7187   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7188   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7189       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7190   if (Builtin)
7191     return EmitCommonNeonBuiltinExpr(
7192         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7193         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7194 
7195   unsigned Int;
7196   switch (BuiltinID) {
7197   default: return nullptr;
7198   case NEON::BI__builtin_neon_vld1q_lane_v:
7199     // Handle 64-bit integer elements as a special case.  Use shuffles of
7200     // one-element vectors to avoid poor code for i64 in the backend.
7201     if (VTy->getElementType()->isIntegerTy(64)) {
7202       // Extract the other lane.
7203       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7204       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7205       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7206       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7207       // Load the value as a one-element vector.
7208       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7209       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7210       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7211       Value *Align = getAlignmentValue32(PtrOp0);
7212       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7213       // Combine them.
7214       int Indices[] = {1 - Lane, Lane};
7215       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7216     }
7217     LLVM_FALLTHROUGH;
7218   case NEON::BI__builtin_neon_vld1_lane_v: {
7219     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7220     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7221     Value *Ld = Builder.CreateLoad(PtrOp0);
7222     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7223   }
7224   case NEON::BI__builtin_neon_vqrshrn_n_v:
7225     Int =
7226       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7227     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7228                         1, true);
7229   case NEON::BI__builtin_neon_vqrshrun_n_v:
7230     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7231                         Ops, "vqrshrun_n", 1, true);
7232   case NEON::BI__builtin_neon_vqshrn_n_v:
7233     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7234     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7235                         1, true);
7236   case NEON::BI__builtin_neon_vqshrun_n_v:
7237     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7238                         Ops, "vqshrun_n", 1, true);
7239   case NEON::BI__builtin_neon_vrecpe_v:
7240   case NEON::BI__builtin_neon_vrecpeq_v:
7241     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7242                         Ops, "vrecpe");
7243   case NEON::BI__builtin_neon_vrshrn_n_v:
7244     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7245                         Ops, "vrshrn_n", 1, true);
7246   case NEON::BI__builtin_neon_vrsra_n_v:
7247   case NEON::BI__builtin_neon_vrsraq_n_v:
7248     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7249     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7250     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7251     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7252     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7253     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7254   case NEON::BI__builtin_neon_vsri_n_v:
7255   case NEON::BI__builtin_neon_vsriq_n_v:
7256     rightShift = true;
7257     LLVM_FALLTHROUGH;
7258   case NEON::BI__builtin_neon_vsli_n_v:
7259   case NEON::BI__builtin_neon_vsliq_n_v:
7260     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7261     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7262                         Ops, "vsli_n");
7263   case NEON::BI__builtin_neon_vsra_n_v:
7264   case NEON::BI__builtin_neon_vsraq_n_v:
7265     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7266     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7267     return Builder.CreateAdd(Ops[0], Ops[1]);
7268   case NEON::BI__builtin_neon_vst1q_lane_v:
7269     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7270     // a one-element vector and avoid poor code for i64 in the backend.
7271     if (VTy->getElementType()->isIntegerTy(64)) {
7272       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7273       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7274       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7275       Ops[2] = getAlignmentValue32(PtrOp0);
7276       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7277       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7278                                                  Tys), Ops);
7279     }
7280     LLVM_FALLTHROUGH;
7281   case NEON::BI__builtin_neon_vst1_lane_v: {
7282     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7283     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7284     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7285     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7286     return St;
7287   }
7288   case NEON::BI__builtin_neon_vtbl1_v:
7289     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7290                         Ops, "vtbl1");
7291   case NEON::BI__builtin_neon_vtbl2_v:
7292     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7293                         Ops, "vtbl2");
7294   case NEON::BI__builtin_neon_vtbl3_v:
7295     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7296                         Ops, "vtbl3");
7297   case NEON::BI__builtin_neon_vtbl4_v:
7298     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7299                         Ops, "vtbl4");
7300   case NEON::BI__builtin_neon_vtbx1_v:
7301     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7302                         Ops, "vtbx1");
7303   case NEON::BI__builtin_neon_vtbx2_v:
7304     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7305                         Ops, "vtbx2");
7306   case NEON::BI__builtin_neon_vtbx3_v:
7307     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7308                         Ops, "vtbx3");
7309   case NEON::BI__builtin_neon_vtbx4_v:
7310     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7311                         Ops, "vtbx4");
7312   }
7313 }
7314 
7315 template<typename Integer>
GetIntegerConstantValue(const Expr * E,ASTContext & Context)7316 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7317   return E->getIntegerConstantExpr(Context)->getExtValue();
7318 }
7319 
SignOrZeroExtend(CGBuilderTy & Builder,llvm::Value * V,llvm::Type * T,bool Unsigned)7320 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7321                                      llvm::Type *T, bool Unsigned) {
7322   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7323   // which finds it convenient to specify signed/unsigned as a boolean flag.
7324   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7325 }
7326 
MVEImmediateShr(CGBuilderTy & Builder,llvm::Value * V,uint32_t Shift,bool Unsigned)7327 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7328                                     uint32_t Shift, bool Unsigned) {
7329   // MVE helper function for integer shift right. This must handle signed vs
7330   // unsigned, and also deal specially with the case where the shift count is
7331   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7332   // undefined behavior, but in MVE it's legal, so we must convert it to code
7333   // that is not undefined in IR.
7334   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7335                           ->getElementType()
7336                           ->getPrimitiveSizeInBits();
7337   if (Shift == LaneBits) {
7338     // An unsigned shift of the full lane size always generates zero, so we can
7339     // simply emit a zero vector. A signed shift of the full lane size does the
7340     // same thing as shifting by one bit fewer.
7341     if (Unsigned)
7342       return llvm::Constant::getNullValue(V->getType());
7343     else
7344       --Shift;
7345   }
7346   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7347 }
7348 
ARMMVEVectorSplat(CGBuilderTy & Builder,llvm::Value * V)7349 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7350   // MVE-specific helper function for a vector splat, which infers the element
7351   // count of the output vector by knowing that MVE vectors are all 128 bits
7352   // wide.
7353   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7354   return Builder.CreateVectorSplat(Elements, V);
7355 }
7356 
ARMMVEVectorReinterpret(CGBuilderTy & Builder,CodeGenFunction * CGF,llvm::Value * V,llvm::Type * DestType)7357 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7358                                             CodeGenFunction *CGF,
7359                                             llvm::Value *V,
7360                                             llvm::Type *DestType) {
7361   // Convert one MVE vector type into another by reinterpreting its in-register
7362   // format.
7363   //
7364   // Little-endian, this is identical to a bitcast (which reinterprets the
7365   // memory format). But big-endian, they're not necessarily the same, because
7366   // the register and memory formats map to each other differently depending on
7367   // the lane size.
7368   //
7369   // We generate a bitcast whenever we can (if we're little-endian, or if the
7370   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7371   // that performs the different kind of reinterpretation.
7372   if (CGF->getTarget().isBigEndian() &&
7373       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7374     return Builder.CreateCall(
7375         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7376                               {DestType, V->getType()}),
7377         V);
7378   } else {
7379     return Builder.CreateBitCast(V, DestType);
7380   }
7381 }
7382 
VectorUnzip(CGBuilderTy & Builder,llvm::Value * V,bool Odd)7383 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7384   // Make a shufflevector that extracts every other element of a vector (evens
7385   // or odds, as desired).
7386   SmallVector<int, 16> Indices;
7387   unsigned InputElements =
7388       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
7389   for (unsigned i = 0; i < InputElements; i += 2)
7390     Indices.push_back(i + Odd);
7391   return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7392                                      Indices);
7393 }
7394 
VectorZip(CGBuilderTy & Builder,llvm::Value * V0,llvm::Value * V1)7395 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
7396                               llvm::Value *V1) {
7397   // Make a shufflevector that interleaves two vectors element by element.
7398   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
7399   SmallVector<int, 16> Indices;
7400   unsigned InputElements =
7401       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
7402   for (unsigned i = 0; i < InputElements; i++) {
7403     Indices.push_back(i);
7404     Indices.push_back(i + InputElements);
7405   }
7406   return Builder.CreateShuffleVector(V0, V1, Indices);
7407 }
7408 
7409 template<unsigned HighBit, unsigned OtherBits>
ARMMVEConstantSplat(CGBuilderTy & Builder,llvm::Type * VT)7410 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
7411   // MVE-specific helper function to make a vector splat of a constant such as
7412   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
7413   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
7414   unsigned LaneBits = T->getPrimitiveSizeInBits();
7415   uint32_t Value = HighBit << (LaneBits - 1);
7416   if (OtherBits)
7417     Value |= (1UL << (LaneBits - 1)) - 1;
7418   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
7419   return ARMMVEVectorSplat(Builder, Lane);
7420 }
7421 
ARMMVEVectorElementReverse(CGBuilderTy & Builder,llvm::Value * V,unsigned ReverseWidth)7422 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
7423                                                llvm::Value *V,
7424                                                unsigned ReverseWidth) {
7425   // MVE-specific helper function which reverses the elements of a
7426   // vector within every (ReverseWidth)-bit collection of lanes.
7427   SmallVector<int, 16> Indices;
7428   unsigned LaneSize = V->getType()->getScalarSizeInBits();
7429   unsigned Elements = 128 / LaneSize;
7430   unsigned Mask = ReverseWidth / LaneSize - 1;
7431   for (unsigned i = 0; i < Elements; i++)
7432     Indices.push_back(i ^ Mask);
7433   return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()),
7434                                      Indices);
7435 }
7436 
EmitARMMVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)7437 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
7438                                               const CallExpr *E,
7439                                               ReturnValueSlot ReturnValue,
7440                                               llvm::Triple::ArchType Arch) {
7441   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
7442   Intrinsic::ID IRIntr;
7443   unsigned NumVectors;
7444 
7445   // Code autogenerated by Tablegen will handle all the simple builtins.
7446   switch (BuiltinID) {
7447     #include "clang/Basic/arm_mve_builtin_cg.inc"
7448 
7449     // If we didn't match an MVE builtin id at all, go back to the
7450     // main EmitARMBuiltinExpr.
7451   default:
7452     return nullptr;
7453   }
7454 
7455   // Anything that breaks from that switch is an MVE builtin that
7456   // needs handwritten code to generate.
7457 
7458   switch (CustomCodeGenType) {
7459 
7460   case CustomCodeGen::VLD24: {
7461     llvm::SmallVector<Value *, 4> Ops;
7462     llvm::SmallVector<llvm::Type *, 4> Tys;
7463 
7464     auto MvecCType = E->getType();
7465     auto MvecLType = ConvertType(MvecCType);
7466     assert(MvecLType->isStructTy() &&
7467            "Return type for vld[24]q should be a struct");
7468     assert(MvecLType->getStructNumElements() == 1 &&
7469            "Return-type struct for vld[24]q should have one element");
7470     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7471     assert(MvecLTypeInner->isArrayTy() &&
7472            "Return-type struct for vld[24]q should contain an array");
7473     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7474            "Array member of return-type struct vld[24]q has wrong length");
7475     auto VecLType = MvecLTypeInner->getArrayElementType();
7476 
7477     Tys.push_back(VecLType);
7478 
7479     auto Addr = E->getArg(0);
7480     Ops.push_back(EmitScalarExpr(Addr));
7481     Tys.push_back(ConvertType(Addr->getType()));
7482 
7483     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7484     Value *LoadResult = Builder.CreateCall(F, Ops);
7485     Value *MvecOut = UndefValue::get(MvecLType);
7486     for (unsigned i = 0; i < NumVectors; ++i) {
7487       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
7488       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
7489     }
7490 
7491     if (ReturnValue.isNull())
7492       return MvecOut;
7493     else
7494       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
7495   }
7496 
7497   case CustomCodeGen::VST24: {
7498     llvm::SmallVector<Value *, 4> Ops;
7499     llvm::SmallVector<llvm::Type *, 4> Tys;
7500 
7501     auto Addr = E->getArg(0);
7502     Ops.push_back(EmitScalarExpr(Addr));
7503     Tys.push_back(ConvertType(Addr->getType()));
7504 
7505     auto MvecCType = E->getArg(1)->getType();
7506     auto MvecLType = ConvertType(MvecCType);
7507     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
7508     assert(MvecLType->getStructNumElements() == 1 &&
7509            "Data-type struct for vst2q should have one element");
7510     auto MvecLTypeInner = MvecLType->getStructElementType(0);
7511     assert(MvecLTypeInner->isArrayTy() &&
7512            "Data-type struct for vst2q should contain an array");
7513     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
7514            "Array member of return-type struct vld[24]q has wrong length");
7515     auto VecLType = MvecLTypeInner->getArrayElementType();
7516 
7517     Tys.push_back(VecLType);
7518 
7519     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
7520     EmitAggExpr(E->getArg(1), MvecSlot);
7521     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
7522     for (unsigned i = 0; i < NumVectors; i++)
7523       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
7524 
7525     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
7526     Value *ToReturn = nullptr;
7527     for (unsigned i = 0; i < NumVectors; i++) {
7528       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
7529       ToReturn = Builder.CreateCall(F, Ops);
7530       Ops.pop_back();
7531     }
7532     return ToReturn;
7533   }
7534   }
7535   llvm_unreachable("unknown custom codegen type.");
7536 }
7537 
EmitARMCDEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)7538 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
7539                                               const CallExpr *E,
7540                                               ReturnValueSlot ReturnValue,
7541                                               llvm::Triple::ArchType Arch) {
7542   switch (BuiltinID) {
7543   default:
7544     return nullptr;
7545 #include "clang/Basic/arm_cde_builtin_cg.inc"
7546   }
7547 }
7548 
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,llvm::Triple::ArchType Arch)7549 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
7550                                       const CallExpr *E,
7551                                       SmallVectorImpl<Value *> &Ops,
7552                                       llvm::Triple::ArchType Arch) {
7553   unsigned int Int = 0;
7554   const char *s = nullptr;
7555 
7556   switch (BuiltinID) {
7557   default:
7558     return nullptr;
7559   case NEON::BI__builtin_neon_vtbl1_v:
7560   case NEON::BI__builtin_neon_vqtbl1_v:
7561   case NEON::BI__builtin_neon_vqtbl1q_v:
7562   case NEON::BI__builtin_neon_vtbl2_v:
7563   case NEON::BI__builtin_neon_vqtbl2_v:
7564   case NEON::BI__builtin_neon_vqtbl2q_v:
7565   case NEON::BI__builtin_neon_vtbl3_v:
7566   case NEON::BI__builtin_neon_vqtbl3_v:
7567   case NEON::BI__builtin_neon_vqtbl3q_v:
7568   case NEON::BI__builtin_neon_vtbl4_v:
7569   case NEON::BI__builtin_neon_vqtbl4_v:
7570   case NEON::BI__builtin_neon_vqtbl4q_v:
7571     break;
7572   case NEON::BI__builtin_neon_vtbx1_v:
7573   case NEON::BI__builtin_neon_vqtbx1_v:
7574   case NEON::BI__builtin_neon_vqtbx1q_v:
7575   case NEON::BI__builtin_neon_vtbx2_v:
7576   case NEON::BI__builtin_neon_vqtbx2_v:
7577   case NEON::BI__builtin_neon_vqtbx2q_v:
7578   case NEON::BI__builtin_neon_vtbx3_v:
7579   case NEON::BI__builtin_neon_vqtbx3_v:
7580   case NEON::BI__builtin_neon_vqtbx3q_v:
7581   case NEON::BI__builtin_neon_vtbx4_v:
7582   case NEON::BI__builtin_neon_vqtbx4_v:
7583   case NEON::BI__builtin_neon_vqtbx4q_v:
7584     break;
7585   }
7586 
7587   assert(E->getNumArgs() >= 3);
7588 
7589   // Get the last argument, which specifies the vector type.
7590   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
7591   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
7592   if (!Result)
7593     return nullptr;
7594 
7595   // Determine the type of this overloaded NEON intrinsic.
7596   NeonTypeFlags Type = Result->getZExtValue();
7597   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
7598   if (!Ty)
7599     return nullptr;
7600 
7601   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7602 
7603   // AArch64 scalar builtins are not overloaded, they do not have an extra
7604   // argument that specifies the vector type, need to handle each case.
7605   switch (BuiltinID) {
7606   case NEON::BI__builtin_neon_vtbl1_v: {
7607     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
7608                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
7609                               "vtbl1");
7610   }
7611   case NEON::BI__builtin_neon_vtbl2_v: {
7612     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
7613                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
7614                               "vtbl1");
7615   }
7616   case NEON::BI__builtin_neon_vtbl3_v: {
7617     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
7618                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
7619                               "vtbl2");
7620   }
7621   case NEON::BI__builtin_neon_vtbl4_v: {
7622     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
7623                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
7624                               "vtbl2");
7625   }
7626   case NEON::BI__builtin_neon_vtbx1_v: {
7627     Value *TblRes =
7628         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
7629                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
7630 
7631     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
7632     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
7633     CmpRes = Builder.CreateSExt(CmpRes, Ty);
7634 
7635     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7636     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7637     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7638   }
7639   case NEON::BI__builtin_neon_vtbx2_v: {
7640     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
7641                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
7642                               "vtbx1");
7643   }
7644   case NEON::BI__builtin_neon_vtbx3_v: {
7645     Value *TblRes =
7646         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
7647                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
7648 
7649     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
7650     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
7651                                            TwentyFourV);
7652     CmpRes = Builder.CreateSExt(CmpRes, Ty);
7653 
7654     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
7655     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
7656     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
7657   }
7658   case NEON::BI__builtin_neon_vtbx4_v: {
7659     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
7660                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
7661                               "vtbx2");
7662   }
7663   case NEON::BI__builtin_neon_vqtbl1_v:
7664   case NEON::BI__builtin_neon_vqtbl1q_v:
7665     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
7666   case NEON::BI__builtin_neon_vqtbl2_v:
7667   case NEON::BI__builtin_neon_vqtbl2q_v: {
7668     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
7669   case NEON::BI__builtin_neon_vqtbl3_v:
7670   case NEON::BI__builtin_neon_vqtbl3q_v:
7671     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
7672   case NEON::BI__builtin_neon_vqtbl4_v:
7673   case NEON::BI__builtin_neon_vqtbl4q_v:
7674     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
7675   case NEON::BI__builtin_neon_vqtbx1_v:
7676   case NEON::BI__builtin_neon_vqtbx1q_v:
7677     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
7678   case NEON::BI__builtin_neon_vqtbx2_v:
7679   case NEON::BI__builtin_neon_vqtbx2q_v:
7680     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
7681   case NEON::BI__builtin_neon_vqtbx3_v:
7682   case NEON::BI__builtin_neon_vqtbx3q_v:
7683     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
7684   case NEON::BI__builtin_neon_vqtbx4_v:
7685   case NEON::BI__builtin_neon_vqtbx4q_v:
7686     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
7687   }
7688   }
7689 
7690   if (!Int)
7691     return nullptr;
7692 
7693   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
7694   return CGF.EmitNeonCall(F, Ops, s);
7695 }
7696 
vectorWrapScalar16(Value * Op)7697 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
7698   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
7699   Op = Builder.CreateBitCast(Op, Int16Ty);
7700   Value *V = UndefValue::get(VTy);
7701   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
7702   Op = Builder.CreateInsertElement(V, Op, CI);
7703   return Op;
7704 }
7705 
7706 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
7707 /// access builtin.  Only required if it can't be inferred from the base pointer
7708 /// operand.
SVEBuiltinMemEltTy(SVETypeFlags TypeFlags)7709 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
7710   switch (TypeFlags.getMemEltType()) {
7711   case SVETypeFlags::MemEltTyDefault:
7712     return getEltType(TypeFlags);
7713   case SVETypeFlags::MemEltTyInt8:
7714     return Builder.getInt8Ty();
7715   case SVETypeFlags::MemEltTyInt16:
7716     return Builder.getInt16Ty();
7717   case SVETypeFlags::MemEltTyInt32:
7718     return Builder.getInt32Ty();
7719   case SVETypeFlags::MemEltTyInt64:
7720     return Builder.getInt64Ty();
7721   }
7722   llvm_unreachable("Unknown MemEltType");
7723 }
7724 
getEltType(SVETypeFlags TypeFlags)7725 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
7726   switch (TypeFlags.getEltType()) {
7727   default:
7728     llvm_unreachable("Invalid SVETypeFlag!");
7729 
7730   case SVETypeFlags::EltTyInt8:
7731     return Builder.getInt8Ty();
7732   case SVETypeFlags::EltTyInt16:
7733     return Builder.getInt16Ty();
7734   case SVETypeFlags::EltTyInt32:
7735     return Builder.getInt32Ty();
7736   case SVETypeFlags::EltTyInt64:
7737     return Builder.getInt64Ty();
7738 
7739   case SVETypeFlags::EltTyFloat16:
7740     return Builder.getHalfTy();
7741   case SVETypeFlags::EltTyFloat32:
7742     return Builder.getFloatTy();
7743   case SVETypeFlags::EltTyFloat64:
7744     return Builder.getDoubleTy();
7745 
7746   case SVETypeFlags::EltTyBFloat16:
7747     return Builder.getBFloatTy();
7748 
7749   case SVETypeFlags::EltTyBool8:
7750   case SVETypeFlags::EltTyBool16:
7751   case SVETypeFlags::EltTyBool32:
7752   case SVETypeFlags::EltTyBool64:
7753     return Builder.getInt1Ty();
7754   }
7755 }
7756 
7757 // Return the llvm predicate vector type corresponding to the specified element
7758 // TypeFlags.
7759 llvm::ScalableVectorType *
getSVEPredType(SVETypeFlags TypeFlags)7760 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
7761   switch (TypeFlags.getEltType()) {
7762   default: llvm_unreachable("Unhandled SVETypeFlag!");
7763 
7764   case SVETypeFlags::EltTyInt8:
7765     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7766   case SVETypeFlags::EltTyInt16:
7767     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7768   case SVETypeFlags::EltTyInt32:
7769     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7770   case SVETypeFlags::EltTyInt64:
7771     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7772 
7773   case SVETypeFlags::EltTyBFloat16:
7774     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7775   case SVETypeFlags::EltTyFloat16:
7776     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7777   case SVETypeFlags::EltTyFloat32:
7778     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7779   case SVETypeFlags::EltTyFloat64:
7780     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7781 
7782   case SVETypeFlags::EltTyBool8:
7783     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7784   case SVETypeFlags::EltTyBool16:
7785     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7786   case SVETypeFlags::EltTyBool32:
7787     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7788   case SVETypeFlags::EltTyBool64:
7789     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7790   }
7791 }
7792 
7793 // Return the llvm vector type corresponding to the specified element TypeFlags.
7794 llvm::ScalableVectorType *
getSVEType(const SVETypeFlags & TypeFlags)7795 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
7796   switch (TypeFlags.getEltType()) {
7797   default:
7798     llvm_unreachable("Invalid SVETypeFlag!");
7799 
7800   case SVETypeFlags::EltTyInt8:
7801     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
7802   case SVETypeFlags::EltTyInt16:
7803     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
7804   case SVETypeFlags::EltTyInt32:
7805     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
7806   case SVETypeFlags::EltTyInt64:
7807     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
7808 
7809   case SVETypeFlags::EltTyFloat16:
7810     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
7811   case SVETypeFlags::EltTyBFloat16:
7812     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
7813   case SVETypeFlags::EltTyFloat32:
7814     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
7815   case SVETypeFlags::EltTyFloat64:
7816     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
7817 
7818   case SVETypeFlags::EltTyBool8:
7819     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
7820   case SVETypeFlags::EltTyBool16:
7821     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
7822   case SVETypeFlags::EltTyBool32:
7823     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
7824   case SVETypeFlags::EltTyBool64:
7825     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
7826   }
7827 }
7828 
EmitSVEAllTruePred(SVETypeFlags TypeFlags)7829 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
7830   Function *Ptrue =
7831       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
7832   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
7833 }
7834 
7835 constexpr unsigned SVEBitsPerBlock = 128;
7836 
getSVEVectorForElementType(llvm::Type * EltTy)7837 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
7838   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
7839   return llvm::ScalableVectorType::get(EltTy, NumElts);
7840 }
7841 
7842 // Reinterpret the input predicate so that it can be used to correctly isolate
7843 // the elements of the specified datatype.
EmitSVEPredicateCast(Value * Pred,llvm::ScalableVectorType * VTy)7844 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
7845                                              llvm::ScalableVectorType *VTy) {
7846   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
7847   if (Pred->getType() == RTy)
7848     return Pred;
7849 
7850   unsigned IntID;
7851   llvm::Type *IntrinsicTy;
7852   switch (VTy->getMinNumElements()) {
7853   default:
7854     llvm_unreachable("unsupported element count!");
7855   case 2:
7856   case 4:
7857   case 8:
7858     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
7859     IntrinsicTy = RTy;
7860     break;
7861   case 16:
7862     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
7863     IntrinsicTy = Pred->getType();
7864     break;
7865   }
7866 
7867   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
7868   Value *C = Builder.CreateCall(F, Pred);
7869   assert(C->getType() == RTy && "Unexpected return type!");
7870   return C;
7871 }
7872 
EmitSVEGatherLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)7873 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
7874                                           SmallVectorImpl<Value *> &Ops,
7875                                           unsigned IntID) {
7876   auto *ResultTy = getSVEType(TypeFlags);
7877   auto *OverloadedTy =
7878       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
7879 
7880   // At the ACLE level there's only one predicate type, svbool_t, which is
7881   // mapped to <n x 16 x i1>. However, this might be incompatible with the
7882   // actual type being loaded. For example, when loading doubles (i64) the
7883   // predicated should be <n x 2 x i1> instead. At the IR level the type of
7884   // the predicate and the data being loaded must match. Cast accordingly.
7885   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
7886 
7887   Function *F = nullptr;
7888   if (Ops[1]->getType()->isVectorTy())
7889     // This is the "vector base, scalar offset" case. In order to uniquely
7890     // map this built-in to an LLVM IR intrinsic, we need both the return type
7891     // and the type of the vector base.
7892     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
7893   else
7894     // This is the "scalar base, vector offset case". The type of the offset
7895     // is encoded in the name of the intrinsic. We only need to specify the
7896     // return type in order to uniquely map this built-in to an LLVM IR
7897     // intrinsic.
7898     F = CGM.getIntrinsic(IntID, OverloadedTy);
7899 
7900   // Pass 0 when the offset is missing. This can only be applied when using
7901   // the "vector base" addressing mode for which ACLE allows no offset. The
7902   // corresponding LLVM IR always requires an offset.
7903   if (Ops.size() == 2) {
7904     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
7905     Ops.push_back(ConstantInt::get(Int64Ty, 0));
7906   }
7907 
7908   // For "vector base, scalar index" scale the index so that it becomes a
7909   // scalar offset.
7910   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
7911     unsigned BytesPerElt =
7912         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
7913     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7914     Ops[2] = Builder.CreateMul(Ops[2], Scale);
7915   }
7916 
7917   Value *Call = Builder.CreateCall(F, Ops);
7918 
7919   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
7920   // other cases it's folded into a nop.
7921   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
7922                                   : Builder.CreateSExt(Call, ResultTy);
7923 }
7924 
EmitSVEScatterStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)7925 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
7926                                             SmallVectorImpl<Value *> &Ops,
7927                                             unsigned IntID) {
7928   auto *SrcDataTy = getSVEType(TypeFlags);
7929   auto *OverloadedTy =
7930       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
7931 
7932   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
7933   // it's the first argument. Move it accordingly.
7934   Ops.insert(Ops.begin(), Ops.pop_back_val());
7935 
7936   Function *F = nullptr;
7937   if (Ops[2]->getType()->isVectorTy())
7938     // This is the "vector base, scalar offset" case. In order to uniquely
7939     // map this built-in to an LLVM IR intrinsic, we need both the return type
7940     // and the type of the vector base.
7941     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
7942   else
7943     // This is the "scalar base, vector offset case". The type of the offset
7944     // is encoded in the name of the intrinsic. We only need to specify the
7945     // return type in order to uniquely map this built-in to an LLVM IR
7946     // intrinsic.
7947     F = CGM.getIntrinsic(IntID, OverloadedTy);
7948 
7949   // Pass 0 when the offset is missing. This can only be applied when using
7950   // the "vector base" addressing mode for which ACLE allows no offset. The
7951   // corresponding LLVM IR always requires an offset.
7952   if (Ops.size() == 3) {
7953     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
7954     Ops.push_back(ConstantInt::get(Int64Ty, 0));
7955   }
7956 
7957   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
7958   // folded into a nop.
7959   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
7960 
7961   // At the ACLE level there's only one predicate type, svbool_t, which is
7962   // mapped to <n x 16 x i1>. However, this might be incompatible with the
7963   // actual type being stored. For example, when storing doubles (i64) the
7964   // predicated should be <n x 2 x i1> instead. At the IR level the type of
7965   // the predicate and the data being stored must match. Cast accordingly.
7966   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
7967 
7968   // For "vector base, scalar index" scale the index so that it becomes a
7969   // scalar offset.
7970   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
7971     unsigned BytesPerElt =
7972         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
7973     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
7974     Ops[3] = Builder.CreateMul(Ops[3], Scale);
7975   }
7976 
7977   return Builder.CreateCall(F, Ops);
7978 }
7979 
EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)7980 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
7981                                               SmallVectorImpl<Value *> &Ops,
7982                                               unsigned IntID) {
7983   // The gather prefetches are overloaded on the vector input - this can either
7984   // be the vector of base addresses or vector of offsets.
7985   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
7986   if (!OverloadedTy)
7987     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
7988 
7989   // Cast the predicate from svbool_t to the right number of elements.
7990   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
7991 
7992   // vector + imm addressing modes
7993   if (Ops[1]->getType()->isVectorTy()) {
7994     if (Ops.size() == 3) {
7995       // Pass 0 for 'vector+imm' when the index is omitted.
7996       Ops.push_back(ConstantInt::get(Int64Ty, 0));
7997 
7998       // The sv_prfop is the last operand in the builtin and IR intrinsic.
7999       std::swap(Ops[2], Ops[3]);
8000     } else {
8001       // Index needs to be passed as scaled offset.
8002       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8003       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8004       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8005       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8006     }
8007   }
8008 
8009   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8010   return Builder.CreateCall(F, Ops);
8011 }
8012 
EmitSVEStructLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8013 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8014                                           SmallVectorImpl<Value*> &Ops,
8015                                           unsigned IntID) {
8016   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8017   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8018   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8019 
8020   unsigned N;
8021   switch (IntID) {
8022   case Intrinsic::aarch64_sve_ld2:
8023     N = 2;
8024     break;
8025   case Intrinsic::aarch64_sve_ld3:
8026     N = 3;
8027     break;
8028   case Intrinsic::aarch64_sve_ld4:
8029     N = 4;
8030     break;
8031   default:
8032     llvm_unreachable("unknown intrinsic!");
8033   }
8034   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8035                                      VTy->getElementCount() * N);
8036 
8037 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8038   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8039   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8040   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8041   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8042 
8043   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8044   return Builder.CreateCall(F, { Predicate, BasePtr });
8045 }
8046 
EmitSVEStructStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8047 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8048                                            SmallVectorImpl<Value*> &Ops,
8049                                            unsigned IntID) {
8050   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8051   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8052   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8053 
8054   unsigned N;
8055   switch (IntID) {
8056   case Intrinsic::aarch64_sve_st2:
8057     N = 2;
8058     break;
8059   case Intrinsic::aarch64_sve_st3:
8060     N = 3;
8061     break;
8062   case Intrinsic::aarch64_sve_st4:
8063     N = 4;
8064     break;
8065   default:
8066     llvm_unreachable("unknown intrinsic!");
8067   }
8068   auto TupleTy =
8069       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8070 
8071   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8072   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8073   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8074   Value *Val = Ops.back();
8075   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8076   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8077 
8078   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8079   // need to break up the tuple vector.
8080   SmallVector<llvm::Value*, 5> Operands;
8081   Function *FExtr =
8082       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8083   for (unsigned I = 0; I < N; ++I)
8084     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8085   Operands.append({Predicate, BasePtr});
8086 
8087   Function *F = CGM.getIntrinsic(IntID, { VTy });
8088   return Builder.CreateCall(F, Operands);
8089 }
8090 
8091 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8092 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8093 // to a wider type.
EmitSVEPMull(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8094 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8095                                      SmallVectorImpl<Value *> &Ops,
8096                                      unsigned BuiltinID) {
8097   // Splat scalar operand to vector (intrinsics with _n infix)
8098   if (TypeFlags.hasSplatOperand()) {
8099     unsigned OpNo = TypeFlags.getSplatOperand();
8100     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8101   }
8102 
8103   // The pair-wise function has a narrower overloaded type.
8104   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8105   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8106 
8107   // Now bitcast to the wider result type.
8108   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8109   return EmitSVEReinterpret(Call, Ty);
8110 }
8111 
EmitSVEMovl(SVETypeFlags TypeFlags,ArrayRef<Value * > Ops,unsigned BuiltinID)8112 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8113                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8114   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8115   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8116   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8117 }
8118 
EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8119 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8120                                             SmallVectorImpl<Value *> &Ops,
8121                                             unsigned BuiltinID) {
8122   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8123   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8124   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8125 
8126   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8127   Value *BasePtr = Ops[1];
8128 
8129   // Implement the index operand if not omitted.
8130   if (Ops.size() > 3) {
8131     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8132     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8133   }
8134 
8135   // Prefetch intriniscs always expect an i8*
8136   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8137   Value *PrfOp = Ops.back();
8138 
8139   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8140   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8141 }
8142 
EmitSVEMaskedLoad(const CallExpr * E,llvm::Type * ReturnTy,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID,bool IsZExtReturn)8143 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8144                                           llvm::Type *ReturnTy,
8145                                           SmallVectorImpl<Value *> &Ops,
8146                                           unsigned BuiltinID,
8147                                           bool IsZExtReturn) {
8148   QualType LangPTy = E->getArg(1)->getType();
8149   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8150       LangPTy->getAs<PointerType>()->getPointeeType());
8151 
8152   // The vector type that is returned may be different from the
8153   // eventual type loaded from memory.
8154   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8155   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8156 
8157   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8158   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8159   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8160   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8161 
8162   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8163   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8164   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8165 
8166   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8167                      : Builder.CreateSExt(Load, VectorTy);
8168 }
8169 
EmitSVEMaskedStore(const CallExpr * E,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8170 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8171                                            SmallVectorImpl<Value *> &Ops,
8172                                            unsigned BuiltinID) {
8173   QualType LangPTy = E->getArg(1)->getType();
8174   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8175       LangPTy->getAs<PointerType>()->getPointeeType());
8176 
8177   // The vector type that is stored may be different from the
8178   // eventual type stored to memory.
8179   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8180   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8181 
8182   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8183   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8184   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8185   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8186 
8187   // Last value is always the data
8188   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8189 
8190   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8191   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8192   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8193 }
8194 
8195 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8196 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
EmitSVEDupX(Value * Scalar,llvm::Type * Ty)8197 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8198   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8199   return Builder.CreateCall(F, Scalar);
8200 }
8201 
EmitSVEDupX(Value * Scalar)8202 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8203   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8204 }
8205 
EmitSVEReinterpret(Value * Val,llvm::Type * Ty)8206 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8207   // FIXME: For big endian this needs an additional REV, or needs a separate
8208   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8209   // instruction is defined as 'bitwise' equivalent from memory point of
8210   // view (when storing/reloading), whereas the svreinterpret builtin
8211   // implements bitwise equivalent cast from register point of view.
8212   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8213   return Builder.CreateBitCast(Val, Ty);
8214 }
8215 
InsertExplicitZeroOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8216 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8217                                       SmallVectorImpl<Value *> &Ops) {
8218   auto *SplatZero = Constant::getNullValue(Ty);
8219   Ops.insert(Ops.begin(), SplatZero);
8220 }
8221 
InsertExplicitUndefOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8222 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8223                                        SmallVectorImpl<Value *> &Ops) {
8224   auto *SplatUndef = UndefValue::get(Ty);
8225   Ops.insert(Ops.begin(), SplatUndef);
8226 }
8227 
getSVEOverloadTypes(SVETypeFlags TypeFlags,llvm::Type * ResultType,ArrayRef<Value * > Ops)8228 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8229     SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8230   if (TypeFlags.isOverloadNone())
8231     return {};
8232 
8233   llvm::Type *DefaultType = getSVEType(TypeFlags);
8234 
8235   if (TypeFlags.isOverloadWhile())
8236     return {DefaultType, Ops[1]->getType()};
8237 
8238   if (TypeFlags.isOverloadWhileRW())
8239     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8240 
8241   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8242     return {Ops[0]->getType(), Ops.back()->getType()};
8243 
8244   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8245     return {ResultType, Ops[0]->getType()};
8246 
8247   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8248   return {DefaultType};
8249 }
8250 
EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E)8251 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8252                                                   const CallExpr *E) {
8253   // Find out if any arguments are required to be integer constant expressions.
8254   unsigned ICEArguments = 0;
8255   ASTContext::GetBuiltinTypeError Error;
8256   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8257   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8258 
8259   llvm::Type *Ty = ConvertType(E->getType());
8260   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8261       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8262     Value *Val = EmitScalarExpr(E->getArg(0));
8263     return EmitSVEReinterpret(Val, Ty);
8264   }
8265 
8266   llvm::SmallVector<Value *, 4> Ops;
8267   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8268     if ((ICEArguments & (1 << i)) == 0)
8269       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8270     else {
8271       // If this is required to be a constant, constant fold it so that we know
8272       // that the generated intrinsic gets a ConstantInt.
8273       Optional<llvm::APSInt> Result =
8274           E->getArg(i)->getIntegerConstantExpr(getContext());
8275       assert(Result && "Expected argument to be a constant");
8276 
8277       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8278       // truncate because the immediate has been range checked and no valid
8279       // immediate requires more than a handful of bits.
8280       *Result = Result->extOrTrunc(32);
8281       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8282     }
8283   }
8284 
8285   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8286                                               AArch64SVEIntrinsicsProvenSorted);
8287   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8288   if (TypeFlags.isLoad())
8289     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8290                              TypeFlags.isZExtReturn());
8291   else if (TypeFlags.isStore())
8292     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8293   else if (TypeFlags.isGatherLoad())
8294     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8295   else if (TypeFlags.isScatterStore())
8296     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8297   else if (TypeFlags.isPrefetch())
8298     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8299   else if (TypeFlags.isGatherPrefetch())
8300     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8301 	else if (TypeFlags.isStructLoad())
8302 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8303 	else if (TypeFlags.isStructStore())
8304 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8305   else if (TypeFlags.isUndef())
8306     return UndefValue::get(Ty);
8307   else if (Builtin->LLVMIntrinsic != 0) {
8308     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8309       InsertExplicitZeroOperand(Builder, Ty, Ops);
8310 
8311     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8312       InsertExplicitUndefOperand(Builder, Ty, Ops);
8313 
8314     // Some ACLE builtins leave out the argument to specify the predicate
8315     // pattern, which is expected to be expanded to an SV_ALL pattern.
8316     if (TypeFlags.isAppendSVALL())
8317       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8318     if (TypeFlags.isInsertOp1SVALL())
8319       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8320 
8321     // Predicates must match the main datatype.
8322     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8323       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8324         if (PredTy->getElementType()->isIntegerTy(1))
8325           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8326 
8327     // Splat scalar operand to vector (intrinsics with _n infix)
8328     if (TypeFlags.hasSplatOperand()) {
8329       unsigned OpNo = TypeFlags.getSplatOperand();
8330       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8331     }
8332 
8333     if (TypeFlags.isReverseCompare())
8334       std::swap(Ops[1], Ops[2]);
8335 
8336     if (TypeFlags.isReverseUSDOT())
8337       std::swap(Ops[1], Ops[2]);
8338 
8339     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8340     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8341       llvm::Type *OpndTy = Ops[1]->getType();
8342       auto *SplatZero = Constant::getNullValue(OpndTy);
8343       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8344       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8345     }
8346 
8347     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8348                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
8349     Value *Call = Builder.CreateCall(F, Ops);
8350 
8351     // Predicate results must be converted to svbool_t.
8352     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8353       if (PredTy->getScalarType()->isIntegerTy(1))
8354         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8355 
8356     return Call;
8357   }
8358 
8359   switch (BuiltinID) {
8360   default:
8361     return nullptr;
8362 
8363   case SVE::BI__builtin_sve_svmov_b_z: {
8364     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8365     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8366     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8367     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8368     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8369   }
8370 
8371   case SVE::BI__builtin_sve_svnot_b_z: {
8372     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8373     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8374     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8375     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8376     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8377   }
8378 
8379   case SVE::BI__builtin_sve_svmovlb_u16:
8380   case SVE::BI__builtin_sve_svmovlb_u32:
8381   case SVE::BI__builtin_sve_svmovlb_u64:
8382     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8383 
8384   case SVE::BI__builtin_sve_svmovlb_s16:
8385   case SVE::BI__builtin_sve_svmovlb_s32:
8386   case SVE::BI__builtin_sve_svmovlb_s64:
8387     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
8388 
8389   case SVE::BI__builtin_sve_svmovlt_u16:
8390   case SVE::BI__builtin_sve_svmovlt_u32:
8391   case SVE::BI__builtin_sve_svmovlt_u64:
8392     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
8393 
8394   case SVE::BI__builtin_sve_svmovlt_s16:
8395   case SVE::BI__builtin_sve_svmovlt_s32:
8396   case SVE::BI__builtin_sve_svmovlt_s64:
8397     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
8398 
8399   case SVE::BI__builtin_sve_svpmullt_u16:
8400   case SVE::BI__builtin_sve_svpmullt_u64:
8401   case SVE::BI__builtin_sve_svpmullt_n_u16:
8402   case SVE::BI__builtin_sve_svpmullt_n_u64:
8403     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
8404 
8405   case SVE::BI__builtin_sve_svpmullb_u16:
8406   case SVE::BI__builtin_sve_svpmullb_u64:
8407   case SVE::BI__builtin_sve_svpmullb_n_u16:
8408   case SVE::BI__builtin_sve_svpmullb_n_u64:
8409     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
8410 
8411   case SVE::BI__builtin_sve_svdup_n_b8:
8412   case SVE::BI__builtin_sve_svdup_n_b16:
8413   case SVE::BI__builtin_sve_svdup_n_b32:
8414   case SVE::BI__builtin_sve_svdup_n_b64: {
8415     Value *CmpNE =
8416         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
8417     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
8418     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
8419     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
8420   }
8421 
8422   case SVE::BI__builtin_sve_svdupq_n_b8:
8423   case SVE::BI__builtin_sve_svdupq_n_b16:
8424   case SVE::BI__builtin_sve_svdupq_n_b32:
8425   case SVE::BI__builtin_sve_svdupq_n_b64:
8426   case SVE::BI__builtin_sve_svdupq_n_u8:
8427   case SVE::BI__builtin_sve_svdupq_n_s8:
8428   case SVE::BI__builtin_sve_svdupq_n_u64:
8429   case SVE::BI__builtin_sve_svdupq_n_f64:
8430   case SVE::BI__builtin_sve_svdupq_n_s64:
8431   case SVE::BI__builtin_sve_svdupq_n_u16:
8432   case SVE::BI__builtin_sve_svdupq_n_f16:
8433   case SVE::BI__builtin_sve_svdupq_n_bf16:
8434   case SVE::BI__builtin_sve_svdupq_n_s16:
8435   case SVE::BI__builtin_sve_svdupq_n_u32:
8436   case SVE::BI__builtin_sve_svdupq_n_f32:
8437   case SVE::BI__builtin_sve_svdupq_n_s32: {
8438     // These builtins are implemented by storing each element to an array and using
8439     // ld1rq to materialize a vector.
8440     unsigned NumOpnds = Ops.size();
8441 
8442     bool IsBoolTy =
8443         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
8444 
8445     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
8446     // so that the compare can use the width that is natural for the expected
8447     // number of predicate lanes.
8448     llvm::Type *EltTy = Ops[0]->getType();
8449     if (IsBoolTy)
8450       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
8451 
8452     Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
8453                                      CharUnits::fromQuantity(16));
8454     for (unsigned I = 0; I < NumOpnds; ++I)
8455       Builder.CreateDefaultAlignedStore(
8456           IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
8457           Builder.CreateGEP(Alloca.getPointer(),
8458                             {Builder.getInt64(0), Builder.getInt64(I)}));
8459 
8460     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8461     Value *Pred = EmitSVEAllTruePred(TypeFlags);
8462 
8463     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
8464     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
8465     Value *Alloca0 = Builder.CreateGEP(
8466         Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)});
8467     Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
8468 
8469     if (!IsBoolTy)
8470       return LD1RQ;
8471 
8472     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
8473     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
8474                                        : Intrinsic::aarch64_sve_cmpne_wide,
8475                          OverloadedTy);
8476     Value *Call =
8477         Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
8478     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8479   }
8480 
8481   case SVE::BI__builtin_sve_svpfalse_b:
8482     return ConstantInt::getFalse(Ty);
8483 
8484   case SVE::BI__builtin_sve_svlen_bf16:
8485   case SVE::BI__builtin_sve_svlen_f16:
8486   case SVE::BI__builtin_sve_svlen_f32:
8487   case SVE::BI__builtin_sve_svlen_f64:
8488   case SVE::BI__builtin_sve_svlen_s8:
8489   case SVE::BI__builtin_sve_svlen_s16:
8490   case SVE::BI__builtin_sve_svlen_s32:
8491   case SVE::BI__builtin_sve_svlen_s64:
8492   case SVE::BI__builtin_sve_svlen_u8:
8493   case SVE::BI__builtin_sve_svlen_u16:
8494   case SVE::BI__builtin_sve_svlen_u32:
8495   case SVE::BI__builtin_sve_svlen_u64: {
8496     SVETypeFlags TF(Builtin->TypeModifier);
8497     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8498     auto *NumEls =
8499         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
8500 
8501     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
8502     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
8503   }
8504 
8505   case SVE::BI__builtin_sve_svtbl2_u8:
8506   case SVE::BI__builtin_sve_svtbl2_s8:
8507   case SVE::BI__builtin_sve_svtbl2_u16:
8508   case SVE::BI__builtin_sve_svtbl2_s16:
8509   case SVE::BI__builtin_sve_svtbl2_u32:
8510   case SVE::BI__builtin_sve_svtbl2_s32:
8511   case SVE::BI__builtin_sve_svtbl2_u64:
8512   case SVE::BI__builtin_sve_svtbl2_s64:
8513   case SVE::BI__builtin_sve_svtbl2_f16:
8514   case SVE::BI__builtin_sve_svtbl2_bf16:
8515   case SVE::BI__builtin_sve_svtbl2_f32:
8516   case SVE::BI__builtin_sve_svtbl2_f64: {
8517     SVETypeFlags TF(Builtin->TypeModifier);
8518     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
8519     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
8520     Function *FExtr =
8521         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8522     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
8523     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
8524     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
8525     return Builder.CreateCall(F, {V0, V1, Ops[1]});
8526   }
8527   }
8528 
8529   /// Should not happen
8530   return nullptr;
8531 }
8532 
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)8533 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
8534                                                const CallExpr *E,
8535                                                llvm::Triple::ArchType Arch) {
8536   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
8537       BuiltinID <= AArch64::LastSVEBuiltin)
8538     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
8539 
8540   unsigned HintID = static_cast<unsigned>(-1);
8541   switch (BuiltinID) {
8542   default: break;
8543   case AArch64::BI__builtin_arm_nop:
8544     HintID = 0;
8545     break;
8546   case AArch64::BI__builtin_arm_yield:
8547   case AArch64::BI__yield:
8548     HintID = 1;
8549     break;
8550   case AArch64::BI__builtin_arm_wfe:
8551   case AArch64::BI__wfe:
8552     HintID = 2;
8553     break;
8554   case AArch64::BI__builtin_arm_wfi:
8555   case AArch64::BI__wfi:
8556     HintID = 3;
8557     break;
8558   case AArch64::BI__builtin_arm_sev:
8559   case AArch64::BI__sev:
8560     HintID = 4;
8561     break;
8562   case AArch64::BI__builtin_arm_sevl:
8563   case AArch64::BI__sevl:
8564     HintID = 5;
8565     break;
8566   }
8567 
8568   if (HintID != static_cast<unsigned>(-1)) {
8569     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
8570     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
8571   }
8572 
8573   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
8574     Value *Address         = EmitScalarExpr(E->getArg(0));
8575     Value *RW              = EmitScalarExpr(E->getArg(1));
8576     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
8577     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
8578     Value *IsData          = EmitScalarExpr(E->getArg(4));
8579 
8580     Value *Locality = nullptr;
8581     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
8582       // Temporal fetch, needs to convert cache level to locality.
8583       Locality = llvm::ConstantInt::get(Int32Ty,
8584         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
8585     } else {
8586       // Streaming fetch.
8587       Locality = llvm::ConstantInt::get(Int32Ty, 0);
8588     }
8589 
8590     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
8591     // PLDL3STRM or PLDL2STRM.
8592     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
8593     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
8594   }
8595 
8596   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
8597     assert((getContext().getTypeSize(E->getType()) == 32) &&
8598            "rbit of unusual size!");
8599     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8600     return Builder.CreateCall(
8601         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8602   }
8603   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
8604     assert((getContext().getTypeSize(E->getType()) == 64) &&
8605            "rbit of unusual size!");
8606     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8607     return Builder.CreateCall(
8608         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
8609   }
8610 
8611   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
8612     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8613     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
8614                               "cls");
8615   }
8616   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
8617     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8618     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
8619                               "cls");
8620   }
8621 
8622   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
8623     assert((getContext().getTypeSize(E->getType()) == 32) &&
8624            "__jcvt of unusual size!");
8625     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
8626     return Builder.CreateCall(
8627         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
8628   }
8629 
8630   if (BuiltinID == AArch64::BI__clear_cache) {
8631     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
8632     const FunctionDecl *FD = E->getDirectCallee();
8633     Value *Ops[2];
8634     for (unsigned i = 0; i < 2; i++)
8635       Ops[i] = EmitScalarExpr(E->getArg(i));
8636     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
8637     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
8638     StringRef Name = FD->getName();
8639     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
8640   }
8641 
8642   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8643       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
8644       getContext().getTypeSize(E->getType()) == 128) {
8645     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8646                                        ? Intrinsic::aarch64_ldaxp
8647                                        : Intrinsic::aarch64_ldxp);
8648 
8649     Value *LdPtr = EmitScalarExpr(E->getArg(0));
8650     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
8651                                     "ldxp");
8652 
8653     Value *Val0 = Builder.CreateExtractValue(Val, 1);
8654     Value *Val1 = Builder.CreateExtractValue(Val, 0);
8655     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
8656     Val0 = Builder.CreateZExt(Val0, Int128Ty);
8657     Val1 = Builder.CreateZExt(Val1, Int128Ty);
8658 
8659     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
8660     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
8661     Val = Builder.CreateOr(Val, Val1);
8662     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
8663   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
8664              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
8665     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
8666 
8667     QualType Ty = E->getType();
8668     llvm::Type *RealResTy = ConvertType(Ty);
8669     llvm::Type *PtrTy = llvm::IntegerType::get(
8670         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
8671     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
8672 
8673     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
8674                                        ? Intrinsic::aarch64_ldaxr
8675                                        : Intrinsic::aarch64_ldxr,
8676                                    PtrTy);
8677     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
8678 
8679     if (RealResTy->isPointerTy())
8680       return Builder.CreateIntToPtr(Val, RealResTy);
8681 
8682     llvm::Type *IntResTy = llvm::IntegerType::get(
8683         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
8684     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
8685     return Builder.CreateBitCast(Val, RealResTy);
8686   }
8687 
8688   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
8689        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
8690       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
8691     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8692                                        ? Intrinsic::aarch64_stlxp
8693                                        : Intrinsic::aarch64_stxp);
8694     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
8695 
8696     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
8697     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
8698 
8699     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
8700     llvm::Value *Val = Builder.CreateLoad(Tmp);
8701 
8702     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
8703     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
8704     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
8705                                          Int8PtrTy);
8706     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
8707   }
8708 
8709   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
8710       BuiltinID == AArch64::BI__builtin_arm_stlex) {
8711     Value *StoreVal = EmitScalarExpr(E->getArg(0));
8712     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
8713 
8714     QualType Ty = E->getArg(0)->getType();
8715     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
8716                                                  getContext().getTypeSize(Ty));
8717     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
8718 
8719     if (StoreVal->getType()->isPointerTy())
8720       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
8721     else {
8722       llvm::Type *IntTy = llvm::IntegerType::get(
8723           getLLVMContext(),
8724           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
8725       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
8726       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
8727     }
8728 
8729     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
8730                                        ? Intrinsic::aarch64_stlxr
8731                                        : Intrinsic::aarch64_stxr,
8732                                    StoreAddr->getType());
8733     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
8734   }
8735 
8736   if (BuiltinID == AArch64::BI__getReg) {
8737     Expr::EvalResult Result;
8738     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
8739       llvm_unreachable("Sema will ensure that the parameter is constant");
8740 
8741     llvm::APSInt Value = Result.Val.getInt();
8742     LLVMContext &Context = CGM.getLLVMContext();
8743     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
8744 
8745     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
8746     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8747     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8748 
8749     llvm::Function *F =
8750         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
8751     return Builder.CreateCall(F, Metadata);
8752   }
8753 
8754   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
8755     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
8756     return Builder.CreateCall(F);
8757   }
8758 
8759   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
8760     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
8761                                llvm::SyncScope::SingleThread);
8762 
8763   // CRC32
8764   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
8765   switch (BuiltinID) {
8766   case AArch64::BI__builtin_arm_crc32b:
8767     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
8768   case AArch64::BI__builtin_arm_crc32cb:
8769     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
8770   case AArch64::BI__builtin_arm_crc32h:
8771     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
8772   case AArch64::BI__builtin_arm_crc32ch:
8773     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
8774   case AArch64::BI__builtin_arm_crc32w:
8775     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
8776   case AArch64::BI__builtin_arm_crc32cw:
8777     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
8778   case AArch64::BI__builtin_arm_crc32d:
8779     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
8780   case AArch64::BI__builtin_arm_crc32cd:
8781     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
8782   }
8783 
8784   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
8785     Value *Arg0 = EmitScalarExpr(E->getArg(0));
8786     Value *Arg1 = EmitScalarExpr(E->getArg(1));
8787     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
8788 
8789     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
8790     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
8791 
8792     return Builder.CreateCall(F, {Arg0, Arg1});
8793   }
8794 
8795   // Memory Tagging Extensions (MTE) Intrinsics
8796   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
8797   switch (BuiltinID) {
8798   case AArch64::BI__builtin_arm_irg:
8799     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
8800   case  AArch64::BI__builtin_arm_addg:
8801     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
8802   case  AArch64::BI__builtin_arm_gmi:
8803     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
8804   case  AArch64::BI__builtin_arm_ldg:
8805     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
8806   case AArch64::BI__builtin_arm_stg:
8807     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
8808   case AArch64::BI__builtin_arm_subp:
8809     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
8810   }
8811 
8812   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
8813     llvm::Type *T = ConvertType(E->getType());
8814 
8815     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
8816       Value *Pointer = EmitScalarExpr(E->getArg(0));
8817       Value *Mask = EmitScalarExpr(E->getArg(1));
8818 
8819       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8820       Mask = Builder.CreateZExt(Mask, Int64Ty);
8821       Value *RV = Builder.CreateCall(
8822                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
8823        return Builder.CreatePointerCast(RV, T);
8824     }
8825     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
8826       Value *Pointer = EmitScalarExpr(E->getArg(0));
8827       Value *TagOffset = EmitScalarExpr(E->getArg(1));
8828 
8829       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8830       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
8831       Value *RV = Builder.CreateCall(
8832                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
8833       return Builder.CreatePointerCast(RV, T);
8834     }
8835     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
8836       Value *Pointer = EmitScalarExpr(E->getArg(0));
8837       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
8838 
8839       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
8840       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
8841       return Builder.CreateCall(
8842                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
8843     }
8844     // Although it is possible to supply a different return
8845     // address (first arg) to this intrinsic, for now we set
8846     // return address same as input address.
8847     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
8848       Value *TagAddress = EmitScalarExpr(E->getArg(0));
8849       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
8850       Value *RV = Builder.CreateCall(
8851                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
8852       return Builder.CreatePointerCast(RV, T);
8853     }
8854     // Although it is possible to supply a different tag (to set)
8855     // to this intrinsic (as first arg), for now we supply
8856     // the tag that is in input address arg (common use case).
8857     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
8858         Value *TagAddress = EmitScalarExpr(E->getArg(0));
8859         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
8860         return Builder.CreateCall(
8861                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
8862     }
8863     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
8864       Value *PointerA = EmitScalarExpr(E->getArg(0));
8865       Value *PointerB = EmitScalarExpr(E->getArg(1));
8866       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
8867       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
8868       return Builder.CreateCall(
8869                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
8870     }
8871   }
8872 
8873   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
8874       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8875       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8876       BuiltinID == AArch64::BI__builtin_arm_wsr ||
8877       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
8878       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
8879 
8880     SpecialRegisterAccessKind AccessKind = Write;
8881     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
8882         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8883         BuiltinID == AArch64::BI__builtin_arm_rsrp)
8884       AccessKind = VolatileRead;
8885 
8886     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8887                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
8888 
8889     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
8890                    BuiltinID != AArch64::BI__builtin_arm_wsr;
8891 
8892     llvm::Type *ValueType;
8893     llvm::Type *RegisterType = Int64Ty;
8894     if (IsPointerBuiltin) {
8895       ValueType = VoidPtrTy;
8896     } else if (Is64Bit) {
8897       ValueType = Int64Ty;
8898     } else {
8899       ValueType = Int32Ty;
8900     }
8901 
8902     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
8903                                       AccessKind);
8904   }
8905 
8906   if (BuiltinID == AArch64::BI_ReadStatusReg ||
8907       BuiltinID == AArch64::BI_WriteStatusReg) {
8908     LLVMContext &Context = CGM.getLLVMContext();
8909 
8910     unsigned SysReg =
8911       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
8912 
8913     std::string SysRegStr;
8914     llvm::raw_string_ostream(SysRegStr) <<
8915                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
8916                        ((SysReg >> 11) & 7)               << ":" <<
8917                        ((SysReg >> 7)  & 15)              << ":" <<
8918                        ((SysReg >> 3)  & 15)              << ":" <<
8919                        ( SysReg        & 7);
8920 
8921     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
8922     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
8923     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
8924 
8925     llvm::Type *RegisterType = Int64Ty;
8926     llvm::Type *Types[] = { RegisterType };
8927 
8928     if (BuiltinID == AArch64::BI_ReadStatusReg) {
8929       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
8930 
8931       return Builder.CreateCall(F, Metadata);
8932     }
8933 
8934     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
8935     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
8936 
8937     return Builder.CreateCall(F, { Metadata, ArgValue });
8938   }
8939 
8940   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
8941     llvm::Function *F =
8942         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
8943     return Builder.CreateCall(F);
8944   }
8945 
8946   if (BuiltinID == AArch64::BI__builtin_sponentry) {
8947     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
8948     return Builder.CreateCall(F);
8949   }
8950 
8951   // Find out if any arguments are required to be integer constant
8952   // expressions.
8953   unsigned ICEArguments = 0;
8954   ASTContext::GetBuiltinTypeError Error;
8955   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8956   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8957 
8958   llvm::SmallVector<Value*, 4> Ops;
8959   Address PtrOp0 = Address::invalid();
8960   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
8961     if (i == 0) {
8962       switch (BuiltinID) {
8963       case NEON::BI__builtin_neon_vld1_v:
8964       case NEON::BI__builtin_neon_vld1q_v:
8965       case NEON::BI__builtin_neon_vld1_dup_v:
8966       case NEON::BI__builtin_neon_vld1q_dup_v:
8967       case NEON::BI__builtin_neon_vld1_lane_v:
8968       case NEON::BI__builtin_neon_vld1q_lane_v:
8969       case NEON::BI__builtin_neon_vst1_v:
8970       case NEON::BI__builtin_neon_vst1q_v:
8971       case NEON::BI__builtin_neon_vst1_lane_v:
8972       case NEON::BI__builtin_neon_vst1q_lane_v:
8973         // Get the alignment for the argument in addition to the value;
8974         // we'll use it later.
8975         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
8976         Ops.push_back(PtrOp0.getPointer());
8977         continue;
8978       }
8979     }
8980     if ((ICEArguments & (1 << i)) == 0) {
8981       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8982     } else {
8983       // If this is required to be a constant, constant fold it so that we know
8984       // that the generated intrinsic gets a ConstantInt.
8985       Ops.push_back(llvm::ConstantInt::get(
8986           getLLVMContext(),
8987           *E->getArg(i)->getIntegerConstantExpr(getContext())));
8988     }
8989   }
8990 
8991   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
8992   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8993       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
8994 
8995   if (Builtin) {
8996     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
8997     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
8998     assert(Result && "SISD intrinsic should have been handled");
8999     return Result;
9000   }
9001 
9002   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9003   NeonTypeFlags Type(0);
9004   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9005     // Determine the type of this overloaded NEON intrinsic.
9006     Type = NeonTypeFlags(Result->getZExtValue());
9007 
9008   bool usgn = Type.isUnsigned();
9009   bool quad = Type.isQuad();
9010 
9011   // Handle non-overloaded intrinsics first.
9012   switch (BuiltinID) {
9013   default: break;
9014   case NEON::BI__builtin_neon_vabsh_f16:
9015     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9016     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9017   case NEON::BI__builtin_neon_vldrq_p128: {
9018     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9019     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9020     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9021     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9022                                      CharUnits::fromQuantity(16));
9023   }
9024   case NEON::BI__builtin_neon_vstrq_p128: {
9025     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9026     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9027     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9028   }
9029   case NEON::BI__builtin_neon_vcvts_f32_u32:
9030   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9031     usgn = true;
9032     LLVM_FALLTHROUGH;
9033   case NEON::BI__builtin_neon_vcvts_f32_s32:
9034   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9035     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9036     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9037     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9038     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9039     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9040     if (usgn)
9041       return Builder.CreateUIToFP(Ops[0], FTy);
9042     return Builder.CreateSIToFP(Ops[0], FTy);
9043   }
9044   case NEON::BI__builtin_neon_vcvth_f16_u16:
9045   case NEON::BI__builtin_neon_vcvth_f16_u32:
9046   case NEON::BI__builtin_neon_vcvth_f16_u64:
9047     usgn = true;
9048     LLVM_FALLTHROUGH;
9049   case NEON::BI__builtin_neon_vcvth_f16_s16:
9050   case NEON::BI__builtin_neon_vcvth_f16_s32:
9051   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9052     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9053     llvm::Type *FTy = HalfTy;
9054     llvm::Type *InTy;
9055     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9056       InTy = Int64Ty;
9057     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9058       InTy = Int32Ty;
9059     else
9060       InTy = Int16Ty;
9061     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9062     if (usgn)
9063       return Builder.CreateUIToFP(Ops[0], FTy);
9064     return Builder.CreateSIToFP(Ops[0], FTy);
9065   }
9066   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9067   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9068   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9069   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9070   case NEON::BI__builtin_neon_vcvth_u16_f16:
9071   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9072   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9073   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9074   case NEON::BI__builtin_neon_vcvtph_s16_f16:
9075   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9076     unsigned Int;
9077     llvm::Type* InTy = Int32Ty;
9078     llvm::Type* FTy  = HalfTy;
9079     llvm::Type *Tys[2] = {InTy, FTy};
9080     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9081     switch (BuiltinID) {
9082     default: llvm_unreachable("missing builtin ID in switch!");
9083     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9084       Int = Intrinsic::aarch64_neon_fcvtau; break;
9085     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9086       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9087     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9088       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9089     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9090       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9091     case NEON::BI__builtin_neon_vcvth_u16_f16:
9092       Int = Intrinsic::aarch64_neon_fcvtzu; break;
9093     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9094       Int = Intrinsic::aarch64_neon_fcvtas; break;
9095     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9096       Int = Intrinsic::aarch64_neon_fcvtms; break;
9097     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9098       Int = Intrinsic::aarch64_neon_fcvtns; break;
9099     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9100       Int = Intrinsic::aarch64_neon_fcvtps; break;
9101     case NEON::BI__builtin_neon_vcvth_s16_f16:
9102       Int = Intrinsic::aarch64_neon_fcvtzs; break;
9103     }
9104     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9105     return Builder.CreateTrunc(Ops[0], Int16Ty);
9106   }
9107   case NEON::BI__builtin_neon_vcaleh_f16:
9108   case NEON::BI__builtin_neon_vcalth_f16:
9109   case NEON::BI__builtin_neon_vcageh_f16:
9110   case NEON::BI__builtin_neon_vcagth_f16: {
9111     unsigned Int;
9112     llvm::Type* InTy = Int32Ty;
9113     llvm::Type* FTy  = HalfTy;
9114     llvm::Type *Tys[2] = {InTy, FTy};
9115     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9116     switch (BuiltinID) {
9117     default: llvm_unreachable("missing builtin ID in switch!");
9118     case NEON::BI__builtin_neon_vcageh_f16:
9119       Int = Intrinsic::aarch64_neon_facge; break;
9120     case NEON::BI__builtin_neon_vcagth_f16:
9121       Int = Intrinsic::aarch64_neon_facgt; break;
9122     case NEON::BI__builtin_neon_vcaleh_f16:
9123       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9124     case NEON::BI__builtin_neon_vcalth_f16:
9125       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9126     }
9127     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9128     return Builder.CreateTrunc(Ops[0], Int16Ty);
9129   }
9130   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9131   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9132     unsigned Int;
9133     llvm::Type* InTy = Int32Ty;
9134     llvm::Type* FTy  = HalfTy;
9135     llvm::Type *Tys[2] = {InTy, FTy};
9136     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9137     switch (BuiltinID) {
9138     default: llvm_unreachable("missing builtin ID in switch!");
9139     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9140       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9141     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9142       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9143     }
9144     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9145     return Builder.CreateTrunc(Ops[0], Int16Ty);
9146   }
9147   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9148   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9149     unsigned Int;
9150     llvm::Type* FTy  = HalfTy;
9151     llvm::Type* InTy = Int32Ty;
9152     llvm::Type *Tys[2] = {FTy, InTy};
9153     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9154     switch (BuiltinID) {
9155     default: llvm_unreachable("missing builtin ID in switch!");
9156     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9157       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9158       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9159       break;
9160     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9161       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9162       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9163       break;
9164     }
9165     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9166   }
9167   case NEON::BI__builtin_neon_vpaddd_s64: {
9168     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9169     Value *Vec = EmitScalarExpr(E->getArg(0));
9170     // The vector is v2f64, so make sure it's bitcast to that.
9171     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9172     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9173     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9174     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9175     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9176     // Pairwise addition of a v2f64 into a scalar f64.
9177     return Builder.CreateAdd(Op0, Op1, "vpaddd");
9178   }
9179   case NEON::BI__builtin_neon_vpaddd_f64: {
9180     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9181     Value *Vec = EmitScalarExpr(E->getArg(0));
9182     // The vector is v2f64, so make sure it's bitcast to that.
9183     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9184     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9185     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9186     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9187     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9188     // Pairwise addition of a v2f64 into a scalar f64.
9189     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9190   }
9191   case NEON::BI__builtin_neon_vpadds_f32: {
9192     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9193     Value *Vec = EmitScalarExpr(E->getArg(0));
9194     // The vector is v2f32, so make sure it's bitcast to that.
9195     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9196     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9197     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9198     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9199     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9200     // Pairwise addition of a v2f32 into a scalar f32.
9201     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9202   }
9203   case NEON::BI__builtin_neon_vceqzd_s64:
9204   case NEON::BI__builtin_neon_vceqzd_f64:
9205   case NEON::BI__builtin_neon_vceqzs_f32:
9206   case NEON::BI__builtin_neon_vceqzh_f16:
9207     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9208     return EmitAArch64CompareBuiltinExpr(
9209         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9210         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9211   case NEON::BI__builtin_neon_vcgezd_s64:
9212   case NEON::BI__builtin_neon_vcgezd_f64:
9213   case NEON::BI__builtin_neon_vcgezs_f32:
9214   case NEON::BI__builtin_neon_vcgezh_f16:
9215     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9216     return EmitAArch64CompareBuiltinExpr(
9217         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9218         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9219   case NEON::BI__builtin_neon_vclezd_s64:
9220   case NEON::BI__builtin_neon_vclezd_f64:
9221   case NEON::BI__builtin_neon_vclezs_f32:
9222   case NEON::BI__builtin_neon_vclezh_f16:
9223     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9224     return EmitAArch64CompareBuiltinExpr(
9225         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9226         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9227   case NEON::BI__builtin_neon_vcgtzd_s64:
9228   case NEON::BI__builtin_neon_vcgtzd_f64:
9229   case NEON::BI__builtin_neon_vcgtzs_f32:
9230   case NEON::BI__builtin_neon_vcgtzh_f16:
9231     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9232     return EmitAArch64CompareBuiltinExpr(
9233         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9234         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9235   case NEON::BI__builtin_neon_vcltzd_s64:
9236   case NEON::BI__builtin_neon_vcltzd_f64:
9237   case NEON::BI__builtin_neon_vcltzs_f32:
9238   case NEON::BI__builtin_neon_vcltzh_f16:
9239     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9240     return EmitAArch64CompareBuiltinExpr(
9241         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9242         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9243 
9244   case NEON::BI__builtin_neon_vceqzd_u64: {
9245     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9246     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9247     Ops[0] =
9248         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9249     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9250   }
9251   case NEON::BI__builtin_neon_vceqd_f64:
9252   case NEON::BI__builtin_neon_vcled_f64:
9253   case NEON::BI__builtin_neon_vcltd_f64:
9254   case NEON::BI__builtin_neon_vcged_f64:
9255   case NEON::BI__builtin_neon_vcgtd_f64: {
9256     llvm::CmpInst::Predicate P;
9257     switch (BuiltinID) {
9258     default: llvm_unreachable("missing builtin ID in switch!");
9259     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9260     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9261     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9262     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9263     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9264     }
9265     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9266     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9267     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9268     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9269     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9270   }
9271   case NEON::BI__builtin_neon_vceqs_f32:
9272   case NEON::BI__builtin_neon_vcles_f32:
9273   case NEON::BI__builtin_neon_vclts_f32:
9274   case NEON::BI__builtin_neon_vcges_f32:
9275   case NEON::BI__builtin_neon_vcgts_f32: {
9276     llvm::CmpInst::Predicate P;
9277     switch (BuiltinID) {
9278     default: llvm_unreachable("missing builtin ID in switch!");
9279     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9280     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9281     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9282     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9283     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
9284     }
9285     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9286     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
9287     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
9288     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9289     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
9290   }
9291   case NEON::BI__builtin_neon_vceqh_f16:
9292   case NEON::BI__builtin_neon_vcleh_f16:
9293   case NEON::BI__builtin_neon_vclth_f16:
9294   case NEON::BI__builtin_neon_vcgeh_f16:
9295   case NEON::BI__builtin_neon_vcgth_f16: {
9296     llvm::CmpInst::Predicate P;
9297     switch (BuiltinID) {
9298     default: llvm_unreachable("missing builtin ID in switch!");
9299     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
9300     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
9301     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
9302     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
9303     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
9304     }
9305     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9306     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
9307     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
9308     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9309     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
9310   }
9311   case NEON::BI__builtin_neon_vceqd_s64:
9312   case NEON::BI__builtin_neon_vceqd_u64:
9313   case NEON::BI__builtin_neon_vcgtd_s64:
9314   case NEON::BI__builtin_neon_vcgtd_u64:
9315   case NEON::BI__builtin_neon_vcltd_s64:
9316   case NEON::BI__builtin_neon_vcltd_u64:
9317   case NEON::BI__builtin_neon_vcged_u64:
9318   case NEON::BI__builtin_neon_vcged_s64:
9319   case NEON::BI__builtin_neon_vcled_u64:
9320   case NEON::BI__builtin_neon_vcled_s64: {
9321     llvm::CmpInst::Predicate P;
9322     switch (BuiltinID) {
9323     default: llvm_unreachable("missing builtin ID in switch!");
9324     case NEON::BI__builtin_neon_vceqd_s64:
9325     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
9326     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
9327     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
9328     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
9329     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
9330     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
9331     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
9332     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
9333     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
9334     }
9335     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9336     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9337     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9338     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
9339     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
9340   }
9341   case NEON::BI__builtin_neon_vtstd_s64:
9342   case NEON::BI__builtin_neon_vtstd_u64: {
9343     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9344     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9345     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9346     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
9347     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
9348                                 llvm::Constant::getNullValue(Int64Ty));
9349     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
9350   }
9351   case NEON::BI__builtin_neon_vset_lane_i8:
9352   case NEON::BI__builtin_neon_vset_lane_i16:
9353   case NEON::BI__builtin_neon_vset_lane_i32:
9354   case NEON::BI__builtin_neon_vset_lane_i64:
9355   case NEON::BI__builtin_neon_vset_lane_bf16:
9356   case NEON::BI__builtin_neon_vset_lane_f32:
9357   case NEON::BI__builtin_neon_vsetq_lane_i8:
9358   case NEON::BI__builtin_neon_vsetq_lane_i16:
9359   case NEON::BI__builtin_neon_vsetq_lane_i32:
9360   case NEON::BI__builtin_neon_vsetq_lane_i64:
9361   case NEON::BI__builtin_neon_vsetq_lane_bf16:
9362   case NEON::BI__builtin_neon_vsetq_lane_f32:
9363     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9364     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9365   case NEON::BI__builtin_neon_vset_lane_f64:
9366     // The vector type needs a cast for the v1f64 variant.
9367     Ops[1] =
9368         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
9369     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9370     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9371   case NEON::BI__builtin_neon_vsetq_lane_f64:
9372     // The vector type needs a cast for the v2f64 variant.
9373     Ops[1] =
9374         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
9375     Ops.push_back(EmitScalarExpr(E->getArg(2)));
9376     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
9377 
9378   case NEON::BI__builtin_neon_vget_lane_i8:
9379   case NEON::BI__builtin_neon_vdupb_lane_i8:
9380     Ops[0] =
9381         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
9382     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9383                                         "vget_lane");
9384   case NEON::BI__builtin_neon_vgetq_lane_i8:
9385   case NEON::BI__builtin_neon_vdupb_laneq_i8:
9386     Ops[0] =
9387         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
9388     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9389                                         "vgetq_lane");
9390   case NEON::BI__builtin_neon_vget_lane_i16:
9391   case NEON::BI__builtin_neon_vduph_lane_i16:
9392     Ops[0] =
9393         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
9394     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9395                                         "vget_lane");
9396   case NEON::BI__builtin_neon_vgetq_lane_i16:
9397   case NEON::BI__builtin_neon_vduph_laneq_i16:
9398     Ops[0] =
9399         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
9400     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9401                                         "vgetq_lane");
9402   case NEON::BI__builtin_neon_vget_lane_i32:
9403   case NEON::BI__builtin_neon_vdups_lane_i32:
9404     Ops[0] =
9405         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
9406     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9407                                         "vget_lane");
9408   case NEON::BI__builtin_neon_vdups_lane_f32:
9409     Ops[0] =
9410         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9411     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9412                                         "vdups_lane");
9413   case NEON::BI__builtin_neon_vgetq_lane_i32:
9414   case NEON::BI__builtin_neon_vdups_laneq_i32:
9415     Ops[0] =
9416         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
9417     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9418                                         "vgetq_lane");
9419   case NEON::BI__builtin_neon_vget_lane_i64:
9420   case NEON::BI__builtin_neon_vdupd_lane_i64:
9421     Ops[0] =
9422         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
9423     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9424                                         "vget_lane");
9425   case NEON::BI__builtin_neon_vdupd_lane_f64:
9426     Ops[0] =
9427         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9428     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9429                                         "vdupd_lane");
9430   case NEON::BI__builtin_neon_vgetq_lane_i64:
9431   case NEON::BI__builtin_neon_vdupd_laneq_i64:
9432     Ops[0] =
9433         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
9434     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9435                                         "vgetq_lane");
9436   case NEON::BI__builtin_neon_vget_lane_f32:
9437     Ops[0] =
9438         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
9439     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9440                                         "vget_lane");
9441   case NEON::BI__builtin_neon_vget_lane_f64:
9442     Ops[0] =
9443         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
9444     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9445                                         "vget_lane");
9446   case NEON::BI__builtin_neon_vgetq_lane_f32:
9447   case NEON::BI__builtin_neon_vdups_laneq_f32:
9448     Ops[0] =
9449         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
9450     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9451                                         "vgetq_lane");
9452   case NEON::BI__builtin_neon_vgetq_lane_f64:
9453   case NEON::BI__builtin_neon_vdupd_laneq_f64:
9454     Ops[0] =
9455         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
9456     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9457                                         "vgetq_lane");
9458   case NEON::BI__builtin_neon_vaddh_f16:
9459     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9460     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
9461   case NEON::BI__builtin_neon_vsubh_f16:
9462     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9463     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
9464   case NEON::BI__builtin_neon_vmulh_f16:
9465     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9466     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
9467   case NEON::BI__builtin_neon_vdivh_f16:
9468     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9469     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
9470   case NEON::BI__builtin_neon_vfmah_f16:
9471     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9472     return emitCallMaybeConstrainedFPBuiltin(
9473         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9474         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
9475   case NEON::BI__builtin_neon_vfmsh_f16: {
9476     // FIXME: This should be an fneg instruction:
9477     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
9478     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
9479 
9480     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
9481     return emitCallMaybeConstrainedFPBuiltin(
9482         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
9483         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
9484   }
9485   case NEON::BI__builtin_neon_vaddd_s64:
9486   case NEON::BI__builtin_neon_vaddd_u64:
9487     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
9488   case NEON::BI__builtin_neon_vsubd_s64:
9489   case NEON::BI__builtin_neon_vsubd_u64:
9490     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
9491   case NEON::BI__builtin_neon_vqdmlalh_s16:
9492   case NEON::BI__builtin_neon_vqdmlslh_s16: {
9493     SmallVector<Value *, 2> ProductOps;
9494     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9495     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
9496     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9497     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9498                           ProductOps, "vqdmlXl");
9499     Constant *CI = ConstantInt::get(SizeTy, 0);
9500     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9501 
9502     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
9503                                         ? Intrinsic::aarch64_neon_sqadd
9504                                         : Intrinsic::aarch64_neon_sqsub;
9505     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
9506   }
9507   case NEON::BI__builtin_neon_vqshlud_n_s64: {
9508     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9509     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9510     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
9511                         Ops, "vqshlu_n");
9512   }
9513   case NEON::BI__builtin_neon_vqshld_n_u64:
9514   case NEON::BI__builtin_neon_vqshld_n_s64: {
9515     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
9516                                    ? Intrinsic::aarch64_neon_uqshl
9517                                    : Intrinsic::aarch64_neon_sqshl;
9518     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9519     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
9520     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
9521   }
9522   case NEON::BI__builtin_neon_vrshrd_n_u64:
9523   case NEON::BI__builtin_neon_vrshrd_n_s64: {
9524     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
9525                                    ? Intrinsic::aarch64_neon_urshl
9526                                    : Intrinsic::aarch64_neon_srshl;
9527     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9528     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
9529     Ops[1] = ConstantInt::get(Int64Ty, -SV);
9530     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
9531   }
9532   case NEON::BI__builtin_neon_vrsrad_n_u64:
9533   case NEON::BI__builtin_neon_vrsrad_n_s64: {
9534     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
9535                                    ? Intrinsic::aarch64_neon_urshl
9536                                    : Intrinsic::aarch64_neon_srshl;
9537     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
9538     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
9539     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
9540                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
9541     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
9542   }
9543   case NEON::BI__builtin_neon_vshld_n_s64:
9544   case NEON::BI__builtin_neon_vshld_n_u64: {
9545     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9546     return Builder.CreateShl(
9547         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
9548   }
9549   case NEON::BI__builtin_neon_vshrd_n_s64: {
9550     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9551     return Builder.CreateAShr(
9552         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9553                                                    Amt->getZExtValue())),
9554         "shrd_n");
9555   }
9556   case NEON::BI__builtin_neon_vshrd_n_u64: {
9557     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
9558     uint64_t ShiftAmt = Amt->getZExtValue();
9559     // Right-shifting an unsigned value by its size yields 0.
9560     if (ShiftAmt == 64)
9561       return ConstantInt::get(Int64Ty, 0);
9562     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
9563                               "shrd_n");
9564   }
9565   case NEON::BI__builtin_neon_vsrad_n_s64: {
9566     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9567     Ops[1] = Builder.CreateAShr(
9568         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
9569                                                    Amt->getZExtValue())),
9570         "shrd_n");
9571     return Builder.CreateAdd(Ops[0], Ops[1]);
9572   }
9573   case NEON::BI__builtin_neon_vsrad_n_u64: {
9574     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
9575     uint64_t ShiftAmt = Amt->getZExtValue();
9576     // Right-shifting an unsigned value by its size yields 0.
9577     // As Op + 0 = Op, return Ops[0] directly.
9578     if (ShiftAmt == 64)
9579       return Ops[0];
9580     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
9581                                 "shrd_n");
9582     return Builder.CreateAdd(Ops[0], Ops[1]);
9583   }
9584   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
9585   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
9586   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
9587   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
9588     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9589                                           "lane");
9590     SmallVector<Value *, 2> ProductOps;
9591     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
9592     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
9593     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
9594     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
9595                           ProductOps, "vqdmlXl");
9596     Constant *CI = ConstantInt::get(SizeTy, 0);
9597     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
9598     Ops.pop_back();
9599 
9600     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
9601                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
9602                           ? Intrinsic::aarch64_neon_sqadd
9603                           : Intrinsic::aarch64_neon_sqsub;
9604     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
9605   }
9606   case NEON::BI__builtin_neon_vqdmlals_s32:
9607   case NEON::BI__builtin_neon_vqdmlsls_s32: {
9608     SmallVector<Value *, 2> ProductOps;
9609     ProductOps.push_back(Ops[1]);
9610     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
9611     Ops[1] =
9612         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9613                      ProductOps, "vqdmlXl");
9614 
9615     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
9616                                         ? Intrinsic::aarch64_neon_sqadd
9617                                         : Intrinsic::aarch64_neon_sqsub;
9618     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
9619   }
9620   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
9621   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
9622   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
9623   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
9624     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
9625                                           "lane");
9626     SmallVector<Value *, 2> ProductOps;
9627     ProductOps.push_back(Ops[1]);
9628     ProductOps.push_back(Ops[2]);
9629     Ops[1] =
9630         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
9631                      ProductOps, "vqdmlXl");
9632     Ops.pop_back();
9633 
9634     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
9635                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
9636                           ? Intrinsic::aarch64_neon_sqadd
9637                           : Intrinsic::aarch64_neon_sqsub;
9638     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
9639   }
9640   case NEON::BI__builtin_neon_vget_lane_bf16:
9641   case NEON::BI__builtin_neon_vduph_lane_bf16:
9642   case NEON::BI__builtin_neon_vduph_lane_f16: {
9643     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9644                                         "vget_lane");
9645   }
9646   case NEON::BI__builtin_neon_vgetq_lane_bf16:
9647   case NEON::BI__builtin_neon_vduph_laneq_bf16:
9648   case NEON::BI__builtin_neon_vduph_laneq_f16: {
9649     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
9650                                         "vgetq_lane");
9651   }
9652   case AArch64::BI_BitScanForward:
9653   case AArch64::BI_BitScanForward64:
9654     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
9655   case AArch64::BI_BitScanReverse:
9656   case AArch64::BI_BitScanReverse64:
9657     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
9658   case AArch64::BI_InterlockedAnd64:
9659     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
9660   case AArch64::BI_InterlockedExchange64:
9661     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
9662   case AArch64::BI_InterlockedExchangeAdd64:
9663     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
9664   case AArch64::BI_InterlockedExchangeSub64:
9665     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
9666   case AArch64::BI_InterlockedOr64:
9667     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
9668   case AArch64::BI_InterlockedXor64:
9669     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
9670   case AArch64::BI_InterlockedDecrement64:
9671     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
9672   case AArch64::BI_InterlockedIncrement64:
9673     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
9674   case AArch64::BI_InterlockedExchangeAdd8_acq:
9675   case AArch64::BI_InterlockedExchangeAdd16_acq:
9676   case AArch64::BI_InterlockedExchangeAdd_acq:
9677   case AArch64::BI_InterlockedExchangeAdd64_acq:
9678     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
9679   case AArch64::BI_InterlockedExchangeAdd8_rel:
9680   case AArch64::BI_InterlockedExchangeAdd16_rel:
9681   case AArch64::BI_InterlockedExchangeAdd_rel:
9682   case AArch64::BI_InterlockedExchangeAdd64_rel:
9683     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
9684   case AArch64::BI_InterlockedExchangeAdd8_nf:
9685   case AArch64::BI_InterlockedExchangeAdd16_nf:
9686   case AArch64::BI_InterlockedExchangeAdd_nf:
9687   case AArch64::BI_InterlockedExchangeAdd64_nf:
9688     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
9689   case AArch64::BI_InterlockedExchange8_acq:
9690   case AArch64::BI_InterlockedExchange16_acq:
9691   case AArch64::BI_InterlockedExchange_acq:
9692   case AArch64::BI_InterlockedExchange64_acq:
9693     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
9694   case AArch64::BI_InterlockedExchange8_rel:
9695   case AArch64::BI_InterlockedExchange16_rel:
9696   case AArch64::BI_InterlockedExchange_rel:
9697   case AArch64::BI_InterlockedExchange64_rel:
9698     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
9699   case AArch64::BI_InterlockedExchange8_nf:
9700   case AArch64::BI_InterlockedExchange16_nf:
9701   case AArch64::BI_InterlockedExchange_nf:
9702   case AArch64::BI_InterlockedExchange64_nf:
9703     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
9704   case AArch64::BI_InterlockedCompareExchange8_acq:
9705   case AArch64::BI_InterlockedCompareExchange16_acq:
9706   case AArch64::BI_InterlockedCompareExchange_acq:
9707   case AArch64::BI_InterlockedCompareExchange64_acq:
9708     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
9709   case AArch64::BI_InterlockedCompareExchange8_rel:
9710   case AArch64::BI_InterlockedCompareExchange16_rel:
9711   case AArch64::BI_InterlockedCompareExchange_rel:
9712   case AArch64::BI_InterlockedCompareExchange64_rel:
9713     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
9714   case AArch64::BI_InterlockedCompareExchange8_nf:
9715   case AArch64::BI_InterlockedCompareExchange16_nf:
9716   case AArch64::BI_InterlockedCompareExchange_nf:
9717   case AArch64::BI_InterlockedCompareExchange64_nf:
9718     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
9719   case AArch64::BI_InterlockedOr8_acq:
9720   case AArch64::BI_InterlockedOr16_acq:
9721   case AArch64::BI_InterlockedOr_acq:
9722   case AArch64::BI_InterlockedOr64_acq:
9723     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
9724   case AArch64::BI_InterlockedOr8_rel:
9725   case AArch64::BI_InterlockedOr16_rel:
9726   case AArch64::BI_InterlockedOr_rel:
9727   case AArch64::BI_InterlockedOr64_rel:
9728     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
9729   case AArch64::BI_InterlockedOr8_nf:
9730   case AArch64::BI_InterlockedOr16_nf:
9731   case AArch64::BI_InterlockedOr_nf:
9732   case AArch64::BI_InterlockedOr64_nf:
9733     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
9734   case AArch64::BI_InterlockedXor8_acq:
9735   case AArch64::BI_InterlockedXor16_acq:
9736   case AArch64::BI_InterlockedXor_acq:
9737   case AArch64::BI_InterlockedXor64_acq:
9738     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
9739   case AArch64::BI_InterlockedXor8_rel:
9740   case AArch64::BI_InterlockedXor16_rel:
9741   case AArch64::BI_InterlockedXor_rel:
9742   case AArch64::BI_InterlockedXor64_rel:
9743     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
9744   case AArch64::BI_InterlockedXor8_nf:
9745   case AArch64::BI_InterlockedXor16_nf:
9746   case AArch64::BI_InterlockedXor_nf:
9747   case AArch64::BI_InterlockedXor64_nf:
9748     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
9749   case AArch64::BI_InterlockedAnd8_acq:
9750   case AArch64::BI_InterlockedAnd16_acq:
9751   case AArch64::BI_InterlockedAnd_acq:
9752   case AArch64::BI_InterlockedAnd64_acq:
9753     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
9754   case AArch64::BI_InterlockedAnd8_rel:
9755   case AArch64::BI_InterlockedAnd16_rel:
9756   case AArch64::BI_InterlockedAnd_rel:
9757   case AArch64::BI_InterlockedAnd64_rel:
9758     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
9759   case AArch64::BI_InterlockedAnd8_nf:
9760   case AArch64::BI_InterlockedAnd16_nf:
9761   case AArch64::BI_InterlockedAnd_nf:
9762   case AArch64::BI_InterlockedAnd64_nf:
9763     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
9764   case AArch64::BI_InterlockedIncrement16_acq:
9765   case AArch64::BI_InterlockedIncrement_acq:
9766   case AArch64::BI_InterlockedIncrement64_acq:
9767     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
9768   case AArch64::BI_InterlockedIncrement16_rel:
9769   case AArch64::BI_InterlockedIncrement_rel:
9770   case AArch64::BI_InterlockedIncrement64_rel:
9771     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
9772   case AArch64::BI_InterlockedIncrement16_nf:
9773   case AArch64::BI_InterlockedIncrement_nf:
9774   case AArch64::BI_InterlockedIncrement64_nf:
9775     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
9776   case AArch64::BI_InterlockedDecrement16_acq:
9777   case AArch64::BI_InterlockedDecrement_acq:
9778   case AArch64::BI_InterlockedDecrement64_acq:
9779     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
9780   case AArch64::BI_InterlockedDecrement16_rel:
9781   case AArch64::BI_InterlockedDecrement_rel:
9782   case AArch64::BI_InterlockedDecrement64_rel:
9783     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
9784   case AArch64::BI_InterlockedDecrement16_nf:
9785   case AArch64::BI_InterlockedDecrement_nf:
9786   case AArch64::BI_InterlockedDecrement64_nf:
9787     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
9788 
9789   case AArch64::BI_InterlockedAdd: {
9790     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9791     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9792     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9793       AtomicRMWInst::Add, Arg0, Arg1,
9794       llvm::AtomicOrdering::SequentiallyConsistent);
9795     return Builder.CreateAdd(RMWI, Arg1);
9796   }
9797   }
9798 
9799   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
9800   llvm::Type *Ty = VTy;
9801   if (!Ty)
9802     return nullptr;
9803 
9804   // Not all intrinsics handled by the common case work for AArch64 yet, so only
9805   // defer to common code if it's been added to our special map.
9806   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
9807                                         AArch64SIMDIntrinsicsProvenSorted);
9808 
9809   if (Builtin)
9810     return EmitCommonNeonBuiltinExpr(
9811         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
9812         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
9813         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
9814 
9815   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
9816     return V;
9817 
9818   unsigned Int;
9819   switch (BuiltinID) {
9820   default: return nullptr;
9821   case NEON::BI__builtin_neon_vbsl_v:
9822   case NEON::BI__builtin_neon_vbslq_v: {
9823     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
9824     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
9825     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
9826     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
9827 
9828     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
9829     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
9830     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
9831     return Builder.CreateBitCast(Ops[0], Ty);
9832   }
9833   case NEON::BI__builtin_neon_vfma_lane_v:
9834   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
9835     // The ARM builtins (and instructions) have the addend as the first
9836     // operand, but the 'fma' intrinsics have it last. Swap it around here.
9837     Value *Addend = Ops[0];
9838     Value *Multiplicand = Ops[1];
9839     Value *LaneSource = Ops[2];
9840     Ops[0] = Multiplicand;
9841     Ops[1] = LaneSource;
9842     Ops[2] = Addend;
9843 
9844     // Now adjust things to handle the lane access.
9845     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
9846                          ? llvm::FixedVectorType::get(VTy->getElementType(),
9847                                                       VTy->getNumElements() / 2)
9848                          : VTy;
9849     llvm::Constant *cst = cast<Constant>(Ops[3]);
9850     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
9851     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
9852     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
9853 
9854     Ops.pop_back();
9855     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
9856                                        : Intrinsic::fma;
9857     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
9858   }
9859   case NEON::BI__builtin_neon_vfma_laneq_v: {
9860     auto *VTy = cast<llvm::FixedVectorType>(Ty);
9861     // v1f64 fma should be mapped to Neon scalar f64 fma
9862     if (VTy && VTy->getElementType() == DoubleTy) {
9863       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9864       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9865       llvm::FixedVectorType *VTy =
9866           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
9867       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
9868       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
9869       Value *Result;
9870       Result = emitCallMaybeConstrainedFPBuiltin(
9871           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
9872           DoubleTy, {Ops[1], Ops[2], Ops[0]});
9873       return Builder.CreateBitCast(Result, Ty);
9874     }
9875     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9876     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9877 
9878     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
9879                                            VTy->getNumElements() * 2);
9880     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
9881     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
9882                                                cast<ConstantInt>(Ops[3]));
9883     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
9884 
9885     return emitCallMaybeConstrainedFPBuiltin(
9886         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9887         {Ops[2], Ops[1], Ops[0]});
9888   }
9889   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
9890     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9891     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9892 
9893     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
9894     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
9895     return emitCallMaybeConstrainedFPBuiltin(
9896         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9897         {Ops[2], Ops[1], Ops[0]});
9898   }
9899   case NEON::BI__builtin_neon_vfmah_lane_f16:
9900   case NEON::BI__builtin_neon_vfmas_lane_f32:
9901   case NEON::BI__builtin_neon_vfmah_laneq_f16:
9902   case NEON::BI__builtin_neon_vfmas_laneq_f32:
9903   case NEON::BI__builtin_neon_vfmad_lane_f64:
9904   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
9905     Ops.push_back(EmitScalarExpr(E->getArg(3)));
9906     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
9907     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
9908     return emitCallMaybeConstrainedFPBuiltin(
9909         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
9910         {Ops[1], Ops[2], Ops[0]});
9911   }
9912   case NEON::BI__builtin_neon_vmull_v:
9913     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9914     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
9915     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
9916     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
9917   case NEON::BI__builtin_neon_vmax_v:
9918   case NEON::BI__builtin_neon_vmaxq_v:
9919     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9920     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
9921     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
9922     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
9923   case NEON::BI__builtin_neon_vmaxh_f16: {
9924     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9925     Int = Intrinsic::aarch64_neon_fmax;
9926     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
9927   }
9928   case NEON::BI__builtin_neon_vmin_v:
9929   case NEON::BI__builtin_neon_vminq_v:
9930     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9931     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
9932     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
9933     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
9934   case NEON::BI__builtin_neon_vminh_f16: {
9935     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9936     Int = Intrinsic::aarch64_neon_fmin;
9937     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
9938   }
9939   case NEON::BI__builtin_neon_vabd_v:
9940   case NEON::BI__builtin_neon_vabdq_v:
9941     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9942     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
9943     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
9944     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
9945   case NEON::BI__builtin_neon_vpadal_v:
9946   case NEON::BI__builtin_neon_vpadalq_v: {
9947     unsigned ArgElts = VTy->getNumElements();
9948     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
9949     unsigned BitWidth = EltTy->getBitWidth();
9950     auto *ArgTy = llvm::FixedVectorType::get(
9951         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
9952     llvm::Type* Tys[2] = { VTy, ArgTy };
9953     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
9954     SmallVector<llvm::Value*, 1> TmpOps;
9955     TmpOps.push_back(Ops[1]);
9956     Function *F = CGM.getIntrinsic(Int, Tys);
9957     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
9958     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
9959     return Builder.CreateAdd(tmp, addend);
9960   }
9961   case NEON::BI__builtin_neon_vpmin_v:
9962   case NEON::BI__builtin_neon_vpminq_v:
9963     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9964     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
9965     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
9966     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
9967   case NEON::BI__builtin_neon_vpmax_v:
9968   case NEON::BI__builtin_neon_vpmaxq_v:
9969     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
9970     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
9971     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
9972     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
9973   case NEON::BI__builtin_neon_vminnm_v:
9974   case NEON::BI__builtin_neon_vminnmq_v:
9975     Int = Intrinsic::aarch64_neon_fminnm;
9976     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
9977   case NEON::BI__builtin_neon_vminnmh_f16:
9978     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9979     Int = Intrinsic::aarch64_neon_fminnm;
9980     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
9981   case NEON::BI__builtin_neon_vmaxnm_v:
9982   case NEON::BI__builtin_neon_vmaxnmq_v:
9983     Int = Intrinsic::aarch64_neon_fmaxnm;
9984     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
9985   case NEON::BI__builtin_neon_vmaxnmh_f16:
9986     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9987     Int = Intrinsic::aarch64_neon_fmaxnm;
9988     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
9989   case NEON::BI__builtin_neon_vrecpss_f32: {
9990     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9991     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
9992                         Ops, "vrecps");
9993   }
9994   case NEON::BI__builtin_neon_vrecpsd_f64:
9995     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9996     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
9997                         Ops, "vrecps");
9998   case NEON::BI__builtin_neon_vrecpsh_f16:
9999     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10000     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10001                         Ops, "vrecps");
10002   case NEON::BI__builtin_neon_vqshrun_n_v:
10003     Int = Intrinsic::aarch64_neon_sqshrun;
10004     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10005   case NEON::BI__builtin_neon_vqrshrun_n_v:
10006     Int = Intrinsic::aarch64_neon_sqrshrun;
10007     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10008   case NEON::BI__builtin_neon_vqshrn_n_v:
10009     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10010     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10011   case NEON::BI__builtin_neon_vrshrn_n_v:
10012     Int = Intrinsic::aarch64_neon_rshrn;
10013     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10014   case NEON::BI__builtin_neon_vqrshrn_n_v:
10015     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10016     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10017   case NEON::BI__builtin_neon_vrndah_f16: {
10018     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10019     Int = Builder.getIsFPConstrained()
10020               ? Intrinsic::experimental_constrained_round
10021               : Intrinsic::round;
10022     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10023   }
10024   case NEON::BI__builtin_neon_vrnda_v:
10025   case NEON::BI__builtin_neon_vrndaq_v: {
10026     Int = Builder.getIsFPConstrained()
10027               ? Intrinsic::experimental_constrained_round
10028               : Intrinsic::round;
10029     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10030   }
10031   case NEON::BI__builtin_neon_vrndih_f16: {
10032     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10033     Int = Builder.getIsFPConstrained()
10034               ? Intrinsic::experimental_constrained_nearbyint
10035               : Intrinsic::nearbyint;
10036     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10037   }
10038   case NEON::BI__builtin_neon_vrndmh_f16: {
10039     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10040     Int = Builder.getIsFPConstrained()
10041               ? Intrinsic::experimental_constrained_floor
10042               : Intrinsic::floor;
10043     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10044   }
10045   case NEON::BI__builtin_neon_vrndm_v:
10046   case NEON::BI__builtin_neon_vrndmq_v: {
10047     Int = Builder.getIsFPConstrained()
10048               ? Intrinsic::experimental_constrained_floor
10049               : Intrinsic::floor;
10050     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10051   }
10052   case NEON::BI__builtin_neon_vrndnh_f16: {
10053     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10054     Int = Intrinsic::aarch64_neon_frintn;
10055     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10056   }
10057   case NEON::BI__builtin_neon_vrndn_v:
10058   case NEON::BI__builtin_neon_vrndnq_v: {
10059     Int = Intrinsic::aarch64_neon_frintn;
10060     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10061   }
10062   case NEON::BI__builtin_neon_vrndns_f32: {
10063     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10064     Int = Intrinsic::aarch64_neon_frintn;
10065     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10066   }
10067   case NEON::BI__builtin_neon_vrndph_f16: {
10068     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10069     Int = Builder.getIsFPConstrained()
10070               ? Intrinsic::experimental_constrained_ceil
10071               : Intrinsic::ceil;
10072     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10073   }
10074   case NEON::BI__builtin_neon_vrndp_v:
10075   case NEON::BI__builtin_neon_vrndpq_v: {
10076     Int = Builder.getIsFPConstrained()
10077               ? Intrinsic::experimental_constrained_ceil
10078               : Intrinsic::ceil;
10079     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10080   }
10081   case NEON::BI__builtin_neon_vrndxh_f16: {
10082     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10083     Int = Builder.getIsFPConstrained()
10084               ? Intrinsic::experimental_constrained_rint
10085               : Intrinsic::rint;
10086     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10087   }
10088   case NEON::BI__builtin_neon_vrndx_v:
10089   case NEON::BI__builtin_neon_vrndxq_v: {
10090     Int = Builder.getIsFPConstrained()
10091               ? Intrinsic::experimental_constrained_rint
10092               : Intrinsic::rint;
10093     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10094   }
10095   case NEON::BI__builtin_neon_vrndh_f16: {
10096     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10097     Int = Builder.getIsFPConstrained()
10098               ? Intrinsic::experimental_constrained_trunc
10099               : Intrinsic::trunc;
10100     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10101   }
10102   case NEON::BI__builtin_neon_vrnd_v:
10103   case NEON::BI__builtin_neon_vrndq_v: {
10104     Int = Builder.getIsFPConstrained()
10105               ? Intrinsic::experimental_constrained_trunc
10106               : Intrinsic::trunc;
10107     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10108   }
10109   case NEON::BI__builtin_neon_vcvt_f64_v:
10110   case NEON::BI__builtin_neon_vcvtq_f64_v:
10111     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10112     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10113     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10114                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10115   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10116     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10117            "unexpected vcvt_f64_f32 builtin");
10118     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10119     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10120 
10121     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10122   }
10123   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10124     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10125            "unexpected vcvt_f32_f64 builtin");
10126     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10127     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10128 
10129     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10130   }
10131   case NEON::BI__builtin_neon_vcvt_s32_v:
10132   case NEON::BI__builtin_neon_vcvt_u32_v:
10133   case NEON::BI__builtin_neon_vcvt_s64_v:
10134   case NEON::BI__builtin_neon_vcvt_u64_v:
10135   case NEON::BI__builtin_neon_vcvt_s16_v:
10136   case NEON::BI__builtin_neon_vcvt_u16_v:
10137   case NEON::BI__builtin_neon_vcvtq_s32_v:
10138   case NEON::BI__builtin_neon_vcvtq_u32_v:
10139   case NEON::BI__builtin_neon_vcvtq_s64_v:
10140   case NEON::BI__builtin_neon_vcvtq_u64_v:
10141   case NEON::BI__builtin_neon_vcvtq_s16_v:
10142   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10143     Int =
10144         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10145     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10146     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10147   }
10148   case NEON::BI__builtin_neon_vcvta_s16_v:
10149   case NEON::BI__builtin_neon_vcvta_u16_v:
10150   case NEON::BI__builtin_neon_vcvta_s32_v:
10151   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10152   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10153   case NEON::BI__builtin_neon_vcvta_u32_v:
10154   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10155   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10156   case NEON::BI__builtin_neon_vcvta_s64_v:
10157   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10158   case NEON::BI__builtin_neon_vcvta_u64_v:
10159   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10160     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10161     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10162     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10163   }
10164   case NEON::BI__builtin_neon_vcvtm_s16_v:
10165   case NEON::BI__builtin_neon_vcvtm_s32_v:
10166   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10167   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10168   case NEON::BI__builtin_neon_vcvtm_u16_v:
10169   case NEON::BI__builtin_neon_vcvtm_u32_v:
10170   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10171   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10172   case NEON::BI__builtin_neon_vcvtm_s64_v:
10173   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10174   case NEON::BI__builtin_neon_vcvtm_u64_v:
10175   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10176     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10177     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10178     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10179   }
10180   case NEON::BI__builtin_neon_vcvtn_s16_v:
10181   case NEON::BI__builtin_neon_vcvtn_s32_v:
10182   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10183   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10184   case NEON::BI__builtin_neon_vcvtn_u16_v:
10185   case NEON::BI__builtin_neon_vcvtn_u32_v:
10186   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10187   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10188   case NEON::BI__builtin_neon_vcvtn_s64_v:
10189   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10190   case NEON::BI__builtin_neon_vcvtn_u64_v:
10191   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10192     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10193     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10194     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10195   }
10196   case NEON::BI__builtin_neon_vcvtp_s16_v:
10197   case NEON::BI__builtin_neon_vcvtp_s32_v:
10198   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10199   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10200   case NEON::BI__builtin_neon_vcvtp_u16_v:
10201   case NEON::BI__builtin_neon_vcvtp_u32_v:
10202   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10203   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10204   case NEON::BI__builtin_neon_vcvtp_s64_v:
10205   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10206   case NEON::BI__builtin_neon_vcvtp_u64_v:
10207   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10208     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10209     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10210     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10211   }
10212   case NEON::BI__builtin_neon_vmulx_v:
10213   case NEON::BI__builtin_neon_vmulxq_v: {
10214     Int = Intrinsic::aarch64_neon_fmulx;
10215     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10216   }
10217   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10218   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10219     // vmulx_lane should be mapped to Neon scalar mulx after
10220     // extracting the scalar element
10221     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10222     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10223     Ops.pop_back();
10224     Int = Intrinsic::aarch64_neon_fmulx;
10225     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10226   }
10227   case NEON::BI__builtin_neon_vmul_lane_v:
10228   case NEON::BI__builtin_neon_vmul_laneq_v: {
10229     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10230     bool Quad = false;
10231     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10232       Quad = true;
10233     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10234     llvm::FixedVectorType *VTy =
10235         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10236     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10237     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10238     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10239     return Builder.CreateBitCast(Result, Ty);
10240   }
10241   case NEON::BI__builtin_neon_vnegd_s64:
10242     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10243   case NEON::BI__builtin_neon_vnegh_f16:
10244     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10245   case NEON::BI__builtin_neon_vpmaxnm_v:
10246   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10247     Int = Intrinsic::aarch64_neon_fmaxnmp;
10248     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10249   }
10250   case NEON::BI__builtin_neon_vpminnm_v:
10251   case NEON::BI__builtin_neon_vpminnmq_v: {
10252     Int = Intrinsic::aarch64_neon_fminnmp;
10253     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10254   }
10255   case NEON::BI__builtin_neon_vsqrth_f16: {
10256     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10257     Int = Builder.getIsFPConstrained()
10258               ? Intrinsic::experimental_constrained_sqrt
10259               : Intrinsic::sqrt;
10260     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10261   }
10262   case NEON::BI__builtin_neon_vsqrt_v:
10263   case NEON::BI__builtin_neon_vsqrtq_v: {
10264     Int = Builder.getIsFPConstrained()
10265               ? Intrinsic::experimental_constrained_sqrt
10266               : Intrinsic::sqrt;
10267     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10268     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10269   }
10270   case NEON::BI__builtin_neon_vrbit_v:
10271   case NEON::BI__builtin_neon_vrbitq_v: {
10272     Int = Intrinsic::aarch64_neon_rbit;
10273     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10274   }
10275   case NEON::BI__builtin_neon_vaddv_u8:
10276     // FIXME: These are handled by the AArch64 scalar code.
10277     usgn = true;
10278     LLVM_FALLTHROUGH;
10279   case NEON::BI__builtin_neon_vaddv_s8: {
10280     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10281     Ty = Int32Ty;
10282     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10283     llvm::Type *Tys[2] = { Ty, VTy };
10284     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10285     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10286     return Builder.CreateTrunc(Ops[0], Int8Ty);
10287   }
10288   case NEON::BI__builtin_neon_vaddv_u16:
10289     usgn = true;
10290     LLVM_FALLTHROUGH;
10291   case NEON::BI__builtin_neon_vaddv_s16: {
10292     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10293     Ty = Int32Ty;
10294     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10295     llvm::Type *Tys[2] = { Ty, VTy };
10296     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10297     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10298     return Builder.CreateTrunc(Ops[0], Int16Ty);
10299   }
10300   case NEON::BI__builtin_neon_vaddvq_u8:
10301     usgn = true;
10302     LLVM_FALLTHROUGH;
10303   case NEON::BI__builtin_neon_vaddvq_s8: {
10304     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10305     Ty = Int32Ty;
10306     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10307     llvm::Type *Tys[2] = { Ty, VTy };
10308     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10309     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10310     return Builder.CreateTrunc(Ops[0], Int8Ty);
10311   }
10312   case NEON::BI__builtin_neon_vaddvq_u16:
10313     usgn = true;
10314     LLVM_FALLTHROUGH;
10315   case NEON::BI__builtin_neon_vaddvq_s16: {
10316     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10317     Ty = Int32Ty;
10318     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10319     llvm::Type *Tys[2] = { Ty, VTy };
10320     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10321     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10322     return Builder.CreateTrunc(Ops[0], Int16Ty);
10323   }
10324   case NEON::BI__builtin_neon_vmaxv_u8: {
10325     Int = Intrinsic::aarch64_neon_umaxv;
10326     Ty = Int32Ty;
10327     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10328     llvm::Type *Tys[2] = { Ty, VTy };
10329     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10330     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10331     return Builder.CreateTrunc(Ops[0], Int8Ty);
10332   }
10333   case NEON::BI__builtin_neon_vmaxv_u16: {
10334     Int = Intrinsic::aarch64_neon_umaxv;
10335     Ty = Int32Ty;
10336     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10337     llvm::Type *Tys[2] = { Ty, VTy };
10338     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10339     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10340     return Builder.CreateTrunc(Ops[0], Int16Ty);
10341   }
10342   case NEON::BI__builtin_neon_vmaxvq_u8: {
10343     Int = Intrinsic::aarch64_neon_umaxv;
10344     Ty = Int32Ty;
10345     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10346     llvm::Type *Tys[2] = { Ty, VTy };
10347     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10348     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10349     return Builder.CreateTrunc(Ops[0], Int8Ty);
10350   }
10351   case NEON::BI__builtin_neon_vmaxvq_u16: {
10352     Int = Intrinsic::aarch64_neon_umaxv;
10353     Ty = Int32Ty;
10354     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10355     llvm::Type *Tys[2] = { Ty, VTy };
10356     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10357     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10358     return Builder.CreateTrunc(Ops[0], Int16Ty);
10359   }
10360   case NEON::BI__builtin_neon_vmaxv_s8: {
10361     Int = Intrinsic::aarch64_neon_smaxv;
10362     Ty = Int32Ty;
10363     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10364     llvm::Type *Tys[2] = { Ty, VTy };
10365     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10366     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10367     return Builder.CreateTrunc(Ops[0], Int8Ty);
10368   }
10369   case NEON::BI__builtin_neon_vmaxv_s16: {
10370     Int = Intrinsic::aarch64_neon_smaxv;
10371     Ty = Int32Ty;
10372     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10373     llvm::Type *Tys[2] = { Ty, VTy };
10374     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10375     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10376     return Builder.CreateTrunc(Ops[0], Int16Ty);
10377   }
10378   case NEON::BI__builtin_neon_vmaxvq_s8: {
10379     Int = Intrinsic::aarch64_neon_smaxv;
10380     Ty = Int32Ty;
10381     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10382     llvm::Type *Tys[2] = { Ty, VTy };
10383     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10384     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10385     return Builder.CreateTrunc(Ops[0], Int8Ty);
10386   }
10387   case NEON::BI__builtin_neon_vmaxvq_s16: {
10388     Int = Intrinsic::aarch64_neon_smaxv;
10389     Ty = Int32Ty;
10390     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10391     llvm::Type *Tys[2] = { Ty, VTy };
10392     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10393     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10394     return Builder.CreateTrunc(Ops[0], Int16Ty);
10395   }
10396   case NEON::BI__builtin_neon_vmaxv_f16: {
10397     Int = Intrinsic::aarch64_neon_fmaxv;
10398     Ty = HalfTy;
10399     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10400     llvm::Type *Tys[2] = { Ty, VTy };
10401     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10402     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10403     return Builder.CreateTrunc(Ops[0], HalfTy);
10404   }
10405   case NEON::BI__builtin_neon_vmaxvq_f16: {
10406     Int = Intrinsic::aarch64_neon_fmaxv;
10407     Ty = HalfTy;
10408     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10409     llvm::Type *Tys[2] = { Ty, VTy };
10410     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10411     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10412     return Builder.CreateTrunc(Ops[0], HalfTy);
10413   }
10414   case NEON::BI__builtin_neon_vminv_u8: {
10415     Int = Intrinsic::aarch64_neon_uminv;
10416     Ty = Int32Ty;
10417     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10418     llvm::Type *Tys[2] = { Ty, VTy };
10419     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10420     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10421     return Builder.CreateTrunc(Ops[0], Int8Ty);
10422   }
10423   case NEON::BI__builtin_neon_vminv_u16: {
10424     Int = Intrinsic::aarch64_neon_uminv;
10425     Ty = Int32Ty;
10426     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10427     llvm::Type *Tys[2] = { Ty, VTy };
10428     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10429     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10430     return Builder.CreateTrunc(Ops[0], Int16Ty);
10431   }
10432   case NEON::BI__builtin_neon_vminvq_u8: {
10433     Int = Intrinsic::aarch64_neon_uminv;
10434     Ty = Int32Ty;
10435     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10436     llvm::Type *Tys[2] = { Ty, VTy };
10437     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10438     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10439     return Builder.CreateTrunc(Ops[0], Int8Ty);
10440   }
10441   case NEON::BI__builtin_neon_vminvq_u16: {
10442     Int = Intrinsic::aarch64_neon_uminv;
10443     Ty = Int32Ty;
10444     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10445     llvm::Type *Tys[2] = { Ty, VTy };
10446     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10447     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10448     return Builder.CreateTrunc(Ops[0], Int16Ty);
10449   }
10450   case NEON::BI__builtin_neon_vminv_s8: {
10451     Int = Intrinsic::aarch64_neon_sminv;
10452     Ty = Int32Ty;
10453     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10454     llvm::Type *Tys[2] = { Ty, VTy };
10455     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10456     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10457     return Builder.CreateTrunc(Ops[0], Int8Ty);
10458   }
10459   case NEON::BI__builtin_neon_vminv_s16: {
10460     Int = Intrinsic::aarch64_neon_sminv;
10461     Ty = Int32Ty;
10462     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10463     llvm::Type *Tys[2] = { Ty, VTy };
10464     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10465     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10466     return Builder.CreateTrunc(Ops[0], Int16Ty);
10467   }
10468   case NEON::BI__builtin_neon_vminvq_s8: {
10469     Int = Intrinsic::aarch64_neon_sminv;
10470     Ty = Int32Ty;
10471     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10472     llvm::Type *Tys[2] = { Ty, VTy };
10473     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10474     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10475     return Builder.CreateTrunc(Ops[0], Int8Ty);
10476   }
10477   case NEON::BI__builtin_neon_vminvq_s16: {
10478     Int = Intrinsic::aarch64_neon_sminv;
10479     Ty = Int32Ty;
10480     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10481     llvm::Type *Tys[2] = { Ty, VTy };
10482     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10483     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10484     return Builder.CreateTrunc(Ops[0], Int16Ty);
10485   }
10486   case NEON::BI__builtin_neon_vminv_f16: {
10487     Int = Intrinsic::aarch64_neon_fminv;
10488     Ty = HalfTy;
10489     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10490     llvm::Type *Tys[2] = { Ty, VTy };
10491     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10492     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10493     return Builder.CreateTrunc(Ops[0], HalfTy);
10494   }
10495   case NEON::BI__builtin_neon_vminvq_f16: {
10496     Int = Intrinsic::aarch64_neon_fminv;
10497     Ty = HalfTy;
10498     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10499     llvm::Type *Tys[2] = { Ty, VTy };
10500     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10501     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
10502     return Builder.CreateTrunc(Ops[0], HalfTy);
10503   }
10504   case NEON::BI__builtin_neon_vmaxnmv_f16: {
10505     Int = Intrinsic::aarch64_neon_fmaxnmv;
10506     Ty = HalfTy;
10507     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10508     llvm::Type *Tys[2] = { Ty, VTy };
10509     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10510     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10511     return Builder.CreateTrunc(Ops[0], HalfTy);
10512   }
10513   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
10514     Int = Intrinsic::aarch64_neon_fmaxnmv;
10515     Ty = HalfTy;
10516     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10517     llvm::Type *Tys[2] = { Ty, VTy };
10518     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10519     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
10520     return Builder.CreateTrunc(Ops[0], HalfTy);
10521   }
10522   case NEON::BI__builtin_neon_vminnmv_f16: {
10523     Int = Intrinsic::aarch64_neon_fminnmv;
10524     Ty = HalfTy;
10525     VTy = llvm::FixedVectorType::get(HalfTy, 4);
10526     llvm::Type *Tys[2] = { Ty, VTy };
10527     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10528     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10529     return Builder.CreateTrunc(Ops[0], HalfTy);
10530   }
10531   case NEON::BI__builtin_neon_vminnmvq_f16: {
10532     Int = Intrinsic::aarch64_neon_fminnmv;
10533     Ty = HalfTy;
10534     VTy = llvm::FixedVectorType::get(HalfTy, 8);
10535     llvm::Type *Tys[2] = { Ty, VTy };
10536     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10537     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
10538     return Builder.CreateTrunc(Ops[0], HalfTy);
10539   }
10540   case NEON::BI__builtin_neon_vmul_n_f64: {
10541     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10542     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
10543     return Builder.CreateFMul(Ops[0], RHS);
10544   }
10545   case NEON::BI__builtin_neon_vaddlv_u8: {
10546     Int = Intrinsic::aarch64_neon_uaddlv;
10547     Ty = Int32Ty;
10548     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10549     llvm::Type *Tys[2] = { Ty, VTy };
10550     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10551     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10552     return Builder.CreateTrunc(Ops[0], Int16Ty);
10553   }
10554   case NEON::BI__builtin_neon_vaddlv_u16: {
10555     Int = Intrinsic::aarch64_neon_uaddlv;
10556     Ty = Int32Ty;
10557     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10558     llvm::Type *Tys[2] = { Ty, VTy };
10559     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10560     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10561   }
10562   case NEON::BI__builtin_neon_vaddlvq_u8: {
10563     Int = Intrinsic::aarch64_neon_uaddlv;
10564     Ty = Int32Ty;
10565     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10566     llvm::Type *Tys[2] = { Ty, VTy };
10567     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10568     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10569     return Builder.CreateTrunc(Ops[0], Int16Ty);
10570   }
10571   case NEON::BI__builtin_neon_vaddlvq_u16: {
10572     Int = Intrinsic::aarch64_neon_uaddlv;
10573     Ty = Int32Ty;
10574     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10575     llvm::Type *Tys[2] = { Ty, VTy };
10576     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10577     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10578   }
10579   case NEON::BI__builtin_neon_vaddlv_s8: {
10580     Int = Intrinsic::aarch64_neon_saddlv;
10581     Ty = Int32Ty;
10582     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10583     llvm::Type *Tys[2] = { Ty, VTy };
10584     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10585     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10586     return Builder.CreateTrunc(Ops[0], Int16Ty);
10587   }
10588   case NEON::BI__builtin_neon_vaddlv_s16: {
10589     Int = Intrinsic::aarch64_neon_saddlv;
10590     Ty = Int32Ty;
10591     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10592     llvm::Type *Tys[2] = { Ty, VTy };
10593     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10594     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10595   }
10596   case NEON::BI__builtin_neon_vaddlvq_s8: {
10597     Int = Intrinsic::aarch64_neon_saddlv;
10598     Ty = Int32Ty;
10599     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10600     llvm::Type *Tys[2] = { Ty, VTy };
10601     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10602     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10603     return Builder.CreateTrunc(Ops[0], Int16Ty);
10604   }
10605   case NEON::BI__builtin_neon_vaddlvq_s16: {
10606     Int = Intrinsic::aarch64_neon_saddlv;
10607     Ty = Int32Ty;
10608     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10609     llvm::Type *Tys[2] = { Ty, VTy };
10610     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10611     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
10612   }
10613   case NEON::BI__builtin_neon_vsri_n_v:
10614   case NEON::BI__builtin_neon_vsriq_n_v: {
10615     Int = Intrinsic::aarch64_neon_vsri;
10616     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10617     return EmitNeonCall(Intrin, Ops, "vsri_n");
10618   }
10619   case NEON::BI__builtin_neon_vsli_n_v:
10620   case NEON::BI__builtin_neon_vsliq_n_v: {
10621     Int = Intrinsic::aarch64_neon_vsli;
10622     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
10623     return EmitNeonCall(Intrin, Ops, "vsli_n");
10624   }
10625   case NEON::BI__builtin_neon_vsra_n_v:
10626   case NEON::BI__builtin_neon_vsraq_n_v:
10627     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10628     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
10629     return Builder.CreateAdd(Ops[0], Ops[1]);
10630   case NEON::BI__builtin_neon_vrsra_n_v:
10631   case NEON::BI__builtin_neon_vrsraq_n_v: {
10632     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
10633     SmallVector<llvm::Value*,2> TmpOps;
10634     TmpOps.push_back(Ops[1]);
10635     TmpOps.push_back(Ops[2]);
10636     Function* F = CGM.getIntrinsic(Int, Ty);
10637     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
10638     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
10639     return Builder.CreateAdd(Ops[0], tmp);
10640   }
10641   case NEON::BI__builtin_neon_vld1_v:
10642   case NEON::BI__builtin_neon_vld1q_v: {
10643     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10644     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
10645   }
10646   case NEON::BI__builtin_neon_vst1_v:
10647   case NEON::BI__builtin_neon_vst1q_v:
10648     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
10649     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10650     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
10651   case NEON::BI__builtin_neon_vld1_lane_v:
10652   case NEON::BI__builtin_neon_vld1q_lane_v: {
10653     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10654     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10655     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10656     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10657                                        PtrOp0.getAlignment());
10658     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
10659   }
10660   case NEON::BI__builtin_neon_vld1_dup_v:
10661   case NEON::BI__builtin_neon_vld1q_dup_v: {
10662     Value *V = UndefValue::get(Ty);
10663     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
10664     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10665     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
10666                                        PtrOp0.getAlignment());
10667     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
10668     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
10669     return EmitNeonSplat(Ops[0], CI);
10670   }
10671   case NEON::BI__builtin_neon_vst1_lane_v:
10672   case NEON::BI__builtin_neon_vst1q_lane_v:
10673     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10674     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
10675     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10676     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
10677                                       PtrOp0.getAlignment());
10678   case NEON::BI__builtin_neon_vld2_v:
10679   case NEON::BI__builtin_neon_vld2q_v: {
10680     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10681     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10682     llvm::Type *Tys[2] = { VTy, PTy };
10683     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
10684     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10685     Ops[0] = Builder.CreateBitCast(Ops[0],
10686                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10687     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10688   }
10689   case NEON::BI__builtin_neon_vld3_v:
10690   case NEON::BI__builtin_neon_vld3q_v: {
10691     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10692     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10693     llvm::Type *Tys[2] = { VTy, PTy };
10694     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
10695     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10696     Ops[0] = Builder.CreateBitCast(Ops[0],
10697                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10698     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10699   }
10700   case NEON::BI__builtin_neon_vld4_v:
10701   case NEON::BI__builtin_neon_vld4q_v: {
10702     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
10703     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10704     llvm::Type *Tys[2] = { VTy, PTy };
10705     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
10706     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10707     Ops[0] = Builder.CreateBitCast(Ops[0],
10708                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10709     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10710   }
10711   case NEON::BI__builtin_neon_vld2_dup_v:
10712   case NEON::BI__builtin_neon_vld2q_dup_v: {
10713     llvm::Type *PTy =
10714       llvm::PointerType::getUnqual(VTy->getElementType());
10715     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10716     llvm::Type *Tys[2] = { VTy, PTy };
10717     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
10718     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
10719     Ops[0] = Builder.CreateBitCast(Ops[0],
10720                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10721     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10722   }
10723   case NEON::BI__builtin_neon_vld3_dup_v:
10724   case NEON::BI__builtin_neon_vld3q_dup_v: {
10725     llvm::Type *PTy =
10726       llvm::PointerType::getUnqual(VTy->getElementType());
10727     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10728     llvm::Type *Tys[2] = { VTy, PTy };
10729     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
10730     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
10731     Ops[0] = Builder.CreateBitCast(Ops[0],
10732                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10733     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10734   }
10735   case NEON::BI__builtin_neon_vld4_dup_v:
10736   case NEON::BI__builtin_neon_vld4q_dup_v: {
10737     llvm::Type *PTy =
10738       llvm::PointerType::getUnqual(VTy->getElementType());
10739     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
10740     llvm::Type *Tys[2] = { VTy, PTy };
10741     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
10742     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
10743     Ops[0] = Builder.CreateBitCast(Ops[0],
10744                 llvm::PointerType::getUnqual(Ops[1]->getType()));
10745     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10746   }
10747   case NEON::BI__builtin_neon_vld2_lane_v:
10748   case NEON::BI__builtin_neon_vld2q_lane_v: {
10749     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10750     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
10751     Ops.push_back(Ops[1]);
10752     Ops.erase(Ops.begin()+1);
10753     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10754     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10755     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10756     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
10757     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10758     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10759     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10760   }
10761   case NEON::BI__builtin_neon_vld3_lane_v:
10762   case NEON::BI__builtin_neon_vld3q_lane_v: {
10763     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10764     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
10765     Ops.push_back(Ops[1]);
10766     Ops.erase(Ops.begin()+1);
10767     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10768     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10769     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10770     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10771     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
10772     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10773     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10774     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10775   }
10776   case NEON::BI__builtin_neon_vld4_lane_v:
10777   case NEON::BI__builtin_neon_vld4q_lane_v: {
10778     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
10779     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
10780     Ops.push_back(Ops[1]);
10781     Ops.erase(Ops.begin()+1);
10782     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10783     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10784     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
10785     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
10786     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
10787     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
10788     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
10789     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10790     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10791   }
10792   case NEON::BI__builtin_neon_vst2_v:
10793   case NEON::BI__builtin_neon_vst2q_v: {
10794     Ops.push_back(Ops[0]);
10795     Ops.erase(Ops.begin());
10796     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
10797     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
10798                         Ops, "");
10799   }
10800   case NEON::BI__builtin_neon_vst2_lane_v:
10801   case NEON::BI__builtin_neon_vst2q_lane_v: {
10802     Ops.push_back(Ops[0]);
10803     Ops.erase(Ops.begin());
10804     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
10805     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10806     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
10807                         Ops, "");
10808   }
10809   case NEON::BI__builtin_neon_vst3_v:
10810   case NEON::BI__builtin_neon_vst3q_v: {
10811     Ops.push_back(Ops[0]);
10812     Ops.erase(Ops.begin());
10813     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
10814     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
10815                         Ops, "");
10816   }
10817   case NEON::BI__builtin_neon_vst3_lane_v:
10818   case NEON::BI__builtin_neon_vst3q_lane_v: {
10819     Ops.push_back(Ops[0]);
10820     Ops.erase(Ops.begin());
10821     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
10822     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10823     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
10824                         Ops, "");
10825   }
10826   case NEON::BI__builtin_neon_vst4_v:
10827   case NEON::BI__builtin_neon_vst4q_v: {
10828     Ops.push_back(Ops[0]);
10829     Ops.erase(Ops.begin());
10830     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
10831     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
10832                         Ops, "");
10833   }
10834   case NEON::BI__builtin_neon_vst4_lane_v:
10835   case NEON::BI__builtin_neon_vst4q_lane_v: {
10836     Ops.push_back(Ops[0]);
10837     Ops.erase(Ops.begin());
10838     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
10839     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
10840     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
10841                         Ops, "");
10842   }
10843   case NEON::BI__builtin_neon_vtrn_v:
10844   case NEON::BI__builtin_neon_vtrnq_v: {
10845     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10846     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10847     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10848     Value *SV = nullptr;
10849 
10850     for (unsigned vi = 0; vi != 2; ++vi) {
10851       SmallVector<int, 16> Indices;
10852       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
10853         Indices.push_back(i+vi);
10854         Indices.push_back(i+e+vi);
10855       }
10856       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10857       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
10858       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10859     }
10860     return SV;
10861   }
10862   case NEON::BI__builtin_neon_vuzp_v:
10863   case NEON::BI__builtin_neon_vuzpq_v: {
10864     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10865     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10866     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10867     Value *SV = nullptr;
10868 
10869     for (unsigned vi = 0; vi != 2; ++vi) {
10870       SmallVector<int, 16> Indices;
10871       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
10872         Indices.push_back(2*i+vi);
10873 
10874       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10875       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
10876       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10877     }
10878     return SV;
10879   }
10880   case NEON::BI__builtin_neon_vzip_v:
10881   case NEON::BI__builtin_neon_vzipq_v: {
10882     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
10883     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10884     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10885     Value *SV = nullptr;
10886 
10887     for (unsigned vi = 0; vi != 2; ++vi) {
10888       SmallVector<int, 16> Indices;
10889       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
10890         Indices.push_back((i + vi*e) >> 1);
10891         Indices.push_back(((i + vi*e) >> 1)+e);
10892       }
10893       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
10894       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
10895       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
10896     }
10897     return SV;
10898   }
10899   case NEON::BI__builtin_neon_vqtbl1q_v: {
10900     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
10901                         Ops, "vtbl1");
10902   }
10903   case NEON::BI__builtin_neon_vqtbl2q_v: {
10904     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
10905                         Ops, "vtbl2");
10906   }
10907   case NEON::BI__builtin_neon_vqtbl3q_v: {
10908     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
10909                         Ops, "vtbl3");
10910   }
10911   case NEON::BI__builtin_neon_vqtbl4q_v: {
10912     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
10913                         Ops, "vtbl4");
10914   }
10915   case NEON::BI__builtin_neon_vqtbx1q_v: {
10916     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
10917                         Ops, "vtbx1");
10918   }
10919   case NEON::BI__builtin_neon_vqtbx2q_v: {
10920     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
10921                         Ops, "vtbx2");
10922   }
10923   case NEON::BI__builtin_neon_vqtbx3q_v: {
10924     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
10925                         Ops, "vtbx3");
10926   }
10927   case NEON::BI__builtin_neon_vqtbx4q_v: {
10928     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
10929                         Ops, "vtbx4");
10930   }
10931   case NEON::BI__builtin_neon_vsqadd_v:
10932   case NEON::BI__builtin_neon_vsqaddq_v: {
10933     Int = Intrinsic::aarch64_neon_usqadd;
10934     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
10935   }
10936   case NEON::BI__builtin_neon_vuqadd_v:
10937   case NEON::BI__builtin_neon_vuqaddq_v: {
10938     Int = Intrinsic::aarch64_neon_suqadd;
10939     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
10940   }
10941   }
10942 }
10943 
EmitBPFBuiltinExpr(unsigned BuiltinID,const CallExpr * E)10944 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
10945                                            const CallExpr *E) {
10946   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
10947           BuiltinID == BPF::BI__builtin_btf_type_id ||
10948           BuiltinID == BPF::BI__builtin_preserve_type_info ||
10949           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
10950          "unexpected BPF builtin");
10951 
10952   // A sequence number, injected into IR builtin functions, to
10953   // prevent CSE given the only difference of the funciton
10954   // may just be the debuginfo metadata.
10955   static uint32_t BuiltinSeqNum;
10956 
10957   switch (BuiltinID) {
10958   default:
10959     llvm_unreachable("Unexpected BPF builtin");
10960   case BPF::BI__builtin_preserve_field_info: {
10961     const Expr *Arg = E->getArg(0);
10962     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
10963 
10964     if (!getDebugInfo()) {
10965       CGM.Error(E->getExprLoc(),
10966                 "using __builtin_preserve_field_info() without -g");
10967       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
10968                         : EmitLValue(Arg).getPointer(*this);
10969     }
10970 
10971     // Enable underlying preserve_*_access_index() generation.
10972     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
10973     IsInPreservedAIRegion = true;
10974     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
10975                                   : EmitLValue(Arg).getPointer(*this);
10976     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
10977 
10978     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10979     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
10980 
10981     // Built the IR for the preserve_field_info intrinsic.
10982     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
10983         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
10984         {FieldAddr->getType()});
10985     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
10986   }
10987   case BPF::BI__builtin_btf_type_id:
10988   case BPF::BI__builtin_preserve_type_info: {
10989     if (!getDebugInfo()) {
10990       CGM.Error(E->getExprLoc(), "using builtin function without -g");
10991       return nullptr;
10992     }
10993 
10994     const Expr *Arg0 = E->getArg(0);
10995     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
10996         Arg0->getType(), Arg0->getExprLoc());
10997 
10998     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10999     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11000     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11001 
11002     llvm::Function *FnDecl;
11003     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11004       FnDecl = llvm::Intrinsic::getDeclaration(
11005           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11006     else
11007       FnDecl = llvm::Intrinsic::getDeclaration(
11008           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11009     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11010     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11011     return Fn;
11012   }
11013   case BPF::BI__builtin_preserve_enum_value: {
11014     if (!getDebugInfo()) {
11015       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11016       return nullptr;
11017     }
11018 
11019     const Expr *Arg0 = E->getArg(0);
11020     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11021         Arg0->getType(), Arg0->getExprLoc());
11022 
11023     // Find enumerator
11024     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11025     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11026     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11027     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11028 
11029     auto &InitVal = Enumerator->getInitVal();
11030     std::string InitValStr;
11031     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11032       InitValStr = std::to_string(InitVal.getSExtValue());
11033     else
11034       InitValStr = std::to_string(InitVal.getZExtValue());
11035     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11036     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11037 
11038     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11039     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11040     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11041 
11042     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11043         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11044     CallInst *Fn =
11045         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11046     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11047     return Fn;
11048   }
11049   }
11050 }
11051 
11052 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)11053 BuildVector(ArrayRef<llvm::Value*> Ops) {
11054   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11055          "Not a power-of-two sized vector!");
11056   bool AllConstants = true;
11057   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11058     AllConstants &= isa<Constant>(Ops[i]);
11059 
11060   // If this is a constant vector, create a ConstantVector.
11061   if (AllConstants) {
11062     SmallVector<llvm::Constant*, 16> CstOps;
11063     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11064       CstOps.push_back(cast<Constant>(Ops[i]));
11065     return llvm::ConstantVector::get(CstOps);
11066   }
11067 
11068   // Otherwise, insertelement the values to build the vector.
11069   Value *Result = llvm::UndefValue::get(
11070       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11071 
11072   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11073     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11074 
11075   return Result;
11076 }
11077 
11078 // Convert the mask from an integer type to a vector of i1.
getMaskVecValue(CodeGenFunction & CGF,Value * Mask,unsigned NumElts)11079 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11080                               unsigned NumElts) {
11081 
11082   auto *MaskTy = llvm::FixedVectorType::get(
11083       CGF.Builder.getInt1Ty(),
11084       cast<IntegerType>(Mask->getType())->getBitWidth());
11085   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11086 
11087   // If we have less than 8 elements, then the starting mask was an i8 and
11088   // we need to extract down to the right number of elements.
11089   if (NumElts < 8) {
11090     int Indices[4];
11091     for (unsigned i = 0; i != NumElts; ++i)
11092       Indices[i] = i;
11093     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11094                                              makeArrayRef(Indices, NumElts),
11095                                              "extract");
11096   }
11097   return MaskVec;
11098 }
11099 
EmitX86MaskedStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11100 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11101                                  Align Alignment) {
11102   // Cast the pointer to right type.
11103   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11104                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11105 
11106   Value *MaskVec = getMaskVecValue(
11107       CGF, Ops[2],
11108       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11109 
11110   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11111 }
11112 
EmitX86MaskedLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11113 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11114                                 Align Alignment) {
11115   // Cast the pointer to right type.
11116   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11117                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11118 
11119   Value *MaskVec = getMaskVecValue(
11120       CGF, Ops[2],
11121       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11122 
11123   return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11124 }
11125 
EmitX86ExpandLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11126 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11127                                 ArrayRef<Value *> Ops) {
11128   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11129   llvm::Type *PtrTy = ResultTy->getElementType();
11130 
11131   // Cast the pointer to element type.
11132   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11133                                          llvm::PointerType::getUnqual(PtrTy));
11134 
11135   Value *MaskVec = getMaskVecValue(
11136       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11137 
11138   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11139                                            ResultTy);
11140   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11141 }
11142 
EmitX86CompressExpand(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsCompress)11143 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11144                                     ArrayRef<Value *> Ops,
11145                                     bool IsCompress) {
11146   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11147 
11148   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11149 
11150   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11151                                  : Intrinsic::x86_avx512_mask_expand;
11152   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11153   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11154 }
11155 
EmitX86CompressStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11156 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11157                                    ArrayRef<Value *> Ops) {
11158   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11159   llvm::Type *PtrTy = ResultTy->getElementType();
11160 
11161   // Cast the pointer to element type.
11162   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11163                                          llvm::PointerType::getUnqual(PtrTy));
11164 
11165   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11166 
11167   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11168                                            ResultTy);
11169   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11170 }
11171 
EmitX86MaskLogic(CodeGenFunction & CGF,Instruction::BinaryOps Opc,ArrayRef<Value * > Ops,bool InvertLHS=false)11172 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11173                               ArrayRef<Value *> Ops,
11174                               bool InvertLHS = false) {
11175   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11176   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11177   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11178 
11179   if (InvertLHS)
11180     LHS = CGF.Builder.CreateNot(LHS);
11181 
11182   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11183                                    Ops[0]->getType());
11184 }
11185 
EmitX86FunnelShift(CodeGenFunction & CGF,Value * Op0,Value * Op1,Value * Amt,bool IsRight)11186 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11187                                  Value *Amt, bool IsRight) {
11188   llvm::Type *Ty = Op0->getType();
11189 
11190   // Amount may be scalar immediate, in which case create a splat vector.
11191   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11192   // we only care about the lowest log2 bits anyway.
11193   if (Amt->getType() != Ty) {
11194     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11195     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11196     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11197   }
11198 
11199   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11200   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11201   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11202 }
11203 
EmitX86vpcom(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)11204 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11205                            bool IsSigned) {
11206   Value *Op0 = Ops[0];
11207   Value *Op1 = Ops[1];
11208   llvm::Type *Ty = Op0->getType();
11209   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11210 
11211   CmpInst::Predicate Pred;
11212   switch (Imm) {
11213   case 0x0:
11214     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11215     break;
11216   case 0x1:
11217     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11218     break;
11219   case 0x2:
11220     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11221     break;
11222   case 0x3:
11223     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11224     break;
11225   case 0x4:
11226     Pred = ICmpInst::ICMP_EQ;
11227     break;
11228   case 0x5:
11229     Pred = ICmpInst::ICMP_NE;
11230     break;
11231   case 0x6:
11232     return llvm::Constant::getNullValue(Ty); // FALSE
11233   case 0x7:
11234     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11235   default:
11236     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11237   }
11238 
11239   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11240   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11241   return Res;
11242 }
11243 
EmitX86Select(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11244 static Value *EmitX86Select(CodeGenFunction &CGF,
11245                             Value *Mask, Value *Op0, Value *Op1) {
11246 
11247   // If the mask is all ones just return first argument.
11248   if (const auto *C = dyn_cast<Constant>(Mask))
11249     if (C->isAllOnesValue())
11250       return Op0;
11251 
11252   Mask = getMaskVecValue(
11253       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11254 
11255   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11256 }
11257 
EmitX86ScalarSelect(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11258 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11259                                   Value *Mask, Value *Op0, Value *Op1) {
11260   // If the mask is all ones just return first argument.
11261   if (const auto *C = dyn_cast<Constant>(Mask))
11262     if (C->isAllOnesValue())
11263       return Op0;
11264 
11265   auto *MaskTy = llvm::FixedVectorType::get(
11266       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11267   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11268   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11269   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11270 }
11271 
EmitX86MaskedCompareResult(CodeGenFunction & CGF,Value * Cmp,unsigned NumElts,Value * MaskIn)11272 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11273                                          unsigned NumElts, Value *MaskIn) {
11274   if (MaskIn) {
11275     const auto *C = dyn_cast<Constant>(MaskIn);
11276     if (!C || !C->isAllOnesValue())
11277       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11278   }
11279 
11280   if (NumElts < 8) {
11281     int Indices[8];
11282     for (unsigned i = 0; i != NumElts; ++i)
11283       Indices[i] = i;
11284     for (unsigned i = NumElts; i != 8; ++i)
11285       Indices[i] = i % NumElts + NumElts;
11286     Cmp = CGF.Builder.CreateShuffleVector(
11287         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11288   }
11289 
11290   return CGF.Builder.CreateBitCast(Cmp,
11291                                    IntegerType::get(CGF.getLLVMContext(),
11292                                                     std::max(NumElts, 8U)));
11293 }
11294 
EmitX86MaskedCompare(CodeGenFunction & CGF,unsigned CC,bool Signed,ArrayRef<Value * > Ops)11295 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11296                                    bool Signed, ArrayRef<Value *> Ops) {
11297   assert((Ops.size() == 2 || Ops.size() == 4) &&
11298          "Unexpected number of arguments");
11299   unsigned NumElts =
11300       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11301   Value *Cmp;
11302 
11303   if (CC == 3) {
11304     Cmp = Constant::getNullValue(
11305         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11306   } else if (CC == 7) {
11307     Cmp = Constant::getAllOnesValue(
11308         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11309   } else {
11310     ICmpInst::Predicate Pred;
11311     switch (CC) {
11312     default: llvm_unreachable("Unknown condition code");
11313     case 0: Pred = ICmpInst::ICMP_EQ;  break;
11314     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11315     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11316     case 4: Pred = ICmpInst::ICMP_NE;  break;
11317     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11318     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11319     }
11320     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11321   }
11322 
11323   Value *MaskIn = nullptr;
11324   if (Ops.size() == 4)
11325     MaskIn = Ops[3];
11326 
11327   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11328 }
11329 
EmitX86ConvertToMask(CodeGenFunction & CGF,Value * In)11330 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11331   Value *Zero = Constant::getNullValue(In->getType());
11332   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11333 }
11334 
EmitX86ConvertIntToFp(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)11335 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
11336                                     ArrayRef<Value *> Ops, bool IsSigned) {
11337   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11338   llvm::Type *Ty = Ops[1]->getType();
11339 
11340   Value *Res;
11341   if (Rnd != 4) {
11342     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11343                                  : Intrinsic::x86_avx512_uitofp_round;
11344     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11345     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11346   } else {
11347     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11348                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11349   }
11350 
11351   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11352 }
11353 
11354 // Lowers X86 FMA intrinsics to IR.
EmitX86FMAExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,unsigned BuiltinID,bool IsAddSub)11355 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11356                              unsigned BuiltinID, bool IsAddSub) {
11357 
11358   bool Subtract = false;
11359   Intrinsic::ID IID = Intrinsic::not_intrinsic;
11360   switch (BuiltinID) {
11361   default: break;
11362   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11363     Subtract = true;
11364     LLVM_FALLTHROUGH;
11365   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11366   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11367   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11368     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11369   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11370     Subtract = true;
11371     LLVM_FALLTHROUGH;
11372   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11373   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11374   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11375     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11376   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11377     Subtract = true;
11378     LLVM_FALLTHROUGH;
11379   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11380   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11381   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11382     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11383     break;
11384   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11385     Subtract = true;
11386     LLVM_FALLTHROUGH;
11387   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11388   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11389   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11390     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11391     break;
11392   }
11393 
11394   Value *A = Ops[0];
11395   Value *B = Ops[1];
11396   Value *C = Ops[2];
11397 
11398   if (Subtract)
11399     C = CGF.Builder.CreateFNeg(C);
11400 
11401   Value *Res;
11402 
11403   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
11404   if (IID != Intrinsic::not_intrinsic &&
11405       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
11406        IsAddSub)) {
11407     Function *Intr = CGF.CGM.getIntrinsic(IID);
11408     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
11409   } else {
11410     llvm::Type *Ty = A->getType();
11411     Function *FMA;
11412     if (CGF.Builder.getIsFPConstrained()) {
11413       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
11414       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
11415     } else {
11416       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
11417       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
11418     }
11419   }
11420 
11421   // Handle any required masking.
11422   Value *MaskFalseVal = nullptr;
11423   switch (BuiltinID) {
11424   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11425   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11426   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11427   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11428     MaskFalseVal = Ops[0];
11429     break;
11430   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11431   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11432   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11433   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11434     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
11435     break;
11436   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11437   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11438   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11439   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11440   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11441   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11442   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11443   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11444     MaskFalseVal = Ops[2];
11445     break;
11446   }
11447 
11448   if (MaskFalseVal)
11449     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
11450 
11451   return Res;
11452 }
11453 
11454 static Value *
EmitScalarFMAExpr(CodeGenFunction & CGF,MutableArrayRef<Value * > Ops,Value * Upper,bool ZeroMask=false,unsigned PTIdx=0,bool NegAcc=false)11455 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
11456                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
11457                   bool NegAcc = false) {
11458   unsigned Rnd = 4;
11459   if (Ops.size() > 4)
11460     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
11461 
11462   if (NegAcc)
11463     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
11464 
11465   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
11466   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
11467   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
11468   Value *Res;
11469   if (Rnd != 4) {
11470     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
11471                         Intrinsic::x86_avx512_vfmadd_f32 :
11472                         Intrinsic::x86_avx512_vfmadd_f64;
11473     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11474                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
11475   } else if (CGF.Builder.getIsFPConstrained()) {
11476     Function *FMA = CGF.CGM.getIntrinsic(
11477         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
11478     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
11479   } else {
11480     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
11481     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
11482   }
11483   // If we have more than 3 arguments, we need to do masking.
11484   if (Ops.size() > 3) {
11485     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
11486                                : Ops[PTIdx];
11487 
11488     // If we negated the accumulator and the its the PassThru value we need to
11489     // bypass the negate. Conveniently Upper should be the same thing in this
11490     // case.
11491     if (NegAcc && PTIdx == 2)
11492       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
11493 
11494     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
11495   }
11496   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
11497 }
11498 
EmitX86Muldq(CodeGenFunction & CGF,bool IsSigned,ArrayRef<Value * > Ops)11499 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
11500                            ArrayRef<Value *> Ops) {
11501   llvm::Type *Ty = Ops[0]->getType();
11502   // Arguments have a vXi32 type so cast to vXi64.
11503   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
11504                                   Ty->getPrimitiveSizeInBits() / 64);
11505   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
11506   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
11507 
11508   if (IsSigned) {
11509     // Shift left then arithmetic shift right.
11510     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
11511     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
11512     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
11513     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
11514     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
11515   } else {
11516     // Clear the upper bits.
11517     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
11518     LHS = CGF.Builder.CreateAnd(LHS, Mask);
11519     RHS = CGF.Builder.CreateAnd(RHS, Mask);
11520   }
11521 
11522   return CGF.Builder.CreateMul(LHS, RHS);
11523 }
11524 
11525 // Emit a masked pternlog intrinsic. This only exists because the header has to
11526 // use a macro and we aren't able to pass the input argument to a pternlog
11527 // builtin and a select builtin without evaluating it twice.
EmitX86Ternlog(CodeGenFunction & CGF,bool ZeroMask,ArrayRef<Value * > Ops)11528 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
11529                              ArrayRef<Value *> Ops) {
11530   llvm::Type *Ty = Ops[0]->getType();
11531 
11532   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
11533   unsigned EltWidth = Ty->getScalarSizeInBits();
11534   Intrinsic::ID IID;
11535   if (VecWidth == 128 && EltWidth == 32)
11536     IID = Intrinsic::x86_avx512_pternlog_d_128;
11537   else if (VecWidth == 256 && EltWidth == 32)
11538     IID = Intrinsic::x86_avx512_pternlog_d_256;
11539   else if (VecWidth == 512 && EltWidth == 32)
11540     IID = Intrinsic::x86_avx512_pternlog_d_512;
11541   else if (VecWidth == 128 && EltWidth == 64)
11542     IID = Intrinsic::x86_avx512_pternlog_q_128;
11543   else if (VecWidth == 256 && EltWidth == 64)
11544     IID = Intrinsic::x86_avx512_pternlog_q_256;
11545   else if (VecWidth == 512 && EltWidth == 64)
11546     IID = Intrinsic::x86_avx512_pternlog_q_512;
11547   else
11548     llvm_unreachable("Unexpected intrinsic");
11549 
11550   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
11551                                           Ops.drop_back());
11552   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
11553   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
11554 }
11555 
EmitX86SExtMask(CodeGenFunction & CGF,Value * Op,llvm::Type * DstTy)11556 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
11557                               llvm::Type *DstTy) {
11558   unsigned NumberOfElements =
11559       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
11560   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
11561   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
11562 }
11563 
11564 // Emit binary intrinsic with the same type used in result/args.
EmitX86BinaryIntrinsic(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Intrinsic::ID IID)11565 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
11566                                      ArrayRef<Value *> Ops, Intrinsic::ID IID) {
11567   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
11568   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
11569 }
11570 
EmitX86CpuIs(const CallExpr * E)11571 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
11572   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
11573   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
11574   return EmitX86CpuIs(CPUStr);
11575 }
11576 
11577 // Convert F16 halfs to floats.
EmitX86CvtF16ToFloatExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,llvm::Type * DstTy)11578 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
11579                                        ArrayRef<Value *> Ops,
11580                                        llvm::Type *DstTy) {
11581   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
11582          "Unknown cvtph2ps intrinsic");
11583 
11584   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
11585   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
11586     Function *F =
11587         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
11588     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
11589   }
11590 
11591   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
11592   Value *Src = Ops[0];
11593 
11594   // Extract the subvector.
11595   if (NumDstElts !=
11596       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
11597     assert(NumDstElts == 4 && "Unexpected vector size");
11598     Src = CGF.Builder.CreateShuffleVector(Src, UndefValue::get(Src->getType()),
11599                                           ArrayRef<int>{0, 1, 2, 3});
11600   }
11601 
11602   // Bitcast from vXi16 to vXf16.
11603   auto *HalfTy = llvm::FixedVectorType::get(
11604       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
11605   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
11606 
11607   // Perform the fp-extension.
11608   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
11609 
11610   if (Ops.size() >= 3)
11611     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11612   return Res;
11613 }
11614 
11615 // Convert a BF16 to a float.
EmitX86CvtBF16ToFloatExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops)11616 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
11617                                         const CallExpr *E,
11618                                         ArrayRef<Value *> Ops) {
11619   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
11620   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
11621   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
11622   llvm::Type *ResultType = CGF.ConvertType(E->getType());
11623   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
11624   return BitCast;
11625 }
11626 
EmitX86CpuIs(StringRef CPUStr)11627 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
11628 
11629   llvm::Type *Int32Ty = Builder.getInt32Ty();
11630 
11631   // Matching the struct layout from the compiler-rt/libgcc structure that is
11632   // filled in:
11633   // unsigned int __cpu_vendor;
11634   // unsigned int __cpu_type;
11635   // unsigned int __cpu_subtype;
11636   // unsigned int __cpu_features[1];
11637   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11638                                           llvm::ArrayType::get(Int32Ty, 1));
11639 
11640   // Grab the global __cpu_model.
11641   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11642   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11643 
11644   // Calculate the index needed to access the correct field based on the
11645   // range. Also adjust the expected value.
11646   unsigned Index;
11647   unsigned Value;
11648   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
11649 #define X86_VENDOR(ENUM, STRING)                                               \
11650   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
11651 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
11652   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11653 #define X86_CPU_TYPE(ENUM, STR)                                                \
11654   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
11655 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
11656   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
11657 #include "llvm/Support/X86TargetParser.def"
11658                                .Default({0, 0});
11659   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
11660 
11661   // Grab the appropriate field from __cpu_model.
11662   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
11663                          ConstantInt::get(Int32Ty, Index)};
11664   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
11665   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
11666 
11667   // Check the value of the field against the requested value.
11668   return Builder.CreateICmpEQ(CpuValue,
11669                                   llvm::ConstantInt::get(Int32Ty, Value));
11670 }
11671 
EmitX86CpuSupports(const CallExpr * E)11672 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
11673   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
11674   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
11675   return EmitX86CpuSupports(FeatureStr);
11676 }
11677 
11678 uint64_t
GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs)11679 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
11680   // Processor features and mapping to processor feature value.
11681   uint64_t FeaturesMask = 0;
11682   for (const StringRef &FeatureStr : FeatureStrs) {
11683     unsigned Feature =
11684         StringSwitch<unsigned>(FeatureStr)
11685 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
11686 #include "llvm/Support/X86TargetParser.def"
11687         ;
11688     FeaturesMask |= (1ULL << Feature);
11689   }
11690   return FeaturesMask;
11691 }
11692 
EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs)11693 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
11694   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
11695 }
11696 
EmitX86CpuSupports(uint64_t FeaturesMask)11697 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
11698   uint32_t Features1 = Lo_32(FeaturesMask);
11699   uint32_t Features2 = Hi_32(FeaturesMask);
11700 
11701   Value *Result = Builder.getTrue();
11702 
11703   if (Features1 != 0) {
11704     // Matching the struct layout from the compiler-rt/libgcc structure that is
11705     // filled in:
11706     // unsigned int __cpu_vendor;
11707     // unsigned int __cpu_type;
11708     // unsigned int __cpu_subtype;
11709     // unsigned int __cpu_features[1];
11710     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
11711                                             llvm::ArrayType::get(Int32Ty, 1));
11712 
11713     // Grab the global __cpu_model.
11714     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
11715     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
11716 
11717     // Grab the first (0th) element from the field __cpu_features off of the
11718     // global in the struct STy.
11719     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
11720                      Builder.getInt32(0)};
11721     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
11722     Value *Features =
11723         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
11724 
11725     // Check the value of the bit corresponding to the feature requested.
11726     Value *Mask = Builder.getInt32(Features1);
11727     Value *Bitset = Builder.CreateAnd(Features, Mask);
11728     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11729     Result = Builder.CreateAnd(Result, Cmp);
11730   }
11731 
11732   if (Features2 != 0) {
11733     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
11734                                                              "__cpu_features2");
11735     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
11736 
11737     Value *Features =
11738         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
11739 
11740     // Check the value of the bit corresponding to the feature requested.
11741     Value *Mask = Builder.getInt32(Features2);
11742     Value *Bitset = Builder.CreateAnd(Features, Mask);
11743     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
11744     Result = Builder.CreateAnd(Result, Cmp);
11745   }
11746 
11747   return Result;
11748 }
11749 
EmitX86CpuInit()11750 Value *CodeGenFunction::EmitX86CpuInit() {
11751   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
11752                                                     /*Variadic*/ false);
11753   llvm::FunctionCallee Func =
11754       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
11755   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
11756   cast<llvm::GlobalValue>(Func.getCallee())
11757       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
11758   return Builder.CreateCall(Func);
11759 }
11760 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)11761 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
11762                                            const CallExpr *E) {
11763   if (BuiltinID == X86::BI__builtin_cpu_is)
11764     return EmitX86CpuIs(E);
11765   if (BuiltinID == X86::BI__builtin_cpu_supports)
11766     return EmitX86CpuSupports(E);
11767   if (BuiltinID == X86::BI__builtin_cpu_init)
11768     return EmitX86CpuInit();
11769 
11770   SmallVector<Value*, 4> Ops;
11771   bool IsMaskFCmp = false;
11772 
11773   // Find out if any arguments are required to be integer constant expressions.
11774   unsigned ICEArguments = 0;
11775   ASTContext::GetBuiltinTypeError Error;
11776   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
11777   assert(Error == ASTContext::GE_None && "Should not codegen an error");
11778 
11779   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
11780     // If this is a normal argument, just emit it as a scalar.
11781     if ((ICEArguments & (1 << i)) == 0) {
11782       Ops.push_back(EmitScalarExpr(E->getArg(i)));
11783       continue;
11784     }
11785 
11786     // If this is required to be a constant, constant fold it so that we know
11787     // that the generated intrinsic gets a ConstantInt.
11788     Ops.push_back(llvm::ConstantInt::get(
11789         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
11790   }
11791 
11792   // These exist so that the builtin that takes an immediate can be bounds
11793   // checked by clang to avoid passing bad immediates to the backend. Since
11794   // AVX has a larger immediate than SSE we would need separate builtins to
11795   // do the different bounds checking. Rather than create a clang specific
11796   // SSE only builtin, this implements eight separate builtins to match gcc
11797   // implementation.
11798   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
11799     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
11800     llvm::Function *F = CGM.getIntrinsic(ID);
11801     return Builder.CreateCall(F, Ops);
11802   };
11803 
11804   // For the vector forms of FP comparisons, translate the builtins directly to
11805   // IR.
11806   // TODO: The builtins could be removed if the SSE header files used vector
11807   // extension comparisons directly (vector ordered/unordered may need
11808   // additional support via __builtin_isnan()).
11809   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred,
11810                                       bool IsSignaling) {
11811     Value *Cmp;
11812     if (IsSignaling)
11813       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
11814     else
11815       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11816     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
11817     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
11818     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
11819     return Builder.CreateBitCast(Sext, FPVecTy);
11820   };
11821 
11822   switch (BuiltinID) {
11823   default: return nullptr;
11824   case X86::BI_mm_prefetch: {
11825     Value *Address = Ops[0];
11826     ConstantInt *C = cast<ConstantInt>(Ops[1]);
11827     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
11828     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
11829     Value *Data = ConstantInt::get(Int32Ty, 1);
11830     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
11831     return Builder.CreateCall(F, {Address, RW, Locality, Data});
11832   }
11833   case X86::BI_mm_clflush: {
11834     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
11835                               Ops[0]);
11836   }
11837   case X86::BI_mm_lfence: {
11838     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
11839   }
11840   case X86::BI_mm_mfence: {
11841     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
11842   }
11843   case X86::BI_mm_sfence: {
11844     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
11845   }
11846   case X86::BI_mm_pause: {
11847     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
11848   }
11849   case X86::BI__rdtsc: {
11850     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
11851   }
11852   case X86::BI__builtin_ia32_rdtscp: {
11853     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
11854     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11855                                       Ops[0]);
11856     return Builder.CreateExtractValue(Call, 0);
11857   }
11858   case X86::BI__builtin_ia32_lzcnt_u16:
11859   case X86::BI__builtin_ia32_lzcnt_u32:
11860   case X86::BI__builtin_ia32_lzcnt_u64: {
11861     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
11862     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
11863   }
11864   case X86::BI__builtin_ia32_tzcnt_u16:
11865   case X86::BI__builtin_ia32_tzcnt_u32:
11866   case X86::BI__builtin_ia32_tzcnt_u64: {
11867     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
11868     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
11869   }
11870   case X86::BI__builtin_ia32_undef128:
11871   case X86::BI__builtin_ia32_undef256:
11872   case X86::BI__builtin_ia32_undef512:
11873     // The x86 definition of "undef" is not the same as the LLVM definition
11874     // (PR32176). We leave optimizing away an unnecessary zero constant to the
11875     // IR optimizer and backend.
11876     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
11877     // value, we should use that here instead of a zero.
11878     return llvm::Constant::getNullValue(ConvertType(E->getType()));
11879   case X86::BI__builtin_ia32_vec_init_v8qi:
11880   case X86::BI__builtin_ia32_vec_init_v4hi:
11881   case X86::BI__builtin_ia32_vec_init_v2si:
11882     return Builder.CreateBitCast(BuildVector(Ops),
11883                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
11884   case X86::BI__builtin_ia32_vec_ext_v2si:
11885   case X86::BI__builtin_ia32_vec_ext_v16qi:
11886   case X86::BI__builtin_ia32_vec_ext_v8hi:
11887   case X86::BI__builtin_ia32_vec_ext_v4si:
11888   case X86::BI__builtin_ia32_vec_ext_v4sf:
11889   case X86::BI__builtin_ia32_vec_ext_v2di:
11890   case X86::BI__builtin_ia32_vec_ext_v32qi:
11891   case X86::BI__builtin_ia32_vec_ext_v16hi:
11892   case X86::BI__builtin_ia32_vec_ext_v8si:
11893   case X86::BI__builtin_ia32_vec_ext_v4di: {
11894     unsigned NumElts =
11895         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11896     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
11897     Index &= NumElts - 1;
11898     // These builtins exist so we can ensure the index is an ICE and in range.
11899     // Otherwise we could just do this in the header file.
11900     return Builder.CreateExtractElement(Ops[0], Index);
11901   }
11902   case X86::BI__builtin_ia32_vec_set_v16qi:
11903   case X86::BI__builtin_ia32_vec_set_v8hi:
11904   case X86::BI__builtin_ia32_vec_set_v4si:
11905   case X86::BI__builtin_ia32_vec_set_v2di:
11906   case X86::BI__builtin_ia32_vec_set_v32qi:
11907   case X86::BI__builtin_ia32_vec_set_v16hi:
11908   case X86::BI__builtin_ia32_vec_set_v8si:
11909   case X86::BI__builtin_ia32_vec_set_v4di: {
11910     unsigned NumElts =
11911         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11912     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
11913     Index &= NumElts - 1;
11914     // These builtins exist so we can ensure the index is an ICE and in range.
11915     // Otherwise we could just do this in the header file.
11916     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
11917   }
11918   case X86::BI_mm_setcsr:
11919   case X86::BI__builtin_ia32_ldmxcsr: {
11920     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
11921     Builder.CreateStore(Ops[0], Tmp);
11922     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
11923                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
11924   }
11925   case X86::BI_mm_getcsr:
11926   case X86::BI__builtin_ia32_stmxcsr: {
11927     Address Tmp = CreateMemTemp(E->getType());
11928     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
11929                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
11930     return Builder.CreateLoad(Tmp, "stmxcsr");
11931   }
11932   case X86::BI__builtin_ia32_xsave:
11933   case X86::BI__builtin_ia32_xsave64:
11934   case X86::BI__builtin_ia32_xrstor:
11935   case X86::BI__builtin_ia32_xrstor64:
11936   case X86::BI__builtin_ia32_xsaveopt:
11937   case X86::BI__builtin_ia32_xsaveopt64:
11938   case X86::BI__builtin_ia32_xrstors:
11939   case X86::BI__builtin_ia32_xrstors64:
11940   case X86::BI__builtin_ia32_xsavec:
11941   case X86::BI__builtin_ia32_xsavec64:
11942   case X86::BI__builtin_ia32_xsaves:
11943   case X86::BI__builtin_ia32_xsaves64:
11944   case X86::BI__builtin_ia32_xsetbv:
11945   case X86::BI_xsetbv: {
11946     Intrinsic::ID ID;
11947 #define INTRINSIC_X86_XSAVE_ID(NAME) \
11948     case X86::BI__builtin_ia32_##NAME: \
11949       ID = Intrinsic::x86_##NAME; \
11950       break
11951     switch (BuiltinID) {
11952     default: llvm_unreachable("Unsupported intrinsic!");
11953     INTRINSIC_X86_XSAVE_ID(xsave);
11954     INTRINSIC_X86_XSAVE_ID(xsave64);
11955     INTRINSIC_X86_XSAVE_ID(xrstor);
11956     INTRINSIC_X86_XSAVE_ID(xrstor64);
11957     INTRINSIC_X86_XSAVE_ID(xsaveopt);
11958     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
11959     INTRINSIC_X86_XSAVE_ID(xrstors);
11960     INTRINSIC_X86_XSAVE_ID(xrstors64);
11961     INTRINSIC_X86_XSAVE_ID(xsavec);
11962     INTRINSIC_X86_XSAVE_ID(xsavec64);
11963     INTRINSIC_X86_XSAVE_ID(xsaves);
11964     INTRINSIC_X86_XSAVE_ID(xsaves64);
11965     INTRINSIC_X86_XSAVE_ID(xsetbv);
11966     case X86::BI_xsetbv:
11967       ID = Intrinsic::x86_xsetbv;
11968       break;
11969     }
11970 #undef INTRINSIC_X86_XSAVE_ID
11971     Value *Mhi = Builder.CreateTrunc(
11972       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
11973     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
11974     Ops[1] = Mhi;
11975     Ops.push_back(Mlo);
11976     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11977   }
11978   case X86::BI__builtin_ia32_xgetbv:
11979   case X86::BI_xgetbv:
11980     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
11981   case X86::BI__builtin_ia32_storedqudi128_mask:
11982   case X86::BI__builtin_ia32_storedqusi128_mask:
11983   case X86::BI__builtin_ia32_storedquhi128_mask:
11984   case X86::BI__builtin_ia32_storedquqi128_mask:
11985   case X86::BI__builtin_ia32_storeupd128_mask:
11986   case X86::BI__builtin_ia32_storeups128_mask:
11987   case X86::BI__builtin_ia32_storedqudi256_mask:
11988   case X86::BI__builtin_ia32_storedqusi256_mask:
11989   case X86::BI__builtin_ia32_storedquhi256_mask:
11990   case X86::BI__builtin_ia32_storedquqi256_mask:
11991   case X86::BI__builtin_ia32_storeupd256_mask:
11992   case X86::BI__builtin_ia32_storeups256_mask:
11993   case X86::BI__builtin_ia32_storedqudi512_mask:
11994   case X86::BI__builtin_ia32_storedqusi512_mask:
11995   case X86::BI__builtin_ia32_storedquhi512_mask:
11996   case X86::BI__builtin_ia32_storedquqi512_mask:
11997   case X86::BI__builtin_ia32_storeupd512_mask:
11998   case X86::BI__builtin_ia32_storeups512_mask:
11999     return EmitX86MaskedStore(*this, Ops, Align(1));
12000 
12001   case X86::BI__builtin_ia32_storess128_mask:
12002   case X86::BI__builtin_ia32_storesd128_mask:
12003     return EmitX86MaskedStore(*this, Ops, Align(1));
12004 
12005   case X86::BI__builtin_ia32_vpopcntb_128:
12006   case X86::BI__builtin_ia32_vpopcntd_128:
12007   case X86::BI__builtin_ia32_vpopcntq_128:
12008   case X86::BI__builtin_ia32_vpopcntw_128:
12009   case X86::BI__builtin_ia32_vpopcntb_256:
12010   case X86::BI__builtin_ia32_vpopcntd_256:
12011   case X86::BI__builtin_ia32_vpopcntq_256:
12012   case X86::BI__builtin_ia32_vpopcntw_256:
12013   case X86::BI__builtin_ia32_vpopcntb_512:
12014   case X86::BI__builtin_ia32_vpopcntd_512:
12015   case X86::BI__builtin_ia32_vpopcntq_512:
12016   case X86::BI__builtin_ia32_vpopcntw_512: {
12017     llvm::Type *ResultType = ConvertType(E->getType());
12018     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12019     return Builder.CreateCall(F, Ops);
12020   }
12021   case X86::BI__builtin_ia32_cvtmask2b128:
12022   case X86::BI__builtin_ia32_cvtmask2b256:
12023   case X86::BI__builtin_ia32_cvtmask2b512:
12024   case X86::BI__builtin_ia32_cvtmask2w128:
12025   case X86::BI__builtin_ia32_cvtmask2w256:
12026   case X86::BI__builtin_ia32_cvtmask2w512:
12027   case X86::BI__builtin_ia32_cvtmask2d128:
12028   case X86::BI__builtin_ia32_cvtmask2d256:
12029   case X86::BI__builtin_ia32_cvtmask2d512:
12030   case X86::BI__builtin_ia32_cvtmask2q128:
12031   case X86::BI__builtin_ia32_cvtmask2q256:
12032   case X86::BI__builtin_ia32_cvtmask2q512:
12033     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12034 
12035   case X86::BI__builtin_ia32_cvtb2mask128:
12036   case X86::BI__builtin_ia32_cvtb2mask256:
12037   case X86::BI__builtin_ia32_cvtb2mask512:
12038   case X86::BI__builtin_ia32_cvtw2mask128:
12039   case X86::BI__builtin_ia32_cvtw2mask256:
12040   case X86::BI__builtin_ia32_cvtw2mask512:
12041   case X86::BI__builtin_ia32_cvtd2mask128:
12042   case X86::BI__builtin_ia32_cvtd2mask256:
12043   case X86::BI__builtin_ia32_cvtd2mask512:
12044   case X86::BI__builtin_ia32_cvtq2mask128:
12045   case X86::BI__builtin_ia32_cvtq2mask256:
12046   case X86::BI__builtin_ia32_cvtq2mask512:
12047     return EmitX86ConvertToMask(*this, Ops[0]);
12048 
12049   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12050   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12051   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12052     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
12053   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12054   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12055   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12056     return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
12057 
12058   case X86::BI__builtin_ia32_vfmaddss3:
12059   case X86::BI__builtin_ia32_vfmaddsd3:
12060   case X86::BI__builtin_ia32_vfmaddss3_mask:
12061   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12062     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
12063   case X86::BI__builtin_ia32_vfmaddss:
12064   case X86::BI__builtin_ia32_vfmaddsd:
12065     return EmitScalarFMAExpr(*this, Ops,
12066                              Constant::getNullValue(Ops[0]->getType()));
12067   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12068   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12069     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
12070   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12071   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12072     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
12073   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12074   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12075     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
12076                              /*NegAcc*/true);
12077   case X86::BI__builtin_ia32_vfmaddps:
12078   case X86::BI__builtin_ia32_vfmaddpd:
12079   case X86::BI__builtin_ia32_vfmaddps256:
12080   case X86::BI__builtin_ia32_vfmaddpd256:
12081   case X86::BI__builtin_ia32_vfmaddps512_mask:
12082   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12083   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12084   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12085   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12086   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12087   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12088   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12089     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
12090   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12091   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12092   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12093   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12094   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12095   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12096   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12097   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12098     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
12099 
12100   case X86::BI__builtin_ia32_movdqa32store128_mask:
12101   case X86::BI__builtin_ia32_movdqa64store128_mask:
12102   case X86::BI__builtin_ia32_storeaps128_mask:
12103   case X86::BI__builtin_ia32_storeapd128_mask:
12104   case X86::BI__builtin_ia32_movdqa32store256_mask:
12105   case X86::BI__builtin_ia32_movdqa64store256_mask:
12106   case X86::BI__builtin_ia32_storeaps256_mask:
12107   case X86::BI__builtin_ia32_storeapd256_mask:
12108   case X86::BI__builtin_ia32_movdqa32store512_mask:
12109   case X86::BI__builtin_ia32_movdqa64store512_mask:
12110   case X86::BI__builtin_ia32_storeaps512_mask:
12111   case X86::BI__builtin_ia32_storeapd512_mask:
12112     return EmitX86MaskedStore(
12113         *this, Ops,
12114         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12115 
12116   case X86::BI__builtin_ia32_loadups128_mask:
12117   case X86::BI__builtin_ia32_loadups256_mask:
12118   case X86::BI__builtin_ia32_loadups512_mask:
12119   case X86::BI__builtin_ia32_loadupd128_mask:
12120   case X86::BI__builtin_ia32_loadupd256_mask:
12121   case X86::BI__builtin_ia32_loadupd512_mask:
12122   case X86::BI__builtin_ia32_loaddquqi128_mask:
12123   case X86::BI__builtin_ia32_loaddquqi256_mask:
12124   case X86::BI__builtin_ia32_loaddquqi512_mask:
12125   case X86::BI__builtin_ia32_loaddquhi128_mask:
12126   case X86::BI__builtin_ia32_loaddquhi256_mask:
12127   case X86::BI__builtin_ia32_loaddquhi512_mask:
12128   case X86::BI__builtin_ia32_loaddqusi128_mask:
12129   case X86::BI__builtin_ia32_loaddqusi256_mask:
12130   case X86::BI__builtin_ia32_loaddqusi512_mask:
12131   case X86::BI__builtin_ia32_loaddqudi128_mask:
12132   case X86::BI__builtin_ia32_loaddqudi256_mask:
12133   case X86::BI__builtin_ia32_loaddqudi512_mask:
12134     return EmitX86MaskedLoad(*this, Ops, Align(1));
12135 
12136   case X86::BI__builtin_ia32_loadss128_mask:
12137   case X86::BI__builtin_ia32_loadsd128_mask:
12138     return EmitX86MaskedLoad(*this, Ops, Align(1));
12139 
12140   case X86::BI__builtin_ia32_loadaps128_mask:
12141   case X86::BI__builtin_ia32_loadaps256_mask:
12142   case X86::BI__builtin_ia32_loadaps512_mask:
12143   case X86::BI__builtin_ia32_loadapd128_mask:
12144   case X86::BI__builtin_ia32_loadapd256_mask:
12145   case X86::BI__builtin_ia32_loadapd512_mask:
12146   case X86::BI__builtin_ia32_movdqa32load128_mask:
12147   case X86::BI__builtin_ia32_movdqa32load256_mask:
12148   case X86::BI__builtin_ia32_movdqa32load512_mask:
12149   case X86::BI__builtin_ia32_movdqa64load128_mask:
12150   case X86::BI__builtin_ia32_movdqa64load256_mask:
12151   case X86::BI__builtin_ia32_movdqa64load512_mask:
12152     return EmitX86MaskedLoad(
12153         *this, Ops,
12154         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12155 
12156   case X86::BI__builtin_ia32_expandloaddf128_mask:
12157   case X86::BI__builtin_ia32_expandloaddf256_mask:
12158   case X86::BI__builtin_ia32_expandloaddf512_mask:
12159   case X86::BI__builtin_ia32_expandloadsf128_mask:
12160   case X86::BI__builtin_ia32_expandloadsf256_mask:
12161   case X86::BI__builtin_ia32_expandloadsf512_mask:
12162   case X86::BI__builtin_ia32_expandloaddi128_mask:
12163   case X86::BI__builtin_ia32_expandloaddi256_mask:
12164   case X86::BI__builtin_ia32_expandloaddi512_mask:
12165   case X86::BI__builtin_ia32_expandloadsi128_mask:
12166   case X86::BI__builtin_ia32_expandloadsi256_mask:
12167   case X86::BI__builtin_ia32_expandloadsi512_mask:
12168   case X86::BI__builtin_ia32_expandloadhi128_mask:
12169   case X86::BI__builtin_ia32_expandloadhi256_mask:
12170   case X86::BI__builtin_ia32_expandloadhi512_mask:
12171   case X86::BI__builtin_ia32_expandloadqi128_mask:
12172   case X86::BI__builtin_ia32_expandloadqi256_mask:
12173   case X86::BI__builtin_ia32_expandloadqi512_mask:
12174     return EmitX86ExpandLoad(*this, Ops);
12175 
12176   case X86::BI__builtin_ia32_compressstoredf128_mask:
12177   case X86::BI__builtin_ia32_compressstoredf256_mask:
12178   case X86::BI__builtin_ia32_compressstoredf512_mask:
12179   case X86::BI__builtin_ia32_compressstoresf128_mask:
12180   case X86::BI__builtin_ia32_compressstoresf256_mask:
12181   case X86::BI__builtin_ia32_compressstoresf512_mask:
12182   case X86::BI__builtin_ia32_compressstoredi128_mask:
12183   case X86::BI__builtin_ia32_compressstoredi256_mask:
12184   case X86::BI__builtin_ia32_compressstoredi512_mask:
12185   case X86::BI__builtin_ia32_compressstoresi128_mask:
12186   case X86::BI__builtin_ia32_compressstoresi256_mask:
12187   case X86::BI__builtin_ia32_compressstoresi512_mask:
12188   case X86::BI__builtin_ia32_compressstorehi128_mask:
12189   case X86::BI__builtin_ia32_compressstorehi256_mask:
12190   case X86::BI__builtin_ia32_compressstorehi512_mask:
12191   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12192   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12193   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12194     return EmitX86CompressStore(*this, Ops);
12195 
12196   case X86::BI__builtin_ia32_expanddf128_mask:
12197   case X86::BI__builtin_ia32_expanddf256_mask:
12198   case X86::BI__builtin_ia32_expanddf512_mask:
12199   case X86::BI__builtin_ia32_expandsf128_mask:
12200   case X86::BI__builtin_ia32_expandsf256_mask:
12201   case X86::BI__builtin_ia32_expandsf512_mask:
12202   case X86::BI__builtin_ia32_expanddi128_mask:
12203   case X86::BI__builtin_ia32_expanddi256_mask:
12204   case X86::BI__builtin_ia32_expanddi512_mask:
12205   case X86::BI__builtin_ia32_expandsi128_mask:
12206   case X86::BI__builtin_ia32_expandsi256_mask:
12207   case X86::BI__builtin_ia32_expandsi512_mask:
12208   case X86::BI__builtin_ia32_expandhi128_mask:
12209   case X86::BI__builtin_ia32_expandhi256_mask:
12210   case X86::BI__builtin_ia32_expandhi512_mask:
12211   case X86::BI__builtin_ia32_expandqi128_mask:
12212   case X86::BI__builtin_ia32_expandqi256_mask:
12213   case X86::BI__builtin_ia32_expandqi512_mask:
12214     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12215 
12216   case X86::BI__builtin_ia32_compressdf128_mask:
12217   case X86::BI__builtin_ia32_compressdf256_mask:
12218   case X86::BI__builtin_ia32_compressdf512_mask:
12219   case X86::BI__builtin_ia32_compresssf128_mask:
12220   case X86::BI__builtin_ia32_compresssf256_mask:
12221   case X86::BI__builtin_ia32_compresssf512_mask:
12222   case X86::BI__builtin_ia32_compressdi128_mask:
12223   case X86::BI__builtin_ia32_compressdi256_mask:
12224   case X86::BI__builtin_ia32_compressdi512_mask:
12225   case X86::BI__builtin_ia32_compresssi128_mask:
12226   case X86::BI__builtin_ia32_compresssi256_mask:
12227   case X86::BI__builtin_ia32_compresssi512_mask:
12228   case X86::BI__builtin_ia32_compresshi128_mask:
12229   case X86::BI__builtin_ia32_compresshi256_mask:
12230   case X86::BI__builtin_ia32_compresshi512_mask:
12231   case X86::BI__builtin_ia32_compressqi128_mask:
12232   case X86::BI__builtin_ia32_compressqi256_mask:
12233   case X86::BI__builtin_ia32_compressqi512_mask:
12234     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12235 
12236   case X86::BI__builtin_ia32_gather3div2df:
12237   case X86::BI__builtin_ia32_gather3div2di:
12238   case X86::BI__builtin_ia32_gather3div4df:
12239   case X86::BI__builtin_ia32_gather3div4di:
12240   case X86::BI__builtin_ia32_gather3div4sf:
12241   case X86::BI__builtin_ia32_gather3div4si:
12242   case X86::BI__builtin_ia32_gather3div8sf:
12243   case X86::BI__builtin_ia32_gather3div8si:
12244   case X86::BI__builtin_ia32_gather3siv2df:
12245   case X86::BI__builtin_ia32_gather3siv2di:
12246   case X86::BI__builtin_ia32_gather3siv4df:
12247   case X86::BI__builtin_ia32_gather3siv4di:
12248   case X86::BI__builtin_ia32_gather3siv4sf:
12249   case X86::BI__builtin_ia32_gather3siv4si:
12250   case X86::BI__builtin_ia32_gather3siv8sf:
12251   case X86::BI__builtin_ia32_gather3siv8si:
12252   case X86::BI__builtin_ia32_gathersiv8df:
12253   case X86::BI__builtin_ia32_gathersiv16sf:
12254   case X86::BI__builtin_ia32_gatherdiv8df:
12255   case X86::BI__builtin_ia32_gatherdiv16sf:
12256   case X86::BI__builtin_ia32_gathersiv8di:
12257   case X86::BI__builtin_ia32_gathersiv16si:
12258   case X86::BI__builtin_ia32_gatherdiv8di:
12259   case X86::BI__builtin_ia32_gatherdiv16si: {
12260     Intrinsic::ID IID;
12261     switch (BuiltinID) {
12262     default: llvm_unreachable("Unexpected builtin");
12263     case X86::BI__builtin_ia32_gather3div2df:
12264       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12265       break;
12266     case X86::BI__builtin_ia32_gather3div2di:
12267       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12268       break;
12269     case X86::BI__builtin_ia32_gather3div4df:
12270       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12271       break;
12272     case X86::BI__builtin_ia32_gather3div4di:
12273       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12274       break;
12275     case X86::BI__builtin_ia32_gather3div4sf:
12276       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12277       break;
12278     case X86::BI__builtin_ia32_gather3div4si:
12279       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12280       break;
12281     case X86::BI__builtin_ia32_gather3div8sf:
12282       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12283       break;
12284     case X86::BI__builtin_ia32_gather3div8si:
12285       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12286       break;
12287     case X86::BI__builtin_ia32_gather3siv2df:
12288       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12289       break;
12290     case X86::BI__builtin_ia32_gather3siv2di:
12291       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12292       break;
12293     case X86::BI__builtin_ia32_gather3siv4df:
12294       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12295       break;
12296     case X86::BI__builtin_ia32_gather3siv4di:
12297       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12298       break;
12299     case X86::BI__builtin_ia32_gather3siv4sf:
12300       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12301       break;
12302     case X86::BI__builtin_ia32_gather3siv4si:
12303       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12304       break;
12305     case X86::BI__builtin_ia32_gather3siv8sf:
12306       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12307       break;
12308     case X86::BI__builtin_ia32_gather3siv8si:
12309       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12310       break;
12311     case X86::BI__builtin_ia32_gathersiv8df:
12312       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12313       break;
12314     case X86::BI__builtin_ia32_gathersiv16sf:
12315       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12316       break;
12317     case X86::BI__builtin_ia32_gatherdiv8df:
12318       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12319       break;
12320     case X86::BI__builtin_ia32_gatherdiv16sf:
12321       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12322       break;
12323     case X86::BI__builtin_ia32_gathersiv8di:
12324       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12325       break;
12326     case X86::BI__builtin_ia32_gathersiv16si:
12327       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12328       break;
12329     case X86::BI__builtin_ia32_gatherdiv8di:
12330       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12331       break;
12332     case X86::BI__builtin_ia32_gatherdiv16si:
12333       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12334       break;
12335     }
12336 
12337     unsigned MinElts = std::min(
12338         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
12339         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
12340     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12341     Function *Intr = CGM.getIntrinsic(IID);
12342     return Builder.CreateCall(Intr, Ops);
12343   }
12344 
12345   case X86::BI__builtin_ia32_scattersiv8df:
12346   case X86::BI__builtin_ia32_scattersiv16sf:
12347   case X86::BI__builtin_ia32_scatterdiv8df:
12348   case X86::BI__builtin_ia32_scatterdiv16sf:
12349   case X86::BI__builtin_ia32_scattersiv8di:
12350   case X86::BI__builtin_ia32_scattersiv16si:
12351   case X86::BI__builtin_ia32_scatterdiv8di:
12352   case X86::BI__builtin_ia32_scatterdiv16si:
12353   case X86::BI__builtin_ia32_scatterdiv2df:
12354   case X86::BI__builtin_ia32_scatterdiv2di:
12355   case X86::BI__builtin_ia32_scatterdiv4df:
12356   case X86::BI__builtin_ia32_scatterdiv4di:
12357   case X86::BI__builtin_ia32_scatterdiv4sf:
12358   case X86::BI__builtin_ia32_scatterdiv4si:
12359   case X86::BI__builtin_ia32_scatterdiv8sf:
12360   case X86::BI__builtin_ia32_scatterdiv8si:
12361   case X86::BI__builtin_ia32_scattersiv2df:
12362   case X86::BI__builtin_ia32_scattersiv2di:
12363   case X86::BI__builtin_ia32_scattersiv4df:
12364   case X86::BI__builtin_ia32_scattersiv4di:
12365   case X86::BI__builtin_ia32_scattersiv4sf:
12366   case X86::BI__builtin_ia32_scattersiv4si:
12367   case X86::BI__builtin_ia32_scattersiv8sf:
12368   case X86::BI__builtin_ia32_scattersiv8si: {
12369     Intrinsic::ID IID;
12370     switch (BuiltinID) {
12371     default: llvm_unreachable("Unexpected builtin");
12372     case X86::BI__builtin_ia32_scattersiv8df:
12373       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12374       break;
12375     case X86::BI__builtin_ia32_scattersiv16sf:
12376       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12377       break;
12378     case X86::BI__builtin_ia32_scatterdiv8df:
12379       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12380       break;
12381     case X86::BI__builtin_ia32_scatterdiv16sf:
12382       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12383       break;
12384     case X86::BI__builtin_ia32_scattersiv8di:
12385       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12386       break;
12387     case X86::BI__builtin_ia32_scattersiv16si:
12388       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
12389       break;
12390     case X86::BI__builtin_ia32_scatterdiv8di:
12391       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
12392       break;
12393     case X86::BI__builtin_ia32_scatterdiv16si:
12394       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
12395       break;
12396     case X86::BI__builtin_ia32_scatterdiv2df:
12397       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
12398       break;
12399     case X86::BI__builtin_ia32_scatterdiv2di:
12400       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
12401       break;
12402     case X86::BI__builtin_ia32_scatterdiv4df:
12403       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
12404       break;
12405     case X86::BI__builtin_ia32_scatterdiv4di:
12406       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
12407       break;
12408     case X86::BI__builtin_ia32_scatterdiv4sf:
12409       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
12410       break;
12411     case X86::BI__builtin_ia32_scatterdiv4si:
12412       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
12413       break;
12414     case X86::BI__builtin_ia32_scatterdiv8sf:
12415       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
12416       break;
12417     case X86::BI__builtin_ia32_scatterdiv8si:
12418       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
12419       break;
12420     case X86::BI__builtin_ia32_scattersiv2df:
12421       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
12422       break;
12423     case X86::BI__builtin_ia32_scattersiv2di:
12424       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
12425       break;
12426     case X86::BI__builtin_ia32_scattersiv4df:
12427       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
12428       break;
12429     case X86::BI__builtin_ia32_scattersiv4di:
12430       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
12431       break;
12432     case X86::BI__builtin_ia32_scattersiv4sf:
12433       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
12434       break;
12435     case X86::BI__builtin_ia32_scattersiv4si:
12436       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
12437       break;
12438     case X86::BI__builtin_ia32_scattersiv8sf:
12439       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
12440       break;
12441     case X86::BI__builtin_ia32_scattersiv8si:
12442       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
12443       break;
12444     }
12445 
12446     unsigned MinElts = std::min(
12447         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
12448         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
12449     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
12450     Function *Intr = CGM.getIntrinsic(IID);
12451     return Builder.CreateCall(Intr, Ops);
12452   }
12453 
12454   case X86::BI__builtin_ia32_vextractf128_pd256:
12455   case X86::BI__builtin_ia32_vextractf128_ps256:
12456   case X86::BI__builtin_ia32_vextractf128_si256:
12457   case X86::BI__builtin_ia32_extract128i256:
12458   case X86::BI__builtin_ia32_extractf64x4_mask:
12459   case X86::BI__builtin_ia32_extractf32x4_mask:
12460   case X86::BI__builtin_ia32_extracti64x4_mask:
12461   case X86::BI__builtin_ia32_extracti32x4_mask:
12462   case X86::BI__builtin_ia32_extractf32x8_mask:
12463   case X86::BI__builtin_ia32_extracti32x8_mask:
12464   case X86::BI__builtin_ia32_extractf32x4_256_mask:
12465   case X86::BI__builtin_ia32_extracti32x4_256_mask:
12466   case X86::BI__builtin_ia32_extractf64x2_256_mask:
12467   case X86::BI__builtin_ia32_extracti64x2_256_mask:
12468   case X86::BI__builtin_ia32_extractf64x2_512_mask:
12469   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
12470     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
12471     unsigned NumElts = DstTy->getNumElements();
12472     unsigned SrcNumElts =
12473         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12474     unsigned SubVectors = SrcNumElts / NumElts;
12475     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12476     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12477     Index &= SubVectors - 1; // Remove any extra bits.
12478     Index *= NumElts;
12479 
12480     int Indices[16];
12481     for (unsigned i = 0; i != NumElts; ++i)
12482       Indices[i] = i + Index;
12483 
12484     Value *Res = Builder.CreateShuffleVector(Ops[0],
12485                                              UndefValue::get(Ops[0]->getType()),
12486                                              makeArrayRef(Indices, NumElts),
12487                                              "extract");
12488 
12489     if (Ops.size() == 4)
12490       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
12491 
12492     return Res;
12493   }
12494   case X86::BI__builtin_ia32_vinsertf128_pd256:
12495   case X86::BI__builtin_ia32_vinsertf128_ps256:
12496   case X86::BI__builtin_ia32_vinsertf128_si256:
12497   case X86::BI__builtin_ia32_insert128i256:
12498   case X86::BI__builtin_ia32_insertf64x4:
12499   case X86::BI__builtin_ia32_insertf32x4:
12500   case X86::BI__builtin_ia32_inserti64x4:
12501   case X86::BI__builtin_ia32_inserti32x4:
12502   case X86::BI__builtin_ia32_insertf32x8:
12503   case X86::BI__builtin_ia32_inserti32x8:
12504   case X86::BI__builtin_ia32_insertf32x4_256:
12505   case X86::BI__builtin_ia32_inserti32x4_256:
12506   case X86::BI__builtin_ia32_insertf64x2_256:
12507   case X86::BI__builtin_ia32_inserti64x2_256:
12508   case X86::BI__builtin_ia32_insertf64x2_512:
12509   case X86::BI__builtin_ia32_inserti64x2_512: {
12510     unsigned DstNumElts =
12511         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12512     unsigned SrcNumElts =
12513         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
12514     unsigned SubVectors = DstNumElts / SrcNumElts;
12515     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12516     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
12517     Index &= SubVectors - 1; // Remove any extra bits.
12518     Index *= SrcNumElts;
12519 
12520     int Indices[16];
12521     for (unsigned i = 0; i != DstNumElts; ++i)
12522       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
12523 
12524     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
12525                                              UndefValue::get(Ops[1]->getType()),
12526                                              makeArrayRef(Indices, DstNumElts),
12527                                              "widen");
12528 
12529     for (unsigned i = 0; i != DstNumElts; ++i) {
12530       if (i >= Index && i < (Index + SrcNumElts))
12531         Indices[i] = (i - Index) + DstNumElts;
12532       else
12533         Indices[i] = i;
12534     }
12535 
12536     return Builder.CreateShuffleVector(Ops[0], Op1,
12537                                        makeArrayRef(Indices, DstNumElts),
12538                                        "insert");
12539   }
12540   case X86::BI__builtin_ia32_pmovqd512_mask:
12541   case X86::BI__builtin_ia32_pmovwb512_mask: {
12542     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12543     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
12544   }
12545   case X86::BI__builtin_ia32_pmovdb512_mask:
12546   case X86::BI__builtin_ia32_pmovdw512_mask:
12547   case X86::BI__builtin_ia32_pmovqw512_mask: {
12548     if (const auto *C = dyn_cast<Constant>(Ops[2]))
12549       if (C->isAllOnesValue())
12550         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
12551 
12552     Intrinsic::ID IID;
12553     switch (BuiltinID) {
12554     default: llvm_unreachable("Unsupported intrinsic!");
12555     case X86::BI__builtin_ia32_pmovdb512_mask:
12556       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
12557       break;
12558     case X86::BI__builtin_ia32_pmovdw512_mask:
12559       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
12560       break;
12561     case X86::BI__builtin_ia32_pmovqw512_mask:
12562       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
12563       break;
12564     }
12565 
12566     Function *Intr = CGM.getIntrinsic(IID);
12567     return Builder.CreateCall(Intr, Ops);
12568   }
12569   case X86::BI__builtin_ia32_pblendw128:
12570   case X86::BI__builtin_ia32_blendpd:
12571   case X86::BI__builtin_ia32_blendps:
12572   case X86::BI__builtin_ia32_blendpd256:
12573   case X86::BI__builtin_ia32_blendps256:
12574   case X86::BI__builtin_ia32_pblendw256:
12575   case X86::BI__builtin_ia32_pblendd128:
12576   case X86::BI__builtin_ia32_pblendd256: {
12577     unsigned NumElts =
12578         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12579     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12580 
12581     int Indices[16];
12582     // If there are more than 8 elements, the immediate is used twice so make
12583     // sure we handle that.
12584     for (unsigned i = 0; i != NumElts; ++i)
12585       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
12586 
12587     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12588                                        makeArrayRef(Indices, NumElts),
12589                                        "blend");
12590   }
12591   case X86::BI__builtin_ia32_pshuflw:
12592   case X86::BI__builtin_ia32_pshuflw256:
12593   case X86::BI__builtin_ia32_pshuflw512: {
12594     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12595     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12596     unsigned NumElts = Ty->getNumElements();
12597 
12598     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12599     Imm = (Imm & 0xff) * 0x01010101;
12600 
12601     int Indices[32];
12602     for (unsigned l = 0; l != NumElts; l += 8) {
12603       for (unsigned i = 0; i != 4; ++i) {
12604         Indices[l + i] = l + (Imm & 3);
12605         Imm >>= 2;
12606       }
12607       for (unsigned i = 4; i != 8; ++i)
12608         Indices[l + i] = l + i;
12609     }
12610 
12611     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12612                                        makeArrayRef(Indices, NumElts),
12613                                        "pshuflw");
12614   }
12615   case X86::BI__builtin_ia32_pshufhw:
12616   case X86::BI__builtin_ia32_pshufhw256:
12617   case X86::BI__builtin_ia32_pshufhw512: {
12618     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12619     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12620     unsigned NumElts = Ty->getNumElements();
12621 
12622     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12623     Imm = (Imm & 0xff) * 0x01010101;
12624 
12625     int Indices[32];
12626     for (unsigned l = 0; l != NumElts; l += 8) {
12627       for (unsigned i = 0; i != 4; ++i)
12628         Indices[l + i] = l + i;
12629       for (unsigned i = 4; i != 8; ++i) {
12630         Indices[l + i] = l + 4 + (Imm & 3);
12631         Imm >>= 2;
12632       }
12633     }
12634 
12635     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12636                                        makeArrayRef(Indices, NumElts),
12637                                        "pshufhw");
12638   }
12639   case X86::BI__builtin_ia32_pshufd:
12640   case X86::BI__builtin_ia32_pshufd256:
12641   case X86::BI__builtin_ia32_pshufd512:
12642   case X86::BI__builtin_ia32_vpermilpd:
12643   case X86::BI__builtin_ia32_vpermilps:
12644   case X86::BI__builtin_ia32_vpermilpd256:
12645   case X86::BI__builtin_ia32_vpermilps256:
12646   case X86::BI__builtin_ia32_vpermilpd512:
12647   case X86::BI__builtin_ia32_vpermilps512: {
12648     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12649     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12650     unsigned NumElts = Ty->getNumElements();
12651     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12652     unsigned NumLaneElts = NumElts / NumLanes;
12653 
12654     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12655     Imm = (Imm & 0xff) * 0x01010101;
12656 
12657     int Indices[16];
12658     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12659       for (unsigned i = 0; i != NumLaneElts; ++i) {
12660         Indices[i + l] = (Imm % NumLaneElts) + l;
12661         Imm /= NumLaneElts;
12662       }
12663     }
12664 
12665     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12666                                        makeArrayRef(Indices, NumElts),
12667                                        "permil");
12668   }
12669   case X86::BI__builtin_ia32_shufpd:
12670   case X86::BI__builtin_ia32_shufpd256:
12671   case X86::BI__builtin_ia32_shufpd512:
12672   case X86::BI__builtin_ia32_shufps:
12673   case X86::BI__builtin_ia32_shufps256:
12674   case X86::BI__builtin_ia32_shufps512: {
12675     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12676     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12677     unsigned NumElts = Ty->getNumElements();
12678     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
12679     unsigned NumLaneElts = NumElts / NumLanes;
12680 
12681     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
12682     Imm = (Imm & 0xff) * 0x01010101;
12683 
12684     int Indices[16];
12685     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12686       for (unsigned i = 0; i != NumLaneElts; ++i) {
12687         unsigned Index = Imm % NumLaneElts;
12688         Imm /= NumLaneElts;
12689         if (i >= (NumLaneElts / 2))
12690           Index += NumElts;
12691         Indices[l + i] = l + Index;
12692       }
12693     }
12694 
12695     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12696                                        makeArrayRef(Indices, NumElts),
12697                                        "shufp");
12698   }
12699   case X86::BI__builtin_ia32_permdi256:
12700   case X86::BI__builtin_ia32_permdf256:
12701   case X86::BI__builtin_ia32_permdi512:
12702   case X86::BI__builtin_ia32_permdf512: {
12703     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
12704     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12705     unsigned NumElts = Ty->getNumElements();
12706 
12707     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
12708     int Indices[8];
12709     for (unsigned l = 0; l != NumElts; l += 4)
12710       for (unsigned i = 0; i != 4; ++i)
12711         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
12712 
12713     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
12714                                        makeArrayRef(Indices, NumElts),
12715                                        "perm");
12716   }
12717   case X86::BI__builtin_ia32_palignr128:
12718   case X86::BI__builtin_ia32_palignr256:
12719   case X86::BI__builtin_ia32_palignr512: {
12720     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12721 
12722     unsigned NumElts =
12723         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12724     assert(NumElts % 16 == 0);
12725 
12726     // If palignr is shifting the pair of vectors more than the size of two
12727     // lanes, emit zero.
12728     if (ShiftVal >= 32)
12729       return llvm::Constant::getNullValue(ConvertType(E->getType()));
12730 
12731     // If palignr is shifting the pair of input vectors more than one lane,
12732     // but less than two lanes, convert to shifting in zeroes.
12733     if (ShiftVal > 16) {
12734       ShiftVal -= 16;
12735       Ops[1] = Ops[0];
12736       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
12737     }
12738 
12739     int Indices[64];
12740     // 256-bit palignr operates on 128-bit lanes so we need to handle that
12741     for (unsigned l = 0; l != NumElts; l += 16) {
12742       for (unsigned i = 0; i != 16; ++i) {
12743         unsigned Idx = ShiftVal + i;
12744         if (Idx >= 16)
12745           Idx += NumElts - 16; // End of lane, switch operand.
12746         Indices[l + i] = Idx + l;
12747       }
12748     }
12749 
12750     return Builder.CreateShuffleVector(Ops[1], Ops[0],
12751                                        makeArrayRef(Indices, NumElts),
12752                                        "palignr");
12753   }
12754   case X86::BI__builtin_ia32_alignd128:
12755   case X86::BI__builtin_ia32_alignd256:
12756   case X86::BI__builtin_ia32_alignd512:
12757   case X86::BI__builtin_ia32_alignq128:
12758   case X86::BI__builtin_ia32_alignq256:
12759   case X86::BI__builtin_ia32_alignq512: {
12760     unsigned NumElts =
12761         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12762     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
12763 
12764     // Mask the shift amount to width of two vectors.
12765     ShiftVal &= (2 * NumElts) - 1;
12766 
12767     int Indices[16];
12768     for (unsigned i = 0; i != NumElts; ++i)
12769       Indices[i] = i + ShiftVal;
12770 
12771     return Builder.CreateShuffleVector(Ops[1], Ops[0],
12772                                        makeArrayRef(Indices, NumElts),
12773                                        "valign");
12774   }
12775   case X86::BI__builtin_ia32_shuf_f32x4_256:
12776   case X86::BI__builtin_ia32_shuf_f64x2_256:
12777   case X86::BI__builtin_ia32_shuf_i32x4_256:
12778   case X86::BI__builtin_ia32_shuf_i64x2_256:
12779   case X86::BI__builtin_ia32_shuf_f32x4:
12780   case X86::BI__builtin_ia32_shuf_f64x2:
12781   case X86::BI__builtin_ia32_shuf_i32x4:
12782   case X86::BI__builtin_ia32_shuf_i64x2: {
12783     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12784     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
12785     unsigned NumElts = Ty->getNumElements();
12786     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
12787     unsigned NumLaneElts = NumElts / NumLanes;
12788 
12789     int Indices[16];
12790     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
12791       unsigned Index = (Imm % NumLanes) * NumLaneElts;
12792       Imm /= NumLanes; // Discard the bits we just used.
12793       if (l >= (NumElts / 2))
12794         Index += NumElts; // Switch to other source.
12795       for (unsigned i = 0; i != NumLaneElts; ++i) {
12796         Indices[l + i] = Index + i;
12797       }
12798     }
12799 
12800     return Builder.CreateShuffleVector(Ops[0], Ops[1],
12801                                        makeArrayRef(Indices, NumElts),
12802                                        "shuf");
12803   }
12804 
12805   case X86::BI__builtin_ia32_vperm2f128_pd256:
12806   case X86::BI__builtin_ia32_vperm2f128_ps256:
12807   case X86::BI__builtin_ia32_vperm2f128_si256:
12808   case X86::BI__builtin_ia32_permti256: {
12809     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
12810     unsigned NumElts =
12811         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12812 
12813     // This takes a very simple approach since there are two lanes and a
12814     // shuffle can have 2 inputs. So we reserve the first input for the first
12815     // lane and the second input for the second lane. This may result in
12816     // duplicate sources, but this can be dealt with in the backend.
12817 
12818     Value *OutOps[2];
12819     int Indices[8];
12820     for (unsigned l = 0; l != 2; ++l) {
12821       // Determine the source for this lane.
12822       if (Imm & (1 << ((l * 4) + 3)))
12823         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
12824       else if (Imm & (1 << ((l * 4) + 1)))
12825         OutOps[l] = Ops[1];
12826       else
12827         OutOps[l] = Ops[0];
12828 
12829       for (unsigned i = 0; i != NumElts/2; ++i) {
12830         // Start with ith element of the source for this lane.
12831         unsigned Idx = (l * NumElts) + i;
12832         // If bit 0 of the immediate half is set, switch to the high half of
12833         // the source.
12834         if (Imm & (1 << (l * 4)))
12835           Idx += NumElts/2;
12836         Indices[(l * (NumElts/2)) + i] = Idx;
12837       }
12838     }
12839 
12840     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
12841                                        makeArrayRef(Indices, NumElts),
12842                                        "vperm");
12843   }
12844 
12845   case X86::BI__builtin_ia32_pslldqi128_byteshift:
12846   case X86::BI__builtin_ia32_pslldqi256_byteshift:
12847   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
12848     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12849     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
12850     // Builtin type is vXi64 so multiply by 8 to get bytes.
12851     unsigned NumElts = ResultType->getNumElements() * 8;
12852 
12853     // If pslldq is shifting the vector more than 15 bytes, emit zero.
12854     if (ShiftVal >= 16)
12855       return llvm::Constant::getNullValue(ResultType);
12856 
12857     int Indices[64];
12858     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
12859     for (unsigned l = 0; l != NumElts; l += 16) {
12860       for (unsigned i = 0; i != 16; ++i) {
12861         unsigned Idx = NumElts + i - ShiftVal;
12862         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
12863         Indices[l + i] = Idx + l;
12864       }
12865     }
12866 
12867     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
12868     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
12869     Value *Zero = llvm::Constant::getNullValue(VecTy);
12870     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
12871                                             makeArrayRef(Indices, NumElts),
12872                                             "pslldq");
12873     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
12874   }
12875   case X86::BI__builtin_ia32_psrldqi128_byteshift:
12876   case X86::BI__builtin_ia32_psrldqi256_byteshift:
12877   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
12878     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12879     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
12880     // Builtin type is vXi64 so multiply by 8 to get bytes.
12881     unsigned NumElts = ResultType->getNumElements() * 8;
12882 
12883     // If psrldq is shifting the vector more than 15 bytes, emit zero.
12884     if (ShiftVal >= 16)
12885       return llvm::Constant::getNullValue(ResultType);
12886 
12887     int Indices[64];
12888     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
12889     for (unsigned l = 0; l != NumElts; l += 16) {
12890       for (unsigned i = 0; i != 16; ++i) {
12891         unsigned Idx = i + ShiftVal;
12892         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
12893         Indices[l + i] = Idx + l;
12894       }
12895     }
12896 
12897     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
12898     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
12899     Value *Zero = llvm::Constant::getNullValue(VecTy);
12900     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
12901                                             makeArrayRef(Indices, NumElts),
12902                                             "psrldq");
12903     return Builder.CreateBitCast(SV, ResultType, "cast");
12904   }
12905   case X86::BI__builtin_ia32_kshiftliqi:
12906   case X86::BI__builtin_ia32_kshiftlihi:
12907   case X86::BI__builtin_ia32_kshiftlisi:
12908   case X86::BI__builtin_ia32_kshiftlidi: {
12909     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12910     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12911 
12912     if (ShiftVal >= NumElts)
12913       return llvm::Constant::getNullValue(Ops[0]->getType());
12914 
12915     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
12916 
12917     int Indices[64];
12918     for (unsigned i = 0; i != NumElts; ++i)
12919       Indices[i] = NumElts + i - ShiftVal;
12920 
12921     Value *Zero = llvm::Constant::getNullValue(In->getType());
12922     Value *SV = Builder.CreateShuffleVector(Zero, In,
12923                                             makeArrayRef(Indices, NumElts),
12924                                             "kshiftl");
12925     return Builder.CreateBitCast(SV, Ops[0]->getType());
12926   }
12927   case X86::BI__builtin_ia32_kshiftriqi:
12928   case X86::BI__builtin_ia32_kshiftrihi:
12929   case X86::BI__builtin_ia32_kshiftrisi:
12930   case X86::BI__builtin_ia32_kshiftridi: {
12931     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
12932     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12933 
12934     if (ShiftVal >= NumElts)
12935       return llvm::Constant::getNullValue(Ops[0]->getType());
12936 
12937     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
12938 
12939     int Indices[64];
12940     for (unsigned i = 0; i != NumElts; ++i)
12941       Indices[i] = i + ShiftVal;
12942 
12943     Value *Zero = llvm::Constant::getNullValue(In->getType());
12944     Value *SV = Builder.CreateShuffleVector(In, Zero,
12945                                             makeArrayRef(Indices, NumElts),
12946                                             "kshiftr");
12947     return Builder.CreateBitCast(SV, Ops[0]->getType());
12948   }
12949   case X86::BI__builtin_ia32_movnti:
12950   case X86::BI__builtin_ia32_movnti64:
12951   case X86::BI__builtin_ia32_movntsd:
12952   case X86::BI__builtin_ia32_movntss: {
12953     llvm::MDNode *Node = llvm::MDNode::get(
12954         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
12955 
12956     Value *Ptr = Ops[0];
12957     Value *Src = Ops[1];
12958 
12959     // Extract the 0'th element of the source vector.
12960     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
12961         BuiltinID == X86::BI__builtin_ia32_movntss)
12962       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
12963 
12964     // Convert the type of the pointer to a pointer to the stored type.
12965     Value *BC = Builder.CreateBitCast(
12966         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
12967 
12968     // Unaligned nontemporal store of the scalar value.
12969     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
12970     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
12971     SI->setAlignment(llvm::Align(1));
12972     return SI;
12973   }
12974   // Rotate is a special case of funnel shift - 1st 2 args are the same.
12975   case X86::BI__builtin_ia32_vprotb:
12976   case X86::BI__builtin_ia32_vprotw:
12977   case X86::BI__builtin_ia32_vprotd:
12978   case X86::BI__builtin_ia32_vprotq:
12979   case X86::BI__builtin_ia32_vprotbi:
12980   case X86::BI__builtin_ia32_vprotwi:
12981   case X86::BI__builtin_ia32_vprotdi:
12982   case X86::BI__builtin_ia32_vprotqi:
12983   case X86::BI__builtin_ia32_prold128:
12984   case X86::BI__builtin_ia32_prold256:
12985   case X86::BI__builtin_ia32_prold512:
12986   case X86::BI__builtin_ia32_prolq128:
12987   case X86::BI__builtin_ia32_prolq256:
12988   case X86::BI__builtin_ia32_prolq512:
12989   case X86::BI__builtin_ia32_prolvd128:
12990   case X86::BI__builtin_ia32_prolvd256:
12991   case X86::BI__builtin_ia32_prolvd512:
12992   case X86::BI__builtin_ia32_prolvq128:
12993   case X86::BI__builtin_ia32_prolvq256:
12994   case X86::BI__builtin_ia32_prolvq512:
12995     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
12996   case X86::BI__builtin_ia32_prord128:
12997   case X86::BI__builtin_ia32_prord256:
12998   case X86::BI__builtin_ia32_prord512:
12999   case X86::BI__builtin_ia32_prorq128:
13000   case X86::BI__builtin_ia32_prorq256:
13001   case X86::BI__builtin_ia32_prorq512:
13002   case X86::BI__builtin_ia32_prorvd128:
13003   case X86::BI__builtin_ia32_prorvd256:
13004   case X86::BI__builtin_ia32_prorvd512:
13005   case X86::BI__builtin_ia32_prorvq128:
13006   case X86::BI__builtin_ia32_prorvq256:
13007   case X86::BI__builtin_ia32_prorvq512:
13008     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13009   case X86::BI__builtin_ia32_selectb_128:
13010   case X86::BI__builtin_ia32_selectb_256:
13011   case X86::BI__builtin_ia32_selectb_512:
13012   case X86::BI__builtin_ia32_selectw_128:
13013   case X86::BI__builtin_ia32_selectw_256:
13014   case X86::BI__builtin_ia32_selectw_512:
13015   case X86::BI__builtin_ia32_selectd_128:
13016   case X86::BI__builtin_ia32_selectd_256:
13017   case X86::BI__builtin_ia32_selectd_512:
13018   case X86::BI__builtin_ia32_selectq_128:
13019   case X86::BI__builtin_ia32_selectq_256:
13020   case X86::BI__builtin_ia32_selectq_512:
13021   case X86::BI__builtin_ia32_selectps_128:
13022   case X86::BI__builtin_ia32_selectps_256:
13023   case X86::BI__builtin_ia32_selectps_512:
13024   case X86::BI__builtin_ia32_selectpd_128:
13025   case X86::BI__builtin_ia32_selectpd_256:
13026   case X86::BI__builtin_ia32_selectpd_512:
13027     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13028   case X86::BI__builtin_ia32_selectss_128:
13029   case X86::BI__builtin_ia32_selectsd_128: {
13030     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13031     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13032     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13033     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13034   }
13035   case X86::BI__builtin_ia32_cmpb128_mask:
13036   case X86::BI__builtin_ia32_cmpb256_mask:
13037   case X86::BI__builtin_ia32_cmpb512_mask:
13038   case X86::BI__builtin_ia32_cmpw128_mask:
13039   case X86::BI__builtin_ia32_cmpw256_mask:
13040   case X86::BI__builtin_ia32_cmpw512_mask:
13041   case X86::BI__builtin_ia32_cmpd128_mask:
13042   case X86::BI__builtin_ia32_cmpd256_mask:
13043   case X86::BI__builtin_ia32_cmpd512_mask:
13044   case X86::BI__builtin_ia32_cmpq128_mask:
13045   case X86::BI__builtin_ia32_cmpq256_mask:
13046   case X86::BI__builtin_ia32_cmpq512_mask: {
13047     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13048     return EmitX86MaskedCompare(*this, CC, true, Ops);
13049   }
13050   case X86::BI__builtin_ia32_ucmpb128_mask:
13051   case X86::BI__builtin_ia32_ucmpb256_mask:
13052   case X86::BI__builtin_ia32_ucmpb512_mask:
13053   case X86::BI__builtin_ia32_ucmpw128_mask:
13054   case X86::BI__builtin_ia32_ucmpw256_mask:
13055   case X86::BI__builtin_ia32_ucmpw512_mask:
13056   case X86::BI__builtin_ia32_ucmpd128_mask:
13057   case X86::BI__builtin_ia32_ucmpd256_mask:
13058   case X86::BI__builtin_ia32_ucmpd512_mask:
13059   case X86::BI__builtin_ia32_ucmpq128_mask:
13060   case X86::BI__builtin_ia32_ucmpq256_mask:
13061   case X86::BI__builtin_ia32_ucmpq512_mask: {
13062     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13063     return EmitX86MaskedCompare(*this, CC, false, Ops);
13064   }
13065   case X86::BI__builtin_ia32_vpcomb:
13066   case X86::BI__builtin_ia32_vpcomw:
13067   case X86::BI__builtin_ia32_vpcomd:
13068   case X86::BI__builtin_ia32_vpcomq:
13069     return EmitX86vpcom(*this, Ops, true);
13070   case X86::BI__builtin_ia32_vpcomub:
13071   case X86::BI__builtin_ia32_vpcomuw:
13072   case X86::BI__builtin_ia32_vpcomud:
13073   case X86::BI__builtin_ia32_vpcomuq:
13074     return EmitX86vpcom(*this, Ops, false);
13075 
13076   case X86::BI__builtin_ia32_kortestcqi:
13077   case X86::BI__builtin_ia32_kortestchi:
13078   case X86::BI__builtin_ia32_kortestcsi:
13079   case X86::BI__builtin_ia32_kortestcdi: {
13080     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13081     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13082     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13083     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13084   }
13085   case X86::BI__builtin_ia32_kortestzqi:
13086   case X86::BI__builtin_ia32_kortestzhi:
13087   case X86::BI__builtin_ia32_kortestzsi:
13088   case X86::BI__builtin_ia32_kortestzdi: {
13089     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13090     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13091     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13092     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13093   }
13094 
13095   case X86::BI__builtin_ia32_ktestcqi:
13096   case X86::BI__builtin_ia32_ktestzqi:
13097   case X86::BI__builtin_ia32_ktestchi:
13098   case X86::BI__builtin_ia32_ktestzhi:
13099   case X86::BI__builtin_ia32_ktestcsi:
13100   case X86::BI__builtin_ia32_ktestzsi:
13101   case X86::BI__builtin_ia32_ktestcdi:
13102   case X86::BI__builtin_ia32_ktestzdi: {
13103     Intrinsic::ID IID;
13104     switch (BuiltinID) {
13105     default: llvm_unreachable("Unsupported intrinsic!");
13106     case X86::BI__builtin_ia32_ktestcqi:
13107       IID = Intrinsic::x86_avx512_ktestc_b;
13108       break;
13109     case X86::BI__builtin_ia32_ktestzqi:
13110       IID = Intrinsic::x86_avx512_ktestz_b;
13111       break;
13112     case X86::BI__builtin_ia32_ktestchi:
13113       IID = Intrinsic::x86_avx512_ktestc_w;
13114       break;
13115     case X86::BI__builtin_ia32_ktestzhi:
13116       IID = Intrinsic::x86_avx512_ktestz_w;
13117       break;
13118     case X86::BI__builtin_ia32_ktestcsi:
13119       IID = Intrinsic::x86_avx512_ktestc_d;
13120       break;
13121     case X86::BI__builtin_ia32_ktestzsi:
13122       IID = Intrinsic::x86_avx512_ktestz_d;
13123       break;
13124     case X86::BI__builtin_ia32_ktestcdi:
13125       IID = Intrinsic::x86_avx512_ktestc_q;
13126       break;
13127     case X86::BI__builtin_ia32_ktestzdi:
13128       IID = Intrinsic::x86_avx512_ktestz_q;
13129       break;
13130     }
13131 
13132     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13133     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13134     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13135     Function *Intr = CGM.getIntrinsic(IID);
13136     return Builder.CreateCall(Intr, {LHS, RHS});
13137   }
13138 
13139   case X86::BI__builtin_ia32_kaddqi:
13140   case X86::BI__builtin_ia32_kaddhi:
13141   case X86::BI__builtin_ia32_kaddsi:
13142   case X86::BI__builtin_ia32_kadddi: {
13143     Intrinsic::ID IID;
13144     switch (BuiltinID) {
13145     default: llvm_unreachable("Unsupported intrinsic!");
13146     case X86::BI__builtin_ia32_kaddqi:
13147       IID = Intrinsic::x86_avx512_kadd_b;
13148       break;
13149     case X86::BI__builtin_ia32_kaddhi:
13150       IID = Intrinsic::x86_avx512_kadd_w;
13151       break;
13152     case X86::BI__builtin_ia32_kaddsi:
13153       IID = Intrinsic::x86_avx512_kadd_d;
13154       break;
13155     case X86::BI__builtin_ia32_kadddi:
13156       IID = Intrinsic::x86_avx512_kadd_q;
13157       break;
13158     }
13159 
13160     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13161     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13162     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13163     Function *Intr = CGM.getIntrinsic(IID);
13164     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13165     return Builder.CreateBitCast(Res, Ops[0]->getType());
13166   }
13167   case X86::BI__builtin_ia32_kandqi:
13168   case X86::BI__builtin_ia32_kandhi:
13169   case X86::BI__builtin_ia32_kandsi:
13170   case X86::BI__builtin_ia32_kanddi:
13171     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13172   case X86::BI__builtin_ia32_kandnqi:
13173   case X86::BI__builtin_ia32_kandnhi:
13174   case X86::BI__builtin_ia32_kandnsi:
13175   case X86::BI__builtin_ia32_kandndi:
13176     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13177   case X86::BI__builtin_ia32_korqi:
13178   case X86::BI__builtin_ia32_korhi:
13179   case X86::BI__builtin_ia32_korsi:
13180   case X86::BI__builtin_ia32_kordi:
13181     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13182   case X86::BI__builtin_ia32_kxnorqi:
13183   case X86::BI__builtin_ia32_kxnorhi:
13184   case X86::BI__builtin_ia32_kxnorsi:
13185   case X86::BI__builtin_ia32_kxnordi:
13186     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13187   case X86::BI__builtin_ia32_kxorqi:
13188   case X86::BI__builtin_ia32_kxorhi:
13189   case X86::BI__builtin_ia32_kxorsi:
13190   case X86::BI__builtin_ia32_kxordi:
13191     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13192   case X86::BI__builtin_ia32_knotqi:
13193   case X86::BI__builtin_ia32_knothi:
13194   case X86::BI__builtin_ia32_knotsi:
13195   case X86::BI__builtin_ia32_knotdi: {
13196     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13197     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13198     return Builder.CreateBitCast(Builder.CreateNot(Res),
13199                                  Ops[0]->getType());
13200   }
13201   case X86::BI__builtin_ia32_kmovb:
13202   case X86::BI__builtin_ia32_kmovw:
13203   case X86::BI__builtin_ia32_kmovd:
13204   case X86::BI__builtin_ia32_kmovq: {
13205     // Bitcast to vXi1 type and then back to integer. This gets the mask
13206     // register type into the IR, but might be optimized out depending on
13207     // what's around it.
13208     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13209     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13210     return Builder.CreateBitCast(Res, Ops[0]->getType());
13211   }
13212 
13213   case X86::BI__builtin_ia32_kunpckdi:
13214   case X86::BI__builtin_ia32_kunpcksi:
13215   case X86::BI__builtin_ia32_kunpckhi: {
13216     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13217     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13218     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13219     int Indices[64];
13220     for (unsigned i = 0; i != NumElts; ++i)
13221       Indices[i] = i;
13222 
13223     // First extract half of each vector. This gives better codegen than
13224     // doing it in a single shuffle.
13225     LHS = Builder.CreateShuffleVector(LHS, LHS,
13226                                       makeArrayRef(Indices, NumElts / 2));
13227     RHS = Builder.CreateShuffleVector(RHS, RHS,
13228                                       makeArrayRef(Indices, NumElts / 2));
13229     // Concat the vectors.
13230     // NOTE: Operands are swapped to match the intrinsic definition.
13231     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13232                                              makeArrayRef(Indices, NumElts));
13233     return Builder.CreateBitCast(Res, Ops[0]->getType());
13234   }
13235 
13236   case X86::BI__builtin_ia32_vplzcntd_128:
13237   case X86::BI__builtin_ia32_vplzcntd_256:
13238   case X86::BI__builtin_ia32_vplzcntd_512:
13239   case X86::BI__builtin_ia32_vplzcntq_128:
13240   case X86::BI__builtin_ia32_vplzcntq_256:
13241   case X86::BI__builtin_ia32_vplzcntq_512: {
13242     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13243     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13244   }
13245   case X86::BI__builtin_ia32_sqrtss:
13246   case X86::BI__builtin_ia32_sqrtsd: {
13247     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13248     Function *F;
13249     if (Builder.getIsFPConstrained()) {
13250       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13251                            A->getType());
13252       A = Builder.CreateConstrainedFPCall(F, {A});
13253     } else {
13254       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13255       A = Builder.CreateCall(F, {A});
13256     }
13257     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13258   }
13259   case X86::BI__builtin_ia32_sqrtsd_round_mask:
13260   case X86::BI__builtin_ia32_sqrtss_round_mask: {
13261     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13262     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13263     // otherwise keep the intrinsic.
13264     if (CC != 4) {
13265       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13266                           Intrinsic::x86_avx512_mask_sqrt_sd :
13267                           Intrinsic::x86_avx512_mask_sqrt_ss;
13268       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13269     }
13270     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13271     Function *F;
13272     if (Builder.getIsFPConstrained()) {
13273       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13274                            A->getType());
13275       A = Builder.CreateConstrainedFPCall(F, A);
13276     } else {
13277       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13278       A = Builder.CreateCall(F, A);
13279     }
13280     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13281     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13282     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13283   }
13284   case X86::BI__builtin_ia32_sqrtpd256:
13285   case X86::BI__builtin_ia32_sqrtpd:
13286   case X86::BI__builtin_ia32_sqrtps256:
13287   case X86::BI__builtin_ia32_sqrtps:
13288   case X86::BI__builtin_ia32_sqrtps512:
13289   case X86::BI__builtin_ia32_sqrtpd512: {
13290     if (Ops.size() == 2) {
13291       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13292       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13293       // otherwise keep the intrinsic.
13294       if (CC != 4) {
13295         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13296                             Intrinsic::x86_avx512_sqrt_ps_512 :
13297                             Intrinsic::x86_avx512_sqrt_pd_512;
13298         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13299       }
13300     }
13301     if (Builder.getIsFPConstrained()) {
13302       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13303                                      Ops[0]->getType());
13304       return Builder.CreateConstrainedFPCall(F, Ops[0]);
13305     } else {
13306       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13307       return Builder.CreateCall(F, Ops[0]);
13308     }
13309   }
13310   case X86::BI__builtin_ia32_pabsb128:
13311   case X86::BI__builtin_ia32_pabsw128:
13312   case X86::BI__builtin_ia32_pabsd128:
13313   case X86::BI__builtin_ia32_pabsb256:
13314   case X86::BI__builtin_ia32_pabsw256:
13315   case X86::BI__builtin_ia32_pabsd256:
13316   case X86::BI__builtin_ia32_pabsq128:
13317   case X86::BI__builtin_ia32_pabsq256:
13318   case X86::BI__builtin_ia32_pabsb512:
13319   case X86::BI__builtin_ia32_pabsw512:
13320   case X86::BI__builtin_ia32_pabsd512:
13321   case X86::BI__builtin_ia32_pabsq512: {
13322     Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
13323     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13324   }
13325   case X86::BI__builtin_ia32_pmaxsb128:
13326   case X86::BI__builtin_ia32_pmaxsw128:
13327   case X86::BI__builtin_ia32_pmaxsd128:
13328   case X86::BI__builtin_ia32_pmaxsq128:
13329   case X86::BI__builtin_ia32_pmaxsb256:
13330   case X86::BI__builtin_ia32_pmaxsw256:
13331   case X86::BI__builtin_ia32_pmaxsd256:
13332   case X86::BI__builtin_ia32_pmaxsq256:
13333   case X86::BI__builtin_ia32_pmaxsb512:
13334   case X86::BI__builtin_ia32_pmaxsw512:
13335   case X86::BI__builtin_ia32_pmaxsd512:
13336   case X86::BI__builtin_ia32_pmaxsq512:
13337     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
13338   case X86::BI__builtin_ia32_pmaxub128:
13339   case X86::BI__builtin_ia32_pmaxuw128:
13340   case X86::BI__builtin_ia32_pmaxud128:
13341   case X86::BI__builtin_ia32_pmaxuq128:
13342   case X86::BI__builtin_ia32_pmaxub256:
13343   case X86::BI__builtin_ia32_pmaxuw256:
13344   case X86::BI__builtin_ia32_pmaxud256:
13345   case X86::BI__builtin_ia32_pmaxuq256:
13346   case X86::BI__builtin_ia32_pmaxub512:
13347   case X86::BI__builtin_ia32_pmaxuw512:
13348   case X86::BI__builtin_ia32_pmaxud512:
13349   case X86::BI__builtin_ia32_pmaxuq512:
13350     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
13351   case X86::BI__builtin_ia32_pminsb128:
13352   case X86::BI__builtin_ia32_pminsw128:
13353   case X86::BI__builtin_ia32_pminsd128:
13354   case X86::BI__builtin_ia32_pminsq128:
13355   case X86::BI__builtin_ia32_pminsb256:
13356   case X86::BI__builtin_ia32_pminsw256:
13357   case X86::BI__builtin_ia32_pminsd256:
13358   case X86::BI__builtin_ia32_pminsq256:
13359   case X86::BI__builtin_ia32_pminsb512:
13360   case X86::BI__builtin_ia32_pminsw512:
13361   case X86::BI__builtin_ia32_pminsd512:
13362   case X86::BI__builtin_ia32_pminsq512:
13363     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
13364   case X86::BI__builtin_ia32_pminub128:
13365   case X86::BI__builtin_ia32_pminuw128:
13366   case X86::BI__builtin_ia32_pminud128:
13367   case X86::BI__builtin_ia32_pminuq128:
13368   case X86::BI__builtin_ia32_pminub256:
13369   case X86::BI__builtin_ia32_pminuw256:
13370   case X86::BI__builtin_ia32_pminud256:
13371   case X86::BI__builtin_ia32_pminuq256:
13372   case X86::BI__builtin_ia32_pminub512:
13373   case X86::BI__builtin_ia32_pminuw512:
13374   case X86::BI__builtin_ia32_pminud512:
13375   case X86::BI__builtin_ia32_pminuq512:
13376     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
13377 
13378   case X86::BI__builtin_ia32_pmuludq128:
13379   case X86::BI__builtin_ia32_pmuludq256:
13380   case X86::BI__builtin_ia32_pmuludq512:
13381     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13382 
13383   case X86::BI__builtin_ia32_pmuldq128:
13384   case X86::BI__builtin_ia32_pmuldq256:
13385   case X86::BI__builtin_ia32_pmuldq512:
13386     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13387 
13388   case X86::BI__builtin_ia32_pternlogd512_mask:
13389   case X86::BI__builtin_ia32_pternlogq512_mask:
13390   case X86::BI__builtin_ia32_pternlogd128_mask:
13391   case X86::BI__builtin_ia32_pternlogd256_mask:
13392   case X86::BI__builtin_ia32_pternlogq128_mask:
13393   case X86::BI__builtin_ia32_pternlogq256_mask:
13394     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
13395 
13396   case X86::BI__builtin_ia32_pternlogd512_maskz:
13397   case X86::BI__builtin_ia32_pternlogq512_maskz:
13398   case X86::BI__builtin_ia32_pternlogd128_maskz:
13399   case X86::BI__builtin_ia32_pternlogd256_maskz:
13400   case X86::BI__builtin_ia32_pternlogq128_maskz:
13401   case X86::BI__builtin_ia32_pternlogq256_maskz:
13402     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
13403 
13404   case X86::BI__builtin_ia32_vpshldd128:
13405   case X86::BI__builtin_ia32_vpshldd256:
13406   case X86::BI__builtin_ia32_vpshldd512:
13407   case X86::BI__builtin_ia32_vpshldq128:
13408   case X86::BI__builtin_ia32_vpshldq256:
13409   case X86::BI__builtin_ia32_vpshldq512:
13410   case X86::BI__builtin_ia32_vpshldw128:
13411   case X86::BI__builtin_ia32_vpshldw256:
13412   case X86::BI__builtin_ia32_vpshldw512:
13413     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13414 
13415   case X86::BI__builtin_ia32_vpshrdd128:
13416   case X86::BI__builtin_ia32_vpshrdd256:
13417   case X86::BI__builtin_ia32_vpshrdd512:
13418   case X86::BI__builtin_ia32_vpshrdq128:
13419   case X86::BI__builtin_ia32_vpshrdq256:
13420   case X86::BI__builtin_ia32_vpshrdq512:
13421   case X86::BI__builtin_ia32_vpshrdw128:
13422   case X86::BI__builtin_ia32_vpshrdw256:
13423   case X86::BI__builtin_ia32_vpshrdw512:
13424     // Ops 0 and 1 are swapped.
13425     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13426 
13427   case X86::BI__builtin_ia32_vpshldvd128:
13428   case X86::BI__builtin_ia32_vpshldvd256:
13429   case X86::BI__builtin_ia32_vpshldvd512:
13430   case X86::BI__builtin_ia32_vpshldvq128:
13431   case X86::BI__builtin_ia32_vpshldvq256:
13432   case X86::BI__builtin_ia32_vpshldvq512:
13433   case X86::BI__builtin_ia32_vpshldvw128:
13434   case X86::BI__builtin_ia32_vpshldvw256:
13435   case X86::BI__builtin_ia32_vpshldvw512:
13436     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
13437 
13438   case X86::BI__builtin_ia32_vpshrdvd128:
13439   case X86::BI__builtin_ia32_vpshrdvd256:
13440   case X86::BI__builtin_ia32_vpshrdvd512:
13441   case X86::BI__builtin_ia32_vpshrdvq128:
13442   case X86::BI__builtin_ia32_vpshrdvq256:
13443   case X86::BI__builtin_ia32_vpshrdvq512:
13444   case X86::BI__builtin_ia32_vpshrdvw128:
13445   case X86::BI__builtin_ia32_vpshrdvw256:
13446   case X86::BI__builtin_ia32_vpshrdvw512:
13447     // Ops 0 and 1 are swapped.
13448     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
13449 
13450   // Reductions
13451   case X86::BI__builtin_ia32_reduce_add_d512:
13452   case X86::BI__builtin_ia32_reduce_add_q512: {
13453     Function *F =
13454         CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
13455     return Builder.CreateCall(F, {Ops[0]});
13456   }
13457   case X86::BI__builtin_ia32_reduce_and_d512:
13458   case X86::BI__builtin_ia32_reduce_and_q512: {
13459     Function *F =
13460         CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
13461     return Builder.CreateCall(F, {Ops[0]});
13462   }
13463   case X86::BI__builtin_ia32_reduce_mul_d512:
13464   case X86::BI__builtin_ia32_reduce_mul_q512: {
13465     Function *F =
13466         CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
13467     return Builder.CreateCall(F, {Ops[0]});
13468   }
13469   case X86::BI__builtin_ia32_reduce_or_d512:
13470   case X86::BI__builtin_ia32_reduce_or_q512: {
13471     Function *F =
13472         CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
13473     return Builder.CreateCall(F, {Ops[0]});
13474   }
13475   case X86::BI__builtin_ia32_reduce_smax_d512:
13476   case X86::BI__builtin_ia32_reduce_smax_q512: {
13477     Function *F =
13478         CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
13479     return Builder.CreateCall(F, {Ops[0]});
13480   }
13481   case X86::BI__builtin_ia32_reduce_smin_d512:
13482   case X86::BI__builtin_ia32_reduce_smin_q512: {
13483     Function *F =
13484         CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
13485     return Builder.CreateCall(F, {Ops[0]});
13486   }
13487   case X86::BI__builtin_ia32_reduce_umax_d512:
13488   case X86::BI__builtin_ia32_reduce_umax_q512: {
13489     Function *F =
13490         CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
13491     return Builder.CreateCall(F, {Ops[0]});
13492   }
13493   case X86::BI__builtin_ia32_reduce_umin_d512:
13494   case X86::BI__builtin_ia32_reduce_umin_q512: {
13495     Function *F =
13496         CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
13497     return Builder.CreateCall(F, {Ops[0]});
13498   }
13499 
13500   // 3DNow!
13501   case X86::BI__builtin_ia32_pswapdsf:
13502   case X86::BI__builtin_ia32_pswapdsi: {
13503     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
13504     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
13505     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
13506     return Builder.CreateCall(F, Ops, "pswapd");
13507   }
13508   case X86::BI__builtin_ia32_rdrand16_step:
13509   case X86::BI__builtin_ia32_rdrand32_step:
13510   case X86::BI__builtin_ia32_rdrand64_step:
13511   case X86::BI__builtin_ia32_rdseed16_step:
13512   case X86::BI__builtin_ia32_rdseed32_step:
13513   case X86::BI__builtin_ia32_rdseed64_step: {
13514     Intrinsic::ID ID;
13515     switch (BuiltinID) {
13516     default: llvm_unreachable("Unsupported intrinsic!");
13517     case X86::BI__builtin_ia32_rdrand16_step:
13518       ID = Intrinsic::x86_rdrand_16;
13519       break;
13520     case X86::BI__builtin_ia32_rdrand32_step:
13521       ID = Intrinsic::x86_rdrand_32;
13522       break;
13523     case X86::BI__builtin_ia32_rdrand64_step:
13524       ID = Intrinsic::x86_rdrand_64;
13525       break;
13526     case X86::BI__builtin_ia32_rdseed16_step:
13527       ID = Intrinsic::x86_rdseed_16;
13528       break;
13529     case X86::BI__builtin_ia32_rdseed32_step:
13530       ID = Intrinsic::x86_rdseed_32;
13531       break;
13532     case X86::BI__builtin_ia32_rdseed64_step:
13533       ID = Intrinsic::x86_rdseed_64;
13534       break;
13535     }
13536 
13537     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
13538     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
13539                                       Ops[0]);
13540     return Builder.CreateExtractValue(Call, 1);
13541   }
13542   case X86::BI__builtin_ia32_addcarryx_u32:
13543   case X86::BI__builtin_ia32_addcarryx_u64:
13544   case X86::BI__builtin_ia32_subborrow_u32:
13545   case X86::BI__builtin_ia32_subborrow_u64: {
13546     Intrinsic::ID IID;
13547     switch (BuiltinID) {
13548     default: llvm_unreachable("Unsupported intrinsic!");
13549     case X86::BI__builtin_ia32_addcarryx_u32:
13550       IID = Intrinsic::x86_addcarry_32;
13551       break;
13552     case X86::BI__builtin_ia32_addcarryx_u64:
13553       IID = Intrinsic::x86_addcarry_64;
13554       break;
13555     case X86::BI__builtin_ia32_subborrow_u32:
13556       IID = Intrinsic::x86_subborrow_32;
13557       break;
13558     case X86::BI__builtin_ia32_subborrow_u64:
13559       IID = Intrinsic::x86_subborrow_64;
13560       break;
13561     }
13562 
13563     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
13564                                      { Ops[0], Ops[1], Ops[2] });
13565     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
13566                                       Ops[3]);
13567     return Builder.CreateExtractValue(Call, 0);
13568   }
13569 
13570   case X86::BI__builtin_ia32_fpclassps128_mask:
13571   case X86::BI__builtin_ia32_fpclassps256_mask:
13572   case X86::BI__builtin_ia32_fpclassps512_mask:
13573   case X86::BI__builtin_ia32_fpclasspd128_mask:
13574   case X86::BI__builtin_ia32_fpclasspd256_mask:
13575   case X86::BI__builtin_ia32_fpclasspd512_mask: {
13576     unsigned NumElts =
13577         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13578     Value *MaskIn = Ops[2];
13579     Ops.erase(&Ops[2]);
13580 
13581     Intrinsic::ID ID;
13582     switch (BuiltinID) {
13583     default: llvm_unreachable("Unsupported intrinsic!");
13584     case X86::BI__builtin_ia32_fpclassps128_mask:
13585       ID = Intrinsic::x86_avx512_fpclass_ps_128;
13586       break;
13587     case X86::BI__builtin_ia32_fpclassps256_mask:
13588       ID = Intrinsic::x86_avx512_fpclass_ps_256;
13589       break;
13590     case X86::BI__builtin_ia32_fpclassps512_mask:
13591       ID = Intrinsic::x86_avx512_fpclass_ps_512;
13592       break;
13593     case X86::BI__builtin_ia32_fpclasspd128_mask:
13594       ID = Intrinsic::x86_avx512_fpclass_pd_128;
13595       break;
13596     case X86::BI__builtin_ia32_fpclasspd256_mask:
13597       ID = Intrinsic::x86_avx512_fpclass_pd_256;
13598       break;
13599     case X86::BI__builtin_ia32_fpclasspd512_mask:
13600       ID = Intrinsic::x86_avx512_fpclass_pd_512;
13601       break;
13602     }
13603 
13604     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13605     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
13606   }
13607 
13608   case X86::BI__builtin_ia32_vp2intersect_q_512:
13609   case X86::BI__builtin_ia32_vp2intersect_q_256:
13610   case X86::BI__builtin_ia32_vp2intersect_q_128:
13611   case X86::BI__builtin_ia32_vp2intersect_d_512:
13612   case X86::BI__builtin_ia32_vp2intersect_d_256:
13613   case X86::BI__builtin_ia32_vp2intersect_d_128: {
13614     unsigned NumElts =
13615         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13616     Intrinsic::ID ID;
13617 
13618     switch (BuiltinID) {
13619     default: llvm_unreachable("Unsupported intrinsic!");
13620     case X86::BI__builtin_ia32_vp2intersect_q_512:
13621       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
13622       break;
13623     case X86::BI__builtin_ia32_vp2intersect_q_256:
13624       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
13625       break;
13626     case X86::BI__builtin_ia32_vp2intersect_q_128:
13627       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
13628       break;
13629     case X86::BI__builtin_ia32_vp2intersect_d_512:
13630       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
13631       break;
13632     case X86::BI__builtin_ia32_vp2intersect_d_256:
13633       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
13634       break;
13635     case X86::BI__builtin_ia32_vp2intersect_d_128:
13636       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
13637       break;
13638     }
13639 
13640     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
13641     Value *Result = Builder.CreateExtractValue(Call, 0);
13642     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13643     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
13644 
13645     Result = Builder.CreateExtractValue(Call, 1);
13646     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
13647     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
13648   }
13649 
13650   case X86::BI__builtin_ia32_vpmultishiftqb128:
13651   case X86::BI__builtin_ia32_vpmultishiftqb256:
13652   case X86::BI__builtin_ia32_vpmultishiftqb512: {
13653     Intrinsic::ID ID;
13654     switch (BuiltinID) {
13655     default: llvm_unreachable("Unsupported intrinsic!");
13656     case X86::BI__builtin_ia32_vpmultishiftqb128:
13657       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
13658       break;
13659     case X86::BI__builtin_ia32_vpmultishiftqb256:
13660       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
13661       break;
13662     case X86::BI__builtin_ia32_vpmultishiftqb512:
13663       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
13664       break;
13665     }
13666 
13667     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13668   }
13669 
13670   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13671   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13672   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
13673     unsigned NumElts =
13674         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13675     Value *MaskIn = Ops[2];
13676     Ops.erase(&Ops[2]);
13677 
13678     Intrinsic::ID ID;
13679     switch (BuiltinID) {
13680     default: llvm_unreachable("Unsupported intrinsic!");
13681     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
13682       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
13683       break;
13684     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
13685       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
13686       break;
13687     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
13688       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
13689       break;
13690     }
13691 
13692     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13693     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
13694   }
13695 
13696   // packed comparison intrinsics
13697   case X86::BI__builtin_ia32_cmpeqps:
13698   case X86::BI__builtin_ia32_cmpeqpd:
13699     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
13700   case X86::BI__builtin_ia32_cmpltps:
13701   case X86::BI__builtin_ia32_cmpltpd:
13702     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
13703   case X86::BI__builtin_ia32_cmpleps:
13704   case X86::BI__builtin_ia32_cmplepd:
13705     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
13706   case X86::BI__builtin_ia32_cmpunordps:
13707   case X86::BI__builtin_ia32_cmpunordpd:
13708     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
13709   case X86::BI__builtin_ia32_cmpneqps:
13710   case X86::BI__builtin_ia32_cmpneqpd:
13711     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
13712   case X86::BI__builtin_ia32_cmpnltps:
13713   case X86::BI__builtin_ia32_cmpnltpd:
13714     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
13715   case X86::BI__builtin_ia32_cmpnleps:
13716   case X86::BI__builtin_ia32_cmpnlepd:
13717     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
13718   case X86::BI__builtin_ia32_cmpordps:
13719   case X86::BI__builtin_ia32_cmpordpd:
13720     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
13721   case X86::BI__builtin_ia32_cmpps128_mask:
13722   case X86::BI__builtin_ia32_cmpps256_mask:
13723   case X86::BI__builtin_ia32_cmpps512_mask:
13724   case X86::BI__builtin_ia32_cmppd128_mask:
13725   case X86::BI__builtin_ia32_cmppd256_mask:
13726   case X86::BI__builtin_ia32_cmppd512_mask:
13727     IsMaskFCmp = true;
13728     LLVM_FALLTHROUGH;
13729   case X86::BI__builtin_ia32_cmpps:
13730   case X86::BI__builtin_ia32_cmpps256:
13731   case X86::BI__builtin_ia32_cmppd:
13732   case X86::BI__builtin_ia32_cmppd256: {
13733     // Lowering vector comparisons to fcmp instructions, while
13734     // ignoring signalling behaviour requested
13735     // ignoring rounding mode requested
13736     // This is is only possible as long as FENV_ACCESS is not implemented.
13737     // See also: https://reviews.llvm.org/D45616
13738 
13739     // The third argument is the comparison condition, and integer in the
13740     // range [0, 31]
13741     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
13742 
13743     // Lowering to IR fcmp instruction.
13744     // Ignoring requested signaling behaviour,
13745     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
13746     FCmpInst::Predicate Pred;
13747     bool IsSignaling;
13748     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
13749     // behavior is inverted. We'll handle that after the switch.
13750     switch (CC & 0xf) {
13751     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
13752     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
13753     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
13754     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
13755     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
13756     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
13757     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
13758     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
13759     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
13760     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
13761     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
13762     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
13763     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
13764     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
13765     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
13766     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
13767     default: llvm_unreachable("Unhandled CC");
13768     }
13769 
13770     // Invert the signalling behavior for 16-31.
13771     if (CC & 0x10)
13772       IsSignaling = !IsSignaling;
13773 
13774     // If the predicate is true or false and we're using constrained intrinsics,
13775     // we don't have a compare intrinsic we can use. Just use the legacy X86
13776     // specific intrinsic.
13777     // If the intrinsic is mask enabled and we're using constrained intrinsics,
13778     // use the legacy X86 specific intrinsic.
13779     if (Builder.getIsFPConstrained() &&
13780         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
13781          IsMaskFCmp)) {
13782 
13783       Intrinsic::ID IID;
13784       switch (BuiltinID) {
13785       default: llvm_unreachable("Unexpected builtin");
13786       case X86::BI__builtin_ia32_cmpps:
13787         IID = Intrinsic::x86_sse_cmp_ps;
13788         break;
13789       case X86::BI__builtin_ia32_cmpps256:
13790         IID = Intrinsic::x86_avx_cmp_ps_256;
13791         break;
13792       case X86::BI__builtin_ia32_cmppd:
13793         IID = Intrinsic::x86_sse2_cmp_pd;
13794         break;
13795       case X86::BI__builtin_ia32_cmppd256:
13796         IID = Intrinsic::x86_avx_cmp_pd_256;
13797         break;
13798       case X86::BI__builtin_ia32_cmpps512_mask:
13799         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
13800         break;
13801       case X86::BI__builtin_ia32_cmppd512_mask:
13802         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
13803         break;
13804       case X86::BI__builtin_ia32_cmpps128_mask:
13805         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
13806         break;
13807       case X86::BI__builtin_ia32_cmpps256_mask:
13808         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
13809         break;
13810       case X86::BI__builtin_ia32_cmppd128_mask:
13811         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
13812         break;
13813       case X86::BI__builtin_ia32_cmppd256_mask:
13814         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
13815         break;
13816       }
13817 
13818       Function *Intr = CGM.getIntrinsic(IID);
13819       if (IsMaskFCmp) {
13820         unsigned NumElts =
13821             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13822         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
13823         Value *Cmp = Builder.CreateCall(Intr, Ops);
13824         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
13825       }
13826 
13827       return Builder.CreateCall(Intr, Ops);
13828     }
13829 
13830     // Builtins without the _mask suffix return a vector of integers
13831     // of the same width as the input vectors
13832     if (IsMaskFCmp) {
13833       // We ignore SAE if strict FP is disabled. We only keep precise
13834       // exception behavior under strict FP.
13835       unsigned NumElts =
13836           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13837       Value *Cmp;
13838       if (IsSignaling)
13839         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
13840       else
13841         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
13842       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
13843     }
13844 
13845     return getVectorFCmpIR(Pred, IsSignaling);
13846   }
13847 
13848   // SSE scalar comparison intrinsics
13849   case X86::BI__builtin_ia32_cmpeqss:
13850     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
13851   case X86::BI__builtin_ia32_cmpltss:
13852     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
13853   case X86::BI__builtin_ia32_cmpless:
13854     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
13855   case X86::BI__builtin_ia32_cmpunordss:
13856     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
13857   case X86::BI__builtin_ia32_cmpneqss:
13858     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
13859   case X86::BI__builtin_ia32_cmpnltss:
13860     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
13861   case X86::BI__builtin_ia32_cmpnless:
13862     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
13863   case X86::BI__builtin_ia32_cmpordss:
13864     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
13865   case X86::BI__builtin_ia32_cmpeqsd:
13866     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
13867   case X86::BI__builtin_ia32_cmpltsd:
13868     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
13869   case X86::BI__builtin_ia32_cmplesd:
13870     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
13871   case X86::BI__builtin_ia32_cmpunordsd:
13872     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
13873   case X86::BI__builtin_ia32_cmpneqsd:
13874     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
13875   case X86::BI__builtin_ia32_cmpnltsd:
13876     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
13877   case X86::BI__builtin_ia32_cmpnlesd:
13878     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
13879   case X86::BI__builtin_ia32_cmpordsd:
13880     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
13881 
13882   // f16c half2float intrinsics
13883   case X86::BI__builtin_ia32_vcvtph2ps:
13884   case X86::BI__builtin_ia32_vcvtph2ps256:
13885   case X86::BI__builtin_ia32_vcvtph2ps_mask:
13886   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
13887   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
13888     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
13889 
13890 // AVX512 bf16 intrinsics
13891   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
13892     Ops[2] = getMaskVecValue(
13893         *this, Ops[2],
13894         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
13895     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
13896     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13897   }
13898   case X86::BI__builtin_ia32_cvtsbf162ss_32:
13899     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
13900 
13901   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
13902   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
13903     Intrinsic::ID IID;
13904     switch (BuiltinID) {
13905     default: llvm_unreachable("Unsupported intrinsic!");
13906     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
13907       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
13908       break;
13909     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
13910       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
13911       break;
13912     }
13913     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
13914     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13915   }
13916 
13917   case X86::BI__emul:
13918   case X86::BI__emulu: {
13919     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
13920     bool isSigned = (BuiltinID == X86::BI__emul);
13921     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
13922     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
13923     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
13924   }
13925   case X86::BI__mulh:
13926   case X86::BI__umulh:
13927   case X86::BI_mul128:
13928   case X86::BI_umul128: {
13929     llvm::Type *ResType = ConvertType(E->getType());
13930     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
13931 
13932     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
13933     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
13934     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
13935 
13936     Value *MulResult, *HigherBits;
13937     if (IsSigned) {
13938       MulResult = Builder.CreateNSWMul(LHS, RHS);
13939       HigherBits = Builder.CreateAShr(MulResult, 64);
13940     } else {
13941       MulResult = Builder.CreateNUWMul(LHS, RHS);
13942       HigherBits = Builder.CreateLShr(MulResult, 64);
13943     }
13944     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
13945 
13946     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
13947       return HigherBits;
13948 
13949     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
13950     Builder.CreateStore(HigherBits, HighBitsAddress);
13951     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
13952   }
13953 
13954   case X86::BI__faststorefence: {
13955     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
13956                                llvm::SyncScope::System);
13957   }
13958   case X86::BI__shiftleft128:
13959   case X86::BI__shiftright128: {
13960     llvm::Function *F = CGM.getIntrinsic(
13961         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
13962         Int64Ty);
13963     // Flip low/high ops and zero-extend amount to matching type.
13964     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
13965     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
13966     std::swap(Ops[0], Ops[1]);
13967     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
13968     return Builder.CreateCall(F, Ops);
13969   }
13970   case X86::BI_ReadWriteBarrier:
13971   case X86::BI_ReadBarrier:
13972   case X86::BI_WriteBarrier: {
13973     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
13974                                llvm::SyncScope::SingleThread);
13975   }
13976   case X86::BI_BitScanForward:
13977   case X86::BI_BitScanForward64:
13978     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
13979   case X86::BI_BitScanReverse:
13980   case X86::BI_BitScanReverse64:
13981     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
13982 
13983   case X86::BI_InterlockedAnd64:
13984     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
13985   case X86::BI_InterlockedExchange64:
13986     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
13987   case X86::BI_InterlockedExchangeAdd64:
13988     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
13989   case X86::BI_InterlockedExchangeSub64:
13990     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
13991   case X86::BI_InterlockedOr64:
13992     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
13993   case X86::BI_InterlockedXor64:
13994     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
13995   case X86::BI_InterlockedDecrement64:
13996     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
13997   case X86::BI_InterlockedIncrement64:
13998     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
13999   case X86::BI_InterlockedCompareExchange128: {
14000     // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
14001     // instead it takes pointers to 64bit ints for Destination and
14002     // ComparandResult, and exchange is taken as two 64bit ints (high & low).
14003     // The previous value is written to ComparandResult, and success is
14004     // returned.
14005 
14006     llvm::Type *Int128Ty = Builder.getInt128Ty();
14007     llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
14008 
14009     Value *Destination =
14010         Builder.CreateBitCast(Ops[0], Int128PtrTy);
14011     Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
14012     Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
14013     Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
14014                             getContext().toCharUnitsFromBits(128));
14015 
14016     Value *Exchange = Builder.CreateOr(
14017         Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
14018         ExchangeLow128);
14019 
14020     Value *Comparand = Builder.CreateLoad(ComparandResult);
14021 
14022     AtomicCmpXchgInst *CXI =
14023         Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
14024                                     AtomicOrdering::SequentiallyConsistent,
14025                                     AtomicOrdering::SequentiallyConsistent);
14026     CXI->setVolatile(true);
14027 
14028     // Write the result back to the inout pointer.
14029     Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
14030 
14031     // Get the success boolean and zero extend it to i8.
14032     Value *Success = Builder.CreateExtractValue(CXI, 1);
14033     return Builder.CreateZExt(Success, ConvertType(E->getType()));
14034   }
14035 
14036   case X86::BI_AddressOfReturnAddress: {
14037     Function *F =
14038         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14039     return Builder.CreateCall(F);
14040   }
14041   case X86::BI__stosb: {
14042     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14043     // instruction, but it will create a memset that won't be optimized away.
14044     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14045   }
14046   case X86::BI__ud2:
14047     // llvm.trap makes a ud2a instruction on x86.
14048     return EmitTrapCall(Intrinsic::trap);
14049   case X86::BI__int2c: {
14050     // This syscall signals a driver assertion failure in x86 NT kernels.
14051     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14052     llvm::InlineAsm *IA =
14053         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14054     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14055         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14056         llvm::Attribute::NoReturn);
14057     llvm::CallInst *CI = Builder.CreateCall(IA);
14058     CI->setAttributes(NoReturnAttr);
14059     return CI;
14060   }
14061   case X86::BI__readfsbyte:
14062   case X86::BI__readfsword:
14063   case X86::BI__readfsdword:
14064   case X86::BI__readfsqword: {
14065     llvm::Type *IntTy = ConvertType(E->getType());
14066     Value *Ptr =
14067         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14068     LoadInst *Load = Builder.CreateAlignedLoad(
14069         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14070     Load->setVolatile(true);
14071     return Load;
14072   }
14073   case X86::BI__readgsbyte:
14074   case X86::BI__readgsword:
14075   case X86::BI__readgsdword:
14076   case X86::BI__readgsqword: {
14077     llvm::Type *IntTy = ConvertType(E->getType());
14078     Value *Ptr =
14079         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14080     LoadInst *Load = Builder.CreateAlignedLoad(
14081         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14082     Load->setVolatile(true);
14083     return Load;
14084   }
14085   case X86::BI__builtin_ia32_paddsb512:
14086   case X86::BI__builtin_ia32_paddsw512:
14087   case X86::BI__builtin_ia32_paddsb256:
14088   case X86::BI__builtin_ia32_paddsw256:
14089   case X86::BI__builtin_ia32_paddsb128:
14090   case X86::BI__builtin_ia32_paddsw128:
14091     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14092   case X86::BI__builtin_ia32_paddusb512:
14093   case X86::BI__builtin_ia32_paddusw512:
14094   case X86::BI__builtin_ia32_paddusb256:
14095   case X86::BI__builtin_ia32_paddusw256:
14096   case X86::BI__builtin_ia32_paddusb128:
14097   case X86::BI__builtin_ia32_paddusw128:
14098     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14099   case X86::BI__builtin_ia32_psubsb512:
14100   case X86::BI__builtin_ia32_psubsw512:
14101   case X86::BI__builtin_ia32_psubsb256:
14102   case X86::BI__builtin_ia32_psubsw256:
14103   case X86::BI__builtin_ia32_psubsb128:
14104   case X86::BI__builtin_ia32_psubsw128:
14105     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14106   case X86::BI__builtin_ia32_psubusb512:
14107   case X86::BI__builtin_ia32_psubusw512:
14108   case X86::BI__builtin_ia32_psubusb256:
14109   case X86::BI__builtin_ia32_psubusw256:
14110   case X86::BI__builtin_ia32_psubusb128:
14111   case X86::BI__builtin_ia32_psubusw128:
14112     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14113   case X86::BI__builtin_ia32_encodekey128_u32: {
14114     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14115 
14116     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14117 
14118     for (int i = 0; i < 6; ++i) {
14119       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14120       Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16);
14121       Ptr = Builder.CreateBitCast(
14122           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14123       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14124     }
14125 
14126     return Builder.CreateExtractValue(Call, 0);
14127   }
14128   case X86::BI__builtin_ia32_encodekey256_u32: {
14129     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14130 
14131     Value *Call =
14132         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14133 
14134     for (int i = 0; i < 7; ++i) {
14135       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14136       Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16);
14137       Ptr = Builder.CreateBitCast(
14138           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14139       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14140     }
14141 
14142     return Builder.CreateExtractValue(Call, 0);
14143   }
14144   case X86::BI__builtin_ia32_aesenc128kl_u8:
14145   case X86::BI__builtin_ia32_aesdec128kl_u8:
14146   case X86::BI__builtin_ia32_aesenc256kl_u8:
14147   case X86::BI__builtin_ia32_aesdec256kl_u8: {
14148     Intrinsic::ID IID;
14149     switch (BuiltinID) {
14150     default: llvm_unreachable("Unexpected builtin");
14151     case X86::BI__builtin_ia32_aesenc128kl_u8:
14152       IID = Intrinsic::x86_aesenc128kl;
14153       break;
14154     case X86::BI__builtin_ia32_aesdec128kl_u8:
14155       IID = Intrinsic::x86_aesdec128kl;
14156       break;
14157     case X86::BI__builtin_ia32_aesenc256kl_u8:
14158       IID = Intrinsic::x86_aesenc256kl;
14159       break;
14160     case X86::BI__builtin_ia32_aesdec256kl_u8:
14161       IID = Intrinsic::x86_aesdec256kl;
14162       break;
14163     }
14164 
14165     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14166 
14167     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14168                                       Ops[0]);
14169 
14170     return Builder.CreateExtractValue(Call, 0);
14171   }
14172   case X86::BI__builtin_ia32_aesencwide128kl_u8:
14173   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14174   case X86::BI__builtin_ia32_aesencwide256kl_u8:
14175   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14176     Intrinsic::ID IID;
14177     switch (BuiltinID) {
14178     case X86::BI__builtin_ia32_aesencwide128kl_u8:
14179       IID = Intrinsic::x86_aesencwide128kl;
14180       break;
14181     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14182       IID = Intrinsic::x86_aesdecwide128kl;
14183       break;
14184     case X86::BI__builtin_ia32_aesencwide256kl_u8:
14185       IID = Intrinsic::x86_aesencwide256kl;
14186       break;
14187     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14188       IID = Intrinsic::x86_aesdecwide256kl;
14189       break;
14190     }
14191 
14192     Value *InOps[9];
14193     InOps[0] = Ops[2];
14194     for (int i = 0; i != 8; ++i) {
14195       Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i);
14196       InOps[i + 1] = Builder.CreateAlignedLoad(Ptr, Align(16));
14197     }
14198 
14199     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14200 
14201     for (int i = 0; i != 8; ++i) {
14202       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14203       Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14204       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14205     }
14206 
14207     return Builder.CreateExtractValue(Call, 0);
14208   }
14209   }
14210 }
14211 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)14212 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14213                                            const CallExpr *E) {
14214   SmallVector<Value*, 4> Ops;
14215 
14216   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14217     Ops.push_back(EmitScalarExpr(E->getArg(i)));
14218 
14219   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14220 
14221   switch (BuiltinID) {
14222   default: return nullptr;
14223 
14224   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14225   // call __builtin_readcyclecounter.
14226   case PPC::BI__builtin_ppc_get_timebase:
14227     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14228 
14229   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14230   case PPC::BI__builtin_altivec_lvx:
14231   case PPC::BI__builtin_altivec_lvxl:
14232   case PPC::BI__builtin_altivec_lvebx:
14233   case PPC::BI__builtin_altivec_lvehx:
14234   case PPC::BI__builtin_altivec_lvewx:
14235   case PPC::BI__builtin_altivec_lvsl:
14236   case PPC::BI__builtin_altivec_lvsr:
14237   case PPC::BI__builtin_vsx_lxvd2x:
14238   case PPC::BI__builtin_vsx_lxvw4x:
14239   case PPC::BI__builtin_vsx_lxvd2x_be:
14240   case PPC::BI__builtin_vsx_lxvw4x_be:
14241   case PPC::BI__builtin_vsx_lxvl:
14242   case PPC::BI__builtin_vsx_lxvll:
14243   {
14244     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14245        BuiltinID == PPC::BI__builtin_vsx_lxvll){
14246       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14247     }else {
14248       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14249       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14250       Ops.pop_back();
14251     }
14252 
14253     switch (BuiltinID) {
14254     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14255     case PPC::BI__builtin_altivec_lvx:
14256       ID = Intrinsic::ppc_altivec_lvx;
14257       break;
14258     case PPC::BI__builtin_altivec_lvxl:
14259       ID = Intrinsic::ppc_altivec_lvxl;
14260       break;
14261     case PPC::BI__builtin_altivec_lvebx:
14262       ID = Intrinsic::ppc_altivec_lvebx;
14263       break;
14264     case PPC::BI__builtin_altivec_lvehx:
14265       ID = Intrinsic::ppc_altivec_lvehx;
14266       break;
14267     case PPC::BI__builtin_altivec_lvewx:
14268       ID = Intrinsic::ppc_altivec_lvewx;
14269       break;
14270     case PPC::BI__builtin_altivec_lvsl:
14271       ID = Intrinsic::ppc_altivec_lvsl;
14272       break;
14273     case PPC::BI__builtin_altivec_lvsr:
14274       ID = Intrinsic::ppc_altivec_lvsr;
14275       break;
14276     case PPC::BI__builtin_vsx_lxvd2x:
14277       ID = Intrinsic::ppc_vsx_lxvd2x;
14278       break;
14279     case PPC::BI__builtin_vsx_lxvw4x:
14280       ID = Intrinsic::ppc_vsx_lxvw4x;
14281       break;
14282     case PPC::BI__builtin_vsx_lxvd2x_be:
14283       ID = Intrinsic::ppc_vsx_lxvd2x_be;
14284       break;
14285     case PPC::BI__builtin_vsx_lxvw4x_be:
14286       ID = Intrinsic::ppc_vsx_lxvw4x_be;
14287       break;
14288     case PPC::BI__builtin_vsx_lxvl:
14289       ID = Intrinsic::ppc_vsx_lxvl;
14290       break;
14291     case PPC::BI__builtin_vsx_lxvll:
14292       ID = Intrinsic::ppc_vsx_lxvll;
14293       break;
14294     }
14295     llvm::Function *F = CGM.getIntrinsic(ID);
14296     return Builder.CreateCall(F, Ops, "");
14297   }
14298 
14299   // vec_st, vec_xst_be
14300   case PPC::BI__builtin_altivec_stvx:
14301   case PPC::BI__builtin_altivec_stvxl:
14302   case PPC::BI__builtin_altivec_stvebx:
14303   case PPC::BI__builtin_altivec_stvehx:
14304   case PPC::BI__builtin_altivec_stvewx:
14305   case PPC::BI__builtin_vsx_stxvd2x:
14306   case PPC::BI__builtin_vsx_stxvw4x:
14307   case PPC::BI__builtin_vsx_stxvd2x_be:
14308   case PPC::BI__builtin_vsx_stxvw4x_be:
14309   case PPC::BI__builtin_vsx_stxvl:
14310   case PPC::BI__builtin_vsx_stxvll:
14311   {
14312     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14313       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14314       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14315     }else {
14316       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14317       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14318       Ops.pop_back();
14319     }
14320 
14321     switch (BuiltinID) {
14322     default: llvm_unreachable("Unsupported st intrinsic!");
14323     case PPC::BI__builtin_altivec_stvx:
14324       ID = Intrinsic::ppc_altivec_stvx;
14325       break;
14326     case PPC::BI__builtin_altivec_stvxl:
14327       ID = Intrinsic::ppc_altivec_stvxl;
14328       break;
14329     case PPC::BI__builtin_altivec_stvebx:
14330       ID = Intrinsic::ppc_altivec_stvebx;
14331       break;
14332     case PPC::BI__builtin_altivec_stvehx:
14333       ID = Intrinsic::ppc_altivec_stvehx;
14334       break;
14335     case PPC::BI__builtin_altivec_stvewx:
14336       ID = Intrinsic::ppc_altivec_stvewx;
14337       break;
14338     case PPC::BI__builtin_vsx_stxvd2x:
14339       ID = Intrinsic::ppc_vsx_stxvd2x;
14340       break;
14341     case PPC::BI__builtin_vsx_stxvw4x:
14342       ID = Intrinsic::ppc_vsx_stxvw4x;
14343       break;
14344     case PPC::BI__builtin_vsx_stxvd2x_be:
14345       ID = Intrinsic::ppc_vsx_stxvd2x_be;
14346       break;
14347     case PPC::BI__builtin_vsx_stxvw4x_be:
14348       ID = Intrinsic::ppc_vsx_stxvw4x_be;
14349       break;
14350     case PPC::BI__builtin_vsx_stxvl:
14351       ID = Intrinsic::ppc_vsx_stxvl;
14352       break;
14353     case PPC::BI__builtin_vsx_stxvll:
14354       ID = Intrinsic::ppc_vsx_stxvll;
14355       break;
14356     }
14357     llvm::Function *F = CGM.getIntrinsic(ID);
14358     return Builder.CreateCall(F, Ops, "");
14359   }
14360   // Square root
14361   case PPC::BI__builtin_vsx_xvsqrtsp:
14362   case PPC::BI__builtin_vsx_xvsqrtdp: {
14363     llvm::Type *ResultType = ConvertType(E->getType());
14364     Value *X = EmitScalarExpr(E->getArg(0));
14365     if (Builder.getIsFPConstrained()) {
14366       llvm::Function *F = CGM.getIntrinsic(
14367           Intrinsic::experimental_constrained_sqrt, ResultType);
14368       return Builder.CreateConstrainedFPCall(F, X);
14369     } else {
14370       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14371       return Builder.CreateCall(F, X);
14372     }
14373   }
14374   // Count leading zeros
14375   case PPC::BI__builtin_altivec_vclzb:
14376   case PPC::BI__builtin_altivec_vclzh:
14377   case PPC::BI__builtin_altivec_vclzw:
14378   case PPC::BI__builtin_altivec_vclzd: {
14379     llvm::Type *ResultType = ConvertType(E->getType());
14380     Value *X = EmitScalarExpr(E->getArg(0));
14381     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14382     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14383     return Builder.CreateCall(F, {X, Undef});
14384   }
14385   case PPC::BI__builtin_altivec_vctzb:
14386   case PPC::BI__builtin_altivec_vctzh:
14387   case PPC::BI__builtin_altivec_vctzw:
14388   case PPC::BI__builtin_altivec_vctzd: {
14389     llvm::Type *ResultType = ConvertType(E->getType());
14390     Value *X = EmitScalarExpr(E->getArg(0));
14391     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14392     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14393     return Builder.CreateCall(F, {X, Undef});
14394   }
14395   case PPC::BI__builtin_altivec_vec_replace_elt:
14396   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
14397     // The third argument of vec_replace_elt and vec_replace_unaligned must
14398     // be a compile time constant and will be emitted either to the vinsw
14399     // or vinsd instruction.
14400     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14401     assert(ArgCI &&
14402            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
14403     llvm::Type *ResultType = ConvertType(E->getType());
14404     llvm::Function *F = nullptr;
14405     Value *Call = nullptr;
14406     int64_t ConstArg = ArgCI->getSExtValue();
14407     unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
14408     bool Is32Bit = false;
14409     assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
14410     // The input to vec_replace_elt is an element index, not a byte index.
14411     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
14412       ConstArg *= ArgWidth / 8;
14413     if (ArgWidth == 32) {
14414       Is32Bit = true;
14415       // When the second argument is 32 bits, it can either be an integer or
14416       // a float. The vinsw intrinsic is used in this case.
14417       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
14418       // Fix the constant according to endianess.
14419       if (getTarget().isLittleEndian())
14420         ConstArg = 12 - ConstArg;
14421     } else {
14422       // When the second argument is 64 bits, it can either be a long long or
14423       // a double. The vinsd intrinsic is used in this case.
14424       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
14425       // Fix the constant for little endian.
14426       if (getTarget().isLittleEndian())
14427         ConstArg = 8 - ConstArg;
14428     }
14429     Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
14430     // Depending on ArgWidth, the input vector could be a float or a double.
14431     // If the input vector is a float type, bitcast the inputs to integers. Or,
14432     // if the input vector is a double, bitcast the inputs to 64-bit integers.
14433     if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
14434       Ops[0] = Builder.CreateBitCast(
14435           Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
14436                           : llvm::FixedVectorType::get(Int64Ty, 2));
14437       Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
14438     }
14439     // Emit the call to vinsw or vinsd.
14440     Call = Builder.CreateCall(F, Ops);
14441     // Depending on the builtin, bitcast to the approriate result type.
14442     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
14443         !Ops[1]->getType()->isIntegerTy())
14444       return Builder.CreateBitCast(Call, ResultType);
14445     else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
14446              Ops[1]->getType()->isIntegerTy())
14447       return Call;
14448     else
14449       return Builder.CreateBitCast(Call,
14450                                    llvm::FixedVectorType::get(Int8Ty, 16));
14451   }
14452   case PPC::BI__builtin_altivec_vpopcntb:
14453   case PPC::BI__builtin_altivec_vpopcnth:
14454   case PPC::BI__builtin_altivec_vpopcntw:
14455   case PPC::BI__builtin_altivec_vpopcntd: {
14456     llvm::Type *ResultType = ConvertType(E->getType());
14457     Value *X = EmitScalarExpr(E->getArg(0));
14458     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
14459     return Builder.CreateCall(F, X);
14460   }
14461   // Copy sign
14462   case PPC::BI__builtin_vsx_xvcpsgnsp:
14463   case PPC::BI__builtin_vsx_xvcpsgndp: {
14464     llvm::Type *ResultType = ConvertType(E->getType());
14465     Value *X = EmitScalarExpr(E->getArg(0));
14466     Value *Y = EmitScalarExpr(E->getArg(1));
14467     ID = Intrinsic::copysign;
14468     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14469     return Builder.CreateCall(F, {X, Y});
14470   }
14471   // Rounding/truncation
14472   case PPC::BI__builtin_vsx_xvrspip:
14473   case PPC::BI__builtin_vsx_xvrdpip:
14474   case PPC::BI__builtin_vsx_xvrdpim:
14475   case PPC::BI__builtin_vsx_xvrspim:
14476   case PPC::BI__builtin_vsx_xvrdpi:
14477   case PPC::BI__builtin_vsx_xvrspi:
14478   case PPC::BI__builtin_vsx_xvrdpic:
14479   case PPC::BI__builtin_vsx_xvrspic:
14480   case PPC::BI__builtin_vsx_xvrdpiz:
14481   case PPC::BI__builtin_vsx_xvrspiz: {
14482     llvm::Type *ResultType = ConvertType(E->getType());
14483     Value *X = EmitScalarExpr(E->getArg(0));
14484     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
14485         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
14486       ID = Builder.getIsFPConstrained()
14487                ? Intrinsic::experimental_constrained_floor
14488                : Intrinsic::floor;
14489     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
14490              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
14491       ID = Builder.getIsFPConstrained()
14492                ? Intrinsic::experimental_constrained_round
14493                : Intrinsic::round;
14494     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
14495              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
14496       ID = Builder.getIsFPConstrained()
14497                ? Intrinsic::experimental_constrained_rint
14498                : Intrinsic::rint;
14499     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
14500              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
14501       ID = Builder.getIsFPConstrained()
14502                ? Intrinsic::experimental_constrained_ceil
14503                : Intrinsic::ceil;
14504     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
14505              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
14506       ID = Builder.getIsFPConstrained()
14507                ? Intrinsic::experimental_constrained_trunc
14508                : Intrinsic::trunc;
14509     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
14510     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
14511                                         : Builder.CreateCall(F, X);
14512   }
14513 
14514   // Absolute value
14515   case PPC::BI__builtin_vsx_xvabsdp:
14516   case PPC::BI__builtin_vsx_xvabssp: {
14517     llvm::Type *ResultType = ConvertType(E->getType());
14518     Value *X = EmitScalarExpr(E->getArg(0));
14519     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
14520     return Builder.CreateCall(F, X);
14521   }
14522 
14523   // FMA variations
14524   case PPC::BI__builtin_vsx_xvmaddadp:
14525   case PPC::BI__builtin_vsx_xvmaddasp:
14526   case PPC::BI__builtin_vsx_xvnmaddadp:
14527   case PPC::BI__builtin_vsx_xvnmaddasp:
14528   case PPC::BI__builtin_vsx_xvmsubadp:
14529   case PPC::BI__builtin_vsx_xvmsubasp:
14530   case PPC::BI__builtin_vsx_xvnmsubadp:
14531   case PPC::BI__builtin_vsx_xvnmsubasp: {
14532     llvm::Type *ResultType = ConvertType(E->getType());
14533     Value *X = EmitScalarExpr(E->getArg(0));
14534     Value *Y = EmitScalarExpr(E->getArg(1));
14535     Value *Z = EmitScalarExpr(E->getArg(2));
14536     llvm::Function *F;
14537     if (Builder.getIsFPConstrained())
14538       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
14539     else
14540       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
14541     switch (BuiltinID) {
14542       case PPC::BI__builtin_vsx_xvmaddadp:
14543       case PPC::BI__builtin_vsx_xvmaddasp:
14544         if (Builder.getIsFPConstrained())
14545           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
14546         else
14547           return Builder.CreateCall(F, {X, Y, Z});
14548       case PPC::BI__builtin_vsx_xvnmaddadp:
14549       case PPC::BI__builtin_vsx_xvnmaddasp:
14550         if (Builder.getIsFPConstrained())
14551           return Builder.CreateFNeg(
14552               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
14553         else
14554           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
14555       case PPC::BI__builtin_vsx_xvmsubadp:
14556       case PPC::BI__builtin_vsx_xvmsubasp:
14557         if (Builder.getIsFPConstrained())
14558           return Builder.CreateConstrainedFPCall(
14559               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14560         else
14561           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
14562       case PPC::BI__builtin_vsx_xvnmsubadp:
14563       case PPC::BI__builtin_vsx_xvnmsubasp:
14564         if (Builder.getIsFPConstrained())
14565           return Builder.CreateFNeg(
14566               Builder.CreateConstrainedFPCall(
14567                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14568               "neg");
14569         else
14570           return Builder.CreateFNeg(
14571               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
14572               "neg");
14573     }
14574     llvm_unreachable("Unknown FMA operation");
14575     return nullptr; // Suppress no-return warning
14576   }
14577 
14578   case PPC::BI__builtin_vsx_insertword: {
14579     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
14580 
14581     // Third argument is a compile time constant int. It must be clamped to
14582     // to the range [0, 12].
14583     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14584     assert(ArgCI &&
14585            "Third arg to xxinsertw intrinsic must be constant integer");
14586     const int64_t MaxIndex = 12;
14587     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14588 
14589     // The builtin semantics don't exactly match the xxinsertw instructions
14590     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
14591     // word from the first argument, and inserts it in the second argument. The
14592     // instruction extracts the word from its second input register and inserts
14593     // it into its first input register, so swap the first and second arguments.
14594     std::swap(Ops[0], Ops[1]);
14595 
14596     // Need to cast the second argument from a vector of unsigned int to a
14597     // vector of long long.
14598     Ops[1] =
14599         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14600 
14601     if (getTarget().isLittleEndian()) {
14602       // Reverse the double words in the vector we will extract from.
14603       Ops[0] =
14604           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14605       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
14606 
14607       // Reverse the index.
14608       Index = MaxIndex - Index;
14609     }
14610 
14611     // Intrinsic expects the first arg to be a vector of int.
14612     Ops[0] =
14613         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14614     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
14615     return Builder.CreateCall(F, Ops);
14616   }
14617 
14618   case PPC::BI__builtin_vsx_extractuword: {
14619     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
14620 
14621     // Intrinsic expects the first argument to be a vector of doublewords.
14622     Ops[0] =
14623         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14624 
14625     // The second argument is a compile time constant int that needs to
14626     // be clamped to the range [0, 12].
14627     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
14628     assert(ArgCI &&
14629            "Second Arg to xxextractuw intrinsic must be a constant integer!");
14630     const int64_t MaxIndex = 12;
14631     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
14632 
14633     if (getTarget().isLittleEndian()) {
14634       // Reverse the index.
14635       Index = MaxIndex - Index;
14636       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14637 
14638       // Emit the call, then reverse the double words of the results vector.
14639       Value *Call = Builder.CreateCall(F, Ops);
14640 
14641       Value *ShuffleCall =
14642           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
14643       return ShuffleCall;
14644     } else {
14645       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
14646       return Builder.CreateCall(F, Ops);
14647     }
14648   }
14649 
14650   case PPC::BI__builtin_vsx_xxpermdi: {
14651     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14652     assert(ArgCI && "Third arg must be constant integer!");
14653 
14654     unsigned Index = ArgCI->getZExtValue();
14655     Ops[0] =
14656         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
14657     Ops[1] =
14658         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
14659 
14660     // Account for endianness by treating this as just a shuffle. So we use the
14661     // same indices for both LE and BE in order to produce expected results in
14662     // both cases.
14663     int ElemIdx0 = (Index & 2) >> 1;
14664     int ElemIdx1 = 2 + (Index & 1);
14665 
14666     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
14667     Value *ShuffleCall =
14668         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14669     QualType BIRetType = E->getType();
14670     auto RetTy = ConvertType(BIRetType);
14671     return Builder.CreateBitCast(ShuffleCall, RetTy);
14672   }
14673 
14674   case PPC::BI__builtin_vsx_xxsldwi: {
14675     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14676     assert(ArgCI && "Third argument must be a compile time constant");
14677     unsigned Index = ArgCI->getZExtValue() & 0x3;
14678     Ops[0] =
14679         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
14680     Ops[1] =
14681         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
14682 
14683     // Create a shuffle mask
14684     int ElemIdx0;
14685     int ElemIdx1;
14686     int ElemIdx2;
14687     int ElemIdx3;
14688     if (getTarget().isLittleEndian()) {
14689       // Little endian element N comes from element 8+N-Index of the
14690       // concatenated wide vector (of course, using modulo arithmetic on
14691       // the total number of elements).
14692       ElemIdx0 = (8 - Index) % 8;
14693       ElemIdx1 = (9 - Index) % 8;
14694       ElemIdx2 = (10 - Index) % 8;
14695       ElemIdx3 = (11 - Index) % 8;
14696     } else {
14697       // Big endian ElemIdx<N> = Index + N
14698       ElemIdx0 = Index;
14699       ElemIdx1 = Index + 1;
14700       ElemIdx2 = Index + 2;
14701       ElemIdx3 = Index + 3;
14702     }
14703 
14704     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
14705     Value *ShuffleCall =
14706         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
14707     QualType BIRetType = E->getType();
14708     auto RetTy = ConvertType(BIRetType);
14709     return Builder.CreateBitCast(ShuffleCall, RetTy);
14710   }
14711 
14712   case PPC::BI__builtin_pack_vector_int128: {
14713     bool isLittleEndian = getTarget().isLittleEndian();
14714     Value *UndefValue =
14715         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
14716     Value *Res = Builder.CreateInsertElement(
14717         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
14718     Res = Builder.CreateInsertElement(Res, Ops[1],
14719                                       (uint64_t)(isLittleEndian ? 0 : 1));
14720     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
14721   }
14722 
14723   case PPC::BI__builtin_unpack_vector_int128: {
14724     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
14725     Value *Unpacked = Builder.CreateBitCast(
14726         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
14727 
14728     if (getTarget().isLittleEndian())
14729       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
14730 
14731     return Builder.CreateExtractElement(Unpacked, Index);
14732   }
14733 
14734   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
14735   // Some of the MMA instructions accumulate their result into an existing
14736   // accumulator whereas the others generate a new accumulator. So we need to
14737   // use custom code generation to expand a builtin call with a pointer to a
14738   // load (if the corresponding instruction accumulates its result) followed by
14739   // the call to the intrinsic and a store of the result.
14740 #define MMA_BUILTIN(Name, Types, Accumulate) \
14741   case PPC::BI__builtin_mma_##Name:
14742 #include "clang/Basic/BuiltinsPPC.def"
14743   {
14744     // The first argument of these two builtins is a pointer used to store their
14745     // result. However, the llvm intrinsics return their result in multiple
14746     // return values. So, here we emit code extracting these values from the
14747     // intrinsic results and storing them using that pointer.
14748     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
14749         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
14750       unsigned NumVecs = 2;
14751       auto Intrinsic = Intrinsic::ppc_mma_disassemble_pair;
14752       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
14753         NumVecs = 4;
14754         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
14755       }
14756       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
14757       Address Addr = EmitPointerWithAlignment(E->getArg(1));
14758       Value *Vec = Builder.CreateLoad(Addr);
14759       Value *Call = Builder.CreateCall(F, {Vec});
14760       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
14761       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
14762       for (unsigned i=0; i<NumVecs; i++) {
14763         Value *Vec = Builder.CreateExtractValue(Call, i);
14764         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
14765         Value *GEP = Builder.CreateInBoundsGEP(Ptr, Index);
14766         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
14767       }
14768       return Call;
14769     }
14770     bool Accumulate;
14771     switch (BuiltinID) {
14772   #define MMA_BUILTIN(Name, Types, Acc) \
14773     case PPC::BI__builtin_mma_##Name: \
14774       ID = Intrinsic::ppc_mma_##Name; \
14775       Accumulate = Acc; \
14776       break;
14777   #include "clang/Basic/BuiltinsPPC.def"
14778     }
14779     SmallVector<Value*, 4> CallOps;
14780     if (Accumulate) {
14781       Address Addr = EmitPointerWithAlignment(E->getArg(0));
14782       Value *Acc = Builder.CreateLoad(Addr);
14783       CallOps.push_back(Acc);
14784     }
14785     for (unsigned i=1; i<Ops.size(); i++)
14786       CallOps.push_back(Ops[i]);
14787     llvm::Function *F = CGM.getIntrinsic(ID);
14788     Value *Call = Builder.CreateCall(F, CallOps);
14789     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
14790   }
14791   }
14792 }
14793 
14794 namespace {
14795 // If \p E is not null pointer, insert address space cast to match return
14796 // type of \p E if necessary.
EmitAMDGPUDispatchPtr(CodeGenFunction & CGF,const CallExpr * E=nullptr)14797 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
14798                              const CallExpr *E = nullptr) {
14799   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
14800   auto *Call = CGF.Builder.CreateCall(F);
14801   Call->addAttribute(
14802       AttributeList::ReturnIndex,
14803       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
14804   Call->addAttribute(AttributeList::ReturnIndex,
14805                      Attribute::getWithAlignment(Call->getContext(), Align(4)));
14806   if (!E)
14807     return Call;
14808   QualType BuiltinRetType = E->getType();
14809   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
14810   if (RetTy == Call->getType())
14811     return Call;
14812   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
14813 }
14814 
14815 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUWorkGroupSize(CodeGenFunction & CGF,unsigned Index)14816 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
14817   const unsigned XOffset = 4;
14818   auto *DP = EmitAMDGPUDispatchPtr(CGF);
14819   // Indexing the HSA kernel_dispatch_packet struct.
14820   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
14821   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
14822   auto *DstTy =
14823       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
14824   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
14825   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
14826   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
14827   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
14828       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
14829   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
14830   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
14831       llvm::MDNode::get(CGF.getLLVMContext(), None));
14832   return LD;
14833 }
14834 
14835 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUGridSize(CodeGenFunction & CGF,unsigned Index)14836 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
14837   const unsigned XOffset = 12;
14838   auto *DP = EmitAMDGPUDispatchPtr(CGF);
14839   // Indexing the HSA kernel_dispatch_packet struct.
14840   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
14841   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
14842   auto *DstTy =
14843       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
14844   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
14845   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
14846   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
14847                   llvm::MDNode::get(CGF.getLLVMContext(), None));
14848   return LD;
14849 }
14850 } // namespace
14851 
14852 // For processing memory ordering and memory scope arguments of various
14853 // amdgcn builtins.
14854 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
14855 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
14856 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
14857 // specific SyncScopeID and writes it to \p SSID.
ProcessOrderScopeAMDGCN(Value * Order,Value * Scope,llvm::AtomicOrdering & AO,llvm::SyncScope::ID & SSID)14858 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
14859                                               llvm::AtomicOrdering &AO,
14860                                               llvm::SyncScope::ID &SSID) {
14861   if (isa<llvm::ConstantInt>(Order)) {
14862     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
14863 
14864     // Map C11/C++11 memory ordering to LLVM memory ordering
14865     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
14866     case llvm::AtomicOrderingCABI::acquire:
14867       AO = llvm::AtomicOrdering::Acquire;
14868       break;
14869     case llvm::AtomicOrderingCABI::release:
14870       AO = llvm::AtomicOrdering::Release;
14871       break;
14872     case llvm::AtomicOrderingCABI::acq_rel:
14873       AO = llvm::AtomicOrdering::AcquireRelease;
14874       break;
14875     case llvm::AtomicOrderingCABI::seq_cst:
14876       AO = llvm::AtomicOrdering::SequentiallyConsistent;
14877       break;
14878     case llvm::AtomicOrderingCABI::consume:
14879     case llvm::AtomicOrderingCABI::relaxed:
14880       break;
14881     }
14882 
14883     StringRef scp;
14884     llvm::getConstantStringInfo(Scope, scp);
14885     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
14886     return true;
14887   }
14888   return false;
14889 }
14890 
EmitAMDGPUBuiltinExpr(unsigned BuiltinID,const CallExpr * E)14891 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
14892                                               const CallExpr *E) {
14893   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
14894   llvm::SyncScope::ID SSID;
14895   switch (BuiltinID) {
14896   case AMDGPU::BI__builtin_amdgcn_div_scale:
14897   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
14898     // Translate from the intrinsics's struct return to the builtin's out
14899     // argument.
14900 
14901     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
14902 
14903     llvm::Value *X = EmitScalarExpr(E->getArg(0));
14904     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
14905     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
14906 
14907     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
14908                                            X->getType());
14909 
14910     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
14911 
14912     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
14913     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
14914 
14915     llvm::Type *RealFlagType
14916       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
14917 
14918     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
14919     Builder.CreateStore(FlagExt, FlagOutPtr);
14920     return Result;
14921   }
14922   case AMDGPU::BI__builtin_amdgcn_div_fmas:
14923   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
14924     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
14925     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
14926     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
14927     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
14928 
14929     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
14930                                       Src0->getType());
14931     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
14932     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
14933   }
14934 
14935   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
14936     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
14937   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
14938     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
14939   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
14940   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
14941     llvm::SmallVector<llvm::Value *, 6> Args;
14942     for (unsigned I = 0; I != E->getNumArgs(); ++I)
14943       Args.push_back(EmitScalarExpr(E->getArg(I)));
14944     assert(Args.size() == 5 || Args.size() == 6);
14945     if (Args.size() == 5)
14946       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
14947     Function *F =
14948         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
14949     return Builder.CreateCall(F, Args);
14950   }
14951   case AMDGPU::BI__builtin_amdgcn_div_fixup:
14952   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
14953   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
14954     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
14955   case AMDGPU::BI__builtin_amdgcn_trig_preop:
14956   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
14957     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
14958   case AMDGPU::BI__builtin_amdgcn_rcp:
14959   case AMDGPU::BI__builtin_amdgcn_rcpf:
14960   case AMDGPU::BI__builtin_amdgcn_rcph:
14961     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
14962   case AMDGPU::BI__builtin_amdgcn_sqrt:
14963   case AMDGPU::BI__builtin_amdgcn_sqrtf:
14964   case AMDGPU::BI__builtin_amdgcn_sqrth:
14965     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
14966   case AMDGPU::BI__builtin_amdgcn_rsq:
14967   case AMDGPU::BI__builtin_amdgcn_rsqf:
14968   case AMDGPU::BI__builtin_amdgcn_rsqh:
14969     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
14970   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
14971   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
14972     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
14973   case AMDGPU::BI__builtin_amdgcn_sinf:
14974   case AMDGPU::BI__builtin_amdgcn_sinh:
14975     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
14976   case AMDGPU::BI__builtin_amdgcn_cosf:
14977   case AMDGPU::BI__builtin_amdgcn_cosh:
14978     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
14979   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
14980     return EmitAMDGPUDispatchPtr(*this, E);
14981   case AMDGPU::BI__builtin_amdgcn_log_clampf:
14982     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
14983   case AMDGPU::BI__builtin_amdgcn_ldexp:
14984   case AMDGPU::BI__builtin_amdgcn_ldexpf:
14985   case AMDGPU::BI__builtin_amdgcn_ldexph:
14986     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
14987   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
14988   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
14989   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
14990     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
14991   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
14992   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
14993     Value *Src0 = EmitScalarExpr(E->getArg(0));
14994     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
14995                                 { Builder.getInt32Ty(), Src0->getType() });
14996     return Builder.CreateCall(F, Src0);
14997   }
14998   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
14999     Value *Src0 = EmitScalarExpr(E->getArg(0));
15000     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15001                                 { Builder.getInt16Ty(), Src0->getType() });
15002     return Builder.CreateCall(F, Src0);
15003   }
15004   case AMDGPU::BI__builtin_amdgcn_fract:
15005   case AMDGPU::BI__builtin_amdgcn_fractf:
15006   case AMDGPU::BI__builtin_amdgcn_fracth:
15007     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
15008   case AMDGPU::BI__builtin_amdgcn_lerp:
15009     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
15010   case AMDGPU::BI__builtin_amdgcn_ubfe:
15011     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
15012   case AMDGPU::BI__builtin_amdgcn_sbfe:
15013     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
15014   case AMDGPU::BI__builtin_amdgcn_uicmp:
15015   case AMDGPU::BI__builtin_amdgcn_uicmpl:
15016   case AMDGPU::BI__builtin_amdgcn_sicmp:
15017   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
15018     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15019     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15020     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15021 
15022     // FIXME-GFX10: How should 32 bit mask be handled?
15023     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
15024       { Builder.getInt64Ty(), Src0->getType() });
15025     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15026   }
15027   case AMDGPU::BI__builtin_amdgcn_fcmp:
15028   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
15029     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15030     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15031     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15032 
15033     // FIXME-GFX10: How should 32 bit mask be handled?
15034     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
15035       { Builder.getInt64Ty(), Src0->getType() });
15036     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15037   }
15038   case AMDGPU::BI__builtin_amdgcn_class:
15039   case AMDGPU::BI__builtin_amdgcn_classf:
15040   case AMDGPU::BI__builtin_amdgcn_classh:
15041     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
15042   case AMDGPU::BI__builtin_amdgcn_fmed3f:
15043   case AMDGPU::BI__builtin_amdgcn_fmed3h:
15044     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
15045   case AMDGPU::BI__builtin_amdgcn_ds_append:
15046   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
15047     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
15048       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
15049     Value *Src0 = EmitScalarExpr(E->getArg(0));
15050     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
15051     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
15052   }
15053   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15054   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15055   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
15056     Intrinsic::ID Intrin;
15057     switch (BuiltinID) {
15058     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15059       Intrin = Intrinsic::amdgcn_ds_fadd;
15060       break;
15061     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15062       Intrin = Intrinsic::amdgcn_ds_fmin;
15063       break;
15064     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
15065       Intrin = Intrinsic::amdgcn_ds_fmax;
15066       break;
15067     }
15068     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15069     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15070     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15071     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15072     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
15073     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
15074     llvm::FunctionType *FTy = F->getFunctionType();
15075     llvm::Type *PTy = FTy->getParamType(0);
15076     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
15077     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
15078   }
15079   case AMDGPU::BI__builtin_amdgcn_read_exec: {
15080     CallInst *CI = cast<CallInst>(
15081       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
15082     CI->setConvergent();
15083     return CI;
15084   }
15085   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
15086   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
15087     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
15088       "exec_lo" : "exec_hi";
15089     CallInst *CI = cast<CallInst>(
15090       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
15091     CI->setConvergent();
15092     return CI;
15093   }
15094   // amdgcn workitem
15095   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
15096     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
15097   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
15098     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
15099   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
15100     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
15101 
15102   // amdgcn workgroup size
15103   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
15104     return EmitAMDGPUWorkGroupSize(*this, 0);
15105   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
15106     return EmitAMDGPUWorkGroupSize(*this, 1);
15107   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
15108     return EmitAMDGPUWorkGroupSize(*this, 2);
15109 
15110   // amdgcn grid size
15111   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
15112     return EmitAMDGPUGridSize(*this, 0);
15113   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
15114     return EmitAMDGPUGridSize(*this, 1);
15115   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
15116     return EmitAMDGPUGridSize(*this, 2);
15117 
15118   // r600 intrinsics
15119   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
15120   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
15121     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
15122   case AMDGPU::BI__builtin_r600_read_tidig_x:
15123     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
15124   case AMDGPU::BI__builtin_r600_read_tidig_y:
15125     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
15126   case AMDGPU::BI__builtin_r600_read_tidig_z:
15127     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
15128   case AMDGPU::BI__builtin_amdgcn_alignbit: {
15129     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15130     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15131     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15132     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
15133     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15134   }
15135 
15136   case AMDGPU::BI__builtin_amdgcn_fence: {
15137     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
15138                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
15139       return Builder.CreateFence(AO, SSID);
15140     LLVM_FALLTHROUGH;
15141   }
15142   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15143   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15144   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15145   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
15146     unsigned BuiltinAtomicOp;
15147     llvm::Type *ResultType = ConvertType(E->getType());
15148 
15149     switch (BuiltinID) {
15150     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15151     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15152       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
15153       break;
15154     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15155     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
15156       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
15157       break;
15158     }
15159 
15160     Value *Ptr = EmitScalarExpr(E->getArg(0));
15161     Value *Val = EmitScalarExpr(E->getArg(1));
15162 
15163     llvm::Function *F =
15164         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
15165 
15166     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
15167                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
15168 
15169       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
15170       // scope as unsigned values
15171       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
15172       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
15173 
15174       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
15175       bool Volatile =
15176           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
15177       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
15178 
15179       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
15180     }
15181     LLVM_FALLTHROUGH;
15182   }
15183   default:
15184     return nullptr;
15185   }
15186 }
15187 
15188 /// Handle a SystemZ function in which the final argument is a pointer
15189 /// to an int that receives the post-instruction CC value.  At the LLVM level
15190 /// this is represented as a function that returns a {result, cc} pair.
EmitSystemZIntrinsicWithCC(CodeGenFunction & CGF,unsigned IntrinsicID,const CallExpr * E)15191 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
15192                                          unsigned IntrinsicID,
15193                                          const CallExpr *E) {
15194   unsigned NumArgs = E->getNumArgs() - 1;
15195   SmallVector<Value *, 8> Args(NumArgs);
15196   for (unsigned I = 0; I < NumArgs; ++I)
15197     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
15198   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
15199   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
15200   Value *Call = CGF.Builder.CreateCall(F, Args);
15201   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
15202   CGF.Builder.CreateStore(CC, CCPtr);
15203   return CGF.Builder.CreateExtractValue(Call, 0);
15204 }
15205 
EmitSystemZBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15206 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
15207                                                const CallExpr *E) {
15208   switch (BuiltinID) {
15209   case SystemZ::BI__builtin_tbegin: {
15210     Value *TDB = EmitScalarExpr(E->getArg(0));
15211     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15212     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
15213     return Builder.CreateCall(F, {TDB, Control});
15214   }
15215   case SystemZ::BI__builtin_tbegin_nofloat: {
15216     Value *TDB = EmitScalarExpr(E->getArg(0));
15217     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15218     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
15219     return Builder.CreateCall(F, {TDB, Control});
15220   }
15221   case SystemZ::BI__builtin_tbeginc: {
15222     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
15223     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
15224     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
15225     return Builder.CreateCall(F, {TDB, Control});
15226   }
15227   case SystemZ::BI__builtin_tabort: {
15228     Value *Data = EmitScalarExpr(E->getArg(0));
15229     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
15230     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
15231   }
15232   case SystemZ::BI__builtin_non_tx_store: {
15233     Value *Address = EmitScalarExpr(E->getArg(0));
15234     Value *Data = EmitScalarExpr(E->getArg(1));
15235     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
15236     return Builder.CreateCall(F, {Data, Address});
15237   }
15238 
15239   // Vector builtins.  Note that most vector builtins are mapped automatically
15240   // to target-specific LLVM intrinsics.  The ones handled specially here can
15241   // be represented via standard LLVM IR, which is preferable to enable common
15242   // LLVM optimizations.
15243 
15244   case SystemZ::BI__builtin_s390_vpopctb:
15245   case SystemZ::BI__builtin_s390_vpopcth:
15246   case SystemZ::BI__builtin_s390_vpopctf:
15247   case SystemZ::BI__builtin_s390_vpopctg: {
15248     llvm::Type *ResultType = ConvertType(E->getType());
15249     Value *X = EmitScalarExpr(E->getArg(0));
15250     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15251     return Builder.CreateCall(F, X);
15252   }
15253 
15254   case SystemZ::BI__builtin_s390_vclzb:
15255   case SystemZ::BI__builtin_s390_vclzh:
15256   case SystemZ::BI__builtin_s390_vclzf:
15257   case SystemZ::BI__builtin_s390_vclzg: {
15258     llvm::Type *ResultType = ConvertType(E->getType());
15259     Value *X = EmitScalarExpr(E->getArg(0));
15260     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15261     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15262     return Builder.CreateCall(F, {X, Undef});
15263   }
15264 
15265   case SystemZ::BI__builtin_s390_vctzb:
15266   case SystemZ::BI__builtin_s390_vctzh:
15267   case SystemZ::BI__builtin_s390_vctzf:
15268   case SystemZ::BI__builtin_s390_vctzg: {
15269     llvm::Type *ResultType = ConvertType(E->getType());
15270     Value *X = EmitScalarExpr(E->getArg(0));
15271     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15272     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15273     return Builder.CreateCall(F, {X, Undef});
15274   }
15275 
15276   case SystemZ::BI__builtin_s390_vfsqsb:
15277   case SystemZ::BI__builtin_s390_vfsqdb: {
15278     llvm::Type *ResultType = ConvertType(E->getType());
15279     Value *X = EmitScalarExpr(E->getArg(0));
15280     if (Builder.getIsFPConstrained()) {
15281       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15282       return Builder.CreateConstrainedFPCall(F, { X });
15283     } else {
15284       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15285       return Builder.CreateCall(F, X);
15286     }
15287   }
15288   case SystemZ::BI__builtin_s390_vfmasb:
15289   case SystemZ::BI__builtin_s390_vfmadb: {
15290     llvm::Type *ResultType = ConvertType(E->getType());
15291     Value *X = EmitScalarExpr(E->getArg(0));
15292     Value *Y = EmitScalarExpr(E->getArg(1));
15293     Value *Z = EmitScalarExpr(E->getArg(2));
15294     if (Builder.getIsFPConstrained()) {
15295       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15296       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15297     } else {
15298       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15299       return Builder.CreateCall(F, {X, Y, Z});
15300     }
15301   }
15302   case SystemZ::BI__builtin_s390_vfmssb:
15303   case SystemZ::BI__builtin_s390_vfmsdb: {
15304     llvm::Type *ResultType = ConvertType(E->getType());
15305     Value *X = EmitScalarExpr(E->getArg(0));
15306     Value *Y = EmitScalarExpr(E->getArg(1));
15307     Value *Z = EmitScalarExpr(E->getArg(2));
15308     if (Builder.getIsFPConstrained()) {
15309       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15310       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15311     } else {
15312       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15313       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15314     }
15315   }
15316   case SystemZ::BI__builtin_s390_vfnmasb:
15317   case SystemZ::BI__builtin_s390_vfnmadb: {
15318     llvm::Type *ResultType = ConvertType(E->getType());
15319     Value *X = EmitScalarExpr(E->getArg(0));
15320     Value *Y = EmitScalarExpr(E->getArg(1));
15321     Value *Z = EmitScalarExpr(E->getArg(2));
15322     if (Builder.getIsFPConstrained()) {
15323       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15324       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
15325     } else {
15326       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15327       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15328     }
15329   }
15330   case SystemZ::BI__builtin_s390_vfnmssb:
15331   case SystemZ::BI__builtin_s390_vfnmsdb: {
15332     llvm::Type *ResultType = ConvertType(E->getType());
15333     Value *X = EmitScalarExpr(E->getArg(0));
15334     Value *Y = EmitScalarExpr(E->getArg(1));
15335     Value *Z = EmitScalarExpr(E->getArg(2));
15336     if (Builder.getIsFPConstrained()) {
15337       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15338       Value *NegZ = Builder.CreateFNeg(Z, "sub");
15339       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15340     } else {
15341       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15342       Value *NegZ = Builder.CreateFNeg(Z, "neg");
15343       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15344     }
15345   }
15346   case SystemZ::BI__builtin_s390_vflpsb:
15347   case SystemZ::BI__builtin_s390_vflpdb: {
15348     llvm::Type *ResultType = ConvertType(E->getType());
15349     Value *X = EmitScalarExpr(E->getArg(0));
15350     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15351     return Builder.CreateCall(F, X);
15352   }
15353   case SystemZ::BI__builtin_s390_vflnsb:
15354   case SystemZ::BI__builtin_s390_vflndb: {
15355     llvm::Type *ResultType = ConvertType(E->getType());
15356     Value *X = EmitScalarExpr(E->getArg(0));
15357     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15358     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15359   }
15360   case SystemZ::BI__builtin_s390_vfisb:
15361   case SystemZ::BI__builtin_s390_vfidb: {
15362     llvm::Type *ResultType = ConvertType(E->getType());
15363     Value *X = EmitScalarExpr(E->getArg(0));
15364     // Constant-fold the M4 and M5 mask arguments.
15365     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
15366     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15367     // Check whether this instance can be represented via a LLVM standard
15368     // intrinsic.  We only support some combinations of M4 and M5.
15369     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15370     Intrinsic::ID CI;
15371     switch (M4.getZExtValue()) {
15372     default: break;
15373     case 0:  // IEEE-inexact exception allowed
15374       switch (M5.getZExtValue()) {
15375       default: break;
15376       case 0: ID = Intrinsic::rint;
15377               CI = Intrinsic::experimental_constrained_rint; break;
15378       }
15379       break;
15380     case 4:  // IEEE-inexact exception suppressed
15381       switch (M5.getZExtValue()) {
15382       default: break;
15383       case 0: ID = Intrinsic::nearbyint;
15384               CI = Intrinsic::experimental_constrained_nearbyint; break;
15385       case 1: ID = Intrinsic::round;
15386               CI = Intrinsic::experimental_constrained_round; break;
15387       case 5: ID = Intrinsic::trunc;
15388               CI = Intrinsic::experimental_constrained_trunc; break;
15389       case 6: ID = Intrinsic::ceil;
15390               CI = Intrinsic::experimental_constrained_ceil; break;
15391       case 7: ID = Intrinsic::floor;
15392               CI = Intrinsic::experimental_constrained_floor; break;
15393       }
15394       break;
15395     }
15396     if (ID != Intrinsic::not_intrinsic) {
15397       if (Builder.getIsFPConstrained()) {
15398         Function *F = CGM.getIntrinsic(CI, ResultType);
15399         return Builder.CreateConstrainedFPCall(F, X);
15400       } else {
15401         Function *F = CGM.getIntrinsic(ID, ResultType);
15402         return Builder.CreateCall(F, X);
15403       }
15404     }
15405     switch (BuiltinID) { // FIXME: constrained version?
15406       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
15407       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
15408       default: llvm_unreachable("Unknown BuiltinID");
15409     }
15410     Function *F = CGM.getIntrinsic(ID);
15411     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15412     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
15413     return Builder.CreateCall(F, {X, M4Value, M5Value});
15414   }
15415   case SystemZ::BI__builtin_s390_vfmaxsb:
15416   case SystemZ::BI__builtin_s390_vfmaxdb: {
15417     llvm::Type *ResultType = ConvertType(E->getType());
15418     Value *X = EmitScalarExpr(E->getArg(0));
15419     Value *Y = EmitScalarExpr(E->getArg(1));
15420     // Constant-fold the M4 mask argument.
15421     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15422     // Check whether this instance can be represented via a LLVM standard
15423     // intrinsic.  We only support some values of M4.
15424     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15425     Intrinsic::ID CI;
15426     switch (M4.getZExtValue()) {
15427     default: break;
15428     case 4: ID = Intrinsic::maxnum;
15429             CI = Intrinsic::experimental_constrained_maxnum; break;
15430     }
15431     if (ID != Intrinsic::not_intrinsic) {
15432       if (Builder.getIsFPConstrained()) {
15433         Function *F = CGM.getIntrinsic(CI, ResultType);
15434         return Builder.CreateConstrainedFPCall(F, {X, Y});
15435       } else {
15436         Function *F = CGM.getIntrinsic(ID, ResultType);
15437         return Builder.CreateCall(F, {X, Y});
15438       }
15439     }
15440     switch (BuiltinID) {
15441       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
15442       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
15443       default: llvm_unreachable("Unknown BuiltinID");
15444     }
15445     Function *F = CGM.getIntrinsic(ID);
15446     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15447     return Builder.CreateCall(F, {X, Y, M4Value});
15448   }
15449   case SystemZ::BI__builtin_s390_vfminsb:
15450   case SystemZ::BI__builtin_s390_vfmindb: {
15451     llvm::Type *ResultType = ConvertType(E->getType());
15452     Value *X = EmitScalarExpr(E->getArg(0));
15453     Value *Y = EmitScalarExpr(E->getArg(1));
15454     // Constant-fold the M4 mask argument.
15455     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15456     // Check whether this instance can be represented via a LLVM standard
15457     // intrinsic.  We only support some values of M4.
15458     Intrinsic::ID ID = Intrinsic::not_intrinsic;
15459     Intrinsic::ID CI;
15460     switch (M4.getZExtValue()) {
15461     default: break;
15462     case 4: ID = Intrinsic::minnum;
15463             CI = Intrinsic::experimental_constrained_minnum; break;
15464     }
15465     if (ID != Intrinsic::not_intrinsic) {
15466       if (Builder.getIsFPConstrained()) {
15467         Function *F = CGM.getIntrinsic(CI, ResultType);
15468         return Builder.CreateConstrainedFPCall(F, {X, Y});
15469       } else {
15470         Function *F = CGM.getIntrinsic(ID, ResultType);
15471         return Builder.CreateCall(F, {X, Y});
15472       }
15473     }
15474     switch (BuiltinID) {
15475       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
15476       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
15477       default: llvm_unreachable("Unknown BuiltinID");
15478     }
15479     Function *F = CGM.getIntrinsic(ID);
15480     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
15481     return Builder.CreateCall(F, {X, Y, M4Value});
15482   }
15483 
15484   case SystemZ::BI__builtin_s390_vlbrh:
15485   case SystemZ::BI__builtin_s390_vlbrf:
15486   case SystemZ::BI__builtin_s390_vlbrg: {
15487     llvm::Type *ResultType = ConvertType(E->getType());
15488     Value *X = EmitScalarExpr(E->getArg(0));
15489     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
15490     return Builder.CreateCall(F, X);
15491   }
15492 
15493   // Vector intrinsics that output the post-instruction CC value.
15494 
15495 #define INTRINSIC_WITH_CC(NAME) \
15496     case SystemZ::BI__builtin_##NAME: \
15497       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
15498 
15499   INTRINSIC_WITH_CC(s390_vpkshs);
15500   INTRINSIC_WITH_CC(s390_vpksfs);
15501   INTRINSIC_WITH_CC(s390_vpksgs);
15502 
15503   INTRINSIC_WITH_CC(s390_vpklshs);
15504   INTRINSIC_WITH_CC(s390_vpklsfs);
15505   INTRINSIC_WITH_CC(s390_vpklsgs);
15506 
15507   INTRINSIC_WITH_CC(s390_vceqbs);
15508   INTRINSIC_WITH_CC(s390_vceqhs);
15509   INTRINSIC_WITH_CC(s390_vceqfs);
15510   INTRINSIC_WITH_CC(s390_vceqgs);
15511 
15512   INTRINSIC_WITH_CC(s390_vchbs);
15513   INTRINSIC_WITH_CC(s390_vchhs);
15514   INTRINSIC_WITH_CC(s390_vchfs);
15515   INTRINSIC_WITH_CC(s390_vchgs);
15516 
15517   INTRINSIC_WITH_CC(s390_vchlbs);
15518   INTRINSIC_WITH_CC(s390_vchlhs);
15519   INTRINSIC_WITH_CC(s390_vchlfs);
15520   INTRINSIC_WITH_CC(s390_vchlgs);
15521 
15522   INTRINSIC_WITH_CC(s390_vfaebs);
15523   INTRINSIC_WITH_CC(s390_vfaehs);
15524   INTRINSIC_WITH_CC(s390_vfaefs);
15525 
15526   INTRINSIC_WITH_CC(s390_vfaezbs);
15527   INTRINSIC_WITH_CC(s390_vfaezhs);
15528   INTRINSIC_WITH_CC(s390_vfaezfs);
15529 
15530   INTRINSIC_WITH_CC(s390_vfeebs);
15531   INTRINSIC_WITH_CC(s390_vfeehs);
15532   INTRINSIC_WITH_CC(s390_vfeefs);
15533 
15534   INTRINSIC_WITH_CC(s390_vfeezbs);
15535   INTRINSIC_WITH_CC(s390_vfeezhs);
15536   INTRINSIC_WITH_CC(s390_vfeezfs);
15537 
15538   INTRINSIC_WITH_CC(s390_vfenebs);
15539   INTRINSIC_WITH_CC(s390_vfenehs);
15540   INTRINSIC_WITH_CC(s390_vfenefs);
15541 
15542   INTRINSIC_WITH_CC(s390_vfenezbs);
15543   INTRINSIC_WITH_CC(s390_vfenezhs);
15544   INTRINSIC_WITH_CC(s390_vfenezfs);
15545 
15546   INTRINSIC_WITH_CC(s390_vistrbs);
15547   INTRINSIC_WITH_CC(s390_vistrhs);
15548   INTRINSIC_WITH_CC(s390_vistrfs);
15549 
15550   INTRINSIC_WITH_CC(s390_vstrcbs);
15551   INTRINSIC_WITH_CC(s390_vstrchs);
15552   INTRINSIC_WITH_CC(s390_vstrcfs);
15553 
15554   INTRINSIC_WITH_CC(s390_vstrczbs);
15555   INTRINSIC_WITH_CC(s390_vstrczhs);
15556   INTRINSIC_WITH_CC(s390_vstrczfs);
15557 
15558   INTRINSIC_WITH_CC(s390_vfcesbs);
15559   INTRINSIC_WITH_CC(s390_vfcedbs);
15560   INTRINSIC_WITH_CC(s390_vfchsbs);
15561   INTRINSIC_WITH_CC(s390_vfchdbs);
15562   INTRINSIC_WITH_CC(s390_vfchesbs);
15563   INTRINSIC_WITH_CC(s390_vfchedbs);
15564 
15565   INTRINSIC_WITH_CC(s390_vftcisb);
15566   INTRINSIC_WITH_CC(s390_vftcidb);
15567 
15568   INTRINSIC_WITH_CC(s390_vstrsb);
15569   INTRINSIC_WITH_CC(s390_vstrsh);
15570   INTRINSIC_WITH_CC(s390_vstrsf);
15571 
15572   INTRINSIC_WITH_CC(s390_vstrszb);
15573   INTRINSIC_WITH_CC(s390_vstrszh);
15574   INTRINSIC_WITH_CC(s390_vstrszf);
15575 
15576 #undef INTRINSIC_WITH_CC
15577 
15578   default:
15579     return nullptr;
15580   }
15581 }
15582 
15583 namespace {
15584 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
15585 struct NVPTXMmaLdstInfo {
15586   unsigned NumResults;  // Number of elements to load/store
15587   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
15588   unsigned IID_col;
15589   unsigned IID_row;
15590 };
15591 
15592 #define MMA_INTR(geom_op_type, layout) \
15593   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
15594 #define MMA_LDST(n, geom_op_type)                                              \
15595   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
15596 
getNVPTXMmaLdstInfo(unsigned BuiltinID)15597 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
15598   switch (BuiltinID) {
15599   // FP MMA loads
15600   case NVPTX::BI__hmma_m16n16k16_ld_a:
15601     return MMA_LDST(8, m16n16k16_load_a_f16);
15602   case NVPTX::BI__hmma_m16n16k16_ld_b:
15603     return MMA_LDST(8, m16n16k16_load_b_f16);
15604   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
15605     return MMA_LDST(4, m16n16k16_load_c_f16);
15606   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
15607     return MMA_LDST(8, m16n16k16_load_c_f32);
15608   case NVPTX::BI__hmma_m32n8k16_ld_a:
15609     return MMA_LDST(8, m32n8k16_load_a_f16);
15610   case NVPTX::BI__hmma_m32n8k16_ld_b:
15611     return MMA_LDST(8, m32n8k16_load_b_f16);
15612   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
15613     return MMA_LDST(4, m32n8k16_load_c_f16);
15614   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
15615     return MMA_LDST(8, m32n8k16_load_c_f32);
15616   case NVPTX::BI__hmma_m8n32k16_ld_a:
15617     return MMA_LDST(8, m8n32k16_load_a_f16);
15618   case NVPTX::BI__hmma_m8n32k16_ld_b:
15619     return MMA_LDST(8, m8n32k16_load_b_f16);
15620   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
15621     return MMA_LDST(4, m8n32k16_load_c_f16);
15622   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
15623     return MMA_LDST(8, m8n32k16_load_c_f32);
15624 
15625   // Integer MMA loads
15626   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
15627     return MMA_LDST(2, m16n16k16_load_a_s8);
15628   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
15629     return MMA_LDST(2, m16n16k16_load_a_u8);
15630   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
15631     return MMA_LDST(2, m16n16k16_load_b_s8);
15632   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
15633     return MMA_LDST(2, m16n16k16_load_b_u8);
15634   case NVPTX::BI__imma_m16n16k16_ld_c:
15635     return MMA_LDST(8, m16n16k16_load_c_s32);
15636   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
15637     return MMA_LDST(4, m32n8k16_load_a_s8);
15638   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
15639     return MMA_LDST(4, m32n8k16_load_a_u8);
15640   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
15641     return MMA_LDST(1, m32n8k16_load_b_s8);
15642   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
15643     return MMA_LDST(1, m32n8k16_load_b_u8);
15644   case NVPTX::BI__imma_m32n8k16_ld_c:
15645     return MMA_LDST(8, m32n8k16_load_c_s32);
15646   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
15647     return MMA_LDST(1, m8n32k16_load_a_s8);
15648   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
15649     return MMA_LDST(1, m8n32k16_load_a_u8);
15650   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
15651     return MMA_LDST(4, m8n32k16_load_b_s8);
15652   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
15653     return MMA_LDST(4, m8n32k16_load_b_u8);
15654   case NVPTX::BI__imma_m8n32k16_ld_c:
15655     return MMA_LDST(8, m8n32k16_load_c_s32);
15656 
15657   // Sub-integer MMA loads.
15658   // Only row/col layout is supported by A/B fragments.
15659   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
15660     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
15661   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
15662     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
15663   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
15664     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
15665   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
15666     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
15667   case NVPTX::BI__imma_m8n8k32_ld_c:
15668     return MMA_LDST(2, m8n8k32_load_c_s32);
15669   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
15670     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
15671   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
15672     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
15673   case NVPTX::BI__bmma_m8n8k128_ld_c:
15674     return MMA_LDST(2, m8n8k128_load_c_s32);
15675 
15676   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
15677   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
15678   // use fragment C for both loads and stores.
15679   // FP MMA stores.
15680   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
15681     return MMA_LDST(4, m16n16k16_store_d_f16);
15682   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
15683     return MMA_LDST(8, m16n16k16_store_d_f32);
15684   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
15685     return MMA_LDST(4, m32n8k16_store_d_f16);
15686   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
15687     return MMA_LDST(8, m32n8k16_store_d_f32);
15688   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
15689     return MMA_LDST(4, m8n32k16_store_d_f16);
15690   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
15691     return MMA_LDST(8, m8n32k16_store_d_f32);
15692 
15693   // Integer and sub-integer MMA stores.
15694   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
15695   // name, integer loads/stores use LLVM's i32.
15696   case NVPTX::BI__imma_m16n16k16_st_c_i32:
15697     return MMA_LDST(8, m16n16k16_store_d_s32);
15698   case NVPTX::BI__imma_m32n8k16_st_c_i32:
15699     return MMA_LDST(8, m32n8k16_store_d_s32);
15700   case NVPTX::BI__imma_m8n32k16_st_c_i32:
15701     return MMA_LDST(8, m8n32k16_store_d_s32);
15702   case NVPTX::BI__imma_m8n8k32_st_c_i32:
15703     return MMA_LDST(2, m8n8k32_store_d_s32);
15704   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
15705     return MMA_LDST(2, m8n8k128_store_d_s32);
15706 
15707   default:
15708     llvm_unreachable("Unknown MMA builtin");
15709   }
15710 }
15711 #undef MMA_LDST
15712 #undef MMA_INTR
15713 
15714 
15715 struct NVPTXMmaInfo {
15716   unsigned NumEltsA;
15717   unsigned NumEltsB;
15718   unsigned NumEltsC;
15719   unsigned NumEltsD;
15720   std::array<unsigned, 8> Variants;
15721 
getMMAIntrinsic__anon3067de980e11::NVPTXMmaInfo15722   unsigned getMMAIntrinsic(int Layout, bool Satf) {
15723     unsigned Index = Layout * 2 + Satf;
15724     if (Index >= Variants.size())
15725       return 0;
15726     return Variants[Index];
15727   }
15728 };
15729 
15730   // Returns an intrinsic that matches Layout and Satf for valid combinations of
15731   // Layout and Satf, 0 otherwise.
getNVPTXMmaInfo(unsigned BuiltinID)15732 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
15733   // clang-format off
15734 #define MMA_VARIANTS(geom, type) {{                                 \
15735       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
15736       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
15737       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15738       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15739       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
15740       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
15741       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
15742       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
15743     }}
15744 // Sub-integer MMA only supports row.col layout.
15745 #define MMA_VARIANTS_I4(geom, type) {{ \
15746       0, \
15747       0, \
15748       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15749       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
15750       0, \
15751       0, \
15752       0, \
15753       0  \
15754     }}
15755 // b1 MMA does not support .satfinite.
15756 #define MMA_VARIANTS_B1(geom, type) {{ \
15757       0, \
15758       0, \
15759       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
15760       0, \
15761       0, \
15762       0, \
15763       0, \
15764       0  \
15765     }}
15766     // clang-format on
15767     switch (BuiltinID) {
15768     // FP MMA
15769     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
15770     // NumEltsN of return value are ordered as A,B,C,D.
15771     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
15772       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
15773     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
15774       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
15775     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
15776       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
15777     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
15778       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
15779     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
15780       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
15781     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
15782       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
15783     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
15784       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
15785     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
15786       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
15787     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
15788       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
15789     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
15790       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
15791     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
15792       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
15793     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
15794       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
15795 
15796     // Integer MMA
15797     case NVPTX::BI__imma_m16n16k16_mma_s8:
15798       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
15799     case NVPTX::BI__imma_m16n16k16_mma_u8:
15800       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
15801     case NVPTX::BI__imma_m32n8k16_mma_s8:
15802       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
15803     case NVPTX::BI__imma_m32n8k16_mma_u8:
15804       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
15805     case NVPTX::BI__imma_m8n32k16_mma_s8:
15806       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
15807     case NVPTX::BI__imma_m8n32k16_mma_u8:
15808       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
15809 
15810     // Sub-integer MMA
15811     case NVPTX::BI__imma_m8n8k32_mma_s4:
15812       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
15813     case NVPTX::BI__imma_m8n8k32_mma_u4:
15814       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
15815     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
15816       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
15817     default:
15818       llvm_unreachable("Unexpected builtin ID.");
15819     }
15820 #undef MMA_VARIANTS
15821 #undef MMA_VARIANTS_I4
15822 #undef MMA_VARIANTS_B1
15823 }
15824 
15825 } // namespace
15826 
15827 Value *
EmitNVPTXBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15828 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
15829   auto MakeLdg = [&](unsigned IntrinsicID) {
15830     Value *Ptr = EmitScalarExpr(E->getArg(0));
15831     clang::CharUnits Align =
15832         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
15833     return Builder.CreateCall(
15834         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15835                                        Ptr->getType()}),
15836         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
15837   };
15838   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
15839     Value *Ptr = EmitScalarExpr(E->getArg(0));
15840     return Builder.CreateCall(
15841         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
15842                                        Ptr->getType()}),
15843         {Ptr, EmitScalarExpr(E->getArg(1))});
15844   };
15845   switch (BuiltinID) {
15846   case NVPTX::BI__nvvm_atom_add_gen_i:
15847   case NVPTX::BI__nvvm_atom_add_gen_l:
15848   case NVPTX::BI__nvvm_atom_add_gen_ll:
15849     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
15850 
15851   case NVPTX::BI__nvvm_atom_sub_gen_i:
15852   case NVPTX::BI__nvvm_atom_sub_gen_l:
15853   case NVPTX::BI__nvvm_atom_sub_gen_ll:
15854     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
15855 
15856   case NVPTX::BI__nvvm_atom_and_gen_i:
15857   case NVPTX::BI__nvvm_atom_and_gen_l:
15858   case NVPTX::BI__nvvm_atom_and_gen_ll:
15859     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
15860 
15861   case NVPTX::BI__nvvm_atom_or_gen_i:
15862   case NVPTX::BI__nvvm_atom_or_gen_l:
15863   case NVPTX::BI__nvvm_atom_or_gen_ll:
15864     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
15865 
15866   case NVPTX::BI__nvvm_atom_xor_gen_i:
15867   case NVPTX::BI__nvvm_atom_xor_gen_l:
15868   case NVPTX::BI__nvvm_atom_xor_gen_ll:
15869     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
15870 
15871   case NVPTX::BI__nvvm_atom_xchg_gen_i:
15872   case NVPTX::BI__nvvm_atom_xchg_gen_l:
15873   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
15874     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
15875 
15876   case NVPTX::BI__nvvm_atom_max_gen_i:
15877   case NVPTX::BI__nvvm_atom_max_gen_l:
15878   case NVPTX::BI__nvvm_atom_max_gen_ll:
15879     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
15880 
15881   case NVPTX::BI__nvvm_atom_max_gen_ui:
15882   case NVPTX::BI__nvvm_atom_max_gen_ul:
15883   case NVPTX::BI__nvvm_atom_max_gen_ull:
15884     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
15885 
15886   case NVPTX::BI__nvvm_atom_min_gen_i:
15887   case NVPTX::BI__nvvm_atom_min_gen_l:
15888   case NVPTX::BI__nvvm_atom_min_gen_ll:
15889     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
15890 
15891   case NVPTX::BI__nvvm_atom_min_gen_ui:
15892   case NVPTX::BI__nvvm_atom_min_gen_ul:
15893   case NVPTX::BI__nvvm_atom_min_gen_ull:
15894     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
15895 
15896   case NVPTX::BI__nvvm_atom_cas_gen_i:
15897   case NVPTX::BI__nvvm_atom_cas_gen_l:
15898   case NVPTX::BI__nvvm_atom_cas_gen_ll:
15899     // __nvvm_atom_cas_gen_* should return the old value rather than the
15900     // success flag.
15901     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
15902 
15903   case NVPTX::BI__nvvm_atom_add_gen_f:
15904   case NVPTX::BI__nvvm_atom_add_gen_d: {
15905     Value *Ptr = EmitScalarExpr(E->getArg(0));
15906     Value *Val = EmitScalarExpr(E->getArg(1));
15907     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
15908                                    AtomicOrdering::SequentiallyConsistent);
15909   }
15910 
15911   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
15912     Value *Ptr = EmitScalarExpr(E->getArg(0));
15913     Value *Val = EmitScalarExpr(E->getArg(1));
15914     Function *FnALI32 =
15915         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
15916     return Builder.CreateCall(FnALI32, {Ptr, Val});
15917   }
15918 
15919   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
15920     Value *Ptr = EmitScalarExpr(E->getArg(0));
15921     Value *Val = EmitScalarExpr(E->getArg(1));
15922     Function *FnALD32 =
15923         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
15924     return Builder.CreateCall(FnALD32, {Ptr, Val});
15925   }
15926 
15927   case NVPTX::BI__nvvm_ldg_c:
15928   case NVPTX::BI__nvvm_ldg_c2:
15929   case NVPTX::BI__nvvm_ldg_c4:
15930   case NVPTX::BI__nvvm_ldg_s:
15931   case NVPTX::BI__nvvm_ldg_s2:
15932   case NVPTX::BI__nvvm_ldg_s4:
15933   case NVPTX::BI__nvvm_ldg_i:
15934   case NVPTX::BI__nvvm_ldg_i2:
15935   case NVPTX::BI__nvvm_ldg_i4:
15936   case NVPTX::BI__nvvm_ldg_l:
15937   case NVPTX::BI__nvvm_ldg_ll:
15938   case NVPTX::BI__nvvm_ldg_ll2:
15939   case NVPTX::BI__nvvm_ldg_uc:
15940   case NVPTX::BI__nvvm_ldg_uc2:
15941   case NVPTX::BI__nvvm_ldg_uc4:
15942   case NVPTX::BI__nvvm_ldg_us:
15943   case NVPTX::BI__nvvm_ldg_us2:
15944   case NVPTX::BI__nvvm_ldg_us4:
15945   case NVPTX::BI__nvvm_ldg_ui:
15946   case NVPTX::BI__nvvm_ldg_ui2:
15947   case NVPTX::BI__nvvm_ldg_ui4:
15948   case NVPTX::BI__nvvm_ldg_ul:
15949   case NVPTX::BI__nvvm_ldg_ull:
15950   case NVPTX::BI__nvvm_ldg_ull2:
15951     // PTX Interoperability section 2.2: "For a vector with an even number of
15952     // elements, its alignment is set to number of elements times the alignment
15953     // of its member: n*alignof(t)."
15954     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
15955   case NVPTX::BI__nvvm_ldg_f:
15956   case NVPTX::BI__nvvm_ldg_f2:
15957   case NVPTX::BI__nvvm_ldg_f4:
15958   case NVPTX::BI__nvvm_ldg_d:
15959   case NVPTX::BI__nvvm_ldg_d2:
15960     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
15961 
15962   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
15963   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
15964   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
15965     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
15966   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
15967   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
15968   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
15969     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
15970   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
15971   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
15972     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
15973   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
15974   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
15975     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
15976   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
15977   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
15978   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
15979     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
15980   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
15981   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
15982   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
15983     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
15984   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
15985   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
15986   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
15987   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
15988   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
15989   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
15990     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
15991   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
15992   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
15993   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
15994   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
15995   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
15996   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
15997     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
15998   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
15999   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
16000   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
16001   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
16002   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
16003   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
16004     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
16005   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
16006   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
16007   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
16008   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
16009   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
16010   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
16011     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
16012   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
16013     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
16014   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
16015     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
16016   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
16017     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
16018   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
16019     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
16020   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
16021   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
16022   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
16023     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
16024   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
16025   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
16026   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
16027     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
16028   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
16029   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
16030   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
16031     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
16032   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
16033   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
16034   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
16035     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
16036   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
16037   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
16038   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
16039     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
16040   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
16041   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
16042   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
16043     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
16044   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
16045   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
16046   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
16047     Value *Ptr = EmitScalarExpr(E->getArg(0));
16048     return Builder.CreateCall(
16049         CGM.getIntrinsic(
16050             Intrinsic::nvvm_atomic_cas_gen_i_cta,
16051             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16052         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16053   }
16054   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
16055   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
16056   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
16057     Value *Ptr = EmitScalarExpr(E->getArg(0));
16058     return Builder.CreateCall(
16059         CGM.getIntrinsic(
16060             Intrinsic::nvvm_atomic_cas_gen_i_sys,
16061             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16062         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16063   }
16064   case NVPTX::BI__nvvm_match_all_sync_i32p:
16065   case NVPTX::BI__nvvm_match_all_sync_i64p: {
16066     Value *Mask = EmitScalarExpr(E->getArg(0));
16067     Value *Val = EmitScalarExpr(E->getArg(1));
16068     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
16069     Value *ResultPair = Builder.CreateCall(
16070         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
16071                              ? Intrinsic::nvvm_match_all_sync_i32p
16072                              : Intrinsic::nvvm_match_all_sync_i64p),
16073         {Mask, Val});
16074     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
16075                                      PredOutPtr.getElementType());
16076     Builder.CreateStore(Pred, PredOutPtr);
16077     return Builder.CreateExtractValue(ResultPair, 0);
16078   }
16079 
16080   // FP MMA loads
16081   case NVPTX::BI__hmma_m16n16k16_ld_a:
16082   case NVPTX::BI__hmma_m16n16k16_ld_b:
16083   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16084   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16085   case NVPTX::BI__hmma_m32n8k16_ld_a:
16086   case NVPTX::BI__hmma_m32n8k16_ld_b:
16087   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16088   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16089   case NVPTX::BI__hmma_m8n32k16_ld_a:
16090   case NVPTX::BI__hmma_m8n32k16_ld_b:
16091   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16092   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16093   // Integer MMA loads.
16094   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16095   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16096   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16097   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16098   case NVPTX::BI__imma_m16n16k16_ld_c:
16099   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16100   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16101   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16102   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16103   case NVPTX::BI__imma_m32n8k16_ld_c:
16104   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16105   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16106   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16107   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16108   case NVPTX::BI__imma_m8n32k16_ld_c:
16109   // Sub-integer MMA loads.
16110   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16111   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16112   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16113   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16114   case NVPTX::BI__imma_m8n8k32_ld_c:
16115   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16116   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16117   case NVPTX::BI__bmma_m8n8k128_ld_c:
16118   {
16119     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16120     Value *Src = EmitScalarExpr(E->getArg(1));
16121     Value *Ldm = EmitScalarExpr(E->getArg(2));
16122     Optional<llvm::APSInt> isColMajorArg =
16123         E->getArg(3)->getIntegerConstantExpr(getContext());
16124     if (!isColMajorArg)
16125       return nullptr;
16126     bool isColMajor = isColMajorArg->getSExtValue();
16127     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16128     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16129     if (IID == 0)
16130       return nullptr;
16131 
16132     Value *Result =
16133         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
16134 
16135     // Save returned values.
16136     assert(II.NumResults);
16137     if (II.NumResults == 1) {
16138       Builder.CreateAlignedStore(Result, Dst.getPointer(),
16139                                  CharUnits::fromQuantity(4));
16140     } else {
16141       for (unsigned i = 0; i < II.NumResults; ++i) {
16142         Builder.CreateAlignedStore(
16143             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
16144                                   Dst.getElementType()),
16145             Builder.CreateGEP(Dst.getPointer(),
16146                               llvm::ConstantInt::get(IntTy, i)),
16147             CharUnits::fromQuantity(4));
16148       }
16149     }
16150     return Result;
16151   }
16152 
16153   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16154   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16155   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16156   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16157   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16158   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16159   case NVPTX::BI__imma_m16n16k16_st_c_i32:
16160   case NVPTX::BI__imma_m32n8k16_st_c_i32:
16161   case NVPTX::BI__imma_m8n32k16_st_c_i32:
16162   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16163   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
16164     Value *Dst = EmitScalarExpr(E->getArg(0));
16165     Address Src = EmitPointerWithAlignment(E->getArg(1));
16166     Value *Ldm = EmitScalarExpr(E->getArg(2));
16167     Optional<llvm::APSInt> isColMajorArg =
16168         E->getArg(3)->getIntegerConstantExpr(getContext());
16169     if (!isColMajorArg)
16170       return nullptr;
16171     bool isColMajor = isColMajorArg->getSExtValue();
16172     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16173     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16174     if (IID == 0)
16175       return nullptr;
16176     Function *Intrinsic =
16177         CGM.getIntrinsic(IID, Dst->getType());
16178     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
16179     SmallVector<Value *, 10> Values = {Dst};
16180     for (unsigned i = 0; i < II.NumResults; ++i) {
16181       Value *V = Builder.CreateAlignedLoad(
16182           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16183           CharUnits::fromQuantity(4));
16184       Values.push_back(Builder.CreateBitCast(V, ParamType));
16185     }
16186     Values.push_back(Ldm);
16187     Value *Result = Builder.CreateCall(Intrinsic, Values);
16188     return Result;
16189   }
16190 
16191   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
16192   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
16193   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16194   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16195   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16196   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16197   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16198   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16199   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16200   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16201   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16202   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16203   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16204   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16205   case NVPTX::BI__imma_m16n16k16_mma_s8:
16206   case NVPTX::BI__imma_m16n16k16_mma_u8:
16207   case NVPTX::BI__imma_m32n8k16_mma_s8:
16208   case NVPTX::BI__imma_m32n8k16_mma_u8:
16209   case NVPTX::BI__imma_m8n32k16_mma_s8:
16210   case NVPTX::BI__imma_m8n32k16_mma_u8:
16211   case NVPTX::BI__imma_m8n8k32_mma_s4:
16212   case NVPTX::BI__imma_m8n8k32_mma_u4:
16213   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
16214     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16215     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
16216     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
16217     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
16218     Optional<llvm::APSInt> LayoutArg =
16219         E->getArg(4)->getIntegerConstantExpr(getContext());
16220     if (!LayoutArg)
16221       return nullptr;
16222     int Layout = LayoutArg->getSExtValue();
16223     if (Layout < 0 || Layout > 3)
16224       return nullptr;
16225     llvm::APSInt SatfArg;
16226     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
16227       SatfArg = 0;  // .b1 does not have satf argument.
16228     else if (Optional<llvm::APSInt> OptSatfArg =
16229                  E->getArg(5)->getIntegerConstantExpr(getContext()))
16230       SatfArg = *OptSatfArg;
16231     else
16232       return nullptr;
16233     bool Satf = SatfArg.getSExtValue();
16234     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
16235     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
16236     if (IID == 0)  // Unsupported combination of Layout/Satf.
16237       return nullptr;
16238 
16239     SmallVector<Value *, 24> Values;
16240     Function *Intrinsic = CGM.getIntrinsic(IID);
16241     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
16242     // Load A
16243     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
16244       Value *V = Builder.CreateAlignedLoad(
16245           Builder.CreateGEP(SrcA.getPointer(),
16246                             llvm::ConstantInt::get(IntTy, i)),
16247           CharUnits::fromQuantity(4));
16248       Values.push_back(Builder.CreateBitCast(V, AType));
16249     }
16250     // Load B
16251     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
16252     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
16253       Value *V = Builder.CreateAlignedLoad(
16254           Builder.CreateGEP(SrcB.getPointer(),
16255                             llvm::ConstantInt::get(IntTy, i)),
16256           CharUnits::fromQuantity(4));
16257       Values.push_back(Builder.CreateBitCast(V, BType));
16258     }
16259     // Load C
16260     llvm::Type *CType =
16261         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
16262     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
16263       Value *V = Builder.CreateAlignedLoad(
16264           Builder.CreateGEP(SrcC.getPointer(),
16265                             llvm::ConstantInt::get(IntTy, i)),
16266           CharUnits::fromQuantity(4));
16267       Values.push_back(Builder.CreateBitCast(V, CType));
16268     }
16269     Value *Result = Builder.CreateCall(Intrinsic, Values);
16270     llvm::Type *DType = Dst.getElementType();
16271     for (unsigned i = 0; i < MI.NumEltsD; ++i)
16272       Builder.CreateAlignedStore(
16273           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16274           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16275           CharUnits::fromQuantity(4));
16276     return Result;
16277   }
16278   default:
16279     return nullptr;
16280   }
16281 }
16282 
16283 namespace {
16284 struct BuiltinAlignArgs {
16285   llvm::Value *Src = nullptr;
16286   llvm::Type *SrcType = nullptr;
16287   llvm::Value *Alignment = nullptr;
16288   llvm::Value *Mask = nullptr;
16289   llvm::IntegerType *IntType = nullptr;
16290 
BuiltinAlignArgs__anon3067de981111::BuiltinAlignArgs16291   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16292     QualType AstType = E->getArg(0)->getType();
16293     if (AstType->isArrayType())
16294       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16295     else
16296       Src = CGF.EmitScalarExpr(E->getArg(0));
16297     SrcType = Src->getType();
16298     if (SrcType->isPointerTy()) {
16299       IntType = IntegerType::get(
16300           CGF.getLLVMContext(),
16301           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16302     } else {
16303       assert(SrcType->isIntegerTy());
16304       IntType = cast<llvm::IntegerType>(SrcType);
16305     }
16306     Alignment = CGF.EmitScalarExpr(E->getArg(1));
16307     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16308     auto *One = llvm::ConstantInt::get(IntType, 1);
16309     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16310   }
16311 };
16312 } // namespace
16313 
16314 /// Generate (x & (y-1)) == 0.
EmitBuiltinIsAligned(const CallExpr * E)16315 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16316   BuiltinAlignArgs Args(E, *this);
16317   llvm::Value *SrcAddress = Args.Src;
16318   if (Args.SrcType->isPointerTy())
16319     SrcAddress =
16320         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16321   return RValue::get(Builder.CreateICmpEQ(
16322       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16323       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16324 }
16325 
16326 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16327 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16328 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16329 /// TODO: actually use ptrmask once most optimization passes know about it.
EmitBuiltinAlignTo(const CallExpr * E,bool AlignUp)16330 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16331   BuiltinAlignArgs Args(E, *this);
16332   llvm::Value *SrcAddr = Args.Src;
16333   if (Args.Src->getType()->isPointerTy())
16334     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16335   llvm::Value *SrcForMask = SrcAddr;
16336   if (AlignUp) {
16337     // When aligning up we have to first add the mask to ensure we go over the
16338     // next alignment value and then align down to the next valid multiple.
16339     // By adding the mask, we ensure that align_up on an already aligned
16340     // value will not change the value.
16341     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16342   }
16343   // Invert the mask to only clear the lower bits.
16344   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16345   llvm::Value *Result =
16346       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16347   if (Args.Src->getType()->isPointerTy()) {
16348     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16349     // Result = Builder.CreateIntrinsic(
16350     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16351     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16352     Result->setName("aligned_intptr");
16353     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16354     // The result must point to the same underlying allocation. This means we
16355     // can use an inbounds GEP to enable better optimization.
16356     Value *Base = EmitCastToVoidPtr(Args.Src);
16357     if (getLangOpts().isSignedOverflowDefined())
16358       Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16359     else
16360       Result = EmitCheckedInBoundsGEP(Base, Difference,
16361                                       /*SignedIndices=*/true,
16362                                       /*isSubtraction=*/!AlignUp,
16363                                       E->getExprLoc(), "aligned_result");
16364     Result = Builder.CreatePointerCast(Result, Args.SrcType);
16365     // Emit an alignment assumption to ensure that the new alignment is
16366     // propagated to loads/stores, etc.
16367     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
16368   }
16369   assert(Result->getType() == Args.SrcType);
16370   return RValue::get(Result);
16371 }
16372 
EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,const CallExpr * E)16373 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
16374                                                    const CallExpr *E) {
16375   switch (BuiltinID) {
16376   case WebAssembly::BI__builtin_wasm_memory_size: {
16377     llvm::Type *ResultType = ConvertType(E->getType());
16378     Value *I = EmitScalarExpr(E->getArg(0));
16379     Function *Callee =
16380         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
16381     return Builder.CreateCall(Callee, I);
16382   }
16383   case WebAssembly::BI__builtin_wasm_memory_grow: {
16384     llvm::Type *ResultType = ConvertType(E->getType());
16385     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
16386                      EmitScalarExpr(E->getArg(1))};
16387     Function *Callee =
16388         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
16389     return Builder.CreateCall(Callee, Args);
16390   }
16391   case WebAssembly::BI__builtin_wasm_tls_size: {
16392     llvm::Type *ResultType = ConvertType(E->getType());
16393     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
16394     return Builder.CreateCall(Callee);
16395   }
16396   case WebAssembly::BI__builtin_wasm_tls_align: {
16397     llvm::Type *ResultType = ConvertType(E->getType());
16398     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
16399     return Builder.CreateCall(Callee);
16400   }
16401   case WebAssembly::BI__builtin_wasm_tls_base: {
16402     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
16403     return Builder.CreateCall(Callee);
16404   }
16405   case WebAssembly::BI__builtin_wasm_throw: {
16406     Value *Tag = EmitScalarExpr(E->getArg(0));
16407     Value *Obj = EmitScalarExpr(E->getArg(1));
16408     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
16409     return Builder.CreateCall(Callee, {Tag, Obj});
16410   }
16411   case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
16412     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
16413     return Builder.CreateCall(Callee);
16414   }
16415   case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
16416     Value *Addr = EmitScalarExpr(E->getArg(0));
16417     Value *Expected = EmitScalarExpr(E->getArg(1));
16418     Value *Timeout = EmitScalarExpr(E->getArg(2));
16419     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
16420     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16421   }
16422   case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
16423     Value *Addr = EmitScalarExpr(E->getArg(0));
16424     Value *Expected = EmitScalarExpr(E->getArg(1));
16425     Value *Timeout = EmitScalarExpr(E->getArg(2));
16426     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
16427     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
16428   }
16429   case WebAssembly::BI__builtin_wasm_atomic_notify: {
16430     Value *Addr = EmitScalarExpr(E->getArg(0));
16431     Value *Count = EmitScalarExpr(E->getArg(1));
16432     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
16433     return Builder.CreateCall(Callee, {Addr, Count});
16434   }
16435   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
16436   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
16437   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
16438   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
16439     Value *Src = EmitScalarExpr(E->getArg(0));
16440     llvm::Type *ResT = ConvertType(E->getType());
16441     Function *Callee =
16442         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
16443     return Builder.CreateCall(Callee, {Src});
16444   }
16445   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
16446   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
16447   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
16448   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
16449     Value *Src = EmitScalarExpr(E->getArg(0));
16450     llvm::Type *ResT = ConvertType(E->getType());
16451     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
16452                                         {ResT, Src->getType()});
16453     return Builder.CreateCall(Callee, {Src});
16454   }
16455   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
16456   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
16457   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
16458   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
16459   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
16460     Value *Src = EmitScalarExpr(E->getArg(0));
16461     llvm::Type *ResT = ConvertType(E->getType());
16462     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
16463                                         {ResT, Src->getType()});
16464     return Builder.CreateCall(Callee, {Src});
16465   }
16466   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
16467   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
16468   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
16469   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
16470   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
16471     Value *Src = EmitScalarExpr(E->getArg(0));
16472     llvm::Type *ResT = ConvertType(E->getType());
16473     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
16474                                         {ResT, Src->getType()});
16475     return Builder.CreateCall(Callee, {Src});
16476   }
16477   case WebAssembly::BI__builtin_wasm_min_f32:
16478   case WebAssembly::BI__builtin_wasm_min_f64:
16479   case WebAssembly::BI__builtin_wasm_min_f32x4:
16480   case WebAssembly::BI__builtin_wasm_min_f64x2: {
16481     Value *LHS = EmitScalarExpr(E->getArg(0));
16482     Value *RHS = EmitScalarExpr(E->getArg(1));
16483     Function *Callee =
16484         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
16485     return Builder.CreateCall(Callee, {LHS, RHS});
16486   }
16487   case WebAssembly::BI__builtin_wasm_max_f32:
16488   case WebAssembly::BI__builtin_wasm_max_f64:
16489   case WebAssembly::BI__builtin_wasm_max_f32x4:
16490   case WebAssembly::BI__builtin_wasm_max_f64x2: {
16491     Value *LHS = EmitScalarExpr(E->getArg(0));
16492     Value *RHS = EmitScalarExpr(E->getArg(1));
16493     Function *Callee =
16494         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
16495     return Builder.CreateCall(Callee, {LHS, RHS});
16496   }
16497   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
16498   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
16499     Value *LHS = EmitScalarExpr(E->getArg(0));
16500     Value *RHS = EmitScalarExpr(E->getArg(1));
16501     Function *Callee =
16502         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
16503     return Builder.CreateCall(Callee, {LHS, RHS});
16504   }
16505   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
16506   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
16507     Value *LHS = EmitScalarExpr(E->getArg(0));
16508     Value *RHS = EmitScalarExpr(E->getArg(1));
16509     Function *Callee =
16510         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
16511     return Builder.CreateCall(Callee, {LHS, RHS});
16512   }
16513   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16514   case WebAssembly::BI__builtin_wasm_floor_f32x4:
16515   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16516   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16517   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16518   case WebAssembly::BI__builtin_wasm_floor_f64x2:
16519   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16520   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
16521     unsigned IntNo;
16522     switch (BuiltinID) {
16523     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
16524     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
16525       IntNo = Intrinsic::wasm_ceil;
16526       break;
16527     case WebAssembly::BI__builtin_wasm_floor_f32x4:
16528     case WebAssembly::BI__builtin_wasm_floor_f64x2:
16529       IntNo = Intrinsic::wasm_floor;
16530       break;
16531     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
16532     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
16533       IntNo = Intrinsic::wasm_trunc;
16534       break;
16535     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
16536     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
16537       IntNo = Intrinsic::wasm_nearest;
16538       break;
16539     default:
16540       llvm_unreachable("unexpected builtin ID");
16541     }
16542     Value *Value = EmitScalarExpr(E->getArg(0));
16543     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16544     return Builder.CreateCall(Callee, Value);
16545   }
16546   case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
16547     Value *Src = EmitScalarExpr(E->getArg(0));
16548     Value *Indices = EmitScalarExpr(E->getArg(1));
16549     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
16550     return Builder.CreateCall(Callee, {Src, Indices});
16551   }
16552   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16553   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16554   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16555   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16556   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16557   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16558   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16559   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
16560     llvm::APSInt LaneConst =
16561         *E->getArg(1)->getIntegerConstantExpr(getContext());
16562     Value *Vec = EmitScalarExpr(E->getArg(0));
16563     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16564     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
16565     switch (BuiltinID) {
16566     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
16567     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
16568       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
16569     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
16570     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
16571       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
16572     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
16573     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
16574     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
16575     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
16576       return Extract;
16577     default:
16578       llvm_unreachable("unexpected builtin ID");
16579     }
16580   }
16581   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16582   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
16583   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16584   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16585   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16586   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
16587     llvm::APSInt LaneConst =
16588         *E->getArg(1)->getIntegerConstantExpr(getContext());
16589     Value *Vec = EmitScalarExpr(E->getArg(0));
16590     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
16591     Value *Val = EmitScalarExpr(E->getArg(2));
16592     switch (BuiltinID) {
16593     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
16594     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
16595       llvm::Type *ElemType =
16596           cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
16597       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
16598       return Builder.CreateInsertElement(Vec, Trunc, Lane);
16599     }
16600     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
16601     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
16602     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
16603     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
16604       return Builder.CreateInsertElement(Vec, Val, Lane);
16605     default:
16606       llvm_unreachable("unexpected builtin ID");
16607     }
16608   }
16609   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16610   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16611   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16612   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16613   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16614   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16615   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16616   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
16617     unsigned IntNo;
16618     switch (BuiltinID) {
16619     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
16620     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
16621       IntNo = Intrinsic::sadd_sat;
16622       break;
16623     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
16624     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
16625       IntNo = Intrinsic::uadd_sat;
16626       break;
16627     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
16628     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
16629       IntNo = Intrinsic::wasm_sub_saturate_signed;
16630       break;
16631     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
16632     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
16633       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
16634       break;
16635     default:
16636       llvm_unreachable("unexpected builtin ID");
16637     }
16638     Value *LHS = EmitScalarExpr(E->getArg(0));
16639     Value *RHS = EmitScalarExpr(E->getArg(1));
16640     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16641     return Builder.CreateCall(Callee, {LHS, RHS});
16642   }
16643   case WebAssembly::BI__builtin_wasm_abs_i8x16:
16644   case WebAssembly::BI__builtin_wasm_abs_i16x8:
16645   case WebAssembly::BI__builtin_wasm_abs_i32x4: {
16646     Value *Vec = EmitScalarExpr(E->getArg(0));
16647     Value *Neg = Builder.CreateNeg(Vec, "neg");
16648     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
16649     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
16650     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
16651   }
16652   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16653   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16654   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16655   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16656   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16657   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16658   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16659   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16660   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16661   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16662   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16663   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
16664     Value *LHS = EmitScalarExpr(E->getArg(0));
16665     Value *RHS = EmitScalarExpr(E->getArg(1));
16666     Value *ICmp;
16667     switch (BuiltinID) {
16668     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
16669     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
16670     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
16671       ICmp = Builder.CreateICmpSLT(LHS, RHS);
16672       break;
16673     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
16674     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
16675     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
16676       ICmp = Builder.CreateICmpULT(LHS, RHS);
16677       break;
16678     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
16679     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
16680     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
16681       ICmp = Builder.CreateICmpSGT(LHS, RHS);
16682       break;
16683     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
16684     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
16685     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
16686       ICmp = Builder.CreateICmpUGT(LHS, RHS);
16687       break;
16688     default:
16689       llvm_unreachable("unexpected builtin ID");
16690     }
16691     return Builder.CreateSelect(ICmp, LHS, RHS);
16692   }
16693   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
16694   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
16695     Value *LHS = EmitScalarExpr(E->getArg(0));
16696     Value *RHS = EmitScalarExpr(E->getArg(1));
16697     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
16698                                         ConvertType(E->getType()));
16699     return Builder.CreateCall(Callee, {LHS, RHS});
16700   }
16701   case WebAssembly::BI__builtin_wasm_q15mulr_saturate_s_i16x8: {
16702     Value *LHS = EmitScalarExpr(E->getArg(0));
16703     Value *RHS = EmitScalarExpr(E->getArg(1));
16704     Function *Callee =
16705         CGM.getIntrinsic(Intrinsic::wasm_q15mulr_saturate_signed);
16706     return Builder.CreateCall(Callee, {LHS, RHS});
16707   }
16708   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
16709   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
16710   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
16711   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
16712   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
16713   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
16714   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
16715   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
16716   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
16717   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
16718   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
16719   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: {
16720     Value *LHS = EmitScalarExpr(E->getArg(0));
16721     Value *RHS = EmitScalarExpr(E->getArg(1));
16722     unsigned IntNo;
16723     switch (BuiltinID) {
16724     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
16725     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
16726     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
16727       IntNo = Intrinsic::wasm_extmul_low_signed;
16728       break;
16729     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
16730     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
16731     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
16732       IntNo = Intrinsic::wasm_extmul_low_unsigned;
16733       break;
16734     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
16735     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
16736     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
16737       IntNo = Intrinsic::wasm_extmul_high_signed;
16738       break;
16739     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
16740     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
16741     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2:
16742       IntNo = Intrinsic::wasm_extmul_high_unsigned;
16743       break;
16744     default:
16745       llvm_unreachable("unexptected builtin ID");
16746     }
16747 
16748     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
16749     return Builder.CreateCall(Callee, {LHS, RHS});
16750   }
16751   case WebAssembly::BI__builtin_wasm_bitselect: {
16752     Value *V1 = EmitScalarExpr(E->getArg(0));
16753     Value *V2 = EmitScalarExpr(E->getArg(1));
16754     Value *C = EmitScalarExpr(E->getArg(2));
16755     Function *Callee =
16756         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
16757     return Builder.CreateCall(Callee, {V1, V2, C});
16758   }
16759   case WebAssembly::BI__builtin_wasm_signselect_i8x16:
16760   case WebAssembly::BI__builtin_wasm_signselect_i16x8:
16761   case WebAssembly::BI__builtin_wasm_signselect_i32x4:
16762   case WebAssembly::BI__builtin_wasm_signselect_i64x2: {
16763     Value *V1 = EmitScalarExpr(E->getArg(0));
16764     Value *V2 = EmitScalarExpr(E->getArg(1));
16765     Value *C = EmitScalarExpr(E->getArg(2));
16766     Function *Callee =
16767         CGM.getIntrinsic(Intrinsic::wasm_signselect, ConvertType(E->getType()));
16768     return Builder.CreateCall(Callee, {V1, V2, C});
16769   }
16770   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
16771     Value *LHS = EmitScalarExpr(E->getArg(0));
16772     Value *RHS = EmitScalarExpr(E->getArg(1));
16773     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
16774     return Builder.CreateCall(Callee, {LHS, RHS});
16775   }
16776   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
16777     Value *Vec = EmitScalarExpr(E->getArg(0));
16778     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt);
16779     return Builder.CreateCall(Callee, {Vec});
16780   }
16781   case WebAssembly::BI__builtin_wasm_eq_i64x2: {
16782     Value *LHS = EmitScalarExpr(E->getArg(0));
16783     Value *RHS = EmitScalarExpr(E->getArg(1));
16784     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_eq);
16785     return Builder.CreateCall(Callee, {LHS, RHS});
16786   }
16787   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16788   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16789   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16790   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16791   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16792   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16793   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16794   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
16795     unsigned IntNo;
16796     switch (BuiltinID) {
16797     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
16798     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
16799     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
16800     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
16801       IntNo = Intrinsic::wasm_anytrue;
16802       break;
16803     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
16804     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
16805     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
16806     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
16807       IntNo = Intrinsic::wasm_alltrue;
16808       break;
16809     default:
16810       llvm_unreachable("unexpected builtin ID");
16811     }
16812     Value *Vec = EmitScalarExpr(E->getArg(0));
16813     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
16814     return Builder.CreateCall(Callee, {Vec});
16815   }
16816   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
16817   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
16818   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
16819   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
16820     Value *Vec = EmitScalarExpr(E->getArg(0));
16821     Function *Callee =
16822         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
16823     return Builder.CreateCall(Callee, {Vec});
16824   }
16825   case WebAssembly::BI__builtin_wasm_abs_f32x4:
16826   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
16827     Value *Vec = EmitScalarExpr(E->getArg(0));
16828     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
16829     return Builder.CreateCall(Callee, {Vec});
16830   }
16831   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
16832   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
16833     Value *Vec = EmitScalarExpr(E->getArg(0));
16834     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
16835     return Builder.CreateCall(Callee, {Vec});
16836   }
16837   case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16838   case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16839   case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16840   case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
16841     Value *A = EmitScalarExpr(E->getArg(0));
16842     Value *B = EmitScalarExpr(E->getArg(1));
16843     Value *C = EmitScalarExpr(E->getArg(2));
16844     unsigned IntNo;
16845     switch (BuiltinID) {
16846     case WebAssembly::BI__builtin_wasm_qfma_f32x4:
16847     case WebAssembly::BI__builtin_wasm_qfma_f64x2:
16848       IntNo = Intrinsic::wasm_qfma;
16849       break;
16850     case WebAssembly::BI__builtin_wasm_qfms_f32x4:
16851     case WebAssembly::BI__builtin_wasm_qfms_f64x2:
16852       IntNo = Intrinsic::wasm_qfms;
16853       break;
16854     default:
16855       llvm_unreachable("unexpected builtin ID");
16856     }
16857     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
16858     return Builder.CreateCall(Callee, {A, B, C});
16859   }
16860   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16861   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16862   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16863   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
16864     Value *Low = EmitScalarExpr(E->getArg(0));
16865     Value *High = EmitScalarExpr(E->getArg(1));
16866     unsigned IntNo;
16867     switch (BuiltinID) {
16868     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
16869     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
16870       IntNo = Intrinsic::wasm_narrow_signed;
16871       break;
16872     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
16873     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
16874       IntNo = Intrinsic::wasm_narrow_unsigned;
16875       break;
16876     default:
16877       llvm_unreachable("unexpected builtin ID");
16878     }
16879     Function *Callee =
16880         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
16881     return Builder.CreateCall(Callee, {Low, High});
16882   }
16883   case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2:
16884   case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2:
16885   case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2:
16886   case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2: {
16887     Value *Vec = EmitScalarExpr(E->getArg(0));
16888     unsigned IntNo;
16889     switch (BuiltinID) {
16890     case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i64x2:
16891       IntNo = Intrinsic::wasm_widen_low_signed;
16892       break;
16893     case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i64x2:
16894       IntNo = Intrinsic::wasm_widen_high_signed;
16895       break;
16896     case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i64x2:
16897       IntNo = Intrinsic::wasm_widen_low_unsigned;
16898       break;
16899     case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i64x2:
16900       IntNo = Intrinsic::wasm_widen_high_unsigned;
16901       break;
16902     }
16903     Function *Callee = CGM.getIntrinsic(IntNo);
16904     return Builder.CreateCall(Callee, Vec);
16905   }
16906   case WebAssembly::BI__builtin_wasm_load32_zero: {
16907     Value *Ptr = EmitScalarExpr(E->getArg(0));
16908     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero);
16909     return Builder.CreateCall(Callee, {Ptr});
16910   }
16911   case WebAssembly::BI__builtin_wasm_load64_zero: {
16912     Value *Ptr = EmitScalarExpr(E->getArg(0));
16913     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero);
16914     return Builder.CreateCall(Callee, {Ptr});
16915   }
16916   case WebAssembly::BI__builtin_wasm_load8_lane:
16917   case WebAssembly::BI__builtin_wasm_load16_lane:
16918   case WebAssembly::BI__builtin_wasm_load32_lane:
16919   case WebAssembly::BI__builtin_wasm_load64_lane:
16920   case WebAssembly::BI__builtin_wasm_store8_lane:
16921   case WebAssembly::BI__builtin_wasm_store16_lane:
16922   case WebAssembly::BI__builtin_wasm_store32_lane:
16923   case WebAssembly::BI__builtin_wasm_store64_lane: {
16924     Value *Ptr = EmitScalarExpr(E->getArg(0));
16925     Value *Vec = EmitScalarExpr(E->getArg(1));
16926     Optional<llvm::APSInt> LaneIdxConst =
16927         E->getArg(2)->getIntegerConstantExpr(getContext());
16928     assert(LaneIdxConst && "Constant arg isn't actually constant?");
16929     Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst);
16930     unsigned IntNo;
16931     switch (BuiltinID) {
16932     case WebAssembly::BI__builtin_wasm_load8_lane:
16933       IntNo = Intrinsic::wasm_load8_lane;
16934       break;
16935     case WebAssembly::BI__builtin_wasm_load16_lane:
16936       IntNo = Intrinsic::wasm_load16_lane;
16937       break;
16938     case WebAssembly::BI__builtin_wasm_load32_lane:
16939       IntNo = Intrinsic::wasm_load32_lane;
16940       break;
16941     case WebAssembly::BI__builtin_wasm_load64_lane:
16942       IntNo = Intrinsic::wasm_load64_lane;
16943       break;
16944     case WebAssembly::BI__builtin_wasm_store8_lane:
16945       IntNo = Intrinsic::wasm_store8_lane;
16946       break;
16947     case WebAssembly::BI__builtin_wasm_store16_lane:
16948       IntNo = Intrinsic::wasm_store16_lane;
16949       break;
16950     case WebAssembly::BI__builtin_wasm_store32_lane:
16951       IntNo = Intrinsic::wasm_store32_lane;
16952       break;
16953     case WebAssembly::BI__builtin_wasm_store64_lane:
16954       IntNo = Intrinsic::wasm_store64_lane;
16955       break;
16956     default:
16957       llvm_unreachable("unexpected builtin ID");
16958     }
16959     Function *Callee = CGM.getIntrinsic(IntNo);
16960     return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx});
16961   }
16962   case WebAssembly::BI__builtin_wasm_shuffle_v8x16: {
16963     Value *Ops[18];
16964     size_t OpIdx = 0;
16965     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
16966     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
16967     while (OpIdx < 18) {
16968       Optional<llvm::APSInt> LaneConst =
16969           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
16970       assert(LaneConst && "Constant arg isn't actually constant?");
16971       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
16972     }
16973     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
16974     return Builder.CreateCall(Callee, Ops);
16975   }
16976   default:
16977     return nullptr;
16978   }
16979 }
16980 
16981 static std::pair<Intrinsic::ID, unsigned>
getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID)16982 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
16983   struct Info {
16984     unsigned BuiltinID;
16985     Intrinsic::ID IntrinsicID;
16986     unsigned VecLen;
16987   };
16988   Info Infos[] = {
16989 #define CUSTOM_BUILTIN_MAPPING(x,s) \
16990   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
16991     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
16992     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
16993     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
16994     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
16995     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
16996     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
16997     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
16998     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
16999     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
17000     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
17001     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
17002     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
17003     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
17004     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
17005     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
17006     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
17007     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
17008     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
17009     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
17010     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
17011     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
17012     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
17013     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
17014     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
17015     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
17016     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
17017     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
17018     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
17019     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
17020     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
17021 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
17022 #undef CUSTOM_BUILTIN_MAPPING
17023   };
17024 
17025   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
17026   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
17027   (void)SortOnce;
17028 
17029   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
17030                                    Info{BuiltinID, 0, 0}, CmpInfo);
17031   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
17032     return {Intrinsic::not_intrinsic, 0};
17033 
17034   return {F->IntrinsicID, F->VecLen};
17035 }
17036 
EmitHexagonBuiltinExpr(unsigned BuiltinID,const CallExpr * E)17037 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
17038                                                const CallExpr *E) {
17039   Intrinsic::ID ID;
17040   unsigned VecLen;
17041   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
17042 
17043   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
17044     // The base pointer is passed by address, so it needs to be loaded.
17045     Address A = EmitPointerWithAlignment(E->getArg(0));
17046     Address BP = Address(
17047         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
17048     llvm::Value *Base = Builder.CreateLoad(BP);
17049     // The treatment of both loads and stores is the same: the arguments for
17050     // the builtin are the same as the arguments for the intrinsic.
17051     // Load:
17052     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
17053     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
17054     // Store:
17055     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
17056     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
17057     SmallVector<llvm::Value*,5> Ops = { Base };
17058     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
17059       Ops.push_back(EmitScalarExpr(E->getArg(i)));
17060 
17061     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
17062     // The load intrinsics generate two results (Value, NewBase), stores
17063     // generate one (NewBase). The new base address needs to be stored.
17064     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
17065                                   : Result;
17066     llvm::Value *LV = Builder.CreateBitCast(
17067         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
17068     Address Dest = EmitPointerWithAlignment(E->getArg(0));
17069     llvm::Value *RetVal =
17070         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
17071     if (IsLoad)
17072       RetVal = Builder.CreateExtractValue(Result, 0);
17073     return RetVal;
17074   };
17075 
17076   // Handle the conversion of bit-reverse load intrinsics to bit code.
17077   // The intrinsic call after this function only reads from memory and the
17078   // write to memory is dealt by the store instruction.
17079   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
17080     // The intrinsic generates one result, which is the new value for the base
17081     // pointer. It needs to be returned. The result of the load instruction is
17082     // passed to intrinsic by address, so the value needs to be stored.
17083     llvm::Value *BaseAddress =
17084         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
17085 
17086     // Expressions like &(*pt++) will be incremented per evaluation.
17087     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
17088     // per call.
17089     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
17090     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
17091                        DestAddr.getAlignment());
17092     llvm::Value *DestAddress = DestAddr.getPointer();
17093 
17094     // Operands are Base, Dest, Modifier.
17095     // The intrinsic format in LLVM IR is defined as
17096     // { ValueType, i8* } (i8*, i32).
17097     llvm::Value *Result = Builder.CreateCall(
17098         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
17099 
17100     // The value needs to be stored as the variable is passed by reference.
17101     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
17102 
17103     // The store needs to be truncated to fit the destination type.
17104     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
17105     // to be handled with stores of respective destination type.
17106     DestVal = Builder.CreateTrunc(DestVal, DestTy);
17107 
17108     llvm::Value *DestForStore =
17109         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
17110     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
17111     // The updated value of the base pointer is returned.
17112     return Builder.CreateExtractValue(Result, 1);
17113   };
17114 
17115   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
17116     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
17117                                      : Intrinsic::hexagon_V6_vandvrt;
17118     return Builder.CreateCall(CGM.getIntrinsic(ID),
17119                               {Vec, Builder.getInt32(-1)});
17120   };
17121   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
17122     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
17123                                      : Intrinsic::hexagon_V6_vandqrt;
17124     return Builder.CreateCall(CGM.getIntrinsic(ID),
17125                               {Pred, Builder.getInt32(-1)});
17126   };
17127 
17128   switch (BuiltinID) {
17129   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
17130   // and the corresponding C/C++ builtins use loads/stores to update
17131   // the predicate.
17132   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
17133   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
17134   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
17135   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
17136     // Get the type from the 0-th argument.
17137     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
17138     Address PredAddr = Builder.CreateBitCast(
17139         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
17140     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
17141     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
17142         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
17143 
17144     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
17145     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
17146         PredAddr.getAlignment());
17147     return Builder.CreateExtractValue(Result, 0);
17148   }
17149 
17150   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
17151   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
17152   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
17153   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
17154   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
17155   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
17156   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
17157   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
17158   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
17159   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
17160   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
17161   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
17162     return MakeCircOp(ID, /*IsLoad=*/true);
17163   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
17164   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
17165   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
17166   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
17167   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
17168   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
17169   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
17170   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
17171   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
17172   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
17173     return MakeCircOp(ID, /*IsLoad=*/false);
17174   case Hexagon::BI__builtin_brev_ldub:
17175     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
17176   case Hexagon::BI__builtin_brev_ldb:
17177     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
17178   case Hexagon::BI__builtin_brev_lduh:
17179     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
17180   case Hexagon::BI__builtin_brev_ldh:
17181     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
17182   case Hexagon::BI__builtin_brev_ldw:
17183     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
17184   case Hexagon::BI__builtin_brev_ldd:
17185     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
17186 
17187   default: {
17188     if (ID == Intrinsic::not_intrinsic)
17189       return nullptr;
17190 
17191     auto IsVectorPredTy = [](llvm::Type *T) {
17192       return T->isVectorTy() &&
17193              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
17194     };
17195 
17196     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
17197     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
17198     SmallVector<llvm::Value*,4> Ops;
17199     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
17200       llvm::Type *T = IntrTy->getParamType(i);
17201       const Expr *A = E->getArg(i);
17202       if (IsVectorPredTy(T)) {
17203         // There will be an implicit cast to a boolean vector. Strip it.
17204         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
17205           if (Cast->getCastKind() == CK_BitCast)
17206             A = Cast->getSubExpr();
17207         }
17208         Ops.push_back(V2Q(EmitScalarExpr(A)));
17209       } else {
17210         Ops.push_back(EmitScalarExpr(A));
17211       }
17212     }
17213 
17214     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
17215     if (IsVectorPredTy(IntrTy->getReturnType()))
17216       Call = Q2V(Call);
17217 
17218     return Call;
17219   } // default
17220   } // switch
17221 
17222   return nullptr;
17223 }
17224