1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Builder implementation for CGRecordLayout objects.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGRecordLayout.h"
14 #include "CGCXXABI.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 namespace {
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
38 ///   and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
41 ///   contains enough information to determine where the runs break.  Microsoft
42 ///   and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
45 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
46 ///   and if it is possible to use that extra byte of padding we must use
47 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
48 ///   C++ examples that require clipping:
49 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
51 //    could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
54 ///   has an underlying storage type.  Therefore empty structures containing
55 ///   zero sized subobjects such as empty records or zero sized arrays still get
56 ///   a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 ///   code to access fields.  Bitfields in tail position with tail padding may
59 ///   be clipped in the base class but not the complete class (we may discover
60 ///   that the tail padding is not used in the complete class.) However,
61 ///   because LLVM reads from the complete type it can generate incorrect code
62 ///   if we do not clip the tail padding off of the bitfield in the complete
63 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
64 ///   The location of the clip is stored internally as a sentinel of type
65 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
66 ///   should because locations of things such as VBases are bogus in the llvm
67 ///   type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
69 ///   get their own storage because they're laid out as part of another base
70 ///   or at the beginning of the structure.  Determining if a VBase actually
71 ///   gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering {
74   // MemberInfo is a helper structure that contains information about a record
75   // member.  In additional to the standard member types, there exists a
76   // sentinel member type that ensures correct rounding.
77   struct MemberInfo {
78     CharUnits Offset;
79     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
80     llvm::Type *Data;
81     union {
82       const FieldDecl *FD;
83       const CXXRecordDecl *RD;
84     };
MemberInfo__anon84e506a50111::CGRecordLowering::MemberInfo85     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
86                const FieldDecl *FD = nullptr)
87       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
MemberInfo__anon84e506a50111::CGRecordLowering::MemberInfo88     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
89                const CXXRecordDecl *RD)
90       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
91     // MemberInfos are sorted so we define a < operator.
operator <__anon84e506a50111::CGRecordLowering::MemberInfo92     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
93   };
94   // The constructor.
95   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
96   // Short helper routines.
97   /// Constructs a MemberInfo instance from an offset and llvm::Type *.
StorageInfo__anon84e506a50111::CGRecordLowering98   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
99     return MemberInfo(Offset, MemberInfo::Field, Data);
100   }
101 
102   /// The Microsoft bitfield layout rule allocates discrete storage
103   /// units of the field's formal type and only combines adjacent
104   /// fields of the same formal type.  We want to emit a layout with
105   /// these discrete storage units instead of combining them into a
106   /// continuous run.
isDiscreteBitFieldABI__anon84e506a50111::CGRecordLowering107   bool isDiscreteBitFieldABI() {
108     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
109            D->isMsStruct(Context);
110   }
111 
112   /// Helper function to check if we are targeting AAPCS.
isAAPCS__anon84e506a50111::CGRecordLowering113   bool isAAPCS() const {
114     return Context.getTargetInfo().getABI().startswith("aapcs");
115   }
116 
117   /// Helper function to check if the target machine is BigEndian.
isBE__anon84e506a50111::CGRecordLowering118   bool isBE() const { return Context.getTargetInfo().isBigEndian(); }
119 
120   /// The Itanium base layout rule allows virtual bases to overlap
121   /// other bases, which complicates layout in specific ways.
122   ///
123   /// Note specifically that the ms_struct attribute doesn't change this.
isOverlappingVBaseABI__anon84e506a50111::CGRecordLowering124   bool isOverlappingVBaseABI() {
125     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
126   }
127 
128   /// Wraps llvm::Type::getIntNTy with some implicit arguments.
getIntNType__anon84e506a50111::CGRecordLowering129   llvm::Type *getIntNType(uint64_t NumBits) {
130     return llvm::Type::getIntNTy(Types.getLLVMContext(),
131                                  (unsigned)llvm::alignTo(NumBits, 8));
132   }
133   /// Gets an llvm type of size NumBytes and alignment 1.
getByteArrayType__anon84e506a50111::CGRecordLowering134   llvm::Type *getByteArrayType(CharUnits NumBytes) {
135     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
136     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
137     return NumBytes == CharUnits::One() ? Type :
138         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
139   }
140   /// Gets the storage type for a field decl and handles storage
141   /// for itanium bitfields that are smaller than their declared type.
getStorageType__anon84e506a50111::CGRecordLowering142   llvm::Type *getStorageType(const FieldDecl *FD) {
143     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
144     if (!FD->isBitField()) return Type;
145     if (isDiscreteBitFieldABI()) return Type;
146     return getIntNType(std::min(FD->getBitWidthValue(Context),
147                              (unsigned)Context.toBits(getSize(Type))));
148   }
149   /// Gets the llvm Basesubobject type from a CXXRecordDecl.
getStorageType__anon84e506a50111::CGRecordLowering150   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
151     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
152   }
bitsToCharUnits__anon84e506a50111::CGRecordLowering153   CharUnits bitsToCharUnits(uint64_t BitOffset) {
154     return Context.toCharUnitsFromBits(BitOffset);
155   }
getSize__anon84e506a50111::CGRecordLowering156   CharUnits getSize(llvm::Type *Type) {
157     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
158   }
getAlignment__anon84e506a50111::CGRecordLowering159   CharUnits getAlignment(llvm::Type *Type) {
160     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
161   }
isZeroInitializable__anon84e506a50111::CGRecordLowering162   bool isZeroInitializable(const FieldDecl *FD) {
163     return Types.isZeroInitializable(FD->getType());
164   }
isZeroInitializable__anon84e506a50111::CGRecordLowering165   bool isZeroInitializable(const RecordDecl *RD) {
166     return Types.isZeroInitializable(RD);
167   }
appendPaddingBytes__anon84e506a50111::CGRecordLowering168   void appendPaddingBytes(CharUnits Size) {
169     if (!Size.isZero())
170       FieldTypes.push_back(getByteArrayType(Size));
171   }
getFieldBitOffset__anon84e506a50111::CGRecordLowering172   uint64_t getFieldBitOffset(const FieldDecl *FD) {
173     return Layout.getFieldOffset(FD->getFieldIndex());
174   }
175   // Layout routines.
176   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
177                        llvm::Type *StorageType);
178   /// Lowers an ASTRecordLayout to a llvm type.
179   void lower(bool NonVirtualBaseType);
180   void lowerUnion();
181   void accumulateFields();
182   void accumulateBitFields(RecordDecl::field_iterator Field,
183                            RecordDecl::field_iterator FieldEnd);
184   void computeVolatileBitfields();
185   void accumulateBases();
186   void accumulateVPtrs();
187   void accumulateVBases();
188   /// Recursively searches all of the bases to find out if a vbase is
189   /// not the primary vbase of some base class.
190   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
191   void calculateZeroInit();
192   /// Lowers bitfield storage types to I8 arrays for bitfields with tail
193   /// padding that is or can potentially be used.
194   void clipTailPadding();
195   /// Determines if we need a packed llvm struct.
196   void determinePacked(bool NVBaseType);
197   /// Inserts padding everywhere it's needed.
198   void insertPadding();
199   /// Fills out the structures that are ultimately consumed.
200   void fillOutputFields();
201   // Input memoization fields.
202   CodeGenTypes &Types;
203   const ASTContext &Context;
204   const RecordDecl *D;
205   const CXXRecordDecl *RD;
206   const ASTRecordLayout &Layout;
207   const llvm::DataLayout &DataLayout;
208   // Helpful intermediate data-structures.
209   std::vector<MemberInfo> Members;
210   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
211   SmallVector<llvm::Type *, 16> FieldTypes;
212   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
213   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
214   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
215   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
216   bool IsZeroInitializable : 1;
217   bool IsZeroInitializableAsBase : 1;
218   bool Packed : 1;
219 private:
220   CGRecordLowering(const CGRecordLowering &) = delete;
221   void operator =(const CGRecordLowering &) = delete;
222 };
223 } // namespace {
224 
CGRecordLowering(CodeGenTypes & Types,const RecordDecl * D,bool Packed)225 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
226                                    bool Packed)
227     : Types(Types), Context(Types.getContext()), D(D),
228       RD(dyn_cast<CXXRecordDecl>(D)),
229       Layout(Types.getContext().getASTRecordLayout(D)),
230       DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
231       IsZeroInitializableAsBase(true), Packed(Packed) {}
232 
setBitFieldInfo(const FieldDecl * FD,CharUnits StartOffset,llvm::Type * StorageType)233 void CGRecordLowering::setBitFieldInfo(
234     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
235   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
236   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
237   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
238   Info.Size = FD->getBitWidthValue(Context);
239   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
240   Info.StorageOffset = StartOffset;
241   if (Info.Size > Info.StorageSize)
242     Info.Size = Info.StorageSize;
243   // Reverse the bit offsets for big endian machines. Because we represent
244   // a bitfield as a single large integer load, we can imagine the bits
245   // counting from the most-significant-bit instead of the
246   // least-significant-bit.
247   if (DataLayout.isBigEndian())
248     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
249 
250   Info.VolatileStorageSize = 0;
251   Info.VolatileOffset = 0;
252   Info.VolatileStorageOffset = CharUnits::Zero();
253 }
254 
lower(bool NVBaseType)255 void CGRecordLowering::lower(bool NVBaseType) {
256   // The lowering process implemented in this function takes a variety of
257   // carefully ordered phases.
258   // 1) Store all members (fields and bases) in a list and sort them by offset.
259   // 2) Add a 1-byte capstone member at the Size of the structure.
260   // 3) Clip bitfield storages members if their tail padding is or might be
261   //    used by another field or base.  The clipping process uses the capstone
262   //    by treating it as another object that occurs after the record.
263   // 4) Determine if the llvm-struct requires packing.  It's important that this
264   //    phase occur after clipping, because clipping changes the llvm type.
265   //    This phase reads the offset of the capstone when determining packedness
266   //    and updates the alignment of the capstone to be equal of the alignment
267   //    of the record after doing so.
268   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
269   //    have been computed and needs to know the alignment of the record in
270   //    order to understand if explicit tail padding is needed.
271   // 6) Remove the capstone, we don't need it anymore.
272   // 7) Determine if this record can be zero-initialized.  This phase could have
273   //    been placed anywhere after phase 1.
274   // 8) Format the complete list of members in a way that can be consumed by
275   //    CodeGenTypes::ComputeRecordLayout.
276   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
277   if (D->isUnion()) {
278     lowerUnion();
279     computeVolatileBitfields();
280     return;
281   }
282   accumulateFields();
283   // RD implies C++.
284   if (RD) {
285     accumulateVPtrs();
286     accumulateBases();
287     if (Members.empty()) {
288       appendPaddingBytes(Size);
289       computeVolatileBitfields();
290       return;
291     }
292     if (!NVBaseType)
293       accumulateVBases();
294   }
295   llvm::stable_sort(Members);
296   Members.push_back(StorageInfo(Size, getIntNType(8)));
297   clipTailPadding();
298   determinePacked(NVBaseType);
299   insertPadding();
300   Members.pop_back();
301   calculateZeroInit();
302   fillOutputFields();
303   computeVolatileBitfields();
304 }
305 
lowerUnion()306 void CGRecordLowering::lowerUnion() {
307   CharUnits LayoutSize = Layout.getSize();
308   llvm::Type *StorageType = nullptr;
309   bool SeenNamedMember = false;
310   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
311   // locate the "most appropriate" storage type.  The heuristic for finding the
312   // storage type isn't necessary, the first (non-0-length-bitfield) field's
313   // type would work fine and be simpler but would be different than what we've
314   // been doing and cause lit tests to change.
315   for (const auto *Field : D->fields()) {
316     if (Field->isBitField()) {
317       if (Field->isZeroLengthBitField(Context))
318         continue;
319       llvm::Type *FieldType = getStorageType(Field);
320       if (LayoutSize < getSize(FieldType))
321         FieldType = getByteArrayType(LayoutSize);
322       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
323     }
324     Fields[Field->getCanonicalDecl()] = 0;
325     llvm::Type *FieldType = getStorageType(Field);
326     // Compute zero-initializable status.
327     // This union might not be zero initialized: it may contain a pointer to
328     // data member which might have some exotic initialization sequence.
329     // If this is the case, then we aught not to try and come up with a "better"
330     // type, it might not be very easy to come up with a Constant which
331     // correctly initializes it.
332     if (!SeenNamedMember) {
333       SeenNamedMember = Field->getIdentifier();
334       if (!SeenNamedMember)
335         if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
336           SeenNamedMember = FieldRD->findFirstNamedDataMember();
337       if (SeenNamedMember && !isZeroInitializable(Field)) {
338         IsZeroInitializable = IsZeroInitializableAsBase = false;
339         StorageType = FieldType;
340       }
341     }
342     // Because our union isn't zero initializable, we won't be getting a better
343     // storage type.
344     if (!IsZeroInitializable)
345       continue;
346     // Conditionally update our storage type if we've got a new "better" one.
347     if (!StorageType ||
348         getAlignment(FieldType) >  getAlignment(StorageType) ||
349         (getAlignment(FieldType) == getAlignment(StorageType) &&
350         getSize(FieldType) > getSize(StorageType)))
351       StorageType = FieldType;
352   }
353   // If we have no storage type just pad to the appropriate size and return.
354   if (!StorageType)
355     return appendPaddingBytes(LayoutSize);
356   // If our storage size was bigger than our required size (can happen in the
357   // case of packed bitfields on Itanium) then just use an I8 array.
358   if (LayoutSize < getSize(StorageType))
359     StorageType = getByteArrayType(LayoutSize);
360   FieldTypes.push_back(StorageType);
361   appendPaddingBytes(LayoutSize - getSize(StorageType));
362   // Set packed if we need it.
363   if (LayoutSize % getAlignment(StorageType))
364     Packed = true;
365 }
366 
accumulateFields()367 void CGRecordLowering::accumulateFields() {
368   for (RecordDecl::field_iterator Field = D->field_begin(),
369                                   FieldEnd = D->field_end();
370     Field != FieldEnd;) {
371     if (Field->isBitField()) {
372       RecordDecl::field_iterator Start = Field;
373       // Iterate to gather the list of bitfields.
374       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
375       accumulateBitFields(Start, Field);
376     } else if (!Field->isZeroSize(Context)) {
377       Members.push_back(MemberInfo(
378           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
379           getStorageType(*Field), *Field));
380       ++Field;
381     } else {
382       ++Field;
383     }
384   }
385 }
386 
387 void
accumulateBitFields(RecordDecl::field_iterator Field,RecordDecl::field_iterator FieldEnd)388 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
389                                       RecordDecl::field_iterator FieldEnd) {
390   // Run stores the first element of the current run of bitfields.  FieldEnd is
391   // used as a special value to note that we don't have a current run.  A
392   // bitfield run is a contiguous collection of bitfields that can be stored in
393   // the same storage block.  Zero-sized bitfields and bitfields that would
394   // cross an alignment boundary break a run and start a new one.
395   RecordDecl::field_iterator Run = FieldEnd;
396   // Tail is the offset of the first bit off the end of the current run.  It's
397   // used to determine if the ASTRecordLayout is treating these two bitfields as
398   // contiguous.  StartBitOffset is offset of the beginning of the Run.
399   uint64_t StartBitOffset, Tail = 0;
400   if (isDiscreteBitFieldABI()) {
401     for (; Field != FieldEnd; ++Field) {
402       uint64_t BitOffset = getFieldBitOffset(*Field);
403       // Zero-width bitfields end runs.
404       if (Field->isZeroLengthBitField(Context)) {
405         Run = FieldEnd;
406         continue;
407       }
408       llvm::Type *Type =
409           Types.ConvertTypeForMem(Field->getType(), /*ForBitFields=*/true);
410       // If we don't have a run yet, or don't live within the previous run's
411       // allocated storage then we allocate some storage and start a new run.
412       if (Run == FieldEnd || BitOffset >= Tail) {
413         Run = Field;
414         StartBitOffset = BitOffset;
415         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
416         // Add the storage member to the record.  This must be added to the
417         // record before the bitfield members so that it gets laid out before
418         // the bitfields it contains get laid out.
419         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
420       }
421       // Bitfields get the offset of their storage but come afterward and remain
422       // there after a stable sort.
423       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
424                                    MemberInfo::Field, nullptr, *Field));
425     }
426     return;
427   }
428 
429   // Check if OffsetInRecord (the size in bits of the current run) is better
430   // as a single field run. When OffsetInRecord has legal integer width, and
431   // its bitfield offset is naturally aligned, it is better to make the
432   // bitfield a separate storage component so as it can be accessed directly
433   // with lower cost.
434   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
435                                       uint64_t StartBitOffset) {
436     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
437       return false;
438     if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) ||
439         !DataLayout.fitsInLegalInteger(OffsetInRecord))
440       return false;
441     // Make sure StartBitOffset is naturally aligned if it is treated as an
442     // IType integer.
443     if (StartBitOffset %
444             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
445         0)
446       return false;
447     return true;
448   };
449 
450   // The start field is better as a single field run.
451   bool StartFieldAsSingleRun = false;
452   for (;;) {
453     // Check to see if we need to start a new run.
454     if (Run == FieldEnd) {
455       // If we're out of fields, return.
456       if (Field == FieldEnd)
457         break;
458       // Any non-zero-length bitfield can start a new run.
459       if (!Field->isZeroLengthBitField(Context)) {
460         Run = Field;
461         StartBitOffset = getFieldBitOffset(*Field);
462         Tail = StartBitOffset + Field->getBitWidthValue(Context);
463         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
464                                                          StartBitOffset);
465       }
466       ++Field;
467       continue;
468     }
469 
470     // If the start field of a new run is better as a single run, or
471     // if current field (or consecutive fields) is better as a single run, or
472     // if current field has zero width bitfield and either
473     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
474     // true, or
475     // if the offset of current field is inconsistent with the offset of
476     // previous field plus its offset,
477     // skip the block below and go ahead to emit the storage.
478     // Otherwise, try to add bitfields to the run.
479     if (!StartFieldAsSingleRun && Field != FieldEnd &&
480         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
481         (!Field->isZeroLengthBitField(Context) ||
482          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
483           !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
484         Tail == getFieldBitOffset(*Field)) {
485       Tail += Field->getBitWidthValue(Context);
486       ++Field;
487       continue;
488     }
489 
490     // We've hit a break-point in the run and need to emit a storage field.
491     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
492     // Add the storage member to the record and set the bitfield info for all of
493     // the bitfields in the run.  Bitfields get the offset of their storage but
494     // come afterward and remain there after a stable sort.
495     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
496     for (; Run != Field; ++Run)
497       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
498                                    MemberInfo::Field, nullptr, *Run));
499     Run = FieldEnd;
500     StartFieldAsSingleRun = false;
501   }
502 }
503 
accumulateBases()504 void CGRecordLowering::accumulateBases() {
505   // If we've got a primary virtual base, we need to add it with the bases.
506   if (Layout.isPrimaryBaseVirtual()) {
507     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
508     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
509                                  getStorageType(BaseDecl), BaseDecl));
510   }
511   // Accumulate the non-virtual bases.
512   for (const auto &Base : RD->bases()) {
513     if (Base.isVirtual())
514       continue;
515 
516     // Bases can be zero-sized even if not technically empty if they
517     // contain only a trailing array member.
518     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
519     if (!BaseDecl->isEmpty() &&
520         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
521       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
522           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
523   }
524 }
525 
526 /// The AAPCS that defines that, when possible, bit-fields should
527 /// be accessed using containers of the declared type width:
528 /// When a volatile bit-field is read, and its container does not overlap with
529 /// any non-bit-field member or any zero length bit-field member, its container
530 /// must be read exactly once using the access width appropriate to the type of
531 /// the container. When a volatile bit-field is written, and its container does
532 /// not overlap with any non-bit-field member or any zero-length bit-field
533 /// member, its container must be read exactly once and written exactly once
534 /// using the access width appropriate to the type of the container. The two
535 /// accesses are not atomic.
536 ///
537 /// Enforcing the width restriction can be disabled using
538 /// -fno-aapcs-bitfield-width.
computeVolatileBitfields()539 void CGRecordLowering::computeVolatileBitfields() {
540   if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth)
541     return;
542 
543   for (auto &I : BitFields) {
544     const FieldDecl *Field = I.first;
545     CGBitFieldInfo &Info = I.second;
546     llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType());
547     // If the record alignment is less than the type width, we can't enforce a
548     // aligned load, bail out.
549     if ((uint64_t)(Context.toBits(Layout.getAlignment())) <
550         ResLTy->getPrimitiveSizeInBits())
551       continue;
552     // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
553     // for big-endian targets, but it assumes a container of width
554     // Info.StorageSize. Since AAPCS uses a different container size (width
555     // of the type), we first undo that calculation here and redo it once
556     // the bit-field offset within the new container is calculated.
557     const unsigned OldOffset =
558         isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset;
559     // Offset to the bit-field from the beginning of the struct.
560     const unsigned AbsoluteOffset =
561         Context.toBits(Info.StorageOffset) + OldOffset;
562 
563     // Container size is the width of the bit-field type.
564     const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits();
565     // Nothing to do if the access uses the desired
566     // container width and is naturally aligned.
567     if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0))
568       continue;
569 
570     // Offset within the container.
571     unsigned Offset = AbsoluteOffset & (StorageSize - 1);
572     // Bail out if an aligned load of the container cannot cover the entire
573     // bit-field. This can happen for example, if the bit-field is part of a
574     // packed struct. AAPCS does not define access rules for such cases, we let
575     // clang to follow its own rules.
576     if (Offset + Info.Size > StorageSize)
577       continue;
578 
579     // Re-adjust offsets for big-endian targets.
580     if (isBE())
581       Offset = StorageSize - (Offset + Info.Size);
582 
583     const CharUnits StorageOffset =
584         Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1));
585     const CharUnits End = StorageOffset +
586                           Context.toCharUnitsFromBits(StorageSize) -
587                           CharUnits::One();
588 
589     const ASTRecordLayout &Layout =
590         Context.getASTRecordLayout(Field->getParent());
591     // If we access outside memory outside the record, than bail out.
592     const CharUnits RecordSize = Layout.getSize();
593     if (End >= RecordSize)
594       continue;
595 
596     // Bail out if performing this load would access non-bit-fields members.
597     bool Conflict = false;
598     for (const auto *F : D->fields()) {
599       // Allow sized bit-fields overlaps.
600       if (F->isBitField() && !F->isZeroLengthBitField(Context))
601         continue;
602 
603       const CharUnits FOffset = Context.toCharUnitsFromBits(
604           Layout.getFieldOffset(F->getFieldIndex()));
605 
606       // As C11 defines, a zero sized bit-field defines a barrier, so
607       // fields after and before it should be race condition free.
608       // The AAPCS acknowledges it and imposes no restritions when the
609       // natural container overlaps a zero-length bit-field.
610       if (F->isZeroLengthBitField(Context)) {
611         if (End > FOffset && StorageOffset < FOffset) {
612           Conflict = true;
613           break;
614         }
615       }
616 
617       const CharUnits FEnd =
618           FOffset +
619           Context.toCharUnitsFromBits(
620               Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) -
621           CharUnits::One();
622       // If no overlap, continue.
623       if (End < FOffset || FEnd < StorageOffset)
624         continue;
625 
626       // The desired load overlaps a non-bit-field member, bail out.
627       Conflict = true;
628       break;
629     }
630 
631     if (Conflict)
632       continue;
633     // Write the new bit-field access parameters.
634     // As the storage offset now is defined as the number of elements from the
635     // start of the structure, we should divide the Offset by the element size.
636     Info.VolatileStorageOffset =
637         StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity();
638     Info.VolatileStorageSize = StorageSize;
639     Info.VolatileOffset = Offset;
640   }
641 }
642 
accumulateVPtrs()643 void CGRecordLowering::accumulateVPtrs() {
644   if (Layout.hasOwnVFPtr())
645     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
646         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
647             getPointerTo()->getPointerTo()));
648   if (Layout.hasOwnVBPtr())
649     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
650         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
651 }
652 
accumulateVBases()653 void CGRecordLowering::accumulateVBases() {
654   CharUnits ScissorOffset = Layout.getNonVirtualSize();
655   // In the itanium ABI, it's possible to place a vbase at a dsize that is
656   // smaller than the nvsize.  Here we check to see if such a base is placed
657   // before the nvsize and set the scissor offset to that, instead of the
658   // nvsize.
659   if (isOverlappingVBaseABI())
660     for (const auto &Base : RD->vbases()) {
661       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
662       if (BaseDecl->isEmpty())
663         continue;
664       // If the vbase is a primary virtual base of some base, then it doesn't
665       // get its own storage location but instead lives inside of that base.
666       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
667         continue;
668       ScissorOffset = std::min(ScissorOffset,
669                                Layout.getVBaseClassOffset(BaseDecl));
670     }
671   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
672                                RD));
673   for (const auto &Base : RD->vbases()) {
674     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
675     if (BaseDecl->isEmpty())
676       continue;
677     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
678     // If the vbase is a primary virtual base of some base, then it doesn't
679     // get its own storage location but instead lives inside of that base.
680     if (isOverlappingVBaseABI() &&
681         Context.isNearlyEmpty(BaseDecl) &&
682         !hasOwnStorage(RD, BaseDecl)) {
683       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
684                                    BaseDecl));
685       continue;
686     }
687     // If we've got a vtordisp, add it as a storage type.
688     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
689       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
690                                     getIntNType(32)));
691     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
692                                  getStorageType(BaseDecl), BaseDecl));
693   }
694 }
695 
hasOwnStorage(const CXXRecordDecl * Decl,const CXXRecordDecl * Query)696 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
697                                      const CXXRecordDecl *Query) {
698   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
699   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
700     return false;
701   for (const auto &Base : Decl->bases())
702     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
703       return false;
704   return true;
705 }
706 
calculateZeroInit()707 void CGRecordLowering::calculateZeroInit() {
708   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
709                                                MemberEnd = Members.end();
710        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
711     if (Member->Kind == MemberInfo::Field) {
712       if (!Member->FD || isZeroInitializable(Member->FD))
713         continue;
714       IsZeroInitializable = IsZeroInitializableAsBase = false;
715     } else if (Member->Kind == MemberInfo::Base ||
716                Member->Kind == MemberInfo::VBase) {
717       if (isZeroInitializable(Member->RD))
718         continue;
719       IsZeroInitializable = false;
720       if (Member->Kind == MemberInfo::Base)
721         IsZeroInitializableAsBase = false;
722     }
723   }
724 }
725 
clipTailPadding()726 void CGRecordLowering::clipTailPadding() {
727   std::vector<MemberInfo>::iterator Prior = Members.begin();
728   CharUnits Tail = getSize(Prior->Data);
729   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
730                                          MemberEnd = Members.end();
731        Member != MemberEnd; ++Member) {
732     // Only members with data and the scissor can cut into tail padding.
733     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
734       continue;
735     if (Member->Offset < Tail) {
736       assert(Prior->Kind == MemberInfo::Field &&
737              "Only storage fields have tail padding!");
738       if (!Prior->FD || Prior->FD->isBitField())
739         Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
740             cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
741       else {
742         assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
743                "should not have reused this field's tail padding");
744         Prior->Data = getByteArrayType(
745             Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width);
746       }
747     }
748     if (Member->Data)
749       Prior = Member;
750     Tail = Prior->Offset + getSize(Prior->Data);
751   }
752 }
753 
determinePacked(bool NVBaseType)754 void CGRecordLowering::determinePacked(bool NVBaseType) {
755   if (Packed)
756     return;
757   CharUnits Alignment = CharUnits::One();
758   CharUnits NVAlignment = CharUnits::One();
759   CharUnits NVSize =
760       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
761   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
762                                                MemberEnd = Members.end();
763        Member != MemberEnd; ++Member) {
764     if (!Member->Data)
765       continue;
766     // If any member falls at an offset that it not a multiple of its alignment,
767     // then the entire record must be packed.
768     if (Member->Offset % getAlignment(Member->Data))
769       Packed = true;
770     if (Member->Offset < NVSize)
771       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
772     Alignment = std::max(Alignment, getAlignment(Member->Data));
773   }
774   // If the size of the record (the capstone's offset) is not a multiple of the
775   // record's alignment, it must be packed.
776   if (Members.back().Offset % Alignment)
777     Packed = true;
778   // If the non-virtual sub-object is not a multiple of the non-virtual
779   // sub-object's alignment, it must be packed.  We cannot have a packed
780   // non-virtual sub-object and an unpacked complete object or vise versa.
781   if (NVSize % NVAlignment)
782     Packed = true;
783   // Update the alignment of the sentinel.
784   if (!Packed)
785     Members.back().Data = getIntNType(Context.toBits(Alignment));
786 }
787 
insertPadding()788 void CGRecordLowering::insertPadding() {
789   std::vector<std::pair<CharUnits, CharUnits> > Padding;
790   CharUnits Size = CharUnits::Zero();
791   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
792                                                MemberEnd = Members.end();
793        Member != MemberEnd; ++Member) {
794     if (!Member->Data)
795       continue;
796     CharUnits Offset = Member->Offset;
797     assert(Offset >= Size);
798     // Insert padding if we need to.
799     if (Offset !=
800         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
801       Padding.push_back(std::make_pair(Size, Offset - Size));
802     Size = Offset + getSize(Member->Data);
803   }
804   if (Padding.empty())
805     return;
806   // Add the padding to the Members list and sort it.
807   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
808         Pad = Padding.begin(), PadEnd = Padding.end();
809         Pad != PadEnd; ++Pad)
810     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
811   llvm::stable_sort(Members);
812 }
813 
fillOutputFields()814 void CGRecordLowering::fillOutputFields() {
815   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
816                                                MemberEnd = Members.end();
817        Member != MemberEnd; ++Member) {
818     if (Member->Data)
819       FieldTypes.push_back(Member->Data);
820     if (Member->Kind == MemberInfo::Field) {
821       if (Member->FD)
822         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
823       // A field without storage must be a bitfield.
824       if (!Member->Data)
825         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
826     } else if (Member->Kind == MemberInfo::Base)
827       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
828     else if (Member->Kind == MemberInfo::VBase)
829       VirtualBases[Member->RD] = FieldTypes.size() - 1;
830   }
831 }
832 
MakeInfo(CodeGenTypes & Types,const FieldDecl * FD,uint64_t Offset,uint64_t Size,uint64_t StorageSize,CharUnits StorageOffset)833 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
834                                         const FieldDecl *FD,
835                                         uint64_t Offset, uint64_t Size,
836                                         uint64_t StorageSize,
837                                         CharUnits StorageOffset) {
838   // This function is vestigial from CGRecordLayoutBuilder days but is still
839   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
840   // when addressed will allow for the removal of this function.
841   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
842   CharUnits TypeSizeInBytes =
843     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
844   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
845 
846   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
847 
848   if (Size > TypeSizeInBits) {
849     // We have a wide bit-field. The extra bits are only used for padding, so
850     // if we have a bitfield of type T, with size N:
851     //
852     // T t : N;
853     //
854     // We can just assume that it's:
855     //
856     // T t : sizeof(T);
857     //
858     Size = TypeSizeInBits;
859   }
860 
861   // Reverse the bit offsets for big endian machines. Because we represent
862   // a bitfield as a single large integer load, we can imagine the bits
863   // counting from the most-significant-bit instead of the
864   // least-significant-bit.
865   if (Types.getDataLayout().isBigEndian()) {
866     Offset = StorageSize - (Offset + Size);
867   }
868 
869   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
870 }
871 
872 std::unique_ptr<CGRecordLayout>
ComputeRecordLayout(const RecordDecl * D,llvm::StructType * Ty)873 CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) {
874   CGRecordLowering Builder(*this, D, /*Packed=*/false);
875 
876   Builder.lower(/*NonVirtualBaseType=*/false);
877 
878   // If we're in C++, compute the base subobject type.
879   llvm::StructType *BaseTy = nullptr;
880   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
881     BaseTy = Ty;
882     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
883       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
884       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
885       BaseTy = llvm::StructType::create(
886           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
887       addRecordTypeName(D, BaseTy, ".base");
888       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
889       // on both of them with the same index.
890       assert(Builder.Packed == BaseBuilder.Packed &&
891              "Non-virtual and complete types must agree on packedness");
892     }
893   }
894 
895   // Fill in the struct *after* computing the base type.  Filling in the body
896   // signifies that the type is no longer opaque and record layout is complete,
897   // but we may need to recursively layout D while laying D out as a base type.
898   Ty->setBody(Builder.FieldTypes, Builder.Packed);
899 
900   auto RL = std::make_unique<CGRecordLayout>(
901       Ty, BaseTy, (bool)Builder.IsZeroInitializable,
902       (bool)Builder.IsZeroInitializableAsBase);
903 
904   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
905   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
906 
907   // Add all the field numbers.
908   RL->FieldInfo.swap(Builder.Fields);
909 
910   // Add bitfield info.
911   RL->BitFields.swap(Builder.BitFields);
912 
913   // Dump the layout, if requested.
914   if (getContext().getLangOpts().DumpRecordLayouts) {
915     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
916     llvm::outs() << "Record: ";
917     D->dump(llvm::outs());
918     llvm::outs() << "\nLayout: ";
919     RL->print(llvm::outs());
920   }
921 
922 #ifndef NDEBUG
923   // Verify that the computed LLVM struct size matches the AST layout size.
924   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
925 
926   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
927   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
928          "Type size mismatch!");
929 
930   if (BaseTy) {
931     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
932 
933     uint64_t AlignedNonVirtualTypeSizeInBits =
934       getContext().toBits(NonVirtualSize);
935 
936     assert(AlignedNonVirtualTypeSizeInBits ==
937            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
938            "Type size mismatch!");
939   }
940 
941   // Verify that the LLVM and AST field offsets agree.
942   llvm::StructType *ST = RL->getLLVMType();
943   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
944 
945   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
946   RecordDecl::field_iterator it = D->field_begin();
947   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
948     const FieldDecl *FD = *it;
949 
950     // Ignore zero-sized fields.
951     if (FD->isZeroSize(getContext()))
952       continue;
953 
954     // For non-bit-fields, just check that the LLVM struct offset matches the
955     // AST offset.
956     if (!FD->isBitField()) {
957       unsigned FieldNo = RL->getLLVMFieldNo(FD);
958       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
959              "Invalid field offset!");
960       continue;
961     }
962 
963     // Ignore unnamed bit-fields.
964     if (!FD->getDeclName())
965       continue;
966 
967     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
968     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
969 
970     // Unions have overlapping elements dictating their layout, but for
971     // non-unions we can verify that this section of the layout is the exact
972     // expected size.
973     if (D->isUnion()) {
974       // For unions we verify that the start is zero and the size
975       // is in-bounds. However, on BE systems, the offset may be non-zero, but
976       // the size + offset should match the storage size in that case as it
977       // "starts" at the back.
978       if (getDataLayout().isBigEndian())
979         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
980                Info.StorageSize &&
981                "Big endian union bitfield does not end at the back");
982       else
983         assert(Info.Offset == 0 &&
984                "Little endian union bitfield with a non-zero offset");
985       assert(Info.StorageSize <= SL->getSizeInBits() &&
986              "Union not large enough for bitfield storage");
987     } else {
988       assert((Info.StorageSize ==
989                   getDataLayout().getTypeAllocSizeInBits(ElementTy) ||
990               Info.VolatileStorageSize ==
991                   getDataLayout().getTypeAllocSizeInBits(ElementTy)) &&
992              "Storage size does not match the element type size");
993     }
994     assert(Info.Size > 0 && "Empty bitfield!");
995     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
996            "Bitfield outside of its allocated storage");
997   }
998 #endif
999 
1000   return RL;
1001 }
1002 
print(raw_ostream & OS) const1003 void CGRecordLayout::print(raw_ostream &OS) const {
1004   OS << "<CGRecordLayout\n";
1005   OS << "  LLVMType:" << *CompleteObjectType << "\n";
1006   if (BaseSubobjectType)
1007     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
1008   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
1009   OS << "  BitFields:[\n";
1010 
1011   // Print bit-field infos in declaration order.
1012   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
1013   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
1014          it = BitFields.begin(), ie = BitFields.end();
1015        it != ie; ++it) {
1016     const RecordDecl *RD = it->first->getParent();
1017     unsigned Index = 0;
1018     for (RecordDecl::field_iterator
1019            it2 = RD->field_begin(); *it2 != it->first; ++it2)
1020       ++Index;
1021     BFIs.push_back(std::make_pair(Index, &it->second));
1022   }
1023   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
1024   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
1025     OS.indent(4);
1026     BFIs[i].second->print(OS);
1027     OS << "\n";
1028   }
1029 
1030   OS << "]>\n";
1031 }
1032 
dump() const1033 LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
1034   print(llvm::errs());
1035 }
1036 
print(raw_ostream & OS) const1037 void CGBitFieldInfo::print(raw_ostream &OS) const {
1038   OS << "<CGBitFieldInfo"
1039      << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned
1040      << " StorageSize:" << StorageSize
1041      << " StorageOffset:" << StorageOffset.getQuantity()
1042      << " VolatileOffset:" << VolatileOffset
1043      << " VolatileStorageSize:" << VolatileStorageSize
1044      << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">";
1045 }
1046 
dump() const1047 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
1048   print(llvm::errs());
1049 }
1050