1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63
64 #define DEBUG_TYPE "basicaa"
65
66 using namespace llvm;
67
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70 cl::init(true));
71
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
77 cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
79 cl::Hidden, cl::init(false));
80
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85 "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // getUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98
invalidate(Function & Fn,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100 FunctionAnalysisManager::Invalidator &Inv) {
101 // We don't care if this analysis itself is preserved, it has no state. But
102 // we need to check that the analyses it depends on have been. Note that we
103 // may be created without handles to some analyses and in that case don't
104 // depend on them.
105 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109 return true;
110
111 // Otherwise this analysis result remains valid.
112 return false;
113 }
114
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118
119 /// Returns true if the pointer is one which would have been considered an
120 /// escape by isNonEscapingLocalObject.
isEscapeSource(const Value * V)121 static bool isEscapeSource(const Value *V) {
122 if (isa<CallBase>(V))
123 return true;
124
125 if (isa<Argument>(V))
126 return true;
127
128 // The load case works because isNonEscapingLocalObject considers all
129 // stores to be escapes (it passes true for the StoreCaptures argument
130 // to PointerMayBeCaptured).
131 if (isa<LoadInst>(V))
132 return true;
133
134 return false;
135 }
136
137 /// Returns the size of the object specified by V or UnknownSize if unknown.
getObjectSize(const Value * V,const DataLayout & DL,const TargetLibraryInfo & TLI,bool NullIsValidLoc,bool RoundToAlign=false)138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
139 const TargetLibraryInfo &TLI,
140 bool NullIsValidLoc,
141 bool RoundToAlign = false) {
142 uint64_t Size;
143 ObjectSizeOpts Opts;
144 Opts.RoundToAlign = RoundToAlign;
145 Opts.NullIsUnknownSize = NullIsValidLoc;
146 if (getObjectSize(V, Size, DL, &TLI, Opts))
147 return Size;
148 return MemoryLocation::UnknownSize;
149 }
150
151 /// Returns true if we can prove that the object specified by V is smaller than
152 /// Size.
isObjectSmallerThan(const Value * V,uint64_t Size,const DataLayout & DL,const TargetLibraryInfo & TLI,bool NullIsValidLoc)153 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
154 const DataLayout &DL,
155 const TargetLibraryInfo &TLI,
156 bool NullIsValidLoc) {
157 // Note that the meanings of the "object" are slightly different in the
158 // following contexts:
159 // c1: llvm::getObjectSize()
160 // c2: llvm.objectsize() intrinsic
161 // c3: isObjectSmallerThan()
162 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
163 // refers to the "entire object".
164 //
165 // Consider this example:
166 // char *p = (char*)malloc(100)
167 // char *q = p+80;
168 //
169 // In the context of c1 and c2, the "object" pointed by q refers to the
170 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
171 //
172 // However, in the context of c3, the "object" refers to the chunk of memory
173 // being allocated. So, the "object" has 100 bytes, and q points to the middle
174 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
175 // parameter, before the llvm::getObjectSize() is called to get the size of
176 // entire object, we should:
177 // - either rewind the pointer q to the base-address of the object in
178 // question (in this case rewind to p), or
179 // - just give up. It is up to caller to make sure the pointer is pointing
180 // to the base address the object.
181 //
182 // We go for 2nd option for simplicity.
183 if (!isIdentifiedObject(V))
184 return false;
185
186 // This function needs to use the aligned object size because we allow
187 // reads a bit past the end given sufficient alignment.
188 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
189 /*RoundToAlign*/ true);
190
191 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
192 }
193
194 /// Return the minimal extent from \p V to the end of the underlying object,
195 /// assuming the result is used in an aliasing query. E.g., we do use the query
196 /// location size and the fact that null pointers cannot alias here.
getMinimalExtentFrom(const Value & V,const LocationSize & LocSize,const DataLayout & DL,bool NullIsValidLoc)197 static uint64_t getMinimalExtentFrom(const Value &V,
198 const LocationSize &LocSize,
199 const DataLayout &DL,
200 bool NullIsValidLoc) {
201 // If we have dereferenceability information we know a lower bound for the
202 // extent as accesses for a lower offset would be valid. We need to exclude
203 // the "or null" part if null is a valid pointer.
204 bool CanBeNull;
205 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
206 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
207 // If queried with a precise location size, we assume that location size to be
208 // accessed, thus valid.
209 if (LocSize.isPrecise())
210 DerefBytes = std::max(DerefBytes, LocSize.getValue());
211 return DerefBytes;
212 }
213
214 /// Returns true if we can prove that the object specified by V has size Size.
isObjectSize(const Value * V,uint64_t Size,const DataLayout & DL,const TargetLibraryInfo & TLI,bool NullIsValidLoc)215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216 const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends. The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
GetLinearExpression(const Value * V,APInt & Scale,APInt & Offset,unsigned & ZExtBits,unsigned & SExtBits,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,DominatorTree * DT,bool & NSW,bool & NUW)235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237 unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239 assert(V->getType()->isIntegerTy() && "Not an integer value");
240
241 // Limit our recursion depth.
242 if (Depth == 6) {
243 Scale = 1;
244 Offset = 0;
245 return V;
246 }
247
248 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249 // If it's a constant, just convert it to an offset and remove the variable.
250 // If we've been called recursively, the Offset bit width will be greater
251 // than the constant's (the Offset's always as wide as the outermost call),
252 // so we'll zext here and process any extension in the isa<SExtInst> &
253 // isa<ZExtInst> cases below.
254 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255 assert(Scale == 0 && "Constant values don't have a scale");
256 return V;
257 }
258
259 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261 // If we've been called recursively, then Offset and Scale will be wider
262 // than the BOp operands. We'll always zext it here as we'll process sign
263 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265
266 switch (BOp->getOpcode()) {
267 default:
268 // We don't understand this instruction, so we can't decompose it any
269 // further.
270 Scale = 1;
271 Offset = 0;
272 return V;
273 case Instruction::Or:
274 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
275 // analyze it.
276 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277 BOp, DT)) {
278 Scale = 1;
279 Offset = 0;
280 return V;
281 }
282 LLVM_FALLTHROUGH;
283 case Instruction::Add:
284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286 Offset += RHS;
287 break;
288 case Instruction::Sub:
289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291 Offset -= RHS;
292 break;
293 case Instruction::Mul:
294 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296 Offset *= RHS;
297 Scale *= RHS;
298 break;
299 case Instruction::Shl:
300 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302
303 // We're trying to linearize an expression of the kind:
304 // shl i8 -128, 36
305 // where the shift count exceeds the bitwidth of the type.
306 // We can't decompose this further (the expression would return
307 // a poison value).
308 if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309 Scale.getBitWidth() < RHS.getLimitedValue()) {
310 Scale = 1;
311 Offset = 0;
312 return V;
313 }
314
315 Offset <<= RHS.getLimitedValue();
316 Scale <<= RHS.getLimitedValue();
317 // the semantics of nsw and nuw for left shifts don't match those of
318 // multiplications, so we won't propagate them.
319 NSW = NUW = false;
320 return V;
321 }
322
323 if (isa<OverflowingBinaryOperator>(BOp)) {
324 NUW &= BOp->hasNoUnsignedWrap();
325 NSW &= BOp->hasNoSignedWrap();
326 }
327 return V;
328 }
329 }
330
331 // Since GEP indices are sign extended anyway, we don't care about the high
332 // bits of a sign or zero extended value - just scales and offsets. The
333 // extensions have to be consistent though.
334 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335 Value *CastOp = cast<CastInst>(V)->getOperand(0);
336 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339 const Value *Result =
340 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341 Depth + 1, AC, DT, NSW, NUW);
342
343 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344 // by just incrementing the number of bits we've extended by.
345 unsigned ExtendedBy = NewWidth - SmallWidth;
346
347 if (isa<SExtInst>(V) && ZExtBits == 0) {
348 // sext(sext(%x, a), b) == sext(%x, a + b)
349
350 if (NSW) {
351 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352 // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353 unsigned OldWidth = Offset.getBitWidth();
354 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355 } else {
356 // We may have signed-wrapped, so don't decompose sext(%x + c) into
357 // sext(%x) + sext(c)
358 Scale = 1;
359 Offset = 0;
360 Result = CastOp;
361 ZExtBits = OldZExtBits;
362 SExtBits = OldSExtBits;
363 }
364 SExtBits += ExtendedBy;
365 } else {
366 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367
368 if (!NUW) {
369 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370 // zext(%x) + zext(c)
371 Scale = 1;
372 Offset = 0;
373 Result = CastOp;
374 ZExtBits = OldZExtBits;
375 SExtBits = OldSExtBits;
376 }
377 ZExtBits += ExtendedBy;
378 }
379
380 return Result;
381 }
382
383 Scale = 1;
384 Offset = 0;
385 return V;
386 }
387
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
adjustToPointerSize(const APInt & Offset,unsigned PointerSize)393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395 unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396 return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398
getMaxPointerSize(const DataLayout & DL)399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402 if (DoubleCalcBits) MaxPointerSize *= 2;
403
404 return MaxPointerSize;
405 }
406
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
DecomposeGEPExpression(const Value * V,DecomposedGEP & Decomposed,const DataLayout & DL,AssumptionCache * AC,DominatorTree * DT)419 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
420 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
421 DominatorTree *DT) {
422 // Limit recursion depth to limit compile time in crazy cases.
423 unsigned MaxLookup = MaxLookupSearchDepth;
424 SearchTimes++;
425
426 unsigned MaxPointerSize = getMaxPointerSize(DL);
427 Decomposed.VarIndices.clear();
428 do {
429 // See if this is a bitcast or GEP.
430 const Operator *Op = dyn_cast<Operator>(V);
431 if (!Op) {
432 // The only non-operator case we can handle are GlobalAliases.
433 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
434 if (!GA->isInterposable()) {
435 V = GA->getAliasee();
436 continue;
437 }
438 }
439 Decomposed.Base = V;
440 return false;
441 }
442
443 if (Op->getOpcode() == Instruction::BitCast ||
444 Op->getOpcode() == Instruction::AddrSpaceCast) {
445 V = Op->getOperand(0);
446 continue;
447 }
448
449 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
450 if (!GEPOp) {
451 if (const auto *PHI = dyn_cast<PHINode>(V)) {
452 // Look through single-arg phi nodes created by LCSSA.
453 if (PHI->getNumIncomingValues() == 1) {
454 V = PHI->getIncomingValue(0);
455 continue;
456 }
457 } else if (const auto *Call = dyn_cast<CallBase>(V)) {
458 // CaptureTracking can know about special capturing properties of some
459 // intrinsics like launder.invariant.group, that can't be expressed with
460 // the attributes, but have properties like returning aliasing pointer.
461 // Because some analysis may assume that nocaptured pointer is not
462 // returned from some special intrinsic (because function would have to
463 // be marked with returns attribute), it is crucial to use this function
464 // because it should be in sync with CaptureTracking. Not using it may
465 // cause weird miscompilations where 2 aliasing pointers are assumed to
466 // noalias.
467 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
468 V = RP;
469 continue;
470 }
471 }
472
473 Decomposed.Base = V;
474 return false;
475 }
476
477 // Don't attempt to analyze GEPs over unsized objects.
478 if (!GEPOp->getSourceElementType()->isSized()) {
479 Decomposed.Base = V;
480 return false;
481 }
482
483 // Don't attempt to analyze GEPs if index scale is not a compile-time
484 // constant.
485 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
486 Decomposed.Base = V;
487 Decomposed.HasCompileTimeConstantScale = false;
488 return false;
489 }
490
491 unsigned AS = GEPOp->getPointerAddressSpace();
492 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
493 gep_type_iterator GTI = gep_type_begin(GEPOp);
494 unsigned PointerSize = DL.getPointerSizeInBits(AS);
495 // Assume all GEP operands are constants until proven otherwise.
496 bool GepHasConstantOffset = true;
497 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
498 I != E; ++I, ++GTI) {
499 const Value *Index = *I;
500 // Compute the (potentially symbolic) offset in bytes for this index.
501 if (StructType *STy = GTI.getStructTypeOrNull()) {
502 // For a struct, add the member offset.
503 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
504 if (FieldNo == 0)
505 continue;
506
507 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
508 continue;
509 }
510
511 // For an array/pointer, add the element offset, explicitly scaled.
512 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
513 if (CIdx->isZero())
514 continue;
515 Decomposed.Offset +=
516 (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
517 CIdx->getValue().sextOrSelf(MaxPointerSize))
518 .sextOrTrunc(MaxPointerSize);
519 continue;
520 }
521
522 GepHasConstantOffset = false;
523
524 APInt Scale(MaxPointerSize,
525 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
526 unsigned ZExtBits = 0, SExtBits = 0;
527
528 // If the integer type is smaller than the pointer size, it is implicitly
529 // sign extended to pointer size.
530 unsigned Width = Index->getType()->getIntegerBitWidth();
531 if (PointerSize > Width)
532 SExtBits += PointerSize - Width;
533
534 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
535 APInt IndexScale(Width, 0), IndexOffset(Width, 0);
536 bool NSW = true, NUW = true;
537 const Value *OrigIndex = Index;
538 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
539 SExtBits, DL, 0, AC, DT, NSW, NUW);
540
541 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
542 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
543
544 // It can be the case that, even through C1*V+C2 does not overflow for
545 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
546 // decompose the expression in this way.
547 //
548 // FIXME: C1*Scale and the other operations in the decomposed
549 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
550 // possibility.
551 bool Overflow;
552 APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
553 .smul_ov(Scale, Overflow);
554 if (Overflow) {
555 Index = OrigIndex;
556 IndexScale = 1;
557 IndexOffset = 0;
558
559 ZExtBits = SExtBits = 0;
560 if (PointerSize > Width)
561 SExtBits += PointerSize - Width;
562 } else {
563 Decomposed.Offset += ScaledOffset;
564 Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
565 }
566
567 // If we already had an occurrence of this index variable, merge this
568 // scale into it. For example, we want to handle:
569 // A[x][x] -> x*16 + x*4 -> x*20
570 // This also ensures that 'x' only appears in the index list once.
571 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
572 if (Decomposed.VarIndices[i].V == Index &&
573 Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
574 Decomposed.VarIndices[i].SExtBits == SExtBits) {
575 Scale += Decomposed.VarIndices[i].Scale;
576 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
577 break;
578 }
579 }
580
581 // Make sure that we have a scale that makes sense for this target's
582 // pointer size.
583 Scale = adjustToPointerSize(Scale, PointerSize);
584
585 if (!!Scale) {
586 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
587 Decomposed.VarIndices.push_back(Entry);
588 }
589 }
590
591 // Take care of wrap-arounds
592 if (GepHasConstantOffset)
593 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
594
595 // Analyze the base pointer next.
596 V = GEPOp->getOperand(0);
597 } while (--MaxLookup);
598
599 // If the chain of expressions is too deep, just return early.
600 Decomposed.Base = V;
601 SearchLimitReached++;
602 return true;
603 }
604
605 /// Returns whether the given pointer value points to memory that is local to
606 /// the function, with global constants being considered local to all
607 /// functions.
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)608 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
609 AAQueryInfo &AAQI, bool OrLocal) {
610 assert(Visited.empty() && "Visited must be cleared after use!");
611
612 unsigned MaxLookup = 8;
613 SmallVector<const Value *, 16> Worklist;
614 Worklist.push_back(Loc.Ptr);
615 do {
616 const Value *V = getUnderlyingObject(Worklist.pop_back_val());
617 if (!Visited.insert(V).second) {
618 Visited.clear();
619 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
620 }
621
622 // An alloca instruction defines local memory.
623 if (OrLocal && isa<AllocaInst>(V))
624 continue;
625
626 // A global constant counts as local memory for our purposes.
627 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
628 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
629 // global to be marked constant in some modules and non-constant in
630 // others. GV may even be a declaration, not a definition.
631 if (!GV->isConstant()) {
632 Visited.clear();
633 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
634 }
635 continue;
636 }
637
638 // If both select values point to local memory, then so does the select.
639 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
640 Worklist.push_back(SI->getTrueValue());
641 Worklist.push_back(SI->getFalseValue());
642 continue;
643 }
644
645 // If all values incoming to a phi node point to local memory, then so does
646 // the phi.
647 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
648 // Don't bother inspecting phi nodes with many operands.
649 if (PN->getNumIncomingValues() > MaxLookup) {
650 Visited.clear();
651 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
652 }
653 for (Value *IncValue : PN->incoming_values())
654 Worklist.push_back(IncValue);
655 continue;
656 }
657
658 // Otherwise be conservative.
659 Visited.clear();
660 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
661 } while (!Worklist.empty() && --MaxLookup);
662
663 Visited.clear();
664 return Worklist.empty();
665 }
666
667 /// Returns the behavior when calling the given call site.
getModRefBehavior(const CallBase * Call)668 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
669 if (Call->doesNotAccessMemory())
670 // Can't do better than this.
671 return FMRB_DoesNotAccessMemory;
672
673 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
674
675 // If the callsite knows it only reads memory, don't return worse
676 // than that.
677 if (Call->onlyReadsMemory())
678 Min = FMRB_OnlyReadsMemory;
679 else if (Call->doesNotReadMemory())
680 Min = FMRB_OnlyWritesMemory;
681
682 if (Call->onlyAccessesArgMemory())
683 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
684 else if (Call->onlyAccessesInaccessibleMemory())
685 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
686 else if (Call->onlyAccessesInaccessibleMemOrArgMem())
687 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
688
689 // If the call has operand bundles then aliasing attributes from the function
690 // it calls do not directly apply to the call. This can be made more precise
691 // in the future.
692 if (!Call->hasOperandBundles())
693 if (const Function *F = Call->getCalledFunction())
694 Min =
695 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
696
697 return Min;
698 }
699
700 /// Returns the behavior when calling the given function. For use when the call
701 /// site is not known.
getModRefBehavior(const Function * F)702 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
703 // If the function declares it doesn't access memory, we can't do better.
704 if (F->doesNotAccessMemory())
705 return FMRB_DoesNotAccessMemory;
706
707 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
708
709 // If the function declares it only reads memory, go with that.
710 if (F->onlyReadsMemory())
711 Min = FMRB_OnlyReadsMemory;
712 else if (F->doesNotReadMemory())
713 Min = FMRB_OnlyWritesMemory;
714
715 if (F->onlyAccessesArgMemory())
716 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
717 else if (F->onlyAccessesInaccessibleMemory())
718 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
719 else if (F->onlyAccessesInaccessibleMemOrArgMem())
720 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
721
722 return Min;
723 }
724
725 /// Returns true if this is a writeonly (i.e Mod only) parameter.
isWriteOnlyParam(const CallBase * Call,unsigned ArgIdx,const TargetLibraryInfo & TLI)726 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
727 const TargetLibraryInfo &TLI) {
728 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
729 return true;
730
731 // We can bound the aliasing properties of memset_pattern16 just as we can
732 // for memcpy/memset. This is particularly important because the
733 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
734 // whenever possible.
735 // FIXME Consider handling this in InferFunctionAttr.cpp together with other
736 // attributes.
737 LibFunc F;
738 if (Call->getCalledFunction() &&
739 TLI.getLibFunc(*Call->getCalledFunction(), F) &&
740 F == LibFunc_memset_pattern16 && TLI.has(F))
741 if (ArgIdx == 0)
742 return true;
743
744 // TODO: memset_pattern4, memset_pattern8
745 // TODO: _chk variants
746 // TODO: strcmp, strcpy
747
748 return false;
749 }
750
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)751 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
752 unsigned ArgIdx) {
753 // Checking for known builtin intrinsics and target library functions.
754 if (isWriteOnlyParam(Call, ArgIdx, TLI))
755 return ModRefInfo::Mod;
756
757 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
758 return ModRefInfo::Ref;
759
760 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
761 return ModRefInfo::NoModRef;
762
763 return AAResultBase::getArgModRefInfo(Call, ArgIdx);
764 }
765
isIntrinsicCall(const CallBase * Call,Intrinsic::ID IID)766 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
767 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
768 return II && II->getIntrinsicID() == IID;
769 }
770
771 #ifndef NDEBUG
getParent(const Value * V)772 static const Function *getParent(const Value *V) {
773 if (const Instruction *inst = dyn_cast<Instruction>(V)) {
774 if (!inst->getParent())
775 return nullptr;
776 return inst->getParent()->getParent();
777 }
778
779 if (const Argument *arg = dyn_cast<Argument>(V))
780 return arg->getParent();
781
782 return nullptr;
783 }
784
notDifferentParent(const Value * O1,const Value * O2)785 static bool notDifferentParent(const Value *O1, const Value *O2) {
786
787 const Function *F1 = getParent(O1);
788 const Function *F2 = getParent(O2);
789
790 return !F1 || !F2 || F1 == F2;
791 }
792 #endif
793
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)794 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
795 const MemoryLocation &LocB,
796 AAQueryInfo &AAQI) {
797 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
798 "BasicAliasAnalysis doesn't support interprocedural queries.");
799
800 // If we have a directly cached entry for these locations, we have recursed
801 // through this once, so just return the cached results. Notably, when this
802 // happens, we don't clear the cache.
803 AAQueryInfo::LocPair Locs(LocA, LocB);
804 if (Locs.first.Ptr > Locs.second.Ptr)
805 std::swap(Locs.first, Locs.second);
806 auto CacheIt = AAQI.AliasCache.find(Locs);
807 if (CacheIt != AAQI.AliasCache.end())
808 return CacheIt->second;
809
810 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
811 LocB.Size, LocB.AATags, AAQI);
812
813 assert(VisitedPhiBBs.empty());
814 return Alias;
815 }
816
817 /// Checks to see if the specified callsite can clobber the specified memory
818 /// object.
819 ///
820 /// Since we only look at local properties of this function, we really can't
821 /// say much about this query. We do, however, use simple "address taken"
822 /// analysis on local objects.
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)823 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
824 const MemoryLocation &Loc,
825 AAQueryInfo &AAQI) {
826 assert(notDifferentParent(Call, Loc.Ptr) &&
827 "AliasAnalysis query involving multiple functions!");
828
829 const Value *Object = getUnderlyingObject(Loc.Ptr);
830
831 // Calls marked 'tail' cannot read or write allocas from the current frame
832 // because the current frame might be destroyed by the time they run. However,
833 // a tail call may use an alloca with byval. Calling with byval copies the
834 // contents of the alloca into argument registers or stack slots, so there is
835 // no lifetime issue.
836 if (isa<AllocaInst>(Object))
837 if (const CallInst *CI = dyn_cast<CallInst>(Call))
838 if (CI->isTailCall() &&
839 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
840 return ModRefInfo::NoModRef;
841
842 // Stack restore is able to modify unescaped dynamic allocas. Assume it may
843 // modify them even though the alloca is not escaped.
844 if (auto *AI = dyn_cast<AllocaInst>(Object))
845 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
846 return ModRefInfo::Mod;
847
848 // If the pointer is to a locally allocated object that does not escape,
849 // then the call can not mod/ref the pointer unless the call takes the pointer
850 // as an argument, and itself doesn't capture it.
851 if (!isa<Constant>(Object) && Call != Object &&
852 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
853
854 // Optimistically assume that call doesn't touch Object and check this
855 // assumption in the following loop.
856 ModRefInfo Result = ModRefInfo::NoModRef;
857 bool IsMustAlias = true;
858
859 unsigned OperandNo = 0;
860 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
861 CI != CE; ++CI, ++OperandNo) {
862 // Only look at the no-capture or byval pointer arguments. If this
863 // pointer were passed to arguments that were neither of these, then it
864 // couldn't be no-capture.
865 if (!(*CI)->getType()->isPointerTy() ||
866 (!Call->doesNotCapture(OperandNo) &&
867 OperandNo < Call->getNumArgOperands() &&
868 !Call->isByValArgument(OperandNo)))
869 continue;
870
871 // Call doesn't access memory through this operand, so we don't care
872 // if it aliases with Object.
873 if (Call->doesNotAccessMemory(OperandNo))
874 continue;
875
876 // If this is a no-capture pointer argument, see if we can tell that it
877 // is impossible to alias the pointer we're checking.
878 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
879 MemoryLocation(Object), AAQI);
880 if (AR != MustAlias)
881 IsMustAlias = false;
882 // Operand doesn't alias 'Object', continue looking for other aliases
883 if (AR == NoAlias)
884 continue;
885 // Operand aliases 'Object', but call doesn't modify it. Strengthen
886 // initial assumption and keep looking in case if there are more aliases.
887 if (Call->onlyReadsMemory(OperandNo)) {
888 Result = setRef(Result);
889 continue;
890 }
891 // Operand aliases 'Object' but call only writes into it.
892 if (Call->doesNotReadMemory(OperandNo)) {
893 Result = setMod(Result);
894 continue;
895 }
896 // This operand aliases 'Object' and call reads and writes into it.
897 // Setting ModRef will not yield an early return below, MustAlias is not
898 // used further.
899 Result = ModRefInfo::ModRef;
900 break;
901 }
902
903 // No operand aliases, reset Must bit. Add below if at least one aliases
904 // and all aliases found are MustAlias.
905 if (isNoModRef(Result))
906 IsMustAlias = false;
907
908 // Early return if we improved mod ref information
909 if (!isModAndRefSet(Result)) {
910 if (isNoModRef(Result))
911 return ModRefInfo::NoModRef;
912 return IsMustAlias ? setMust(Result) : clearMust(Result);
913 }
914 }
915
916 // If the call is malloc/calloc like, we can assume that it doesn't
917 // modify any IR visible value. This is only valid because we assume these
918 // routines do not read values visible in the IR. TODO: Consider special
919 // casing realloc and strdup routines which access only their arguments as
920 // well. Or alternatively, replace all of this with inaccessiblememonly once
921 // that's implemented fully.
922 if (isMallocOrCallocLikeFn(Call, &TLI)) {
923 // Be conservative if the accessed pointer may alias the allocation -
924 // fallback to the generic handling below.
925 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
926 return ModRefInfo::NoModRef;
927 }
928
929 // The semantics of memcpy intrinsics either exactly overlap or do not
930 // overlap, i.e., source and destination of any given memcpy are either
931 // no-alias or must-alias.
932 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
933 AliasResult SrcAA =
934 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
935 AliasResult DestAA =
936 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
937 // It's also possible for Loc to alias both src and dest, or neither.
938 ModRefInfo rv = ModRefInfo::NoModRef;
939 if (SrcAA != NoAlias)
940 rv = setRef(rv);
941 if (DestAA != NoAlias)
942 rv = setMod(rv);
943 return rv;
944 }
945
946 // While the assume intrinsic is marked as arbitrarily writing so that
947 // proper control dependencies will be maintained, it never aliases any
948 // particular memory location.
949 if (isIntrinsicCall(Call, Intrinsic::assume))
950 return ModRefInfo::NoModRef;
951
952 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
953 // that proper control dependencies are maintained but they never mods any
954 // particular memory location.
955 //
956 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
957 // heap state at the point the guard is issued needs to be consistent in case
958 // the guard invokes the "deopt" continuation.
959 if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
960 return ModRefInfo::Ref;
961
962 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
963 // writing so that proper control dependencies are maintained but they never
964 // mod any particular memory location visible to the IR.
965 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
966 // intrinsic is now modeled as reading memory. This prevents hoisting the
967 // invariant.start intrinsic over stores. Consider:
968 // *ptr = 40;
969 // *ptr = 50;
970 // invariant_start(ptr)
971 // int val = *ptr;
972 // print(val);
973 //
974 // This cannot be transformed to:
975 //
976 // *ptr = 40;
977 // invariant_start(ptr)
978 // *ptr = 50;
979 // int val = *ptr;
980 // print(val);
981 //
982 // The transformation will cause the second store to be ignored (based on
983 // rules of invariant.start) and print 40, while the first program always
984 // prints 50.
985 if (isIntrinsicCall(Call, Intrinsic::invariant_start))
986 return ModRefInfo::Ref;
987
988 // The AAResultBase base class has some smarts, lets use them.
989 return AAResultBase::getModRefInfo(Call, Loc, AAQI);
990 }
991
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)992 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
993 const CallBase *Call2,
994 AAQueryInfo &AAQI) {
995 // While the assume intrinsic is marked as arbitrarily writing so that
996 // proper control dependencies will be maintained, it never aliases any
997 // particular memory location.
998 if (isIntrinsicCall(Call1, Intrinsic::assume) ||
999 isIntrinsicCall(Call2, Intrinsic::assume))
1000 return ModRefInfo::NoModRef;
1001
1002 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1003 // that proper control dependencies are maintained but they never mod any
1004 // particular memory location.
1005 //
1006 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1007 // heap state at the point the guard is issued needs to be consistent in case
1008 // the guard invokes the "deopt" continuation.
1009
1010 // NB! This function is *not* commutative, so we special case two
1011 // possibilities for guard intrinsics.
1012
1013 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1014 return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1015 ? ModRefInfo::Ref
1016 : ModRefInfo::NoModRef;
1017
1018 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1019 return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1020 ? ModRefInfo::Mod
1021 : ModRefInfo::NoModRef;
1022
1023 // The AAResultBase base class has some smarts, lets use them.
1024 return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1025 }
1026
1027 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1028 /// both having the exact same pointer operand.
aliasSameBasePointerGEPs(const GEPOperator * GEP1,LocationSize MaybeV1Size,const GEPOperator * GEP2,LocationSize MaybeV2Size,const DataLayout & DL)1029 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1030 LocationSize MaybeV1Size,
1031 const GEPOperator *GEP2,
1032 LocationSize MaybeV2Size,
1033 const DataLayout &DL) {
1034 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1035 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1036 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1037 "Expected GEPs with the same pointer operand");
1038
1039 // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1040 // such that the struct field accesses provably cannot alias.
1041 // We also need at least two indices (the pointer, and the struct field).
1042 if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1043 GEP1->getNumIndices() < 2)
1044 return MayAlias;
1045
1046 // If we don't know the size of the accesses through both GEPs, we can't
1047 // determine whether the struct fields accessed can't alias.
1048 if (MaybeV1Size == LocationSize::unknown() ||
1049 MaybeV2Size == LocationSize::unknown())
1050 return MayAlias;
1051
1052 const uint64_t V1Size = MaybeV1Size.getValue();
1053 const uint64_t V2Size = MaybeV2Size.getValue();
1054
1055 ConstantInt *C1 =
1056 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1057 ConstantInt *C2 =
1058 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1059
1060 // If the last (struct) indices are constants and are equal, the other indices
1061 // might be also be dynamically equal, so the GEPs can alias.
1062 if (C1 && C2) {
1063 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1064 if (C1->getValue().sextOrSelf(BitWidth) ==
1065 C2->getValue().sextOrSelf(BitWidth))
1066 return MayAlias;
1067 }
1068
1069 // Find the last-indexed type of the GEP, i.e., the type you'd get if
1070 // you stripped the last index.
1071 // On the way, look at each indexed type. If there's something other
1072 // than an array, different indices can lead to different final types.
1073 SmallVector<Value *, 8> IntermediateIndices;
1074
1075 // Insert the first index; we don't need to check the type indexed
1076 // through it as it only drops the pointer indirection.
1077 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1078 IntermediateIndices.push_back(GEP1->getOperand(1));
1079
1080 // Insert all the remaining indices but the last one.
1081 // Also, check that they all index through arrays.
1082 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1083 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1084 GEP1->getSourceElementType(), IntermediateIndices)))
1085 return MayAlias;
1086 IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1087 }
1088
1089 auto *Ty = GetElementPtrInst::getIndexedType(
1090 GEP1->getSourceElementType(), IntermediateIndices);
1091 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1092
1093 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1094 // We know that:
1095 // - both GEPs begin indexing from the exact same pointer;
1096 // - the last indices in both GEPs are constants, indexing into a sequential
1097 // type (array or vector);
1098 // - both GEPs only index through arrays prior to that.
1099 //
1100 // Because array indices greater than the number of elements are valid in
1101 // GEPs, unless we know the intermediate indices are identical between
1102 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1103 // partially overlap. We also need to check that the loaded size matches
1104 // the element size, otherwise we could still have overlap.
1105 Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1106 const uint64_t ElementSize =
1107 DL.getTypeStoreSize(LastElementTy).getFixedSize();
1108 if (V1Size != ElementSize || V2Size != ElementSize)
1109 return MayAlias;
1110
1111 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1112 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1113 return MayAlias;
1114
1115 // Now we know that the array/pointer that GEP1 indexes into and that
1116 // that GEP2 indexes into must either precisely overlap or be disjoint.
1117 // Because they cannot partially overlap and because fields in an array
1118 // cannot overlap, if we can prove the final indices are different between
1119 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1120
1121 // If the last indices are constants, we've already checked they don't
1122 // equal each other so we can exit early.
1123 if (C1 && C2)
1124 return NoAlias;
1125 {
1126 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1127 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1128 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1129 // If one of the indices is a PHI node, be safe and only use
1130 // computeKnownBits so we don't make any assumptions about the
1131 // relationships between the two indices. This is important if we're
1132 // asking about values from different loop iterations. See PR32314.
1133 // TODO: We may be able to change the check so we only do this when
1134 // we definitely looked through a PHINode.
1135 if (GEP1LastIdx != GEP2LastIdx &&
1136 GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1137 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1138 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1139 if (Known1.Zero.intersects(Known2.One) ||
1140 Known1.One.intersects(Known2.Zero))
1141 return NoAlias;
1142 }
1143 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1144 return NoAlias;
1145 }
1146 return MayAlias;
1147 } else if (!LastIndexedStruct || !C1 || !C2) {
1148 return MayAlias;
1149 }
1150
1151 if (C1->getValue().getActiveBits() > 64 ||
1152 C2->getValue().getActiveBits() > 64)
1153 return MayAlias;
1154
1155 // We know that:
1156 // - both GEPs begin indexing from the exact same pointer;
1157 // - the last indices in both GEPs are constants, indexing into a struct;
1158 // - said indices are different, hence, the pointed-to fields are different;
1159 // - both GEPs only index through arrays prior to that.
1160 //
1161 // This lets us determine that the struct that GEP1 indexes into and the
1162 // struct that GEP2 indexes into must either precisely overlap or be
1163 // completely disjoint. Because they cannot partially overlap, indexing into
1164 // different non-overlapping fields of the struct will never alias.
1165
1166 // Therefore, the only remaining thing needed to show that both GEPs can't
1167 // alias is that the fields are not overlapping.
1168 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1169 const uint64_t StructSize = SL->getSizeInBytes();
1170 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1171 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1172
1173 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1174 uint64_t V2Off, uint64_t V2Size) {
1175 return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1176 ((V2Off + V2Size <= StructSize) ||
1177 (V2Off + V2Size - StructSize <= V1Off));
1178 };
1179
1180 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1181 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1182 return NoAlias;
1183
1184 return MayAlias;
1185 }
1186
1187 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1188 // beginning of the object the GEP points would have a negative offset with
1189 // repsect to the alloca, that means the GEP can not alias pointer (b).
1190 // Note that the pointer based on the alloca may not be a GEP. For
1191 // example, it may be the alloca itself.
1192 // The same applies if (b) is based on a GlobalVariable. Note that just being
1193 // based on isIdentifiedObject() is not enough - we need an identified object
1194 // that does not permit access to negative offsets. For example, a negative
1195 // offset from a noalias argument or call can be inbounds w.r.t the actual
1196 // underlying object.
1197 //
1198 // For example, consider:
1199 //
1200 // struct { int f0, int f1, ...} foo;
1201 // foo alloca;
1202 // foo* random = bar(alloca);
1203 // int *f0 = &alloca.f0
1204 // int *f1 = &random->f1;
1205 //
1206 // Which is lowered, approximately, to:
1207 //
1208 // %alloca = alloca %struct.foo
1209 // %random = call %struct.foo* @random(%struct.foo* %alloca)
1210 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1211 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1212 //
1213 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1214 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1215 // point into the same object. But since %f0 points to the beginning of %alloca,
1216 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1217 // than (%alloca - 1), and so is not inbounds, a contradiction.
isGEPBaseAtNegativeOffset(const GEPOperator * GEPOp,const DecomposedGEP & DecompGEP,const DecomposedGEP & DecompObject,LocationSize MaybeObjectAccessSize)1218 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1219 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1220 LocationSize MaybeObjectAccessSize) {
1221 // If the object access size is unknown, or the GEP isn't inbounds, bail.
1222 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1223 return false;
1224
1225 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1226
1227 // We need the object to be an alloca or a globalvariable, and want to know
1228 // the offset of the pointer from the object precisely, so no variable
1229 // indices are allowed.
1230 if (!(isa<AllocaInst>(DecompObject.Base) ||
1231 isa<GlobalVariable>(DecompObject.Base)) ||
1232 !DecompObject.VarIndices.empty())
1233 return false;
1234
1235 // If the GEP has no variable indices, we know the precise offset
1236 // from the base, then use it. If the GEP has variable indices,
1237 // we can't get exact GEP offset to identify pointer alias. So return
1238 // false in that case.
1239 if (!DecompGEP.VarIndices.empty())
1240 return false;
1241
1242 return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
1243 }
1244
1245 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1246 /// another pointer.
1247 ///
1248 /// We know that V1 is a GEP, but we don't know anything about V2.
1249 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1250 /// V2.
aliasGEP(const GEPOperator * GEP1,LocationSize V1Size,const AAMDNodes & V1AAInfo,const Value * V2,LocationSize V2Size,const AAMDNodes & V2AAInfo,const Value * UnderlyingV1,const Value * UnderlyingV2,AAQueryInfo & AAQI)1251 AliasResult BasicAAResult::aliasGEP(
1252 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1253 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1254 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1255 DecomposedGEP DecompGEP1, DecompGEP2;
1256 unsigned MaxPointerSize = getMaxPointerSize(DL);
1257 DecompGEP1.Offset = APInt(MaxPointerSize, 0);
1258 DecompGEP2.Offset = APInt(MaxPointerSize, 0);
1259 DecompGEP1.HasCompileTimeConstantScale =
1260 DecompGEP2.HasCompileTimeConstantScale = true;
1261
1262 bool GEP1MaxLookupReached =
1263 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1264 bool GEP2MaxLookupReached =
1265 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1266
1267 // Don't attempt to analyze the decomposed GEP if index scale is not a
1268 // compile-time constant.
1269 if (!DecompGEP1.HasCompileTimeConstantScale ||
1270 !DecompGEP2.HasCompileTimeConstantScale)
1271 return MayAlias;
1272
1273 APInt GEP1BaseOffset = DecompGEP1.Offset;
1274 APInt GEP2BaseOffset = DecompGEP2.Offset;
1275
1276 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1277 "DecomposeGEPExpression returned a result different from "
1278 "getUnderlyingObject");
1279
1280 // If the GEP's offset relative to its base is such that the base would
1281 // fall below the start of the object underlying V2, then the GEP and V2
1282 // cannot alias.
1283 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1284 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1285 return NoAlias;
1286 // If we have two gep instructions with must-alias or not-alias'ing base
1287 // pointers, figure out if the indexes to the GEP tell us anything about the
1288 // derived pointer.
1289 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1290 // Check for the GEP base being at a negative offset, this time in the other
1291 // direction.
1292 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1293 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1294 return NoAlias;
1295 // Do the base pointers alias?
1296 AliasResult BaseAlias =
1297 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1298 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1299
1300 // For GEPs with identical sizes and offsets, we can preserve the size
1301 // and AAInfo when performing the alias check on the underlying objects.
1302 if (BaseAlias == MayAlias && V1Size == V2Size &&
1303 GEP1BaseOffset == GEP2BaseOffset &&
1304 DecompGEP1.VarIndices == DecompGEP2.VarIndices &&
1305 !GEP1MaxLookupReached && !GEP2MaxLookupReached) {
1306 AliasResult PreciseBaseAlias = aliasCheck(
1307 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1308 if (PreciseBaseAlias == NoAlias)
1309 return NoAlias;
1310 }
1311
1312 // If we get a No or May, then return it immediately, no amount of analysis
1313 // will improve this situation.
1314 if (BaseAlias != MustAlias) {
1315 assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1316 return BaseAlias;
1317 }
1318
1319 // Otherwise, we have a MustAlias. Since the base pointers alias each other
1320 // exactly, see if the computed offset from the common pointer tells us
1321 // about the relation of the resulting pointer.
1322 // If we know the two GEPs are based off of the exact same pointer (and not
1323 // just the same underlying object), see if that tells us anything about
1324 // the resulting pointers.
1325 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1326 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1327 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1328 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1329 // If we couldn't find anything interesting, don't abandon just yet.
1330 if (R != MayAlias)
1331 return R;
1332 }
1333
1334 // If the max search depth is reached, the result is undefined
1335 if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1336 return MayAlias;
1337
1338 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1339 // symbolic difference.
1340 GEP1BaseOffset -= GEP2BaseOffset;
1341 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1342
1343 } else {
1344 // Check to see if these two pointers are related by the getelementptr
1345 // instruction. If one pointer is a GEP with a non-zero index of the other
1346 // pointer, we know they cannot alias.
1347
1348 // If both accesses are unknown size, we can't do anything useful here.
1349 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1350 return MayAlias;
1351
1352 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1353 AAMDNodes(), V2, LocationSize::unknown(),
1354 V2AAInfo, AAQI, nullptr, UnderlyingV2);
1355 if (R != MustAlias) {
1356 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1357 // If V2 is known not to alias GEP base pointer, then the two values
1358 // cannot alias per GEP semantics: "Any memory access must be done through
1359 // a pointer value associated with an address range of the memory access,
1360 // otherwise the behavior is undefined.".
1361 assert(R == NoAlias || R == MayAlias);
1362 return R;
1363 }
1364
1365 // If the max search depth is reached the result is undefined
1366 if (GEP1MaxLookupReached)
1367 return MayAlias;
1368 }
1369
1370 // In the two GEP Case, if there is no difference in the offsets of the
1371 // computed pointers, the resultant pointers are a must alias. This
1372 // happens when we have two lexically identical GEP's (for example).
1373 //
1374 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1375 // must aliases the GEP, the end result is a must alias also.
1376 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1377 return MustAlias;
1378
1379 // If there is a constant difference between the pointers, but the difference
1380 // is less than the size of the associated memory object, then we know
1381 // that the objects are partially overlapping. If the difference is
1382 // greater, we know they do not overlap.
1383 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1384 if (GEP1BaseOffset.sge(0)) {
1385 if (V2Size != LocationSize::unknown()) {
1386 if (GEP1BaseOffset.ult(V2Size.getValue()))
1387 return PartialAlias;
1388 return NoAlias;
1389 }
1390 } else {
1391 // We have the situation where:
1392 // + +
1393 // | BaseOffset |
1394 // ---------------->|
1395 // |-->V1Size |-------> V2Size
1396 // GEP1 V2
1397 // We need to know that V2Size is not unknown, otherwise we might have
1398 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1399 if (V1Size != LocationSize::unknown() &&
1400 V2Size != LocationSize::unknown()) {
1401 if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1402 return PartialAlias;
1403 return NoAlias;
1404 }
1405 }
1406 }
1407
1408 if (!DecompGEP1.VarIndices.empty()) {
1409 APInt Modulo(MaxPointerSize, 0);
1410 bool AllPositive = true;
1411 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1412
1413 // Try to distinguish something like &A[i][1] against &A[42][0].
1414 // Grab the least significant bit set in any of the scales. We
1415 // don't need std::abs here (even if the scale's negative) as we'll
1416 // be ^'ing Modulo with itself later.
1417 Modulo |= DecompGEP1.VarIndices[i].Scale;
1418
1419 if (AllPositive) {
1420 // If the Value could change between cycles, then any reasoning about
1421 // the Value this cycle may not hold in the next cycle. We'll just
1422 // give up if we can't determine conditions that hold for every cycle:
1423 const Value *V = DecompGEP1.VarIndices[i].V;
1424
1425 KnownBits Known =
1426 computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1427 bool SignKnownZero = Known.isNonNegative();
1428 bool SignKnownOne = Known.isNegative();
1429
1430 // Zero-extension widens the variable, and so forces the sign
1431 // bit to zero.
1432 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1433 SignKnownZero |= IsZExt;
1434 SignKnownOne &= !IsZExt;
1435
1436 // If the variable begins with a zero then we know it's
1437 // positive, regardless of whether the value is signed or
1438 // unsigned.
1439 APInt Scale = DecompGEP1.VarIndices[i].Scale;
1440 AllPositive =
1441 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1442 }
1443 }
1444
1445 Modulo = Modulo ^ (Modulo & (Modulo - 1));
1446
1447 // We can compute the difference between the two addresses
1448 // mod Modulo. Check whether that difference guarantees that the
1449 // two locations do not alias.
1450 APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1451 if (V1Size != LocationSize::unknown() &&
1452 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1453 (Modulo - ModOffset).uge(V1Size.getValue()))
1454 return NoAlias;
1455
1456 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1457 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1458 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1459 if (AllPositive && GEP1BaseOffset.sgt(0) &&
1460 V2Size != LocationSize::unknown() &&
1461 GEP1BaseOffset.uge(V2Size.getValue()))
1462 return NoAlias;
1463
1464 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1465 GEP1BaseOffset, &AC, DT))
1466 return NoAlias;
1467 }
1468
1469 // Statically, we can see that the base objects are the same, but the
1470 // pointers have dynamic offsets which we can't resolve. And none of our
1471 // little tricks above worked.
1472 return MayAlias;
1473 }
1474
MergeAliasResults(AliasResult A,AliasResult B)1475 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1476 // If the results agree, take it.
1477 if (A == B)
1478 return A;
1479 // A mix of PartialAlias and MustAlias is PartialAlias.
1480 if ((A == PartialAlias && B == MustAlias) ||
1481 (B == PartialAlias && A == MustAlias))
1482 return PartialAlias;
1483 // Otherwise, we don't know anything.
1484 return MayAlias;
1485 }
1486
1487 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1488 /// against another.
1489 AliasResult
aliasSelect(const SelectInst * SI,LocationSize SISize,const AAMDNodes & SIAAInfo,const Value * V2,LocationSize V2Size,const AAMDNodes & V2AAInfo,const Value * UnderV2,AAQueryInfo & AAQI)1490 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1491 const AAMDNodes &SIAAInfo, const Value *V2,
1492 LocationSize V2Size, const AAMDNodes &V2AAInfo,
1493 const Value *UnderV2, AAQueryInfo &AAQI) {
1494 // If the values are Selects with the same condition, we can do a more precise
1495 // check: just check for aliases between the values on corresponding arms.
1496 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1497 if (SI->getCondition() == SI2->getCondition()) {
1498 AliasResult Alias =
1499 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1500 V2Size, V2AAInfo, AAQI);
1501 if (Alias == MayAlias)
1502 return MayAlias;
1503 AliasResult ThisAlias =
1504 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1505 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1506 return MergeAliasResults(ThisAlias, Alias);
1507 }
1508
1509 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1510 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1511 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1512 SISize, SIAAInfo, AAQI, UnderV2);
1513 if (Alias == MayAlias)
1514 return MayAlias;
1515
1516 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1517 SISize, SIAAInfo, AAQI, UnderV2);
1518 return MergeAliasResults(ThisAlias, Alias);
1519 }
1520
1521 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1522 /// another.
aliasPHI(const PHINode * PN,LocationSize PNSize,const AAMDNodes & PNAAInfo,const Value * V2,LocationSize V2Size,const AAMDNodes & V2AAInfo,const Value * UnderV2,AAQueryInfo & AAQI)1523 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1524 const AAMDNodes &PNAAInfo, const Value *V2,
1525 LocationSize V2Size,
1526 const AAMDNodes &V2AAInfo,
1527 const Value *UnderV2, AAQueryInfo &AAQI) {
1528 // If the values are PHIs in the same block, we can do a more precise
1529 // as well as efficient check: just check for aliases between the values
1530 // on corresponding edges.
1531 if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1532 if (PN2->getParent() == PN->getParent()) {
1533 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1534 MemoryLocation(V2, V2Size, V2AAInfo));
1535 if (PN > V2)
1536 std::swap(Locs.first, Locs.second);
1537 // Analyse the PHIs' inputs under the assumption that the PHIs are
1538 // NoAlias.
1539 // If the PHIs are May/MustAlias there must be (recursively) an input
1540 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1541 // there must be an operation on the PHIs within the PHIs' value cycle
1542 // that causes a MayAlias.
1543 // Pretend the phis do not alias.
1544 AliasResult Alias = NoAlias;
1545 AliasResult OrigAliasResult;
1546 {
1547 // Limited lifetime iterator invalidated by the aliasCheck call below.
1548 auto CacheIt = AAQI.AliasCache.find(Locs);
1549 assert((CacheIt != AAQI.AliasCache.end()) &&
1550 "There must exist an entry for the phi node");
1551 OrigAliasResult = CacheIt->second;
1552 CacheIt->second = NoAlias;
1553 }
1554
1555 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1556 AliasResult ThisAlias =
1557 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1558 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1559 V2Size, V2AAInfo, AAQI);
1560 Alias = MergeAliasResults(ThisAlias, Alias);
1561 if (Alias == MayAlias)
1562 break;
1563 }
1564
1565 // Reset if speculation failed.
1566 if (Alias != NoAlias)
1567 AAQI.updateResult(Locs, OrigAliasResult);
1568 return Alias;
1569 }
1570
1571 SmallVector<Value *, 4> V1Srcs;
1572 // For a recursive phi, that recurses through a contant gep, we can perform
1573 // aliasing calculations using the other phi operands with an unknown size to
1574 // specify that an unknown number of elements after the initial value are
1575 // potentially accessed.
1576 bool isRecursive = false;
1577 auto CheckForRecPhi = [&](Value *PV) {
1578 if (!EnableRecPhiAnalysis)
1579 return false;
1580 if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) {
1581 // Check whether the incoming value is a GEP that advances the pointer
1582 // result of this PHI node (e.g. in a loop). If this is the case, we
1583 // would recurse and always get a MayAlias. Handle this case specially
1584 // below. We need to ensure that the phi is inbounds and has a constant
1585 // positive operand so that we can check for alias with the initial value
1586 // and an unknown but positive size.
1587 if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() &&
1588 PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) &&
1589 !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) {
1590 isRecursive = true;
1591 return true;
1592 }
1593 }
1594 return false;
1595 };
1596
1597 if (PV) {
1598 // If we have PhiValues then use it to get the underlying phi values.
1599 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1600 // If we have more phi values than the search depth then return MayAlias
1601 // conservatively to avoid compile time explosion. The worst possible case
1602 // is if both sides are PHI nodes. In which case, this is O(m x n) time
1603 // where 'm' and 'n' are the number of PHI sources.
1604 if (PhiValueSet.size() > MaxLookupSearchDepth)
1605 return MayAlias;
1606 // Add the values to V1Srcs
1607 for (Value *PV1 : PhiValueSet) {
1608 if (CheckForRecPhi(PV1))
1609 continue;
1610 V1Srcs.push_back(PV1);
1611 }
1612 } else {
1613 // If we don't have PhiInfo then just look at the operands of the phi itself
1614 // FIXME: Remove this once we can guarantee that we have PhiInfo always
1615 SmallPtrSet<Value *, 4> UniqueSrc;
1616 for (Value *PV1 : PN->incoming_values()) {
1617 if (isa<PHINode>(PV1))
1618 // If any of the source itself is a PHI, return MayAlias conservatively
1619 // to avoid compile time explosion. The worst possible case is if both
1620 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1621 // and 'n' are the number of PHI sources.
1622 return MayAlias;
1623
1624 if (CheckForRecPhi(PV1))
1625 continue;
1626
1627 if (UniqueSrc.insert(PV1).second)
1628 V1Srcs.push_back(PV1);
1629 }
1630 }
1631
1632 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1633 // value. This should only be possible in blocks unreachable from the entry
1634 // block, but return MayAlias just in case.
1635 if (V1Srcs.empty())
1636 return MayAlias;
1637
1638 // If this PHI node is recursive, set the size of the accessed memory to
1639 // unknown to represent all the possible values the GEP could advance the
1640 // pointer to.
1641 if (isRecursive)
1642 PNSize = LocationSize::unknown();
1643
1644 // In the recursive alias queries below, we may compare values from two
1645 // different loop iterations. Keep track of visited phi blocks, which will
1646 // be used when determining value equivalence.
1647 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1648 auto _ = make_scope_exit([&]() {
1649 if (BlockInserted)
1650 VisitedPhiBBs.erase(PN->getParent());
1651 });
1652
1653 // If we inserted a block into VisitedPhiBBs, alias analysis results that
1654 // have been cached earlier may no longer be valid. Perform recursive queries
1655 // with a new AAQueryInfo.
1656 AAQueryInfo NewAAQI;
1657 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1658
1659 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1660 PNAAInfo, *UseAAQI, UnderV2);
1661
1662 // Early exit if the check of the first PHI source against V2 is MayAlias.
1663 // Other results are not possible.
1664 if (Alias == MayAlias)
1665 return MayAlias;
1666 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1667 // remain valid to all elements and needs to conservatively return MayAlias.
1668 if (isRecursive && Alias != NoAlias)
1669 return MayAlias;
1670
1671 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1672 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1673 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1674 Value *V = V1Srcs[i];
1675
1676 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize,
1677 PNAAInfo, *UseAAQI, UnderV2);
1678 Alias = MergeAliasResults(ThisAlias, Alias);
1679 if (Alias == MayAlias)
1680 break;
1681 }
1682
1683 return Alias;
1684 }
1685
1686 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1687 /// array references.
aliasCheck(const Value * V1,LocationSize V1Size,const AAMDNodes & V1AAInfo,const Value * V2,LocationSize V2Size,const AAMDNodes & V2AAInfo,AAQueryInfo & AAQI,const Value * O1,const Value * O2)1688 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1689 const AAMDNodes &V1AAInfo,
1690 const Value *V2, LocationSize V2Size,
1691 const AAMDNodes &V2AAInfo,
1692 AAQueryInfo &AAQI, const Value *O1,
1693 const Value *O2) {
1694 // If either of the memory references is empty, it doesn't matter what the
1695 // pointer values are.
1696 if (V1Size.isZero() || V2Size.isZero())
1697 return NoAlias;
1698
1699 // Strip off any casts if they exist.
1700 V1 = V1->stripPointerCastsAndInvariantGroups();
1701 V2 = V2->stripPointerCastsAndInvariantGroups();
1702
1703 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1704 // value for undef that aliases nothing in the program.
1705 if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1706 return NoAlias;
1707
1708 // Are we checking for alias of the same value?
1709 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1710 // different iterations. We must therefore make sure that this is not the
1711 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1712 // happen by looking at the visited phi nodes and making sure they cannot
1713 // reach the value.
1714 if (isValueEqualInPotentialCycles(V1, V2))
1715 return MustAlias;
1716
1717 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1718 return NoAlias; // Scalars cannot alias each other
1719
1720 // Figure out what objects these things are pointing to if we can.
1721 if (O1 == nullptr)
1722 O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1723
1724 if (O2 == nullptr)
1725 O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1726
1727 // Null values in the default address space don't point to any object, so they
1728 // don't alias any other pointer.
1729 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1730 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1731 return NoAlias;
1732 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1733 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1734 return NoAlias;
1735
1736 if (O1 != O2) {
1737 // If V1/V2 point to two different objects, we know that we have no alias.
1738 if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1739 return NoAlias;
1740
1741 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1742 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1743 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1744 return NoAlias;
1745
1746 // Function arguments can't alias with things that are known to be
1747 // unambigously identified at the function level.
1748 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1749 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1750 return NoAlias;
1751
1752 // If one pointer is the result of a call/invoke or load and the other is a
1753 // non-escaping local object within the same function, then we know the
1754 // object couldn't escape to a point where the call could return it.
1755 //
1756 // Note that if the pointers are in different functions, there are a
1757 // variety of complications. A call with a nocapture argument may still
1758 // temporary store the nocapture argument's value in a temporary memory
1759 // location if that memory location doesn't escape. Or it may pass a
1760 // nocapture value to other functions as long as they don't capture it.
1761 if (isEscapeSource(O1) &&
1762 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1763 return NoAlias;
1764 if (isEscapeSource(O2) &&
1765 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1766 return NoAlias;
1767 }
1768
1769 // If the size of one access is larger than the entire object on the other
1770 // side, then we know such behavior is undefined and can assume no alias.
1771 bool NullIsValidLocation = NullPointerIsDefined(&F);
1772 if ((isObjectSmallerThan(
1773 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1774 TLI, NullIsValidLocation)) ||
1775 (isObjectSmallerThan(
1776 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1777 TLI, NullIsValidLocation)))
1778 return NoAlias;
1779
1780 // Check the cache before climbing up use-def chains. This also terminates
1781 // otherwise infinitely recursive queries.
1782 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1783 MemoryLocation(V2, V2Size, V2AAInfo));
1784 if (V1 > V2)
1785 std::swap(Locs.first, Locs.second);
1786 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1787 AAQI.AliasCache.try_emplace(Locs, MayAlias);
1788 if (!Pair.second)
1789 return Pair.first->second;
1790
1791 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1792 // GEP can't simplify, we don't even look at the PHI cases.
1793 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1794 AliasResult Result =
1795 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1796 if (Result != MayAlias)
1797 return AAQI.updateResult(Locs, Result);
1798 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1799 AliasResult Result =
1800 aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1801 if (Result != MayAlias)
1802 return AAQI.updateResult(Locs, Result);
1803 }
1804
1805 if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1806 AliasResult Result =
1807 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1808 if (Result != MayAlias)
1809 return AAQI.updateResult(Locs, Result);
1810 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1811 AliasResult Result =
1812 aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1813 if (Result != MayAlias)
1814 return AAQI.updateResult(Locs, Result);
1815 }
1816
1817 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1818 AliasResult Result =
1819 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1820 if (Result != MayAlias)
1821 return AAQI.updateResult(Locs, Result);
1822 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1823 AliasResult Result =
1824 aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1825 if (Result != MayAlias)
1826 return AAQI.updateResult(Locs, Result);
1827 }
1828
1829 // If both pointers are pointing into the same object and one of them
1830 // accesses the entire object, then the accesses must overlap in some way.
1831 if (O1 == O2)
1832 if (V1Size.isPrecise() && V2Size.isPrecise() &&
1833 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1834 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1835 return AAQI.updateResult(Locs, PartialAlias);
1836
1837 // Recurse back into the best AA results we have, potentially with refined
1838 // memory locations. We have already ensured that BasicAA has a MayAlias
1839 // cache result for these, so any recursion back into BasicAA won't loop.
1840 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1841 return AAQI.updateResult(Locs, Result);
1842 }
1843
1844 /// Check whether two Values can be considered equivalent.
1845 ///
1846 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1847 /// they can not be part of a cycle in the value graph by looking at all
1848 /// visited phi nodes an making sure that the phis cannot reach the value. We
1849 /// have to do this because we are looking through phi nodes (That is we say
1850 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
isValueEqualInPotentialCycles(const Value * V,const Value * V2)1851 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1852 const Value *V2) {
1853 if (V != V2)
1854 return false;
1855
1856 const Instruction *Inst = dyn_cast<Instruction>(V);
1857 if (!Inst)
1858 return true;
1859
1860 if (VisitedPhiBBs.empty())
1861 return true;
1862
1863 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1864 return false;
1865
1866 // Make sure that the visited phis cannot reach the Value. This ensures that
1867 // the Values cannot come from different iterations of a potential cycle the
1868 // phi nodes could be involved in.
1869 for (auto *P : VisitedPhiBBs)
1870 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1871 return false;
1872
1873 return true;
1874 }
1875
1876 /// Computes the symbolic difference between two de-composed GEPs.
1877 ///
1878 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1879 /// instructions GEP1 and GEP2 which have common base pointers.
GetIndexDifference(SmallVectorImpl<VariableGEPIndex> & Dest,const SmallVectorImpl<VariableGEPIndex> & Src)1880 void BasicAAResult::GetIndexDifference(
1881 SmallVectorImpl<VariableGEPIndex> &Dest,
1882 const SmallVectorImpl<VariableGEPIndex> &Src) {
1883 if (Src.empty())
1884 return;
1885
1886 for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1887 const Value *V = Src[i].V;
1888 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1889 APInt Scale = Src[i].Scale;
1890
1891 // Find V in Dest. This is N^2, but pointer indices almost never have more
1892 // than a few variable indexes.
1893 for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1894 if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1895 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1896 continue;
1897
1898 // If we found it, subtract off Scale V's from the entry in Dest. If it
1899 // goes to zero, remove the entry.
1900 if (Dest[j].Scale != Scale)
1901 Dest[j].Scale -= Scale;
1902 else
1903 Dest.erase(Dest.begin() + j);
1904 Scale = 0;
1905 break;
1906 }
1907
1908 // If we didn't consume this entry, add it to the end of the Dest list.
1909 if (!!Scale) {
1910 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1911 Dest.push_back(Entry);
1912 }
1913 }
1914 }
1915
constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> & VarIndices,LocationSize MaybeV1Size,LocationSize MaybeV2Size,const APInt & BaseOffset,AssumptionCache * AC,DominatorTree * DT)1916 bool BasicAAResult::constantOffsetHeuristic(
1917 const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1918 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1919 AssumptionCache *AC, DominatorTree *DT) {
1920 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
1921 MaybeV2Size == LocationSize::unknown())
1922 return false;
1923
1924 const uint64_t V1Size = MaybeV1Size.getValue();
1925 const uint64_t V2Size = MaybeV2Size.getValue();
1926
1927 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1928
1929 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1930 Var0.Scale != -Var1.Scale)
1931 return false;
1932
1933 unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1934
1935 // We'll strip off the Extensions of Var0 and Var1 and do another round
1936 // of GetLinearExpression decomposition. In the example above, if Var0
1937 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1938
1939 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1940 V1Offset(Width, 0);
1941 bool NSW = true, NUW = true;
1942 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1943 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1944 V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1945 NSW = true;
1946 NUW = true;
1947 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1948 V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1949
1950 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1951 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1952 return false;
1953
1954 // We have a hit - Var0 and Var1 only differ by a constant offset!
1955
1956 // If we've been sext'ed then zext'd the maximum difference between Var0 and
1957 // Var1 is possible to calculate, but we're just interested in the absolute
1958 // minimum difference between the two. The minimum distance may occur due to
1959 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1960 // the minimum distance between %i and %i + 5 is 3.
1961 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1962 MinDiff = APIntOps::umin(MinDiff, Wrapped);
1963 APInt MinDiffBytes =
1964 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1965
1966 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1967 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1968 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1969 // V2Size can fit in the MinDiffBytes gap.
1970 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1971 MinDiffBytes.uge(V2Size + BaseOffset.abs());
1972 }
1973
1974 //===----------------------------------------------------------------------===//
1975 // BasicAliasAnalysis Pass
1976 //===----------------------------------------------------------------------===//
1977
1978 AnalysisKey BasicAA::Key;
1979
run(Function & F,FunctionAnalysisManager & AM)1980 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1981 return BasicAAResult(F.getParent()->getDataLayout(),
1982 F,
1983 AM.getResult<TargetLibraryAnalysis>(F),
1984 AM.getResult<AssumptionAnalysis>(F),
1985 &AM.getResult<DominatorTreeAnalysis>(F),
1986 AM.getCachedResult<LoopAnalysis>(F),
1987 AM.getCachedResult<PhiValuesAnalysis>(F));
1988 }
1989
BasicAAWrapperPass()1990 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1991 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1992 }
1993
1994 char BasicAAWrapperPass::ID = 0;
1995
anchor()1996 void BasicAAWrapperPass::anchor() {}
1997
1998 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1999 "Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)2000 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2001 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2002 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2003 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2004 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
2005 "Basic Alias Analysis (stateless AA impl)", true, true)
2006
2007 FunctionPass *llvm::createBasicAAWrapperPass() {
2008 return new BasicAAWrapperPass();
2009 }
2010
runOnFunction(Function & F)2011 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2012 auto &ACT = getAnalysis<AssumptionCacheTracker>();
2013 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2014 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2015 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2016 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2017
2018 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2019 TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2020 &DTWP.getDomTree(),
2021 LIWP ? &LIWP->getLoopInfo() : nullptr,
2022 PVWP ? &PVWP->getResult() : nullptr));
2023
2024 return false;
2025 }
2026
getAnalysisUsage(AnalysisUsage & AU) const2027 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2028 AU.setPreservesAll();
2029 AU.addRequired<AssumptionCacheTracker>();
2030 AU.addRequired<DominatorTreeWrapperPass>();
2031 AU.addRequired<TargetLibraryInfoWrapperPass>();
2032 AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2033 }
2034
createLegacyPMBasicAAResult(Pass & P,Function & F)2035 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2036 return BasicAAResult(
2037 F.getParent()->getDataLayout(), F,
2038 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2039 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2040 }
2041