1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy,LLT NarrowTy,LLT & LeftoverTy)43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
getFloatTypeForLLT(LLVMContext & Ctx,LLT Ty)68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
LegalizerHelper(MachineFunction & MF,GISelChangeObserver & Observer,MachineIRBuilder & Builder)89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) {
95   MIRBuilder.setChangeObserver(Observer);
96 }
97 
LegalizerHelper(MachineFunction & MF,const LegalizerInfo & LI,GISelChangeObserver & Observer,MachineIRBuilder & B)98 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
99                                  GISelChangeObserver &Observer,
100                                  MachineIRBuilder &B)
101   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
102     TLI(*MF.getSubtarget().getTargetLowering()) {
103   MIRBuilder.setChangeObserver(Observer);
104 }
105 LegalizerHelper::LegalizeResult
legalizeInstrStep(MachineInstr & MI)106 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
107   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
108 
109   MIRBuilder.setInstrAndDebugLoc(MI);
110 
111   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
112       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
113     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
114   auto Step = LI.getAction(MI, MRI);
115   switch (Step.Action) {
116   case Legal:
117     LLVM_DEBUG(dbgs() << ".. Already legal\n");
118     return AlreadyLegal;
119   case Libcall:
120     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
121     return libcall(MI);
122   case NarrowScalar:
123     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
124     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
125   case WidenScalar:
126     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
127     return widenScalar(MI, Step.TypeIdx, Step.NewType);
128   case Bitcast:
129     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
130     return bitcast(MI, Step.TypeIdx, Step.NewType);
131   case Lower:
132     LLVM_DEBUG(dbgs() << ".. Lower\n");
133     return lower(MI, Step.TypeIdx, Step.NewType);
134   case FewerElements:
135     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
136     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case MoreElements:
138     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
139     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
140   case Custom:
141     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
142     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
143   default:
144     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
145     return UnableToLegalize;
146   }
147 }
148 
extractParts(Register Reg,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)149 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
150                                    SmallVectorImpl<Register> &VRegs) {
151   for (int i = 0; i < NumParts; ++i)
152     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
153   MIRBuilder.buildUnmerge(VRegs, Reg);
154 }
155 
extractParts(Register Reg,LLT RegTy,LLT MainTy,LLT & LeftoverTy,SmallVectorImpl<Register> & VRegs,SmallVectorImpl<Register> & LeftoverRegs)156 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
157                                    LLT MainTy, LLT &LeftoverTy,
158                                    SmallVectorImpl<Register> &VRegs,
159                                    SmallVectorImpl<Register> &LeftoverRegs) {
160   assert(!LeftoverTy.isValid() && "this is an out argument");
161 
162   unsigned RegSize = RegTy.getSizeInBits();
163   unsigned MainSize = MainTy.getSizeInBits();
164   unsigned NumParts = RegSize / MainSize;
165   unsigned LeftoverSize = RegSize - NumParts * MainSize;
166 
167   // Use an unmerge when possible.
168   if (LeftoverSize == 0) {
169     for (unsigned I = 0; I < NumParts; ++I)
170       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
171     MIRBuilder.buildUnmerge(VRegs, Reg);
172     return true;
173   }
174 
175   if (MainTy.isVector()) {
176     unsigned EltSize = MainTy.getScalarSizeInBits();
177     if (LeftoverSize % EltSize != 0)
178       return false;
179     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
180   } else {
181     LeftoverTy = LLT::scalar(LeftoverSize);
182   }
183 
184   // For irregular sizes, extract the individual parts.
185   for (unsigned I = 0; I != NumParts; ++I) {
186     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
187     VRegs.push_back(NewReg);
188     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
189   }
190 
191   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
192        Offset += LeftoverSize) {
193     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
194     LeftoverRegs.push_back(NewReg);
195     MIRBuilder.buildExtract(NewReg, Reg, Offset);
196   }
197 
198   return true;
199 }
200 
insertParts(Register DstReg,LLT ResultTy,LLT PartTy,ArrayRef<Register> PartRegs,LLT LeftoverTy,ArrayRef<Register> LeftoverRegs)201 void LegalizerHelper::insertParts(Register DstReg,
202                                   LLT ResultTy, LLT PartTy,
203                                   ArrayRef<Register> PartRegs,
204                                   LLT LeftoverTy,
205                                   ArrayRef<Register> LeftoverRegs) {
206   if (!LeftoverTy.isValid()) {
207     assert(LeftoverRegs.empty());
208 
209     if (!ResultTy.isVector()) {
210       MIRBuilder.buildMerge(DstReg, PartRegs);
211       return;
212     }
213 
214     if (PartTy.isVector())
215       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
216     else
217       MIRBuilder.buildBuildVector(DstReg, PartRegs);
218     return;
219   }
220 
221   unsigned PartSize = PartTy.getSizeInBits();
222   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
223 
224   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
225   MIRBuilder.buildUndef(CurResultReg);
226 
227   unsigned Offset = 0;
228   for (Register PartReg : PartRegs) {
229     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
230     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
231     CurResultReg = NewResultReg;
232     Offset += PartSize;
233   }
234 
235   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
236     // Use the original output register for the final insert to avoid a copy.
237     Register NewResultReg = (I + 1 == E) ?
238       DstReg : MRI.createGenericVirtualRegister(ResultTy);
239 
240     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
241     CurResultReg = NewResultReg;
242     Offset += LeftoverPartSize;
243   }
244 }
245 
246 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
getUnmergeResults(SmallVectorImpl<Register> & Regs,const MachineInstr & MI)247 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
248                               const MachineInstr &MI) {
249   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
250 
251   const int StartIdx = Regs.size();
252   const int NumResults = MI.getNumOperands() - 1;
253   Regs.resize(Regs.size() + NumResults);
254   for (int I = 0; I != NumResults; ++I)
255     Regs[StartIdx + I] = MI.getOperand(I).getReg();
256 }
257 
extractGCDType(SmallVectorImpl<Register> & Parts,LLT GCDTy,Register SrcReg)258 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
259                                      LLT GCDTy, Register SrcReg) {
260   LLT SrcTy = MRI.getType(SrcReg);
261   if (SrcTy == GCDTy) {
262     // If the source already evenly divides the result type, we don't need to do
263     // anything.
264     Parts.push_back(SrcReg);
265   } else {
266     // Need to split into common type sized pieces.
267     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
268     getUnmergeResults(Parts, *Unmerge);
269   }
270 }
271 
extractGCDType(SmallVectorImpl<Register> & Parts,LLT DstTy,LLT NarrowTy,Register SrcReg)272 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
273                                     LLT NarrowTy, Register SrcReg) {
274   LLT SrcTy = MRI.getType(SrcReg);
275   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
276   extractGCDType(Parts, GCDTy, SrcReg);
277   return GCDTy;
278 }
279 
buildLCMMergePieces(LLT DstTy,LLT NarrowTy,LLT GCDTy,SmallVectorImpl<Register> & VRegs,unsigned PadStrategy)280 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
281                                          SmallVectorImpl<Register> &VRegs,
282                                          unsigned PadStrategy) {
283   LLT LCMTy = getLCMType(DstTy, NarrowTy);
284 
285   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
286   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
287   int NumOrigSrc = VRegs.size();
288 
289   Register PadReg;
290 
291   // Get a value we can use to pad the source value if the sources won't evenly
292   // cover the result type.
293   if (NumOrigSrc < NumParts * NumSubParts) {
294     if (PadStrategy == TargetOpcode::G_ZEXT)
295       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
296     else if (PadStrategy == TargetOpcode::G_ANYEXT)
297       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
298     else {
299       assert(PadStrategy == TargetOpcode::G_SEXT);
300 
301       // Shift the sign bit of the low register through the high register.
302       auto ShiftAmt =
303         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
304       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
305     }
306   }
307 
308   // Registers for the final merge to be produced.
309   SmallVector<Register, 4> Remerge(NumParts);
310 
311   // Registers needed for intermediate merges, which will be merged into a
312   // source for Remerge.
313   SmallVector<Register, 4> SubMerge(NumSubParts);
314 
315   // Once we've fully read off the end of the original source bits, we can reuse
316   // the same high bits for remaining padding elements.
317   Register AllPadReg;
318 
319   // Build merges to the LCM type to cover the original result type.
320   for (int I = 0; I != NumParts; ++I) {
321     bool AllMergePartsArePadding = true;
322 
323     // Build the requested merges to the requested type.
324     for (int J = 0; J != NumSubParts; ++J) {
325       int Idx = I * NumSubParts + J;
326       if (Idx >= NumOrigSrc) {
327         SubMerge[J] = PadReg;
328         continue;
329       }
330 
331       SubMerge[J] = VRegs[Idx];
332 
333       // There are meaningful bits here we can't reuse later.
334       AllMergePartsArePadding = false;
335     }
336 
337     // If we've filled up a complete piece with padding bits, we can directly
338     // emit the natural sized constant if applicable, rather than a merge of
339     // smaller constants.
340     if (AllMergePartsArePadding && !AllPadReg) {
341       if (PadStrategy == TargetOpcode::G_ANYEXT)
342         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
343       else if (PadStrategy == TargetOpcode::G_ZEXT)
344         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
345 
346       // If this is a sign extension, we can't materialize a trivial constant
347       // with the right type and have to produce a merge.
348     }
349 
350     if (AllPadReg) {
351       // Avoid creating additional instructions if we're just adding additional
352       // copies of padding bits.
353       Remerge[I] = AllPadReg;
354       continue;
355     }
356 
357     if (NumSubParts == 1)
358       Remerge[I] = SubMerge[0];
359     else
360       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
361 
362     // In the sign extend padding case, re-use the first all-signbit merge.
363     if (AllMergePartsArePadding && !AllPadReg)
364       AllPadReg = Remerge[I];
365   }
366 
367   VRegs = std::move(Remerge);
368   return LCMTy;
369 }
370 
buildWidenedRemergeToDst(Register DstReg,LLT LCMTy,ArrayRef<Register> RemergeRegs)371 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
372                                                ArrayRef<Register> RemergeRegs) {
373   LLT DstTy = MRI.getType(DstReg);
374 
375   // Create the merge to the widened source, and extract the relevant bits into
376   // the result.
377 
378   if (DstTy == LCMTy) {
379     MIRBuilder.buildMerge(DstReg, RemergeRegs);
380     return;
381   }
382 
383   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
384   if (DstTy.isScalar() && LCMTy.isScalar()) {
385     MIRBuilder.buildTrunc(DstReg, Remerge);
386     return;
387   }
388 
389   if (LCMTy.isVector()) {
390     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
391     SmallVector<Register, 8> UnmergeDefs(NumDefs);
392     UnmergeDefs[0] = DstReg;
393     for (unsigned I = 1; I != NumDefs; ++I)
394       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
395 
396     MIRBuilder.buildUnmerge(UnmergeDefs,
397                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
398     return;
399   }
400 
401   llvm_unreachable("unhandled case");
402 }
403 
getRTLibDesc(unsigned Opcode,unsigned Size)404 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
405 #define RTLIBCASE_INT(LibcallPrefix)                                           \
406   do {                                                                         \
407     switch (Size) {                                                            \
408     case 32:                                                                   \
409       return RTLIB::LibcallPrefix##32;                                         \
410     case 64:                                                                   \
411       return RTLIB::LibcallPrefix##64;                                         \
412     case 128:                                                                  \
413       return RTLIB::LibcallPrefix##128;                                        \
414     default:                                                                   \
415       llvm_unreachable("unexpected size");                                     \
416     }                                                                          \
417   } while (0)
418 
419 #define RTLIBCASE(LibcallPrefix)                                               \
420   do {                                                                         \
421     switch (Size) {                                                            \
422     case 32:                                                                   \
423       return RTLIB::LibcallPrefix##32;                                         \
424     case 64:                                                                   \
425       return RTLIB::LibcallPrefix##64;                                         \
426     case 80:                                                                   \
427       return RTLIB::LibcallPrefix##80;                                         \
428     case 128:                                                                  \
429       return RTLIB::LibcallPrefix##128;                                        \
430     default:                                                                   \
431       llvm_unreachable("unexpected size");                                     \
432     }                                                                          \
433   } while (0)
434 
435   switch (Opcode) {
436   case TargetOpcode::G_SDIV:
437     RTLIBCASE_INT(SDIV_I);
438   case TargetOpcode::G_UDIV:
439     RTLIBCASE_INT(UDIV_I);
440   case TargetOpcode::G_SREM:
441     RTLIBCASE_INT(SREM_I);
442   case TargetOpcode::G_UREM:
443     RTLIBCASE_INT(UREM_I);
444   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
445     RTLIBCASE_INT(CTLZ_I);
446   case TargetOpcode::G_FADD:
447     RTLIBCASE(ADD_F);
448   case TargetOpcode::G_FSUB:
449     RTLIBCASE(SUB_F);
450   case TargetOpcode::G_FMUL:
451     RTLIBCASE(MUL_F);
452   case TargetOpcode::G_FDIV:
453     RTLIBCASE(DIV_F);
454   case TargetOpcode::G_FEXP:
455     RTLIBCASE(EXP_F);
456   case TargetOpcode::G_FEXP2:
457     RTLIBCASE(EXP2_F);
458   case TargetOpcode::G_FREM:
459     RTLIBCASE(REM_F);
460   case TargetOpcode::G_FPOW:
461     RTLIBCASE(POW_F);
462   case TargetOpcode::G_FMA:
463     RTLIBCASE(FMA_F);
464   case TargetOpcode::G_FSIN:
465     RTLIBCASE(SIN_F);
466   case TargetOpcode::G_FCOS:
467     RTLIBCASE(COS_F);
468   case TargetOpcode::G_FLOG10:
469     RTLIBCASE(LOG10_F);
470   case TargetOpcode::G_FLOG:
471     RTLIBCASE(LOG_F);
472   case TargetOpcode::G_FLOG2:
473     RTLIBCASE(LOG2_F);
474   case TargetOpcode::G_FCEIL:
475     RTLIBCASE(CEIL_F);
476   case TargetOpcode::G_FFLOOR:
477     RTLIBCASE(FLOOR_F);
478   case TargetOpcode::G_FMINNUM:
479     RTLIBCASE(FMIN_F);
480   case TargetOpcode::G_FMAXNUM:
481     RTLIBCASE(FMAX_F);
482   case TargetOpcode::G_FSQRT:
483     RTLIBCASE(SQRT_F);
484   case TargetOpcode::G_FRINT:
485     RTLIBCASE(RINT_F);
486   case TargetOpcode::G_FNEARBYINT:
487     RTLIBCASE(NEARBYINT_F);
488   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
489     RTLIBCASE(ROUNDEVEN_F);
490   }
491   llvm_unreachable("Unknown libcall function");
492 }
493 
494 /// True if an instruction is in tail position in its caller. Intended for
495 /// legalizing libcalls as tail calls when possible.
isLibCallInTailPosition(const TargetInstrInfo & TII,MachineInstr & MI)496 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
497                                     MachineInstr &MI) {
498   MachineBasicBlock &MBB = *MI.getParent();
499   const Function &F = MBB.getParent()->getFunction();
500 
501   // Conservatively require the attributes of the call to match those of
502   // the return. Ignore NoAlias and NonNull because they don't affect the
503   // call sequence.
504   AttributeList CallerAttrs = F.getAttributes();
505   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
506           .removeAttribute(Attribute::NoAlias)
507           .removeAttribute(Attribute::NonNull)
508           .hasAttributes())
509     return false;
510 
511   // It's not safe to eliminate the sign / zero extension of the return value.
512   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
513       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
514     return false;
515 
516   // Only tail call if the following instruction is a standard return.
517   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
518   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
519     return false;
520 
521   return true;
522 }
523 
524 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,const char * Name,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,const CallingConv::ID CC)525 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
526                     const CallLowering::ArgInfo &Result,
527                     ArrayRef<CallLowering::ArgInfo> Args,
528                     const CallingConv::ID CC) {
529   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
530 
531   CallLowering::CallLoweringInfo Info;
532   Info.CallConv = CC;
533   Info.Callee = MachineOperand::CreateES(Name);
534   Info.OrigRet = Result;
535   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
536   if (!CLI.lowerCall(MIRBuilder, Info))
537     return LegalizerHelper::UnableToLegalize;
538 
539   return LegalizerHelper::Legalized;
540 }
541 
542 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,RTLIB::Libcall Libcall,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args)543 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
544                     const CallLowering::ArgInfo &Result,
545                     ArrayRef<CallLowering::ArgInfo> Args) {
546   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
547   const char *Name = TLI.getLibcallName(Libcall);
548   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
549   return createLibcall(MIRBuilder, Name, Result, Args, CC);
550 }
551 
552 // Useful for libcalls where all operands have the same type.
553 static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,unsigned Size,Type * OpType)554 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
555               Type *OpType) {
556   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
557 
558   SmallVector<CallLowering::ArgInfo, 3> Args;
559   for (unsigned i = 1; i < MI.getNumOperands(); i++)
560     Args.push_back({MI.getOperand(i).getReg(), OpType});
561   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
562                        Args);
563 }
564 
565 LegalizerHelper::LegalizeResult
createMemLibcall(MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI,MachineInstr & MI)566 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
567                        MachineInstr &MI) {
568   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
569 
570   SmallVector<CallLowering::ArgInfo, 3> Args;
571   // Add all the args, except for the last which is an imm denoting 'tail'.
572   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
573     Register Reg = MI.getOperand(i).getReg();
574 
575     // Need derive an IR type for call lowering.
576     LLT OpLLT = MRI.getType(Reg);
577     Type *OpTy = nullptr;
578     if (OpLLT.isPointer())
579       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
580     else
581       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
582     Args.push_back({Reg, OpTy});
583   }
584 
585   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
586   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
587   RTLIB::Libcall RTLibcall;
588   switch (MI.getOpcode()) {
589   case TargetOpcode::G_MEMCPY:
590     RTLibcall = RTLIB::MEMCPY;
591     break;
592   case TargetOpcode::G_MEMMOVE:
593     RTLibcall = RTLIB::MEMMOVE;
594     break;
595   case TargetOpcode::G_MEMSET:
596     RTLibcall = RTLIB::MEMSET;
597     break;
598   default:
599     return LegalizerHelper::UnableToLegalize;
600   }
601   const char *Name = TLI.getLibcallName(RTLibcall);
602 
603   CallLowering::CallLoweringInfo Info;
604   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
605   Info.Callee = MachineOperand::CreateES(Name);
606   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
607   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
608                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
609 
610   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
611   if (!CLI.lowerCall(MIRBuilder, Info))
612     return LegalizerHelper::UnableToLegalize;
613 
614   if (Info.LoweredTailCall) {
615     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
616     // We must have a return following the call (or debug insts) to get past
617     // isLibCallInTailPosition.
618     do {
619       MachineInstr *Next = MI.getNextNode();
620       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
621              "Expected instr following MI to be return or debug inst?");
622       // We lowered a tail call, so the call is now the return from the block.
623       // Delete the old return.
624       Next->eraseFromParent();
625     } while (MI.getNextNode());
626   }
627 
628   return LegalizerHelper::Legalized;
629 }
630 
getConvRTLibDesc(unsigned Opcode,Type * ToType,Type * FromType)631 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
632                                        Type *FromType) {
633   auto ToMVT = MVT::getVT(ToType);
634   auto FromMVT = MVT::getVT(FromType);
635 
636   switch (Opcode) {
637   case TargetOpcode::G_FPEXT:
638     return RTLIB::getFPEXT(FromMVT, ToMVT);
639   case TargetOpcode::G_FPTRUNC:
640     return RTLIB::getFPROUND(FromMVT, ToMVT);
641   case TargetOpcode::G_FPTOSI:
642     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
643   case TargetOpcode::G_FPTOUI:
644     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
645   case TargetOpcode::G_SITOFP:
646     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
647   case TargetOpcode::G_UITOFP:
648     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
649   }
650   llvm_unreachable("Unsupported libcall function");
651 }
652 
653 static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,Type * ToType,Type * FromType)654 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
655                   Type *FromType) {
656   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
657   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
658                        {{MI.getOperand(1).getReg(), FromType}});
659 }
660 
661 LegalizerHelper::LegalizeResult
libcall(MachineInstr & MI)662 LegalizerHelper::libcall(MachineInstr &MI) {
663   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
664   unsigned Size = LLTy.getSizeInBits();
665   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
666 
667   switch (MI.getOpcode()) {
668   default:
669     return UnableToLegalize;
670   case TargetOpcode::G_SDIV:
671   case TargetOpcode::G_UDIV:
672   case TargetOpcode::G_SREM:
673   case TargetOpcode::G_UREM:
674   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
675     Type *HLTy = IntegerType::get(Ctx, Size);
676     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
677     if (Status != Legalized)
678       return Status;
679     break;
680   }
681   case TargetOpcode::G_FADD:
682   case TargetOpcode::G_FSUB:
683   case TargetOpcode::G_FMUL:
684   case TargetOpcode::G_FDIV:
685   case TargetOpcode::G_FMA:
686   case TargetOpcode::G_FPOW:
687   case TargetOpcode::G_FREM:
688   case TargetOpcode::G_FCOS:
689   case TargetOpcode::G_FSIN:
690   case TargetOpcode::G_FLOG10:
691   case TargetOpcode::G_FLOG:
692   case TargetOpcode::G_FLOG2:
693   case TargetOpcode::G_FEXP:
694   case TargetOpcode::G_FEXP2:
695   case TargetOpcode::G_FCEIL:
696   case TargetOpcode::G_FFLOOR:
697   case TargetOpcode::G_FMINNUM:
698   case TargetOpcode::G_FMAXNUM:
699   case TargetOpcode::G_FSQRT:
700   case TargetOpcode::G_FRINT:
701   case TargetOpcode::G_FNEARBYINT:
702   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
703     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
704     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
705       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
706       return UnableToLegalize;
707     }
708     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
709     if (Status != Legalized)
710       return Status;
711     break;
712   }
713   case TargetOpcode::G_FPEXT:
714   case TargetOpcode::G_FPTRUNC: {
715     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
716     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
717     if (!FromTy || !ToTy)
718       return UnableToLegalize;
719     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
720     if (Status != Legalized)
721       return Status;
722     break;
723   }
724   case TargetOpcode::G_FPTOSI:
725   case TargetOpcode::G_FPTOUI: {
726     // FIXME: Support other types
727     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
728     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
729     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
730       return UnableToLegalize;
731     LegalizeResult Status = conversionLibcall(
732         MI, MIRBuilder,
733         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
734         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
735     if (Status != Legalized)
736       return Status;
737     break;
738   }
739   case TargetOpcode::G_SITOFP:
740   case TargetOpcode::G_UITOFP: {
741     // FIXME: Support other types
742     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
743     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
744     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
745       return UnableToLegalize;
746     LegalizeResult Status = conversionLibcall(
747         MI, MIRBuilder,
748         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
749         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
750     if (Status != Legalized)
751       return Status;
752     break;
753   }
754   case TargetOpcode::G_MEMCPY:
755   case TargetOpcode::G_MEMMOVE:
756   case TargetOpcode::G_MEMSET: {
757     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
758     MI.eraseFromParent();
759     return Result;
760   }
761   }
762 
763   MI.eraseFromParent();
764   return Legalized;
765 }
766 
narrowScalar(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)767 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
768                                                               unsigned TypeIdx,
769                                                               LLT NarrowTy) {
770   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
771   uint64_t NarrowSize = NarrowTy.getSizeInBits();
772 
773   switch (MI.getOpcode()) {
774   default:
775     return UnableToLegalize;
776   case TargetOpcode::G_IMPLICIT_DEF: {
777     Register DstReg = MI.getOperand(0).getReg();
778     LLT DstTy = MRI.getType(DstReg);
779 
780     // If SizeOp0 is not an exact multiple of NarrowSize, emit
781     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
782     // FIXME: Although this would also be legal for the general case, it causes
783     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
784     //  combines not being hit). This seems to be a problem related to the
785     //  artifact combiner.
786     if (SizeOp0 % NarrowSize != 0) {
787       LLT ImplicitTy = NarrowTy;
788       if (DstTy.isVector())
789         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
790 
791       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
792       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
793 
794       MI.eraseFromParent();
795       return Legalized;
796     }
797 
798     int NumParts = SizeOp0 / NarrowSize;
799 
800     SmallVector<Register, 2> DstRegs;
801     for (int i = 0; i < NumParts; ++i)
802       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
803 
804     if (DstTy.isVector())
805       MIRBuilder.buildBuildVector(DstReg, DstRegs);
806     else
807       MIRBuilder.buildMerge(DstReg, DstRegs);
808     MI.eraseFromParent();
809     return Legalized;
810   }
811   case TargetOpcode::G_CONSTANT: {
812     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
813     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
814     unsigned TotalSize = Ty.getSizeInBits();
815     unsigned NarrowSize = NarrowTy.getSizeInBits();
816     int NumParts = TotalSize / NarrowSize;
817 
818     SmallVector<Register, 4> PartRegs;
819     for (int I = 0; I != NumParts; ++I) {
820       unsigned Offset = I * NarrowSize;
821       auto K = MIRBuilder.buildConstant(NarrowTy,
822                                         Val.lshr(Offset).trunc(NarrowSize));
823       PartRegs.push_back(K.getReg(0));
824     }
825 
826     LLT LeftoverTy;
827     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
828     SmallVector<Register, 1> LeftoverRegs;
829     if (LeftoverBits != 0) {
830       LeftoverTy = LLT::scalar(LeftoverBits);
831       auto K = MIRBuilder.buildConstant(
832         LeftoverTy,
833         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
834       LeftoverRegs.push_back(K.getReg(0));
835     }
836 
837     insertParts(MI.getOperand(0).getReg(),
838                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
839 
840     MI.eraseFromParent();
841     return Legalized;
842   }
843   case TargetOpcode::G_SEXT:
844   case TargetOpcode::G_ZEXT:
845   case TargetOpcode::G_ANYEXT:
846     return narrowScalarExt(MI, TypeIdx, NarrowTy);
847   case TargetOpcode::G_TRUNC: {
848     if (TypeIdx != 1)
849       return UnableToLegalize;
850 
851     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
852     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
853       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
854       return UnableToLegalize;
855     }
856 
857     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
858     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
859     MI.eraseFromParent();
860     return Legalized;
861   }
862 
863   case TargetOpcode::G_FREEZE:
864     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
865 
866   case TargetOpcode::G_ADD: {
867     // FIXME: add support for when SizeOp0 isn't an exact multiple of
868     // NarrowSize.
869     if (SizeOp0 % NarrowSize != 0)
870       return UnableToLegalize;
871     // Expand in terms of carry-setting/consuming G_ADDE instructions.
872     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
873 
874     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
875     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
876     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
877 
878     Register CarryIn;
879     for (int i = 0; i < NumParts; ++i) {
880       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
881       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
882 
883       if (i == 0)
884         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
885       else {
886         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
887                               Src2Regs[i], CarryIn);
888       }
889 
890       DstRegs.push_back(DstReg);
891       CarryIn = CarryOut;
892     }
893     Register DstReg = MI.getOperand(0).getReg();
894     if(MRI.getType(DstReg).isVector())
895       MIRBuilder.buildBuildVector(DstReg, DstRegs);
896     else
897       MIRBuilder.buildMerge(DstReg, DstRegs);
898     MI.eraseFromParent();
899     return Legalized;
900   }
901   case TargetOpcode::G_SUB: {
902     // FIXME: add support for when SizeOp0 isn't an exact multiple of
903     // NarrowSize.
904     if (SizeOp0 % NarrowSize != 0)
905       return UnableToLegalize;
906 
907     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
908 
909     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
910     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
911     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
912 
913     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
914     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
915     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
916                           {Src1Regs[0], Src2Regs[0]});
917     DstRegs.push_back(DstReg);
918     Register BorrowIn = BorrowOut;
919     for (int i = 1; i < NumParts; ++i) {
920       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
921       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
922 
923       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
924                             {Src1Regs[i], Src2Regs[i], BorrowIn});
925 
926       DstRegs.push_back(DstReg);
927       BorrowIn = BorrowOut;
928     }
929     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
930     MI.eraseFromParent();
931     return Legalized;
932   }
933   case TargetOpcode::G_MUL:
934   case TargetOpcode::G_UMULH:
935     return narrowScalarMul(MI, NarrowTy);
936   case TargetOpcode::G_EXTRACT:
937     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
938   case TargetOpcode::G_INSERT:
939     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
940   case TargetOpcode::G_LOAD: {
941     auto &MMO = **MI.memoperands_begin();
942     Register DstReg = MI.getOperand(0).getReg();
943     LLT DstTy = MRI.getType(DstReg);
944     if (DstTy.isVector())
945       return UnableToLegalize;
946 
947     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
948       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
949       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
950       MIRBuilder.buildAnyExt(DstReg, TmpReg);
951       MI.eraseFromParent();
952       return Legalized;
953     }
954 
955     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
956   }
957   case TargetOpcode::G_ZEXTLOAD:
958   case TargetOpcode::G_SEXTLOAD: {
959     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
960     Register DstReg = MI.getOperand(0).getReg();
961     Register PtrReg = MI.getOperand(1).getReg();
962 
963     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
964     auto &MMO = **MI.memoperands_begin();
965     if (MMO.getSizeInBits() == NarrowSize) {
966       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
967     } else {
968       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
969     }
970 
971     if (ZExt)
972       MIRBuilder.buildZExt(DstReg, TmpReg);
973     else
974       MIRBuilder.buildSExt(DstReg, TmpReg);
975 
976     MI.eraseFromParent();
977     return Legalized;
978   }
979   case TargetOpcode::G_STORE: {
980     const auto &MMO = **MI.memoperands_begin();
981 
982     Register SrcReg = MI.getOperand(0).getReg();
983     LLT SrcTy = MRI.getType(SrcReg);
984     if (SrcTy.isVector())
985       return UnableToLegalize;
986 
987     int NumParts = SizeOp0 / NarrowSize;
988     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
989     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
990     if (SrcTy.isVector() && LeftoverBits != 0)
991       return UnableToLegalize;
992 
993     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
994       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
995       auto &MMO = **MI.memoperands_begin();
996       MIRBuilder.buildTrunc(TmpReg, SrcReg);
997       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
998       MI.eraseFromParent();
999       return Legalized;
1000     }
1001 
1002     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1003   }
1004   case TargetOpcode::G_SELECT:
1005     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1006   case TargetOpcode::G_AND:
1007   case TargetOpcode::G_OR:
1008   case TargetOpcode::G_XOR: {
1009     // Legalize bitwise operation:
1010     // A = BinOp<Ty> B, C
1011     // into:
1012     // B1, ..., BN = G_UNMERGE_VALUES B
1013     // C1, ..., CN = G_UNMERGE_VALUES C
1014     // A1 = BinOp<Ty/N> B1, C2
1015     // ...
1016     // AN = BinOp<Ty/N> BN, CN
1017     // A = G_MERGE_VALUES A1, ..., AN
1018     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1019   }
1020   case TargetOpcode::G_SHL:
1021   case TargetOpcode::G_LSHR:
1022   case TargetOpcode::G_ASHR:
1023     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1024   case TargetOpcode::G_CTLZ:
1025   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1026   case TargetOpcode::G_CTTZ:
1027   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTPOP:
1029     if (TypeIdx == 1)
1030       switch (MI.getOpcode()) {
1031       case TargetOpcode::G_CTLZ:
1032       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1033         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1034       case TargetOpcode::G_CTTZ:
1035       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1036         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1037       case TargetOpcode::G_CTPOP:
1038         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1039       default:
1040         return UnableToLegalize;
1041       }
1042 
1043     Observer.changingInstr(MI);
1044     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1045     Observer.changedInstr(MI);
1046     return Legalized;
1047   case TargetOpcode::G_INTTOPTR:
1048     if (TypeIdx != 1)
1049       return UnableToLegalize;
1050 
1051     Observer.changingInstr(MI);
1052     narrowScalarSrc(MI, NarrowTy, 1);
1053     Observer.changedInstr(MI);
1054     return Legalized;
1055   case TargetOpcode::G_PTRTOINT:
1056     if (TypeIdx != 0)
1057       return UnableToLegalize;
1058 
1059     Observer.changingInstr(MI);
1060     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1061     Observer.changedInstr(MI);
1062     return Legalized;
1063   case TargetOpcode::G_PHI: {
1064     unsigned NumParts = SizeOp0 / NarrowSize;
1065     SmallVector<Register, 2> DstRegs(NumParts);
1066     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1067     Observer.changingInstr(MI);
1068     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1069       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1070       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1071       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1072                    SrcRegs[i / 2]);
1073     }
1074     MachineBasicBlock &MBB = *MI.getParent();
1075     MIRBuilder.setInsertPt(MBB, MI);
1076     for (unsigned i = 0; i < NumParts; ++i) {
1077       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1078       MachineInstrBuilder MIB =
1079           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1080       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1081         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1082     }
1083     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1084     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1085     Observer.changedInstr(MI);
1086     MI.eraseFromParent();
1087     return Legalized;
1088   }
1089   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1090   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1091     if (TypeIdx != 2)
1092       return UnableToLegalize;
1093 
1094     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1095     Observer.changingInstr(MI);
1096     narrowScalarSrc(MI, NarrowTy, OpIdx);
1097     Observer.changedInstr(MI);
1098     return Legalized;
1099   }
1100   case TargetOpcode::G_ICMP: {
1101     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1102     if (NarrowSize * 2 != SrcSize)
1103       return UnableToLegalize;
1104 
1105     Observer.changingInstr(MI);
1106     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1107     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1108     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1109 
1110     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1111     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1112     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1113 
1114     CmpInst::Predicate Pred =
1115         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1116     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1117 
1118     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1119       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1120       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1121       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1122       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1123       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1124     } else {
1125       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1126       MachineInstrBuilder CmpHEQ =
1127           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1128       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1129           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1130       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1131     }
1132     Observer.changedInstr(MI);
1133     MI.eraseFromParent();
1134     return Legalized;
1135   }
1136   case TargetOpcode::G_SEXT_INREG: {
1137     if (TypeIdx != 0)
1138       return UnableToLegalize;
1139 
1140     int64_t SizeInBits = MI.getOperand(2).getImm();
1141 
1142     // So long as the new type has more bits than the bits we're extending we
1143     // don't need to break it apart.
1144     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1145       Observer.changingInstr(MI);
1146       // We don't lose any non-extension bits by truncating the src and
1147       // sign-extending the dst.
1148       MachineOperand &MO1 = MI.getOperand(1);
1149       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1150       MO1.setReg(TruncMIB.getReg(0));
1151 
1152       MachineOperand &MO2 = MI.getOperand(0);
1153       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1154       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1155       MIRBuilder.buildSExt(MO2, DstExt);
1156       MO2.setReg(DstExt);
1157       Observer.changedInstr(MI);
1158       return Legalized;
1159     }
1160 
1161     // Break it apart. Components below the extension point are unmodified. The
1162     // component containing the extension point becomes a narrower SEXT_INREG.
1163     // Components above it are ashr'd from the component containing the
1164     // extension point.
1165     if (SizeOp0 % NarrowSize != 0)
1166       return UnableToLegalize;
1167     int NumParts = SizeOp0 / NarrowSize;
1168 
1169     // List the registers where the destination will be scattered.
1170     SmallVector<Register, 2> DstRegs;
1171     // List the registers where the source will be split.
1172     SmallVector<Register, 2> SrcRegs;
1173 
1174     // Create all the temporary registers.
1175     for (int i = 0; i < NumParts; ++i) {
1176       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1177 
1178       SrcRegs.push_back(SrcReg);
1179     }
1180 
1181     // Explode the big arguments into smaller chunks.
1182     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1183 
1184     Register AshrCstReg =
1185         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1186             .getReg(0);
1187     Register FullExtensionReg = 0;
1188     Register PartialExtensionReg = 0;
1189 
1190     // Do the operation on each small part.
1191     for (int i = 0; i < NumParts; ++i) {
1192       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1193         DstRegs.push_back(SrcRegs[i]);
1194       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1195         assert(PartialExtensionReg &&
1196                "Expected to visit partial extension before full");
1197         if (FullExtensionReg) {
1198           DstRegs.push_back(FullExtensionReg);
1199           continue;
1200         }
1201         DstRegs.push_back(
1202             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1203                 .getReg(0));
1204         FullExtensionReg = DstRegs.back();
1205       } else {
1206         DstRegs.push_back(
1207             MIRBuilder
1208                 .buildInstr(
1209                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1210                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1211                 .getReg(0));
1212         PartialExtensionReg = DstRegs.back();
1213       }
1214     }
1215 
1216     // Gather the destination registers into the final destination.
1217     Register DstReg = MI.getOperand(0).getReg();
1218     MIRBuilder.buildMerge(DstReg, DstRegs);
1219     MI.eraseFromParent();
1220     return Legalized;
1221   }
1222   case TargetOpcode::G_BSWAP:
1223   case TargetOpcode::G_BITREVERSE: {
1224     if (SizeOp0 % NarrowSize != 0)
1225       return UnableToLegalize;
1226 
1227     Observer.changingInstr(MI);
1228     SmallVector<Register, 2> SrcRegs, DstRegs;
1229     unsigned NumParts = SizeOp0 / NarrowSize;
1230     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1231 
1232     for (unsigned i = 0; i < NumParts; ++i) {
1233       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1234                                            {SrcRegs[NumParts - 1 - i]});
1235       DstRegs.push_back(DstPart.getReg(0));
1236     }
1237 
1238     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1239 
1240     Observer.changedInstr(MI);
1241     MI.eraseFromParent();
1242     return Legalized;
1243   }
1244   case TargetOpcode::G_PTR_ADD:
1245   case TargetOpcode::G_PTRMASK: {
1246     if (TypeIdx != 1)
1247       return UnableToLegalize;
1248     Observer.changingInstr(MI);
1249     narrowScalarSrc(MI, NarrowTy, 2);
1250     Observer.changedInstr(MI);
1251     return Legalized;
1252   }
1253   case TargetOpcode::G_FPTOUI: {
1254     if (TypeIdx != 0)
1255       return UnableToLegalize;
1256     Observer.changingInstr(MI);
1257     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1258     Observer.changedInstr(MI);
1259     return Legalized;
1260   }
1261   case TargetOpcode::G_FPTOSI: {
1262     if (TypeIdx != 0)
1263       return UnableToLegalize;
1264     Observer.changingInstr(MI);
1265     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_SEXT);
1266     Observer.changedInstr(MI);
1267     return Legalized;
1268   }
1269   case TargetOpcode::G_FPEXT:
1270     if (TypeIdx != 0)
1271       return UnableToLegalize;
1272     Observer.changingInstr(MI);
1273     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1274     Observer.changedInstr(MI);
1275     return Legalized;
1276   }
1277 }
1278 
coerceToScalar(Register Val)1279 Register LegalizerHelper::coerceToScalar(Register Val) {
1280   LLT Ty = MRI.getType(Val);
1281   if (Ty.isScalar())
1282     return Val;
1283 
1284   const DataLayout &DL = MIRBuilder.getDataLayout();
1285   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1286   if (Ty.isPointer()) {
1287     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1288       return Register();
1289     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1290   }
1291 
1292   Register NewVal = Val;
1293 
1294   assert(Ty.isVector());
1295   LLT EltTy = Ty.getElementType();
1296   if (EltTy.isPointer())
1297     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1298   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1299 }
1300 
widenScalarSrc(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned ExtOpcode)1301 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1302                                      unsigned OpIdx, unsigned ExtOpcode) {
1303   MachineOperand &MO = MI.getOperand(OpIdx);
1304   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1305   MO.setReg(ExtB.getReg(0));
1306 }
1307 
narrowScalarSrc(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx)1308 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1309                                       unsigned OpIdx) {
1310   MachineOperand &MO = MI.getOperand(OpIdx);
1311   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1312   MO.setReg(ExtB.getReg(0));
1313 }
1314 
widenScalarDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned TruncOpcode)1315 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1316                                      unsigned OpIdx, unsigned TruncOpcode) {
1317   MachineOperand &MO = MI.getOperand(OpIdx);
1318   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1319   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1320   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1321   MO.setReg(DstExt);
1322 }
1323 
narrowScalarDst(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx,unsigned ExtOpcode)1324 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1325                                       unsigned OpIdx, unsigned ExtOpcode) {
1326   MachineOperand &MO = MI.getOperand(OpIdx);
1327   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1328   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1329   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1330   MO.setReg(DstTrunc);
1331 }
1332 
moreElementsVectorDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx)1333 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1334                                             unsigned OpIdx) {
1335   MachineOperand &MO = MI.getOperand(OpIdx);
1336   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1337   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1338 }
1339 
moreElementsVectorSrc(MachineInstr & MI,LLT MoreTy,unsigned OpIdx)1340 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1341                                             unsigned OpIdx) {
1342   MachineOperand &MO = MI.getOperand(OpIdx);
1343 
1344   LLT OldTy = MRI.getType(MO.getReg());
1345   unsigned OldElts = OldTy.getNumElements();
1346   unsigned NewElts = MoreTy.getNumElements();
1347 
1348   unsigned NumParts = NewElts / OldElts;
1349 
1350   // Use concat_vectors if the result is a multiple of the number of elements.
1351   if (NumParts * OldElts == NewElts) {
1352     SmallVector<Register, 8> Parts;
1353     Parts.push_back(MO.getReg());
1354 
1355     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1356     for (unsigned I = 1; I != NumParts; ++I)
1357       Parts.push_back(ImpDef);
1358 
1359     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1360     MO.setReg(Concat.getReg(0));
1361     return;
1362   }
1363 
1364   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1365   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1366   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1367   MO.setReg(MoreReg);
1368 }
1369 
bitcastSrc(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1370 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1371   MachineOperand &Op = MI.getOperand(OpIdx);
1372   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1373 }
1374 
bitcastDst(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1375 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1376   MachineOperand &MO = MI.getOperand(OpIdx);
1377   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1378   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1379   MIRBuilder.buildBitcast(MO, CastDst);
1380   MO.setReg(CastDst);
1381 }
1382 
1383 LegalizerHelper::LegalizeResult
widenScalarMergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1384 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1385                                         LLT WideTy) {
1386   if (TypeIdx != 1)
1387     return UnableToLegalize;
1388 
1389   Register DstReg = MI.getOperand(0).getReg();
1390   LLT DstTy = MRI.getType(DstReg);
1391   if (DstTy.isVector())
1392     return UnableToLegalize;
1393 
1394   Register Src1 = MI.getOperand(1).getReg();
1395   LLT SrcTy = MRI.getType(Src1);
1396   const int DstSize = DstTy.getSizeInBits();
1397   const int SrcSize = SrcTy.getSizeInBits();
1398   const int WideSize = WideTy.getSizeInBits();
1399   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1400 
1401   unsigned NumOps = MI.getNumOperands();
1402   unsigned NumSrc = MI.getNumOperands() - 1;
1403   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1404 
1405   if (WideSize >= DstSize) {
1406     // Directly pack the bits in the target type.
1407     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1408 
1409     for (unsigned I = 2; I != NumOps; ++I) {
1410       const unsigned Offset = (I - 1) * PartSize;
1411 
1412       Register SrcReg = MI.getOperand(I).getReg();
1413       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1414 
1415       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1416 
1417       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1418         MRI.createGenericVirtualRegister(WideTy);
1419 
1420       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1421       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1422       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1423       ResultReg = NextResult;
1424     }
1425 
1426     if (WideSize > DstSize)
1427       MIRBuilder.buildTrunc(DstReg, ResultReg);
1428     else if (DstTy.isPointer())
1429       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1430 
1431     MI.eraseFromParent();
1432     return Legalized;
1433   }
1434 
1435   // Unmerge the original values to the GCD type, and recombine to the next
1436   // multiple greater than the original type.
1437   //
1438   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1439   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1440   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1441   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1442   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1443   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1444   // %12:_(s12) = G_MERGE_VALUES %10, %11
1445   //
1446   // Padding with undef if necessary:
1447   //
1448   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1449   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1450   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1451   // %7:_(s2) = G_IMPLICIT_DEF
1452   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1453   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1454   // %10:_(s12) = G_MERGE_VALUES %8, %9
1455 
1456   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1457   LLT GCDTy = LLT::scalar(GCD);
1458 
1459   SmallVector<Register, 8> Parts;
1460   SmallVector<Register, 8> NewMergeRegs;
1461   SmallVector<Register, 8> Unmerges;
1462   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1463 
1464   // Decompose the original operands if they don't evenly divide.
1465   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1466     Register SrcReg = MI.getOperand(I).getReg();
1467     if (GCD == SrcSize) {
1468       Unmerges.push_back(SrcReg);
1469     } else {
1470       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1471       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1472         Unmerges.push_back(Unmerge.getReg(J));
1473     }
1474   }
1475 
1476   // Pad with undef to the next size that is a multiple of the requested size.
1477   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1478     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1479     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1480       Unmerges.push_back(UndefReg);
1481   }
1482 
1483   const int PartsPerGCD = WideSize / GCD;
1484 
1485   // Build merges of each piece.
1486   ArrayRef<Register> Slicer(Unmerges);
1487   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1488     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1489     NewMergeRegs.push_back(Merge.getReg(0));
1490   }
1491 
1492   // A truncate may be necessary if the requested type doesn't evenly divide the
1493   // original result type.
1494   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1495     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1496   } else {
1497     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1498     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1499   }
1500 
1501   MI.eraseFromParent();
1502   return Legalized;
1503 }
1504 
widenWithUnmerge(LLT WideTy,Register OrigReg)1505 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1506   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1507   LLT OrigTy = MRI.getType(OrigReg);
1508   LLT LCMTy = getLCMType(WideTy, OrigTy);
1509 
1510   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1511   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1512 
1513   Register UnmergeSrc = WideReg;
1514 
1515   // Create a merge to the LCM type, padding with undef
1516   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1517   // =>
1518   // %1:_(<4 x s32>) = G_FOO
1519   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1520   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1521   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1522   if (NumMergeParts > 1) {
1523     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1524     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1525     MergeParts[0] = WideReg;
1526     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1527   }
1528 
1529   // Unmerge to the original register and pad with dead defs.
1530   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1531   UnmergeResults[0] = OrigReg;
1532   for (int I = 1; I != NumUnmergeParts; ++I)
1533     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1534 
1535   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1536   return WideReg;
1537 }
1538 
1539 LegalizerHelper::LegalizeResult
widenScalarUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1540 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1541                                           LLT WideTy) {
1542   if (TypeIdx != 0)
1543     return UnableToLegalize;
1544 
1545   int NumDst = MI.getNumOperands() - 1;
1546   Register SrcReg = MI.getOperand(NumDst).getReg();
1547   LLT SrcTy = MRI.getType(SrcReg);
1548   if (SrcTy.isVector())
1549     return UnableToLegalize;
1550 
1551   Register Dst0Reg = MI.getOperand(0).getReg();
1552   LLT DstTy = MRI.getType(Dst0Reg);
1553   if (!DstTy.isScalar())
1554     return UnableToLegalize;
1555 
1556   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1557     if (SrcTy.isPointer()) {
1558       const DataLayout &DL = MIRBuilder.getDataLayout();
1559       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1560         LLVM_DEBUG(
1561             dbgs() << "Not casting non-integral address space integer\n");
1562         return UnableToLegalize;
1563       }
1564 
1565       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1566       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1567     }
1568 
1569     // Widen SrcTy to WideTy. This does not affect the result, but since the
1570     // user requested this size, it is probably better handled than SrcTy and
1571     // should reduce the total number of legalization artifacts
1572     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1573       SrcTy = WideTy;
1574       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1575     }
1576 
1577     // Theres no unmerge type to target. Directly extract the bits from the
1578     // source type
1579     unsigned DstSize = DstTy.getSizeInBits();
1580 
1581     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1582     for (int I = 1; I != NumDst; ++I) {
1583       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1584       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1585       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1586     }
1587 
1588     MI.eraseFromParent();
1589     return Legalized;
1590   }
1591 
1592   // Extend the source to a wider type.
1593   LLT LCMTy = getLCMType(SrcTy, WideTy);
1594 
1595   Register WideSrc = SrcReg;
1596   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1597     // TODO: If this is an integral address space, cast to integer and anyext.
1598     if (SrcTy.isPointer()) {
1599       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1600       return UnableToLegalize;
1601     }
1602 
1603     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1604   }
1605 
1606   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1607 
1608   // Create a sequence of unmerges and merges to the original results. Since we
1609   // may have widened the source, we will need to pad the results with dead defs
1610   // to cover the source register.
1611   // e.g. widen s48 to s64:
1612   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1613   //
1614   // =>
1615   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1616   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1617   //  ; unpack to GCD type, with extra dead defs
1618   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1619   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1620   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1621   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1622   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1623   const LLT GCDTy = getGCDType(WideTy, DstTy);
1624   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1625   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1626 
1627   // Directly unmerge to the destination without going through a GCD type
1628   // if possible
1629   if (PartsPerRemerge == 1) {
1630     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1631 
1632     for (int I = 0; I != NumUnmerge; ++I) {
1633       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1634 
1635       for (int J = 0; J != PartsPerUnmerge; ++J) {
1636         int Idx = I * PartsPerUnmerge + J;
1637         if (Idx < NumDst)
1638           MIB.addDef(MI.getOperand(Idx).getReg());
1639         else {
1640           // Create dead def for excess components.
1641           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1642         }
1643       }
1644 
1645       MIB.addUse(Unmerge.getReg(I));
1646     }
1647   } else {
1648     SmallVector<Register, 16> Parts;
1649     for (int J = 0; J != NumUnmerge; ++J)
1650       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1651 
1652     SmallVector<Register, 8> RemergeParts;
1653     for (int I = 0; I != NumDst; ++I) {
1654       for (int J = 0; J < PartsPerRemerge; ++J) {
1655         const int Idx = I * PartsPerRemerge + J;
1656         RemergeParts.emplace_back(Parts[Idx]);
1657       }
1658 
1659       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1660       RemergeParts.clear();
1661     }
1662   }
1663 
1664   MI.eraseFromParent();
1665   return Legalized;
1666 }
1667 
1668 LegalizerHelper::LegalizeResult
widenScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1669 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1670                                     LLT WideTy) {
1671   Register DstReg = MI.getOperand(0).getReg();
1672   Register SrcReg = MI.getOperand(1).getReg();
1673   LLT SrcTy = MRI.getType(SrcReg);
1674 
1675   LLT DstTy = MRI.getType(DstReg);
1676   unsigned Offset = MI.getOperand(2).getImm();
1677 
1678   if (TypeIdx == 0) {
1679     if (SrcTy.isVector() || DstTy.isVector())
1680       return UnableToLegalize;
1681 
1682     SrcOp Src(SrcReg);
1683     if (SrcTy.isPointer()) {
1684       // Extracts from pointers can be handled only if they are really just
1685       // simple integers.
1686       const DataLayout &DL = MIRBuilder.getDataLayout();
1687       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1688         return UnableToLegalize;
1689 
1690       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1691       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1692       SrcTy = SrcAsIntTy;
1693     }
1694 
1695     if (DstTy.isPointer())
1696       return UnableToLegalize;
1697 
1698     if (Offset == 0) {
1699       // Avoid a shift in the degenerate case.
1700       MIRBuilder.buildTrunc(DstReg,
1701                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1702       MI.eraseFromParent();
1703       return Legalized;
1704     }
1705 
1706     // Do a shift in the source type.
1707     LLT ShiftTy = SrcTy;
1708     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1709       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1710       ShiftTy = WideTy;
1711     }
1712 
1713     auto LShr = MIRBuilder.buildLShr(
1714       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1715     MIRBuilder.buildTrunc(DstReg, LShr);
1716     MI.eraseFromParent();
1717     return Legalized;
1718   }
1719 
1720   if (SrcTy.isScalar()) {
1721     Observer.changingInstr(MI);
1722     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1723     Observer.changedInstr(MI);
1724     return Legalized;
1725   }
1726 
1727   if (!SrcTy.isVector())
1728     return UnableToLegalize;
1729 
1730   if (DstTy != SrcTy.getElementType())
1731     return UnableToLegalize;
1732 
1733   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1734     return UnableToLegalize;
1735 
1736   Observer.changingInstr(MI);
1737   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1738 
1739   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1740                           Offset);
1741   widenScalarDst(MI, WideTy.getScalarType(), 0);
1742   Observer.changedInstr(MI);
1743   return Legalized;
1744 }
1745 
1746 LegalizerHelper::LegalizeResult
widenScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1747 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1748                                    LLT WideTy) {
1749   if (TypeIdx != 0 || WideTy.isVector())
1750     return UnableToLegalize;
1751   Observer.changingInstr(MI);
1752   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1753   widenScalarDst(MI, WideTy);
1754   Observer.changedInstr(MI);
1755   return Legalized;
1756 }
1757 
1758 LegalizerHelper::LegalizeResult
widenScalarAddSubShlSat(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1759 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1760                                          LLT WideTy) {
1761   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1762                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1763                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1764   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1765                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1766   // We can convert this to:
1767   //   1. Any extend iN to iM
1768   //   2. SHL by M-N
1769   //   3. [US][ADD|SUB|SHL]SAT
1770   //   4. L/ASHR by M-N
1771   //
1772   // It may be more efficient to lower this to a min and a max operation in
1773   // the higher precision arithmetic if the promoted operation isn't legal,
1774   // but this decision is up to the target's lowering request.
1775   Register DstReg = MI.getOperand(0).getReg();
1776 
1777   unsigned NewBits = WideTy.getScalarSizeInBits();
1778   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1779 
1780   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1781   // must not left shift the RHS to preserve the shift amount.
1782   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1783   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1784                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1785   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1786   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1787   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1788 
1789   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1790                                         {ShiftL, ShiftR}, MI.getFlags());
1791 
1792   // Use a shift that will preserve the number of sign bits when the trunc is
1793   // folded away.
1794   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1795                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1796 
1797   MIRBuilder.buildTrunc(DstReg, Result);
1798   MI.eraseFromParent();
1799   return Legalized;
1800 }
1801 
1802 LegalizerHelper::LegalizeResult
widenScalar(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1803 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1804   switch (MI.getOpcode()) {
1805   default:
1806     return UnableToLegalize;
1807   case TargetOpcode::G_EXTRACT:
1808     return widenScalarExtract(MI, TypeIdx, WideTy);
1809   case TargetOpcode::G_INSERT:
1810     return widenScalarInsert(MI, TypeIdx, WideTy);
1811   case TargetOpcode::G_MERGE_VALUES:
1812     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1813   case TargetOpcode::G_UNMERGE_VALUES:
1814     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1815   case TargetOpcode::G_UADDO:
1816   case TargetOpcode::G_USUBO: {
1817     if (TypeIdx == 1)
1818       return UnableToLegalize; // TODO
1819     auto LHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(2));
1820     auto RHSZext = MIRBuilder.buildZExt(WideTy, MI.getOperand(3));
1821     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO
1822                           ? TargetOpcode::G_ADD
1823                           : TargetOpcode::G_SUB;
1824     // Do the arithmetic in the larger type.
1825     auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext});
1826     LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1827     APInt Mask =
1828         APInt::getLowBitsSet(WideTy.getSizeInBits(), OrigTy.getSizeInBits());
1829     auto AndOp = MIRBuilder.buildAnd(
1830         WideTy, NewOp, MIRBuilder.buildConstant(WideTy, Mask));
1831     // There is no overflow if the AndOp is the same as NewOp.
1832     MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, AndOp);
1833     // Now trunc the NewOp to the original result.
1834     MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1835     MI.eraseFromParent();
1836     return Legalized;
1837   }
1838   case TargetOpcode::G_SADDSAT:
1839   case TargetOpcode::G_SSUBSAT:
1840   case TargetOpcode::G_SSHLSAT:
1841   case TargetOpcode::G_UADDSAT:
1842   case TargetOpcode::G_USUBSAT:
1843   case TargetOpcode::G_USHLSAT:
1844     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1845   case TargetOpcode::G_CTTZ:
1846   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1847   case TargetOpcode::G_CTLZ:
1848   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1849   case TargetOpcode::G_CTPOP: {
1850     if (TypeIdx == 0) {
1851       Observer.changingInstr(MI);
1852       widenScalarDst(MI, WideTy, 0);
1853       Observer.changedInstr(MI);
1854       return Legalized;
1855     }
1856 
1857     Register SrcReg = MI.getOperand(1).getReg();
1858 
1859     // First ZEXT the input.
1860     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1861     LLT CurTy = MRI.getType(SrcReg);
1862     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1863       // The count is the same in the larger type except if the original
1864       // value was zero.  This can be handled by setting the bit just off
1865       // the top of the original type.
1866       auto TopBit =
1867           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1868       MIBSrc = MIRBuilder.buildOr(
1869         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1870     }
1871 
1872     // Perform the operation at the larger size.
1873     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1874     // This is already the correct result for CTPOP and CTTZs
1875     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1876         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1877       // The correct result is NewOp - (Difference in widety and current ty).
1878       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1879       MIBNewOp = MIRBuilder.buildSub(
1880           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1881     }
1882 
1883     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1884     MI.eraseFromParent();
1885     return Legalized;
1886   }
1887   case TargetOpcode::G_BSWAP: {
1888     Observer.changingInstr(MI);
1889     Register DstReg = MI.getOperand(0).getReg();
1890 
1891     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1892     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1893     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1894     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1895 
1896     MI.getOperand(0).setReg(DstExt);
1897 
1898     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1899 
1900     LLT Ty = MRI.getType(DstReg);
1901     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1902     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1903     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1904 
1905     MIRBuilder.buildTrunc(DstReg, ShrReg);
1906     Observer.changedInstr(MI);
1907     return Legalized;
1908   }
1909   case TargetOpcode::G_BITREVERSE: {
1910     Observer.changingInstr(MI);
1911 
1912     Register DstReg = MI.getOperand(0).getReg();
1913     LLT Ty = MRI.getType(DstReg);
1914     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1915 
1916     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1917     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1918     MI.getOperand(0).setReg(DstExt);
1919     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1920 
1921     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1922     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1923     MIRBuilder.buildTrunc(DstReg, Shift);
1924     Observer.changedInstr(MI);
1925     return Legalized;
1926   }
1927   case TargetOpcode::G_FREEZE:
1928     Observer.changingInstr(MI);
1929     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1930     widenScalarDst(MI, WideTy);
1931     Observer.changedInstr(MI);
1932     return Legalized;
1933 
1934   case TargetOpcode::G_ADD:
1935   case TargetOpcode::G_AND:
1936   case TargetOpcode::G_MUL:
1937   case TargetOpcode::G_OR:
1938   case TargetOpcode::G_XOR:
1939   case TargetOpcode::G_SUB:
1940     // Perform operation at larger width (any extension is fines here, high bits
1941     // don't affect the result) and then truncate the result back to the
1942     // original type.
1943     Observer.changingInstr(MI);
1944     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1945     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1946     widenScalarDst(MI, WideTy);
1947     Observer.changedInstr(MI);
1948     return Legalized;
1949 
1950   case TargetOpcode::G_SHL:
1951     Observer.changingInstr(MI);
1952 
1953     if (TypeIdx == 0) {
1954       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1955       widenScalarDst(MI, WideTy);
1956     } else {
1957       assert(TypeIdx == 1);
1958       // The "number of bits to shift" operand must preserve its value as an
1959       // unsigned integer:
1960       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1961     }
1962 
1963     Observer.changedInstr(MI);
1964     return Legalized;
1965 
1966   case TargetOpcode::G_SDIV:
1967   case TargetOpcode::G_SREM:
1968   case TargetOpcode::G_SMIN:
1969   case TargetOpcode::G_SMAX:
1970     Observer.changingInstr(MI);
1971     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1972     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1973     widenScalarDst(MI, WideTy);
1974     Observer.changedInstr(MI);
1975     return Legalized;
1976 
1977   case TargetOpcode::G_ASHR:
1978   case TargetOpcode::G_LSHR:
1979     Observer.changingInstr(MI);
1980 
1981     if (TypeIdx == 0) {
1982       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1983         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1984 
1985       widenScalarSrc(MI, WideTy, 1, CvtOp);
1986       widenScalarDst(MI, WideTy);
1987     } else {
1988       assert(TypeIdx == 1);
1989       // The "number of bits to shift" operand must preserve its value as an
1990       // unsigned integer:
1991       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1992     }
1993 
1994     Observer.changedInstr(MI);
1995     return Legalized;
1996   case TargetOpcode::G_UDIV:
1997   case TargetOpcode::G_UREM:
1998   case TargetOpcode::G_UMIN:
1999   case TargetOpcode::G_UMAX:
2000     Observer.changingInstr(MI);
2001     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2002     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2003     widenScalarDst(MI, WideTy);
2004     Observer.changedInstr(MI);
2005     return Legalized;
2006 
2007   case TargetOpcode::G_SELECT:
2008     Observer.changingInstr(MI);
2009     if (TypeIdx == 0) {
2010       // Perform operation at larger width (any extension is fine here, high
2011       // bits don't affect the result) and then truncate the result back to the
2012       // original type.
2013       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2014       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2015       widenScalarDst(MI, WideTy);
2016     } else {
2017       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2018       // Explicit extension is required here since high bits affect the result.
2019       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2020     }
2021     Observer.changedInstr(MI);
2022     return Legalized;
2023 
2024   case TargetOpcode::G_FPTOSI:
2025   case TargetOpcode::G_FPTOUI:
2026     Observer.changingInstr(MI);
2027 
2028     if (TypeIdx == 0)
2029       widenScalarDst(MI, WideTy);
2030     else
2031       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2032 
2033     Observer.changedInstr(MI);
2034     return Legalized;
2035   case TargetOpcode::G_SITOFP:
2036     Observer.changingInstr(MI);
2037 
2038     if (TypeIdx == 0)
2039       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2040     else
2041       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2042 
2043     Observer.changedInstr(MI);
2044     return Legalized;
2045   case TargetOpcode::G_UITOFP:
2046     Observer.changingInstr(MI);
2047 
2048     if (TypeIdx == 0)
2049       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2050     else
2051       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2052 
2053     Observer.changedInstr(MI);
2054     return Legalized;
2055   case TargetOpcode::G_LOAD:
2056   case TargetOpcode::G_SEXTLOAD:
2057   case TargetOpcode::G_ZEXTLOAD:
2058     Observer.changingInstr(MI);
2059     widenScalarDst(MI, WideTy);
2060     Observer.changedInstr(MI);
2061     return Legalized;
2062 
2063   case TargetOpcode::G_STORE: {
2064     if (TypeIdx != 0)
2065       return UnableToLegalize;
2066 
2067     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2068     if (!Ty.isScalar())
2069       return UnableToLegalize;
2070 
2071     Observer.changingInstr(MI);
2072 
2073     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2074       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2075     widenScalarSrc(MI, WideTy, 0, ExtType);
2076 
2077     Observer.changedInstr(MI);
2078     return Legalized;
2079   }
2080   case TargetOpcode::G_CONSTANT: {
2081     MachineOperand &SrcMO = MI.getOperand(1);
2082     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2083     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2084         MRI.getType(MI.getOperand(0).getReg()));
2085     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2086             ExtOpc == TargetOpcode::G_ANYEXT) &&
2087            "Illegal Extend");
2088     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2089     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2090                            ? SrcVal.sext(WideTy.getSizeInBits())
2091                            : SrcVal.zext(WideTy.getSizeInBits());
2092     Observer.changingInstr(MI);
2093     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2094 
2095     widenScalarDst(MI, WideTy);
2096     Observer.changedInstr(MI);
2097     return Legalized;
2098   }
2099   case TargetOpcode::G_FCONSTANT: {
2100     MachineOperand &SrcMO = MI.getOperand(1);
2101     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2102     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2103     bool LosesInfo;
2104     switch (WideTy.getSizeInBits()) {
2105     case 32:
2106       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2107                   &LosesInfo);
2108       break;
2109     case 64:
2110       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2111                   &LosesInfo);
2112       break;
2113     default:
2114       return UnableToLegalize;
2115     }
2116 
2117     assert(!LosesInfo && "extend should always be lossless");
2118 
2119     Observer.changingInstr(MI);
2120     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2121 
2122     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2123     Observer.changedInstr(MI);
2124     return Legalized;
2125   }
2126   case TargetOpcode::G_IMPLICIT_DEF: {
2127     Observer.changingInstr(MI);
2128     widenScalarDst(MI, WideTy);
2129     Observer.changedInstr(MI);
2130     return Legalized;
2131   }
2132   case TargetOpcode::G_BRCOND:
2133     Observer.changingInstr(MI);
2134     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2135     Observer.changedInstr(MI);
2136     return Legalized;
2137 
2138   case TargetOpcode::G_FCMP:
2139     Observer.changingInstr(MI);
2140     if (TypeIdx == 0)
2141       widenScalarDst(MI, WideTy);
2142     else {
2143       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2144       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2145     }
2146     Observer.changedInstr(MI);
2147     return Legalized;
2148 
2149   case TargetOpcode::G_ICMP:
2150     Observer.changingInstr(MI);
2151     if (TypeIdx == 0)
2152       widenScalarDst(MI, WideTy);
2153     else {
2154       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2155                                MI.getOperand(1).getPredicate()))
2156                                ? TargetOpcode::G_SEXT
2157                                : TargetOpcode::G_ZEXT;
2158       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2159       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2160     }
2161     Observer.changedInstr(MI);
2162     return Legalized;
2163 
2164   case TargetOpcode::G_PTR_ADD:
2165     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2166     Observer.changingInstr(MI);
2167     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2168     Observer.changedInstr(MI);
2169     return Legalized;
2170 
2171   case TargetOpcode::G_PHI: {
2172     assert(TypeIdx == 0 && "Expecting only Idx 0");
2173 
2174     Observer.changingInstr(MI);
2175     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2176       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2177       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2178       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2179     }
2180 
2181     MachineBasicBlock &MBB = *MI.getParent();
2182     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2183     widenScalarDst(MI, WideTy);
2184     Observer.changedInstr(MI);
2185     return Legalized;
2186   }
2187   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2188     if (TypeIdx == 0) {
2189       Register VecReg = MI.getOperand(1).getReg();
2190       LLT VecTy = MRI.getType(VecReg);
2191       Observer.changingInstr(MI);
2192 
2193       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2194                                      WideTy.getSizeInBits()),
2195                      1, TargetOpcode::G_SEXT);
2196 
2197       widenScalarDst(MI, WideTy, 0);
2198       Observer.changedInstr(MI);
2199       return Legalized;
2200     }
2201 
2202     if (TypeIdx != 2)
2203       return UnableToLegalize;
2204     Observer.changingInstr(MI);
2205     // TODO: Probably should be zext
2206     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2207     Observer.changedInstr(MI);
2208     return Legalized;
2209   }
2210   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2211     if (TypeIdx == 1) {
2212       Observer.changingInstr(MI);
2213 
2214       Register VecReg = MI.getOperand(1).getReg();
2215       LLT VecTy = MRI.getType(VecReg);
2216       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2217 
2218       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2219       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2220       widenScalarDst(MI, WideVecTy, 0);
2221       Observer.changedInstr(MI);
2222       return Legalized;
2223     }
2224 
2225     if (TypeIdx == 2) {
2226       Observer.changingInstr(MI);
2227       // TODO: Probably should be zext
2228       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2229       Observer.changedInstr(MI);
2230       return Legalized;
2231     }
2232 
2233     return UnableToLegalize;
2234   }
2235   case TargetOpcode::G_FADD:
2236   case TargetOpcode::G_FMUL:
2237   case TargetOpcode::G_FSUB:
2238   case TargetOpcode::G_FMA:
2239   case TargetOpcode::G_FMAD:
2240   case TargetOpcode::G_FNEG:
2241   case TargetOpcode::G_FABS:
2242   case TargetOpcode::G_FCANONICALIZE:
2243   case TargetOpcode::G_FMINNUM:
2244   case TargetOpcode::G_FMAXNUM:
2245   case TargetOpcode::G_FMINNUM_IEEE:
2246   case TargetOpcode::G_FMAXNUM_IEEE:
2247   case TargetOpcode::G_FMINIMUM:
2248   case TargetOpcode::G_FMAXIMUM:
2249   case TargetOpcode::G_FDIV:
2250   case TargetOpcode::G_FREM:
2251   case TargetOpcode::G_FCEIL:
2252   case TargetOpcode::G_FFLOOR:
2253   case TargetOpcode::G_FCOS:
2254   case TargetOpcode::G_FSIN:
2255   case TargetOpcode::G_FLOG10:
2256   case TargetOpcode::G_FLOG:
2257   case TargetOpcode::G_FLOG2:
2258   case TargetOpcode::G_FRINT:
2259   case TargetOpcode::G_FNEARBYINT:
2260   case TargetOpcode::G_FSQRT:
2261   case TargetOpcode::G_FEXP:
2262   case TargetOpcode::G_FEXP2:
2263   case TargetOpcode::G_FPOW:
2264   case TargetOpcode::G_INTRINSIC_TRUNC:
2265   case TargetOpcode::G_INTRINSIC_ROUND:
2266   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2267     assert(TypeIdx == 0);
2268     Observer.changingInstr(MI);
2269 
2270     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2271       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2272 
2273     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2274     Observer.changedInstr(MI);
2275     return Legalized;
2276   case TargetOpcode::G_FPOWI: {
2277     if (TypeIdx != 0)
2278       return UnableToLegalize;
2279     Observer.changingInstr(MI);
2280     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2281     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2282     Observer.changedInstr(MI);
2283     return Legalized;
2284   }
2285   case TargetOpcode::G_INTTOPTR:
2286     if (TypeIdx != 1)
2287       return UnableToLegalize;
2288 
2289     Observer.changingInstr(MI);
2290     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2291     Observer.changedInstr(MI);
2292     return Legalized;
2293   case TargetOpcode::G_PTRTOINT:
2294     if (TypeIdx != 0)
2295       return UnableToLegalize;
2296 
2297     Observer.changingInstr(MI);
2298     widenScalarDst(MI, WideTy, 0);
2299     Observer.changedInstr(MI);
2300     return Legalized;
2301   case TargetOpcode::G_BUILD_VECTOR: {
2302     Observer.changingInstr(MI);
2303 
2304     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2305     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2306       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2307 
2308     // Avoid changing the result vector type if the source element type was
2309     // requested.
2310     if (TypeIdx == 1) {
2311       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2312     } else {
2313       widenScalarDst(MI, WideTy, 0);
2314     }
2315 
2316     Observer.changedInstr(MI);
2317     return Legalized;
2318   }
2319   case TargetOpcode::G_SEXT_INREG:
2320     if (TypeIdx != 0)
2321       return UnableToLegalize;
2322 
2323     Observer.changingInstr(MI);
2324     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2325     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2326     Observer.changedInstr(MI);
2327     return Legalized;
2328   case TargetOpcode::G_PTRMASK: {
2329     if (TypeIdx != 1)
2330       return UnableToLegalize;
2331     Observer.changingInstr(MI);
2332     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2333     Observer.changedInstr(MI);
2334     return Legalized;
2335   }
2336   }
2337 }
2338 
getUnmergePieces(SmallVectorImpl<Register> & Pieces,MachineIRBuilder & B,Register Src,LLT Ty)2339 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2340                              MachineIRBuilder &B, Register Src, LLT Ty) {
2341   auto Unmerge = B.buildUnmerge(Ty, Src);
2342   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2343     Pieces.push_back(Unmerge.getReg(I));
2344 }
2345 
2346 LegalizerHelper::LegalizeResult
lowerBitcast(MachineInstr & MI)2347 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2348   Register Dst = MI.getOperand(0).getReg();
2349   Register Src = MI.getOperand(1).getReg();
2350   LLT DstTy = MRI.getType(Dst);
2351   LLT SrcTy = MRI.getType(Src);
2352 
2353   if (SrcTy.isVector()) {
2354     LLT SrcEltTy = SrcTy.getElementType();
2355     SmallVector<Register, 8> SrcRegs;
2356 
2357     if (DstTy.isVector()) {
2358       int NumDstElt = DstTy.getNumElements();
2359       int NumSrcElt = SrcTy.getNumElements();
2360 
2361       LLT DstEltTy = DstTy.getElementType();
2362       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2363       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2364 
2365       // If there's an element size mismatch, insert intermediate casts to match
2366       // the result element type.
2367       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2368         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2369         //
2370         // =>
2371         //
2372         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2373         // %3:_(<2 x s8>) = G_BITCAST %2
2374         // %4:_(<2 x s8>) = G_BITCAST %3
2375         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2376         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2377         SrcPartTy = SrcEltTy;
2378       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2379         //
2380         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2381         //
2382         // =>
2383         //
2384         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2385         // %3:_(s16) = G_BITCAST %2
2386         // %4:_(s16) = G_BITCAST %3
2387         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2388         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2389         DstCastTy = DstEltTy;
2390       }
2391 
2392       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2393       for (Register &SrcReg : SrcRegs)
2394         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2395     } else
2396       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2397 
2398     MIRBuilder.buildMerge(Dst, SrcRegs);
2399     MI.eraseFromParent();
2400     return Legalized;
2401   }
2402 
2403   if (DstTy.isVector()) {
2404     SmallVector<Register, 8> SrcRegs;
2405     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2406     MIRBuilder.buildMerge(Dst, SrcRegs);
2407     MI.eraseFromParent();
2408     return Legalized;
2409   }
2410 
2411   return UnableToLegalize;
2412 }
2413 
2414 /// Figure out the bit offset into a register when coercing a vector index for
2415 /// the wide element type. This is only for the case when promoting vector to
2416 /// one with larger elements.
2417 //
2418 ///
2419 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2420 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
getBitcastWiderVectorElementOffset(MachineIRBuilder & B,Register Idx,unsigned NewEltSize,unsigned OldEltSize)2421 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2422                                                    Register Idx,
2423                                                    unsigned NewEltSize,
2424                                                    unsigned OldEltSize) {
2425   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2426   LLT IdxTy = B.getMRI()->getType(Idx);
2427 
2428   // Now figure out the amount we need to shift to get the target bits.
2429   auto OffsetMask = B.buildConstant(
2430     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2431   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2432   return B.buildShl(IdxTy, OffsetIdx,
2433                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2434 }
2435 
2436 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2437 /// is casting to a vector with a smaller element size, perform multiple element
2438 /// extracts and merge the results. If this is coercing to a vector with larger
2439 /// elements, index the bitcasted vector and extract the target element with bit
2440 /// operations. This is intended to force the indexing in the native register
2441 /// size for architectures that can dynamically index the register file.
2442 LegalizerHelper::LegalizeResult
bitcastExtractVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2443 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2444                                          LLT CastTy) {
2445   if (TypeIdx != 1)
2446     return UnableToLegalize;
2447 
2448   Register Dst = MI.getOperand(0).getReg();
2449   Register SrcVec = MI.getOperand(1).getReg();
2450   Register Idx = MI.getOperand(2).getReg();
2451   LLT SrcVecTy = MRI.getType(SrcVec);
2452   LLT IdxTy = MRI.getType(Idx);
2453 
2454   LLT SrcEltTy = SrcVecTy.getElementType();
2455   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2456   unsigned OldNumElts = SrcVecTy.getNumElements();
2457 
2458   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2459   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2460 
2461   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2462   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2463   if (NewNumElts > OldNumElts) {
2464     // Decreasing the vector element size
2465     //
2466     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2467     //  =>
2468     //  v4i32:castx = bitcast x:v2i64
2469     //
2470     // i64 = bitcast
2471     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2472     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2473     //
2474     if (NewNumElts % OldNumElts != 0)
2475       return UnableToLegalize;
2476 
2477     // Type of the intermediate result vector.
2478     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2479     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2480 
2481     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2482 
2483     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2484     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2485 
2486     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2487       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2488       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2489       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2490       NewOps[I] = Elt.getReg(0);
2491     }
2492 
2493     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2494     MIRBuilder.buildBitcast(Dst, NewVec);
2495     MI.eraseFromParent();
2496     return Legalized;
2497   }
2498 
2499   if (NewNumElts < OldNumElts) {
2500     if (NewEltSize % OldEltSize != 0)
2501       return UnableToLegalize;
2502 
2503     // This only depends on powers of 2 because we use bit tricks to figure out
2504     // the bit offset we need to shift to get the target element. A general
2505     // expansion could emit division/multiply.
2506     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2507       return UnableToLegalize;
2508 
2509     // Increasing the vector element size.
2510     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2511     //
2512     //   =>
2513     //
2514     // %cast = G_BITCAST %vec
2515     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2516     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2517     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2518     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2519     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2520     // %elt = G_TRUNC %elt_bits
2521 
2522     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2523     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2524 
2525     // Divide to get the index in the wider element type.
2526     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2527 
2528     Register WideElt = CastVec;
2529     if (CastTy.isVector()) {
2530       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2531                                                      ScaledIdx).getReg(0);
2532     }
2533 
2534     // Compute the bit offset into the register of the target element.
2535     Register OffsetBits = getBitcastWiderVectorElementOffset(
2536       MIRBuilder, Idx, NewEltSize, OldEltSize);
2537 
2538     // Shift the wide element to get the target element.
2539     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2540     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2541     MI.eraseFromParent();
2542     return Legalized;
2543   }
2544 
2545   return UnableToLegalize;
2546 }
2547 
2548 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2549 /// TargetReg, while preserving other bits in \p TargetReg.
2550 ///
2551 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
buildBitFieldInsert(MachineIRBuilder & B,Register TargetReg,Register InsertReg,Register OffsetBits)2552 static Register buildBitFieldInsert(MachineIRBuilder &B,
2553                                     Register TargetReg, Register InsertReg,
2554                                     Register OffsetBits) {
2555   LLT TargetTy = B.getMRI()->getType(TargetReg);
2556   LLT InsertTy = B.getMRI()->getType(InsertReg);
2557   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2558   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2559 
2560   // Produce a bitmask of the value to insert
2561   auto EltMask = B.buildConstant(
2562     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2563                                    InsertTy.getSizeInBits()));
2564   // Shift it into position
2565   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2566   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2567 
2568   // Clear out the bits in the wide element
2569   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2570 
2571   // The value to insert has all zeros already, so stick it into the masked
2572   // wide element.
2573   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2574 }
2575 
2576 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2577 /// is increasing the element size, perform the indexing in the target element
2578 /// type, and use bit operations to insert at the element position. This is
2579 /// intended for architectures that can dynamically index the register file and
2580 /// want to force indexing in the native register size.
2581 LegalizerHelper::LegalizeResult
bitcastInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2582 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2583                                         LLT CastTy) {
2584   if (TypeIdx != 0)
2585     return UnableToLegalize;
2586 
2587   Register Dst = MI.getOperand(0).getReg();
2588   Register SrcVec = MI.getOperand(1).getReg();
2589   Register Val = MI.getOperand(2).getReg();
2590   Register Idx = MI.getOperand(3).getReg();
2591 
2592   LLT VecTy = MRI.getType(Dst);
2593   LLT IdxTy = MRI.getType(Idx);
2594 
2595   LLT VecEltTy = VecTy.getElementType();
2596   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2597   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2598   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2599 
2600   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2601   unsigned OldNumElts = VecTy.getNumElements();
2602 
2603   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2604   if (NewNumElts < OldNumElts) {
2605     if (NewEltSize % OldEltSize != 0)
2606       return UnableToLegalize;
2607 
2608     // This only depends on powers of 2 because we use bit tricks to figure out
2609     // the bit offset we need to shift to get the target element. A general
2610     // expansion could emit division/multiply.
2611     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2612       return UnableToLegalize;
2613 
2614     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2615     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2616 
2617     // Divide to get the index in the wider element type.
2618     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2619 
2620     Register ExtractedElt = CastVec;
2621     if (CastTy.isVector()) {
2622       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2623                                                           ScaledIdx).getReg(0);
2624     }
2625 
2626     // Compute the bit offset into the register of the target element.
2627     Register OffsetBits = getBitcastWiderVectorElementOffset(
2628       MIRBuilder, Idx, NewEltSize, OldEltSize);
2629 
2630     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2631                                                Val, OffsetBits);
2632     if (CastTy.isVector()) {
2633       InsertedElt = MIRBuilder.buildInsertVectorElement(
2634         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2635     }
2636 
2637     MIRBuilder.buildBitcast(Dst, InsertedElt);
2638     MI.eraseFromParent();
2639     return Legalized;
2640   }
2641 
2642   return UnableToLegalize;
2643 }
2644 
2645 LegalizerHelper::LegalizeResult
lowerLoad(MachineInstr & MI)2646 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2647   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2648   Register DstReg = MI.getOperand(0).getReg();
2649   Register PtrReg = MI.getOperand(1).getReg();
2650   LLT DstTy = MRI.getType(DstReg);
2651   auto &MMO = **MI.memoperands_begin();
2652 
2653   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2654     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2655       // This load needs splitting into power of 2 sized loads.
2656       if (DstTy.isVector())
2657         return UnableToLegalize;
2658       if (isPowerOf2_32(DstTy.getSizeInBits()))
2659         return UnableToLegalize; // Don't know what we're being asked to do.
2660 
2661       // Our strategy here is to generate anyextending loads for the smaller
2662       // types up to next power-2 result type, and then combine the two larger
2663       // result values together, before truncating back down to the non-pow-2
2664       // type.
2665       // E.g. v1 = i24 load =>
2666       // v2 = i32 zextload (2 byte)
2667       // v3 = i32 load (1 byte)
2668       // v4 = i32 shl v3, 16
2669       // v5 = i32 or v4, v2
2670       // v1 = i24 trunc v5
2671       // By doing this we generate the correct truncate which should get
2672       // combined away as an artifact with a matching extend.
2673       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2674       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2675 
2676       MachineFunction &MF = MIRBuilder.getMF();
2677       MachineMemOperand *LargeMMO =
2678         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2679       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2680         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2681 
2682       LLT PtrTy = MRI.getType(PtrReg);
2683       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2684       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2685       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2686       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2687       auto LargeLoad = MIRBuilder.buildLoadInstr(
2688         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2689 
2690       auto OffsetCst = MIRBuilder.buildConstant(
2691         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2692       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2693       auto SmallPtr =
2694         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2695       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2696                                             *SmallMMO);
2697 
2698       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2699       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2700       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2701       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2702       MI.eraseFromParent();
2703       return Legalized;
2704     }
2705 
2706     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2707     MI.eraseFromParent();
2708     return Legalized;
2709   }
2710 
2711   if (DstTy.isScalar()) {
2712     Register TmpReg =
2713       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2714     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2715     switch (MI.getOpcode()) {
2716     default:
2717       llvm_unreachable("Unexpected opcode");
2718     case TargetOpcode::G_LOAD:
2719       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2720       break;
2721     case TargetOpcode::G_SEXTLOAD:
2722       MIRBuilder.buildSExt(DstReg, TmpReg);
2723       break;
2724     case TargetOpcode::G_ZEXTLOAD:
2725       MIRBuilder.buildZExt(DstReg, TmpReg);
2726       break;
2727     }
2728 
2729     MI.eraseFromParent();
2730     return Legalized;
2731   }
2732 
2733   return UnableToLegalize;
2734 }
2735 
2736 LegalizerHelper::LegalizeResult
lowerStore(MachineInstr & MI)2737 LegalizerHelper::lowerStore(MachineInstr &MI) {
2738   // Lower a non-power of 2 store into multiple pow-2 stores.
2739   // E.g. split an i24 store into an i16 store + i8 store.
2740   // We do this by first extending the stored value to the next largest power
2741   // of 2 type, and then using truncating stores to store the components.
2742   // By doing this, likewise with G_LOAD, generate an extend that can be
2743   // artifact-combined away instead of leaving behind extracts.
2744   Register SrcReg = MI.getOperand(0).getReg();
2745   Register PtrReg = MI.getOperand(1).getReg();
2746   LLT SrcTy = MRI.getType(SrcReg);
2747   MachineMemOperand &MMO = **MI.memoperands_begin();
2748   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2749     return UnableToLegalize;
2750   if (SrcTy.isVector())
2751     return UnableToLegalize;
2752   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2753     return UnableToLegalize; // Don't know what we're being asked to do.
2754 
2755   // Extend to the next pow-2.
2756   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2757   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2758 
2759   // Obtain the smaller value by shifting away the larger value.
2760   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2761   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2762   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2763   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2764 
2765   // Generate the PtrAdd and truncating stores.
2766   LLT PtrTy = MRI.getType(PtrReg);
2767   auto OffsetCst = MIRBuilder.buildConstant(
2768     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2769   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2770   auto SmallPtr =
2771     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2772 
2773   MachineFunction &MF = MIRBuilder.getMF();
2774   MachineMemOperand *LargeMMO =
2775     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2776   MachineMemOperand *SmallMMO =
2777     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2778   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2779   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2780   MI.eraseFromParent();
2781   return Legalized;
2782 }
2783 
2784 LegalizerHelper::LegalizeResult
bitcast(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2785 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2786   switch (MI.getOpcode()) {
2787   case TargetOpcode::G_LOAD: {
2788     if (TypeIdx != 0)
2789       return UnableToLegalize;
2790 
2791     Observer.changingInstr(MI);
2792     bitcastDst(MI, CastTy, 0);
2793     Observer.changedInstr(MI);
2794     return Legalized;
2795   }
2796   case TargetOpcode::G_STORE: {
2797     if (TypeIdx != 0)
2798       return UnableToLegalize;
2799 
2800     Observer.changingInstr(MI);
2801     bitcastSrc(MI, CastTy, 0);
2802     Observer.changedInstr(MI);
2803     return Legalized;
2804   }
2805   case TargetOpcode::G_SELECT: {
2806     if (TypeIdx != 0)
2807       return UnableToLegalize;
2808 
2809     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2810       LLVM_DEBUG(
2811           dbgs() << "bitcast action not implemented for vector select\n");
2812       return UnableToLegalize;
2813     }
2814 
2815     Observer.changingInstr(MI);
2816     bitcastSrc(MI, CastTy, 2);
2817     bitcastSrc(MI, CastTy, 3);
2818     bitcastDst(MI, CastTy, 0);
2819     Observer.changedInstr(MI);
2820     return Legalized;
2821   }
2822   case TargetOpcode::G_AND:
2823   case TargetOpcode::G_OR:
2824   case TargetOpcode::G_XOR: {
2825     Observer.changingInstr(MI);
2826     bitcastSrc(MI, CastTy, 1);
2827     bitcastSrc(MI, CastTy, 2);
2828     bitcastDst(MI, CastTy, 0);
2829     Observer.changedInstr(MI);
2830     return Legalized;
2831   }
2832   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2833     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2834   case TargetOpcode::G_INSERT_VECTOR_ELT:
2835     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2836   default:
2837     return UnableToLegalize;
2838   }
2839 }
2840 
2841 // Legalize an instruction by changing the opcode in place.
changeOpcode(MachineInstr & MI,unsigned NewOpcode)2842 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2843     Observer.changingInstr(MI);
2844     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2845     Observer.changedInstr(MI);
2846 }
2847 
2848 LegalizerHelper::LegalizeResult
lower(MachineInstr & MI,unsigned TypeIdx,LLT LowerHintTy)2849 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2850   using namespace TargetOpcode;
2851 
2852   switch(MI.getOpcode()) {
2853   default:
2854     return UnableToLegalize;
2855   case TargetOpcode::G_BITCAST:
2856     return lowerBitcast(MI);
2857   case TargetOpcode::G_SREM:
2858   case TargetOpcode::G_UREM: {
2859     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2860     auto Quot =
2861         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2862                               {MI.getOperand(1), MI.getOperand(2)});
2863 
2864     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2865     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2866     MI.eraseFromParent();
2867     return Legalized;
2868   }
2869   case TargetOpcode::G_SADDO:
2870   case TargetOpcode::G_SSUBO:
2871     return lowerSADDO_SSUBO(MI);
2872   case TargetOpcode::G_UMULH:
2873   case TargetOpcode::G_SMULH:
2874     return lowerSMULH_UMULH(MI);
2875   case TargetOpcode::G_SMULO:
2876   case TargetOpcode::G_UMULO: {
2877     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2878     // result.
2879     Register Res = MI.getOperand(0).getReg();
2880     Register Overflow = MI.getOperand(1).getReg();
2881     Register LHS = MI.getOperand(2).getReg();
2882     Register RHS = MI.getOperand(3).getReg();
2883     LLT Ty = MRI.getType(Res);
2884 
2885     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2886                           ? TargetOpcode::G_SMULH
2887                           : TargetOpcode::G_UMULH;
2888 
2889     Observer.changingInstr(MI);
2890     const auto &TII = MIRBuilder.getTII();
2891     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2892     MI.RemoveOperand(1);
2893     Observer.changedInstr(MI);
2894 
2895     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2896     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2897 
2898     // Move insert point forward so we can use the Res register if needed.
2899     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2900 
2901     // For *signed* multiply, overflow is detected by checking:
2902     // (hi != (lo >> bitwidth-1))
2903     if (Opcode == TargetOpcode::G_SMULH) {
2904       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2905       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2906       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2907     } else {
2908       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2909     }
2910     return Legalized;
2911   }
2912   case TargetOpcode::G_FNEG: {
2913     Register Res = MI.getOperand(0).getReg();
2914     LLT Ty = MRI.getType(Res);
2915 
2916     // TODO: Handle vector types once we are able to
2917     // represent them.
2918     if (Ty.isVector())
2919       return UnableToLegalize;
2920     auto SignMask =
2921         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2922     Register SubByReg = MI.getOperand(1).getReg();
2923     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2924     MI.eraseFromParent();
2925     return Legalized;
2926   }
2927   case TargetOpcode::G_FSUB: {
2928     Register Res = MI.getOperand(0).getReg();
2929     LLT Ty = MRI.getType(Res);
2930 
2931     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2932     // First, check if G_FNEG is marked as Lower. If so, we may
2933     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2934     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2935       return UnableToLegalize;
2936     Register LHS = MI.getOperand(1).getReg();
2937     Register RHS = MI.getOperand(2).getReg();
2938     Register Neg = MRI.createGenericVirtualRegister(Ty);
2939     MIRBuilder.buildFNeg(Neg, RHS);
2940     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2941     MI.eraseFromParent();
2942     return Legalized;
2943   }
2944   case TargetOpcode::G_FMAD:
2945     return lowerFMad(MI);
2946   case TargetOpcode::G_FFLOOR:
2947     return lowerFFloor(MI);
2948   case TargetOpcode::G_INTRINSIC_ROUND:
2949     return lowerIntrinsicRound(MI);
2950   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2951     // Since round even is the assumed rounding mode for unconstrained FP
2952     // operations, rint and roundeven are the same operation.
2953     changeOpcode(MI, TargetOpcode::G_FRINT);
2954     return Legalized;
2955   }
2956   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2957     Register OldValRes = MI.getOperand(0).getReg();
2958     Register SuccessRes = MI.getOperand(1).getReg();
2959     Register Addr = MI.getOperand(2).getReg();
2960     Register CmpVal = MI.getOperand(3).getReg();
2961     Register NewVal = MI.getOperand(4).getReg();
2962     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2963                                   **MI.memoperands_begin());
2964     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2965     MI.eraseFromParent();
2966     return Legalized;
2967   }
2968   case TargetOpcode::G_LOAD:
2969   case TargetOpcode::G_SEXTLOAD:
2970   case TargetOpcode::G_ZEXTLOAD:
2971     return lowerLoad(MI);
2972   case TargetOpcode::G_STORE:
2973     return lowerStore(MI);
2974   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2975   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2976   case TargetOpcode::G_CTLZ:
2977   case TargetOpcode::G_CTTZ:
2978   case TargetOpcode::G_CTPOP:
2979     return lowerBitCount(MI);
2980   case G_UADDO: {
2981     Register Res = MI.getOperand(0).getReg();
2982     Register CarryOut = MI.getOperand(1).getReg();
2983     Register LHS = MI.getOperand(2).getReg();
2984     Register RHS = MI.getOperand(3).getReg();
2985 
2986     MIRBuilder.buildAdd(Res, LHS, RHS);
2987     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2988 
2989     MI.eraseFromParent();
2990     return Legalized;
2991   }
2992   case G_UADDE: {
2993     Register Res = MI.getOperand(0).getReg();
2994     Register CarryOut = MI.getOperand(1).getReg();
2995     Register LHS = MI.getOperand(2).getReg();
2996     Register RHS = MI.getOperand(3).getReg();
2997     Register CarryIn = MI.getOperand(4).getReg();
2998     LLT Ty = MRI.getType(Res);
2999 
3000     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3001     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3002     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3003     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3004 
3005     MI.eraseFromParent();
3006     return Legalized;
3007   }
3008   case G_USUBO: {
3009     Register Res = MI.getOperand(0).getReg();
3010     Register BorrowOut = MI.getOperand(1).getReg();
3011     Register LHS = MI.getOperand(2).getReg();
3012     Register RHS = MI.getOperand(3).getReg();
3013 
3014     MIRBuilder.buildSub(Res, LHS, RHS);
3015     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3016 
3017     MI.eraseFromParent();
3018     return Legalized;
3019   }
3020   case G_USUBE: {
3021     Register Res = MI.getOperand(0).getReg();
3022     Register BorrowOut = MI.getOperand(1).getReg();
3023     Register LHS = MI.getOperand(2).getReg();
3024     Register RHS = MI.getOperand(3).getReg();
3025     Register BorrowIn = MI.getOperand(4).getReg();
3026     const LLT CondTy = MRI.getType(BorrowOut);
3027     const LLT Ty = MRI.getType(Res);
3028 
3029     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3030     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3031     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3032 
3033     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3034     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3035     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3036 
3037     MI.eraseFromParent();
3038     return Legalized;
3039   }
3040   case G_UITOFP:
3041     return lowerUITOFP(MI);
3042   case G_SITOFP:
3043     return lowerSITOFP(MI);
3044   case G_FPTOUI:
3045     return lowerFPTOUI(MI);
3046   case G_FPTOSI:
3047     return lowerFPTOSI(MI);
3048   case G_FPTRUNC:
3049     return lowerFPTRUNC(MI);
3050   case G_FPOWI:
3051     return lowerFPOWI(MI);
3052   case G_SMIN:
3053   case G_SMAX:
3054   case G_UMIN:
3055   case G_UMAX:
3056     return lowerMinMax(MI);
3057   case G_FCOPYSIGN:
3058     return lowerFCopySign(MI);
3059   case G_FMINNUM:
3060   case G_FMAXNUM:
3061     return lowerFMinNumMaxNum(MI);
3062   case G_MERGE_VALUES:
3063     return lowerMergeValues(MI);
3064   case G_UNMERGE_VALUES:
3065     return lowerUnmergeValues(MI);
3066   case TargetOpcode::G_SEXT_INREG: {
3067     assert(MI.getOperand(2).isImm() && "Expected immediate");
3068     int64_t SizeInBits = MI.getOperand(2).getImm();
3069 
3070     Register DstReg = MI.getOperand(0).getReg();
3071     Register SrcReg = MI.getOperand(1).getReg();
3072     LLT DstTy = MRI.getType(DstReg);
3073     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3074 
3075     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3076     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3077     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3078     MI.eraseFromParent();
3079     return Legalized;
3080   }
3081   case G_EXTRACT_VECTOR_ELT:
3082   case G_INSERT_VECTOR_ELT:
3083     return lowerExtractInsertVectorElt(MI);
3084   case G_SHUFFLE_VECTOR:
3085     return lowerShuffleVector(MI);
3086   case G_DYN_STACKALLOC:
3087     return lowerDynStackAlloc(MI);
3088   case G_EXTRACT:
3089     return lowerExtract(MI);
3090   case G_INSERT:
3091     return lowerInsert(MI);
3092   case G_BSWAP:
3093     return lowerBswap(MI);
3094   case G_BITREVERSE:
3095     return lowerBitreverse(MI);
3096   case G_READ_REGISTER:
3097   case G_WRITE_REGISTER:
3098     return lowerReadWriteRegister(MI);
3099   case G_UADDSAT:
3100   case G_USUBSAT: {
3101     // Try to make a reasonable guess about which lowering strategy to use. The
3102     // target can override this with custom lowering and calling the
3103     // implementation functions.
3104     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3105     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3106       return lowerAddSubSatToMinMax(MI);
3107     return lowerAddSubSatToAddoSubo(MI);
3108   }
3109   case G_SADDSAT:
3110   case G_SSUBSAT: {
3111     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3112 
3113     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3114     // since it's a shorter expansion. However, we would need to figure out the
3115     // preferred boolean type for the carry out for the query.
3116     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3117       return lowerAddSubSatToMinMax(MI);
3118     return lowerAddSubSatToAddoSubo(MI);
3119   }
3120   case G_SSHLSAT:
3121   case G_USHLSAT:
3122     return lowerShlSat(MI);
3123   case G_ABS: {
3124     // Expand %res = G_ABS %a into:
3125     // %v1 = G_ASHR %a, scalar_size-1
3126     // %v2 = G_ADD %a, %v1
3127     // %res = G_XOR %v2, %v1
3128     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3129     Register OpReg = MI.getOperand(1).getReg();
3130     auto ShiftAmt =
3131         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3132     auto Shift =
3133         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3134     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3135     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3136     MI.eraseFromParent();
3137     return Legalized;
3138   }
3139   case G_SELECT:
3140     return lowerSelect(MI);
3141   }
3142 }
3143 
getStackTemporaryAlignment(LLT Ty,Align MinAlign) const3144 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3145                                                   Align MinAlign) const {
3146   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3147   // datalayout for the preferred alignment. Also there should be a target hook
3148   // for this to allow targets to reduce the alignment and ignore the
3149   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3150   // the type.
3151   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3152 }
3153 
3154 MachineInstrBuilder
createStackTemporary(TypeSize Bytes,Align Alignment,MachinePointerInfo & PtrInfo)3155 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3156                                       MachinePointerInfo &PtrInfo) {
3157   MachineFunction &MF = MIRBuilder.getMF();
3158   const DataLayout &DL = MIRBuilder.getDataLayout();
3159   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3160 
3161   unsigned AddrSpace = DL.getAllocaAddrSpace();
3162   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3163 
3164   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3165   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3166 }
3167 
clampDynamicVectorIndex(MachineIRBuilder & B,Register IdxReg,LLT VecTy)3168 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3169                                         LLT VecTy) {
3170   int64_t IdxVal;
3171   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3172     return IdxReg;
3173 
3174   LLT IdxTy = B.getMRI()->getType(IdxReg);
3175   unsigned NElts = VecTy.getNumElements();
3176   if (isPowerOf2_32(NElts)) {
3177     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3178     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3179   }
3180 
3181   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3182       .getReg(0);
3183 }
3184 
getVectorElementPointer(Register VecPtr,LLT VecTy,Register Index)3185 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3186                                                   Register Index) {
3187   LLT EltTy = VecTy.getElementType();
3188 
3189   // Calculate the element offset and add it to the pointer.
3190   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3191   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3192          "Converting bits to bytes lost precision");
3193 
3194   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3195 
3196   LLT IdxTy = MRI.getType(Index);
3197   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3198                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3199 
3200   LLT PtrTy = MRI.getType(VecPtr);
3201   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3202 }
3203 
fewerElementsVectorImplicitDef(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3204 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3205     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3206   Register DstReg = MI.getOperand(0).getReg();
3207   LLT DstTy = MRI.getType(DstReg);
3208   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3209 
3210   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3211 
3212   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3213   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3214 
3215   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3216   MI.eraseFromParent();
3217   return Legalized;
3218 }
3219 
3220 // Handle splitting vector operations which need to have the same number of
3221 // elements in each type index, but each type index may have a different element
3222 // type.
3223 //
3224 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3225 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3226 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3227 //
3228 // Also handles some irregular breakdown cases, e.g.
3229 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3230 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3231 //             s64 = G_SHL s64, s32
3232 LegalizerHelper::LegalizeResult
fewerElementsVectorMultiEltType(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTyArg)3233 LegalizerHelper::fewerElementsVectorMultiEltType(
3234   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3235   if (TypeIdx != 0)
3236     return UnableToLegalize;
3237 
3238   const LLT NarrowTy0 = NarrowTyArg;
3239   const unsigned NewNumElts =
3240       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3241 
3242   const Register DstReg = MI.getOperand(0).getReg();
3243   LLT DstTy = MRI.getType(DstReg);
3244   LLT LeftoverTy0;
3245 
3246   // All of the operands need to have the same number of elements, so if we can
3247   // determine a type breakdown for the result type, we can for all of the
3248   // source types.
3249   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3250   if (NumParts < 0)
3251     return UnableToLegalize;
3252 
3253   SmallVector<MachineInstrBuilder, 4> NewInsts;
3254 
3255   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3256   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3257 
3258   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3259     Register SrcReg = MI.getOperand(I).getReg();
3260     LLT SrcTyI = MRI.getType(SrcReg);
3261     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3262     LLT LeftoverTyI;
3263 
3264     // Split this operand into the requested typed registers, and any leftover
3265     // required to reproduce the original type.
3266     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3267                       LeftoverRegs))
3268       return UnableToLegalize;
3269 
3270     if (I == 1) {
3271       // For the first operand, create an instruction for each part and setup
3272       // the result.
3273       for (Register PartReg : PartRegs) {
3274         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3275         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3276                                .addDef(PartDstReg)
3277                                .addUse(PartReg));
3278         DstRegs.push_back(PartDstReg);
3279       }
3280 
3281       for (Register LeftoverReg : LeftoverRegs) {
3282         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3283         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3284                                .addDef(PartDstReg)
3285                                .addUse(LeftoverReg));
3286         LeftoverDstRegs.push_back(PartDstReg);
3287       }
3288     } else {
3289       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3290 
3291       // Add the newly created operand splits to the existing instructions. The
3292       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3293       // pieces.
3294       unsigned InstCount = 0;
3295       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3296         NewInsts[InstCount++].addUse(PartRegs[J]);
3297       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3298         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3299     }
3300 
3301     PartRegs.clear();
3302     LeftoverRegs.clear();
3303   }
3304 
3305   // Insert the newly built operations and rebuild the result register.
3306   for (auto &MIB : NewInsts)
3307     MIRBuilder.insertInstr(MIB);
3308 
3309   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3310 
3311   MI.eraseFromParent();
3312   return Legalized;
3313 }
3314 
3315 LegalizerHelper::LegalizeResult
fewerElementsVectorCasts(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3316 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3317                                           LLT NarrowTy) {
3318   if (TypeIdx != 0)
3319     return UnableToLegalize;
3320 
3321   Register DstReg = MI.getOperand(0).getReg();
3322   Register SrcReg = MI.getOperand(1).getReg();
3323   LLT DstTy = MRI.getType(DstReg);
3324   LLT SrcTy = MRI.getType(SrcReg);
3325 
3326   LLT NarrowTy0 = NarrowTy;
3327   LLT NarrowTy1;
3328   unsigned NumParts;
3329 
3330   if (NarrowTy.isVector()) {
3331     // Uneven breakdown not handled.
3332     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3333     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3334       return UnableToLegalize;
3335 
3336     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3337   } else {
3338     NumParts = DstTy.getNumElements();
3339     NarrowTy1 = SrcTy.getElementType();
3340   }
3341 
3342   SmallVector<Register, 4> SrcRegs, DstRegs;
3343   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3344 
3345   for (unsigned I = 0; I < NumParts; ++I) {
3346     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3347     MachineInstr *NewInst =
3348         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3349 
3350     NewInst->setFlags(MI.getFlags());
3351     DstRegs.push_back(DstReg);
3352   }
3353 
3354   if (NarrowTy.isVector())
3355     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3356   else
3357     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3358 
3359   MI.eraseFromParent();
3360   return Legalized;
3361 }
3362 
3363 LegalizerHelper::LegalizeResult
fewerElementsVectorCmp(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3364 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3365                                         LLT NarrowTy) {
3366   Register DstReg = MI.getOperand(0).getReg();
3367   Register Src0Reg = MI.getOperand(2).getReg();
3368   LLT DstTy = MRI.getType(DstReg);
3369   LLT SrcTy = MRI.getType(Src0Reg);
3370 
3371   unsigned NumParts;
3372   LLT NarrowTy0, NarrowTy1;
3373 
3374   if (TypeIdx == 0) {
3375     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3376     unsigned OldElts = DstTy.getNumElements();
3377 
3378     NarrowTy0 = NarrowTy;
3379     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3380     NarrowTy1 = NarrowTy.isVector() ?
3381       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3382       SrcTy.getElementType();
3383 
3384   } else {
3385     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3386     unsigned OldElts = SrcTy.getNumElements();
3387 
3388     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3389       NarrowTy.getNumElements();
3390     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3391                             DstTy.getScalarSizeInBits());
3392     NarrowTy1 = NarrowTy;
3393   }
3394 
3395   // FIXME: Don't know how to handle the situation where the small vectors
3396   // aren't all the same size yet.
3397   if (NarrowTy1.isVector() &&
3398       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3399     return UnableToLegalize;
3400 
3401   CmpInst::Predicate Pred
3402     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3403 
3404   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3405   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3406   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3407 
3408   for (unsigned I = 0; I < NumParts; ++I) {
3409     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3410     DstRegs.push_back(DstReg);
3411 
3412     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3413       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3414     else {
3415       MachineInstr *NewCmp
3416         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3417       NewCmp->setFlags(MI.getFlags());
3418     }
3419   }
3420 
3421   if (NarrowTy1.isVector())
3422     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3423   else
3424     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3425 
3426   MI.eraseFromParent();
3427   return Legalized;
3428 }
3429 
3430 LegalizerHelper::LegalizeResult
fewerElementsVectorSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3431 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3432                                            LLT NarrowTy) {
3433   Register DstReg = MI.getOperand(0).getReg();
3434   Register CondReg = MI.getOperand(1).getReg();
3435 
3436   unsigned NumParts = 0;
3437   LLT NarrowTy0, NarrowTy1;
3438 
3439   LLT DstTy = MRI.getType(DstReg);
3440   LLT CondTy = MRI.getType(CondReg);
3441   unsigned Size = DstTy.getSizeInBits();
3442 
3443   assert(TypeIdx == 0 || CondTy.isVector());
3444 
3445   if (TypeIdx == 0) {
3446     NarrowTy0 = NarrowTy;
3447     NarrowTy1 = CondTy;
3448 
3449     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3450     // FIXME: Don't know how to handle the situation where the small vectors
3451     // aren't all the same size yet.
3452     if (Size % NarrowSize != 0)
3453       return UnableToLegalize;
3454 
3455     NumParts = Size / NarrowSize;
3456 
3457     // Need to break down the condition type
3458     if (CondTy.isVector()) {
3459       if (CondTy.getNumElements() == NumParts)
3460         NarrowTy1 = CondTy.getElementType();
3461       else
3462         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3463                                 CondTy.getScalarSizeInBits());
3464     }
3465   } else {
3466     NumParts = CondTy.getNumElements();
3467     if (NarrowTy.isVector()) {
3468       // TODO: Handle uneven breakdown.
3469       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3470         return UnableToLegalize;
3471 
3472       return UnableToLegalize;
3473     } else {
3474       NarrowTy0 = DstTy.getElementType();
3475       NarrowTy1 = NarrowTy;
3476     }
3477   }
3478 
3479   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3480   if (CondTy.isVector())
3481     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3482 
3483   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3484   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3485 
3486   for (unsigned i = 0; i < NumParts; ++i) {
3487     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3488     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3489                            Src1Regs[i], Src2Regs[i]);
3490     DstRegs.push_back(DstReg);
3491   }
3492 
3493   if (NarrowTy0.isVector())
3494     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3495   else
3496     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3497 
3498   MI.eraseFromParent();
3499   return Legalized;
3500 }
3501 
3502 LegalizerHelper::LegalizeResult
fewerElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3503 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3504                                         LLT NarrowTy) {
3505   const Register DstReg = MI.getOperand(0).getReg();
3506   LLT PhiTy = MRI.getType(DstReg);
3507   LLT LeftoverTy;
3508 
3509   // All of the operands need to have the same number of elements, so if we can
3510   // determine a type breakdown for the result type, we can for all of the
3511   // source types.
3512   int NumParts, NumLeftover;
3513   std::tie(NumParts, NumLeftover)
3514     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3515   if (NumParts < 0)
3516     return UnableToLegalize;
3517 
3518   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3519   SmallVector<MachineInstrBuilder, 4> NewInsts;
3520 
3521   const int TotalNumParts = NumParts + NumLeftover;
3522 
3523   // Insert the new phis in the result block first.
3524   for (int I = 0; I != TotalNumParts; ++I) {
3525     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3526     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3527     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3528                        .addDef(PartDstReg));
3529     if (I < NumParts)
3530       DstRegs.push_back(PartDstReg);
3531     else
3532       LeftoverDstRegs.push_back(PartDstReg);
3533   }
3534 
3535   MachineBasicBlock *MBB = MI.getParent();
3536   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3537   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3538 
3539   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3540 
3541   // Insert code to extract the incoming values in each predecessor block.
3542   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3543     PartRegs.clear();
3544     LeftoverRegs.clear();
3545 
3546     Register SrcReg = MI.getOperand(I).getReg();
3547     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3548     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3549 
3550     LLT Unused;
3551     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3552                       LeftoverRegs))
3553       return UnableToLegalize;
3554 
3555     // Add the newly created operand splits to the existing instructions. The
3556     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3557     // pieces.
3558     for (int J = 0; J != TotalNumParts; ++J) {
3559       MachineInstrBuilder MIB = NewInsts[J];
3560       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3561       MIB.addMBB(&OpMBB);
3562     }
3563   }
3564 
3565   MI.eraseFromParent();
3566   return Legalized;
3567 }
3568 
3569 LegalizerHelper::LegalizeResult
fewerElementsVectorUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3570 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3571                                                   unsigned TypeIdx,
3572                                                   LLT NarrowTy) {
3573   if (TypeIdx != 1)
3574     return UnableToLegalize;
3575 
3576   const int NumDst = MI.getNumOperands() - 1;
3577   const Register SrcReg = MI.getOperand(NumDst).getReg();
3578   LLT SrcTy = MRI.getType(SrcReg);
3579 
3580   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3581 
3582   // TODO: Create sequence of extracts.
3583   if (DstTy == NarrowTy)
3584     return UnableToLegalize;
3585 
3586   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3587   if (DstTy == GCDTy) {
3588     // This would just be a copy of the same unmerge.
3589     // TODO: Create extracts, pad with undef and create intermediate merges.
3590     return UnableToLegalize;
3591   }
3592 
3593   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3594   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3595   const int PartsPerUnmerge = NumDst / NumUnmerge;
3596 
3597   for (int I = 0; I != NumUnmerge; ++I) {
3598     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3599 
3600     for (int J = 0; J != PartsPerUnmerge; ++J)
3601       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3602     MIB.addUse(Unmerge.getReg(I));
3603   }
3604 
3605   MI.eraseFromParent();
3606   return Legalized;
3607 }
3608 
3609 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3610 // a vector
3611 //
3612 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3613 // undef as necessary.
3614 //
3615 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3616 //   -> <2 x s16>
3617 //
3618 // %4:_(s16) = G_IMPLICIT_DEF
3619 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3620 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3621 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3622 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3623 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3624 LegalizerHelper::LegalizeResult
fewerElementsVectorMerge(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3625 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3626                                           LLT NarrowTy) {
3627   Register DstReg = MI.getOperand(0).getReg();
3628   LLT DstTy = MRI.getType(DstReg);
3629   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3630   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3631 
3632   // Break into a common type
3633   SmallVector<Register, 16> Parts;
3634   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3635     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3636 
3637   // Build the requested new merge, padding with undef.
3638   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3639                                   TargetOpcode::G_ANYEXT);
3640 
3641   // Pack into the original result register.
3642   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3643 
3644   MI.eraseFromParent();
3645   return Legalized;
3646 }
3647 
3648 LegalizerHelper::LegalizeResult
fewerElementsVectorExtractInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowVecTy)3649 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3650                                                            unsigned TypeIdx,
3651                                                            LLT NarrowVecTy) {
3652   Register DstReg = MI.getOperand(0).getReg();
3653   Register SrcVec = MI.getOperand(1).getReg();
3654   Register InsertVal;
3655   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3656 
3657   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3658   if (IsInsert)
3659     InsertVal = MI.getOperand(2).getReg();
3660 
3661   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3662 
3663   // TODO: Handle total scalarization case.
3664   if (!NarrowVecTy.isVector())
3665     return UnableToLegalize;
3666 
3667   LLT VecTy = MRI.getType(SrcVec);
3668 
3669   // If the index is a constant, we can really break this down as you would
3670   // expect, and index into the target size pieces.
3671   int64_t IdxVal;
3672   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3673     // Avoid out of bounds indexing the pieces.
3674     if (IdxVal >= VecTy.getNumElements()) {
3675       MIRBuilder.buildUndef(DstReg);
3676       MI.eraseFromParent();
3677       return Legalized;
3678     }
3679 
3680     SmallVector<Register, 8> VecParts;
3681     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3682 
3683     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3684     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3685                                     TargetOpcode::G_ANYEXT);
3686 
3687     unsigned NewNumElts = NarrowVecTy.getNumElements();
3688 
3689     LLT IdxTy = MRI.getType(Idx);
3690     int64_t PartIdx = IdxVal / NewNumElts;
3691     auto NewIdx =
3692         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3693 
3694     if (IsInsert) {
3695       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3696 
3697       // Use the adjusted index to insert into one of the subvectors.
3698       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3699           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3700       VecParts[PartIdx] = InsertPart.getReg(0);
3701 
3702       // Recombine the inserted subvector with the others to reform the result
3703       // vector.
3704       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3705     } else {
3706       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3707     }
3708 
3709     MI.eraseFromParent();
3710     return Legalized;
3711   }
3712 
3713   // With a variable index, we can't perform the operation in a smaller type, so
3714   // we're forced to expand this.
3715   //
3716   // TODO: We could emit a chain of compare/select to figure out which piece to
3717   // index.
3718   return lowerExtractInsertVectorElt(MI);
3719 }
3720 
3721 LegalizerHelper::LegalizeResult
reduceLoadStoreWidth(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3722 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3723                                       LLT NarrowTy) {
3724   // FIXME: Don't know how to handle secondary types yet.
3725   if (TypeIdx != 0)
3726     return UnableToLegalize;
3727 
3728   MachineMemOperand *MMO = *MI.memoperands_begin();
3729 
3730   // This implementation doesn't work for atomics. Give up instead of doing
3731   // something invalid.
3732   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3733       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3734     return UnableToLegalize;
3735 
3736   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3737   Register ValReg = MI.getOperand(0).getReg();
3738   Register AddrReg = MI.getOperand(1).getReg();
3739   LLT ValTy = MRI.getType(ValReg);
3740 
3741   // FIXME: Do we need a distinct NarrowMemory legalize action?
3742   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3743     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3744     return UnableToLegalize;
3745   }
3746 
3747   int NumParts = -1;
3748   int NumLeftover = -1;
3749   LLT LeftoverTy;
3750   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3751   if (IsLoad) {
3752     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3753   } else {
3754     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3755                      NarrowLeftoverRegs)) {
3756       NumParts = NarrowRegs.size();
3757       NumLeftover = NarrowLeftoverRegs.size();
3758     }
3759   }
3760 
3761   if (NumParts == -1)
3762     return UnableToLegalize;
3763 
3764   LLT PtrTy = MRI.getType(AddrReg);
3765   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3766 
3767   unsigned TotalSize = ValTy.getSizeInBits();
3768 
3769   // Split the load/store into PartTy sized pieces starting at Offset. If this
3770   // is a load, return the new registers in ValRegs. For a store, each elements
3771   // of ValRegs should be PartTy. Returns the next offset that needs to be
3772   // handled.
3773   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3774                              unsigned Offset) -> unsigned {
3775     MachineFunction &MF = MIRBuilder.getMF();
3776     unsigned PartSize = PartTy.getSizeInBits();
3777     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3778          Offset += PartSize, ++Idx) {
3779       unsigned ByteSize = PartSize / 8;
3780       unsigned ByteOffset = Offset / 8;
3781       Register NewAddrReg;
3782 
3783       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3784 
3785       MachineMemOperand *NewMMO =
3786         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3787 
3788       if (IsLoad) {
3789         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3790         ValRegs.push_back(Dst);
3791         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3792       } else {
3793         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3794       }
3795     }
3796 
3797     return Offset;
3798   };
3799 
3800   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3801 
3802   // Handle the rest of the register if this isn't an even type breakdown.
3803   if (LeftoverTy.isValid())
3804     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3805 
3806   if (IsLoad) {
3807     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3808                 LeftoverTy, NarrowLeftoverRegs);
3809   }
3810 
3811   MI.eraseFromParent();
3812   return Legalized;
3813 }
3814 
3815 LegalizerHelper::LegalizeResult
reduceOperationWidth(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)3816 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3817                                       LLT NarrowTy) {
3818   assert(TypeIdx == 0 && "only one type index expected");
3819 
3820   const unsigned Opc = MI.getOpcode();
3821   const int NumOps = MI.getNumOperands() - 1;
3822   const Register DstReg = MI.getOperand(0).getReg();
3823   const unsigned Flags = MI.getFlags();
3824   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3825   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3826 
3827   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3828 
3829   // First of all check whether we are narrowing (changing the element type)
3830   // or reducing the vector elements
3831   const LLT DstTy = MRI.getType(DstReg);
3832   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3833 
3834   SmallVector<Register, 8> ExtractedRegs[3];
3835   SmallVector<Register, 8> Parts;
3836 
3837   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3838 
3839   // Break down all the sources into NarrowTy pieces we can operate on. This may
3840   // involve creating merges to a wider type, padded with undef.
3841   for (int I = 0; I != NumOps; ++I) {
3842     Register SrcReg = MI.getOperand(I + 1).getReg();
3843     LLT SrcTy = MRI.getType(SrcReg);
3844 
3845     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3846     // For fewerElements, this is a smaller vector with the same element type.
3847     LLT OpNarrowTy;
3848     if (IsNarrow) {
3849       OpNarrowTy = NarrowScalarTy;
3850 
3851       // In case of narrowing, we need to cast vectors to scalars for this to
3852       // work properly
3853       // FIXME: Can we do without the bitcast here if we're narrowing?
3854       if (SrcTy.isVector()) {
3855         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3856         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3857       }
3858     } else {
3859       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3860     }
3861 
3862     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3863 
3864     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3865     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3866                         TargetOpcode::G_ANYEXT);
3867   }
3868 
3869   SmallVector<Register, 8> ResultRegs;
3870 
3871   // Input operands for each sub-instruction.
3872   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3873 
3874   int NumParts = ExtractedRegs[0].size();
3875   const unsigned DstSize = DstTy.getSizeInBits();
3876   const LLT DstScalarTy = LLT::scalar(DstSize);
3877 
3878   // Narrowing needs to use scalar types
3879   LLT DstLCMTy, NarrowDstTy;
3880   if (IsNarrow) {
3881     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3882     NarrowDstTy = NarrowScalarTy;
3883   } else {
3884     DstLCMTy = getLCMType(DstTy, NarrowTy);
3885     NarrowDstTy = NarrowTy;
3886   }
3887 
3888   // We widened the source registers to satisfy merge/unmerge size
3889   // constraints. We'll have some extra fully undef parts.
3890   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3891 
3892   for (int I = 0; I != NumRealParts; ++I) {
3893     // Emit this instruction on each of the split pieces.
3894     for (int J = 0; J != NumOps; ++J)
3895       InputRegs[J] = ExtractedRegs[J][I];
3896 
3897     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3898     ResultRegs.push_back(Inst.getReg(0));
3899   }
3900 
3901   // Fill out the widened result with undef instead of creating instructions
3902   // with undef inputs.
3903   int NumUndefParts = NumParts - NumRealParts;
3904   if (NumUndefParts != 0)
3905     ResultRegs.append(NumUndefParts,
3906                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3907 
3908   // Extract the possibly padded result. Use a scratch register if we need to do
3909   // a final bitcast, otherwise use the original result register.
3910   Register MergeDstReg;
3911   if (IsNarrow && DstTy.isVector())
3912     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3913   else
3914     MergeDstReg = DstReg;
3915 
3916   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3917 
3918   // Recast to vector if we narrowed a vector
3919   if (IsNarrow && DstTy.isVector())
3920     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3921 
3922   MI.eraseFromParent();
3923   return Legalized;
3924 }
3925 
3926 LegalizerHelper::LegalizeResult
fewerElementsVectorSextInReg(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3927 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3928                                               LLT NarrowTy) {
3929   Register DstReg = MI.getOperand(0).getReg();
3930   Register SrcReg = MI.getOperand(1).getReg();
3931   int64_t Imm = MI.getOperand(2).getImm();
3932 
3933   LLT DstTy = MRI.getType(DstReg);
3934 
3935   SmallVector<Register, 8> Parts;
3936   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3937   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3938 
3939   for (Register &R : Parts)
3940     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3941 
3942   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3943 
3944   MI.eraseFromParent();
3945   return Legalized;
3946 }
3947 
3948 LegalizerHelper::LegalizeResult
fewerElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3949 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3950                                      LLT NarrowTy) {
3951   using namespace TargetOpcode;
3952 
3953   switch (MI.getOpcode()) {
3954   case G_IMPLICIT_DEF:
3955     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3956   case G_TRUNC:
3957   case G_AND:
3958   case G_OR:
3959   case G_XOR:
3960   case G_ADD:
3961   case G_SUB:
3962   case G_MUL:
3963   case G_PTR_ADD:
3964   case G_SMULH:
3965   case G_UMULH:
3966   case G_FADD:
3967   case G_FMUL:
3968   case G_FSUB:
3969   case G_FNEG:
3970   case G_FABS:
3971   case G_FCANONICALIZE:
3972   case G_FDIV:
3973   case G_FREM:
3974   case G_FMA:
3975   case G_FMAD:
3976   case G_FPOW:
3977   case G_FEXP:
3978   case G_FEXP2:
3979   case G_FLOG:
3980   case G_FLOG2:
3981   case G_FLOG10:
3982   case G_FNEARBYINT:
3983   case G_FCEIL:
3984   case G_FFLOOR:
3985   case G_FRINT:
3986   case G_INTRINSIC_ROUND:
3987   case G_INTRINSIC_ROUNDEVEN:
3988   case G_INTRINSIC_TRUNC:
3989   case G_FCOS:
3990   case G_FSIN:
3991   case G_FSQRT:
3992   case G_BSWAP:
3993   case G_BITREVERSE:
3994   case G_SDIV:
3995   case G_UDIV:
3996   case G_SREM:
3997   case G_UREM:
3998   case G_SMIN:
3999   case G_SMAX:
4000   case G_UMIN:
4001   case G_UMAX:
4002   case G_FMINNUM:
4003   case G_FMAXNUM:
4004   case G_FMINNUM_IEEE:
4005   case G_FMAXNUM_IEEE:
4006   case G_FMINIMUM:
4007   case G_FMAXIMUM:
4008   case G_FSHL:
4009   case G_FSHR:
4010   case G_FREEZE:
4011   case G_SADDSAT:
4012   case G_SSUBSAT:
4013   case G_UADDSAT:
4014   case G_USUBSAT:
4015     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4016   case G_SHL:
4017   case G_LSHR:
4018   case G_ASHR:
4019   case G_SSHLSAT:
4020   case G_USHLSAT:
4021   case G_CTLZ:
4022   case G_CTLZ_ZERO_UNDEF:
4023   case G_CTTZ:
4024   case G_CTTZ_ZERO_UNDEF:
4025   case G_CTPOP:
4026   case G_FCOPYSIGN:
4027     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4028   case G_ZEXT:
4029   case G_SEXT:
4030   case G_ANYEXT:
4031   case G_FPEXT:
4032   case G_FPTRUNC:
4033   case G_SITOFP:
4034   case G_UITOFP:
4035   case G_FPTOSI:
4036   case G_FPTOUI:
4037   case G_INTTOPTR:
4038   case G_PTRTOINT:
4039   case G_ADDRSPACE_CAST:
4040     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4041   case G_ICMP:
4042   case G_FCMP:
4043     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4044   case G_SELECT:
4045     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4046   case G_PHI:
4047     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4048   case G_UNMERGE_VALUES:
4049     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4050   case G_BUILD_VECTOR:
4051     assert(TypeIdx == 0 && "not a vector type index");
4052     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4053   case G_CONCAT_VECTORS:
4054     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4055       return UnableToLegalize;
4056     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4057   case G_EXTRACT_VECTOR_ELT:
4058   case G_INSERT_VECTOR_ELT:
4059     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4060   case G_LOAD:
4061   case G_STORE:
4062     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4063   case G_SEXT_INREG:
4064     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4065   default:
4066     return UnableToLegalize;
4067   }
4068 }
4069 
4070 LegalizerHelper::LegalizeResult
narrowScalarShiftByConstant(MachineInstr & MI,const APInt & Amt,const LLT HalfTy,const LLT AmtTy)4071 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4072                                              const LLT HalfTy, const LLT AmtTy) {
4073 
4074   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4075   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4076   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4077 
4078   if (Amt.isNullValue()) {
4079     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4080     MI.eraseFromParent();
4081     return Legalized;
4082   }
4083 
4084   LLT NVT = HalfTy;
4085   unsigned NVTBits = HalfTy.getSizeInBits();
4086   unsigned VTBits = 2 * NVTBits;
4087 
4088   SrcOp Lo(Register(0)), Hi(Register(0));
4089   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4090     if (Amt.ugt(VTBits)) {
4091       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4092     } else if (Amt.ugt(NVTBits)) {
4093       Lo = MIRBuilder.buildConstant(NVT, 0);
4094       Hi = MIRBuilder.buildShl(NVT, InL,
4095                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4096     } else if (Amt == NVTBits) {
4097       Lo = MIRBuilder.buildConstant(NVT, 0);
4098       Hi = InL;
4099     } else {
4100       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4101       auto OrLHS =
4102           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4103       auto OrRHS = MIRBuilder.buildLShr(
4104           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4105       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4106     }
4107   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4108     if (Amt.ugt(VTBits)) {
4109       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4110     } else if (Amt.ugt(NVTBits)) {
4111       Lo = MIRBuilder.buildLShr(NVT, InH,
4112                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4113       Hi = MIRBuilder.buildConstant(NVT, 0);
4114     } else if (Amt == NVTBits) {
4115       Lo = InH;
4116       Hi = MIRBuilder.buildConstant(NVT, 0);
4117     } else {
4118       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4119 
4120       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4121       auto OrRHS = MIRBuilder.buildShl(
4122           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4123 
4124       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4125       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4126     }
4127   } else {
4128     if (Amt.ugt(VTBits)) {
4129       Hi = Lo = MIRBuilder.buildAShr(
4130           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4131     } else if (Amt.ugt(NVTBits)) {
4132       Lo = MIRBuilder.buildAShr(NVT, InH,
4133                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4134       Hi = MIRBuilder.buildAShr(NVT, InH,
4135                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4136     } else if (Amt == NVTBits) {
4137       Lo = InH;
4138       Hi = MIRBuilder.buildAShr(NVT, InH,
4139                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4140     } else {
4141       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4142 
4143       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4144       auto OrRHS = MIRBuilder.buildShl(
4145           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4146 
4147       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4148       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4149     }
4150   }
4151 
4152   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4153   MI.eraseFromParent();
4154 
4155   return Legalized;
4156 }
4157 
4158 // TODO: Optimize if constant shift amount.
4159 LegalizerHelper::LegalizeResult
narrowScalarShift(MachineInstr & MI,unsigned TypeIdx,LLT RequestedTy)4160 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4161                                    LLT RequestedTy) {
4162   if (TypeIdx == 1) {
4163     Observer.changingInstr(MI);
4164     narrowScalarSrc(MI, RequestedTy, 2);
4165     Observer.changedInstr(MI);
4166     return Legalized;
4167   }
4168 
4169   Register DstReg = MI.getOperand(0).getReg();
4170   LLT DstTy = MRI.getType(DstReg);
4171   if (DstTy.isVector())
4172     return UnableToLegalize;
4173 
4174   Register Amt = MI.getOperand(2).getReg();
4175   LLT ShiftAmtTy = MRI.getType(Amt);
4176   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4177   if (DstEltSize % 2 != 0)
4178     return UnableToLegalize;
4179 
4180   // Ignore the input type. We can only go to exactly half the size of the
4181   // input. If that isn't small enough, the resulting pieces will be further
4182   // legalized.
4183   const unsigned NewBitSize = DstEltSize / 2;
4184   const LLT HalfTy = LLT::scalar(NewBitSize);
4185   const LLT CondTy = LLT::scalar(1);
4186 
4187   if (const MachineInstr *KShiftAmt =
4188           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4189     return narrowScalarShiftByConstant(
4190         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4191   }
4192 
4193   // TODO: Expand with known bits.
4194 
4195   // Handle the fully general expansion by an unknown amount.
4196   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4197 
4198   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4199   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4200   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4201 
4202   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4203   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4204 
4205   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4206   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4207   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4208 
4209   Register ResultRegs[2];
4210   switch (MI.getOpcode()) {
4211   case TargetOpcode::G_SHL: {
4212     // Short: ShAmt < NewBitSize
4213     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4214 
4215     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4216     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4217     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4218 
4219     // Long: ShAmt >= NewBitSize
4220     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4221     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4222 
4223     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4224     auto Hi = MIRBuilder.buildSelect(
4225         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4226 
4227     ResultRegs[0] = Lo.getReg(0);
4228     ResultRegs[1] = Hi.getReg(0);
4229     break;
4230   }
4231   case TargetOpcode::G_LSHR:
4232   case TargetOpcode::G_ASHR: {
4233     // Short: ShAmt < NewBitSize
4234     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4235 
4236     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4237     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4238     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4239 
4240     // Long: ShAmt >= NewBitSize
4241     MachineInstrBuilder HiL;
4242     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4243       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4244     } else {
4245       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4246       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4247     }
4248     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4249                                      {InH, AmtExcess});     // Lo from Hi part.
4250 
4251     auto Lo = MIRBuilder.buildSelect(
4252         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4253 
4254     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4255 
4256     ResultRegs[0] = Lo.getReg(0);
4257     ResultRegs[1] = Hi.getReg(0);
4258     break;
4259   }
4260   default:
4261     llvm_unreachable("not a shift");
4262   }
4263 
4264   MIRBuilder.buildMerge(DstReg, ResultRegs);
4265   MI.eraseFromParent();
4266   return Legalized;
4267 }
4268 
4269 LegalizerHelper::LegalizeResult
moreElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4270 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4271                                        LLT MoreTy) {
4272   assert(TypeIdx == 0 && "Expecting only Idx 0");
4273 
4274   Observer.changingInstr(MI);
4275   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4276     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4277     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4278     moreElementsVectorSrc(MI, MoreTy, I);
4279   }
4280 
4281   MachineBasicBlock &MBB = *MI.getParent();
4282   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4283   moreElementsVectorDst(MI, MoreTy, 0);
4284   Observer.changedInstr(MI);
4285   return Legalized;
4286 }
4287 
4288 LegalizerHelper::LegalizeResult
moreElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4289 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4290                                     LLT MoreTy) {
4291   unsigned Opc = MI.getOpcode();
4292   switch (Opc) {
4293   case TargetOpcode::G_IMPLICIT_DEF:
4294   case TargetOpcode::G_LOAD: {
4295     if (TypeIdx != 0)
4296       return UnableToLegalize;
4297     Observer.changingInstr(MI);
4298     moreElementsVectorDst(MI, MoreTy, 0);
4299     Observer.changedInstr(MI);
4300     return Legalized;
4301   }
4302   case TargetOpcode::G_STORE:
4303     if (TypeIdx != 0)
4304       return UnableToLegalize;
4305     Observer.changingInstr(MI);
4306     moreElementsVectorSrc(MI, MoreTy, 0);
4307     Observer.changedInstr(MI);
4308     return Legalized;
4309   case TargetOpcode::G_AND:
4310   case TargetOpcode::G_OR:
4311   case TargetOpcode::G_XOR:
4312   case TargetOpcode::G_SMIN:
4313   case TargetOpcode::G_SMAX:
4314   case TargetOpcode::G_UMIN:
4315   case TargetOpcode::G_UMAX:
4316   case TargetOpcode::G_FMINNUM:
4317   case TargetOpcode::G_FMAXNUM:
4318   case TargetOpcode::G_FMINNUM_IEEE:
4319   case TargetOpcode::G_FMAXNUM_IEEE:
4320   case TargetOpcode::G_FMINIMUM:
4321   case TargetOpcode::G_FMAXIMUM: {
4322     Observer.changingInstr(MI);
4323     moreElementsVectorSrc(MI, MoreTy, 1);
4324     moreElementsVectorSrc(MI, MoreTy, 2);
4325     moreElementsVectorDst(MI, MoreTy, 0);
4326     Observer.changedInstr(MI);
4327     return Legalized;
4328   }
4329   case TargetOpcode::G_EXTRACT:
4330     if (TypeIdx != 1)
4331       return UnableToLegalize;
4332     Observer.changingInstr(MI);
4333     moreElementsVectorSrc(MI, MoreTy, 1);
4334     Observer.changedInstr(MI);
4335     return Legalized;
4336   case TargetOpcode::G_INSERT:
4337   case TargetOpcode::G_FREEZE:
4338     if (TypeIdx != 0)
4339       return UnableToLegalize;
4340     Observer.changingInstr(MI);
4341     moreElementsVectorSrc(MI, MoreTy, 1);
4342     moreElementsVectorDst(MI, MoreTy, 0);
4343     Observer.changedInstr(MI);
4344     return Legalized;
4345   case TargetOpcode::G_SELECT:
4346     if (TypeIdx != 0)
4347       return UnableToLegalize;
4348     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4349       return UnableToLegalize;
4350 
4351     Observer.changingInstr(MI);
4352     moreElementsVectorSrc(MI, MoreTy, 2);
4353     moreElementsVectorSrc(MI, MoreTy, 3);
4354     moreElementsVectorDst(MI, MoreTy, 0);
4355     Observer.changedInstr(MI);
4356     return Legalized;
4357   case TargetOpcode::G_UNMERGE_VALUES: {
4358     if (TypeIdx != 1)
4359       return UnableToLegalize;
4360 
4361     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4362     int NumDst = MI.getNumOperands() - 1;
4363     moreElementsVectorSrc(MI, MoreTy, NumDst);
4364 
4365     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4366     for (int I = 0; I != NumDst; ++I)
4367       MIB.addDef(MI.getOperand(I).getReg());
4368 
4369     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4370     for (int I = NumDst; I != NewNumDst; ++I)
4371       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4372 
4373     MIB.addUse(MI.getOperand(NumDst).getReg());
4374     MI.eraseFromParent();
4375     return Legalized;
4376   }
4377   case TargetOpcode::G_PHI:
4378     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4379   default:
4380     return UnableToLegalize;
4381   }
4382 }
4383 
multiplyRegisters(SmallVectorImpl<Register> & DstRegs,ArrayRef<Register> Src1Regs,ArrayRef<Register> Src2Regs,LLT NarrowTy)4384 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4385                                         ArrayRef<Register> Src1Regs,
4386                                         ArrayRef<Register> Src2Regs,
4387                                         LLT NarrowTy) {
4388   MachineIRBuilder &B = MIRBuilder;
4389   unsigned SrcParts = Src1Regs.size();
4390   unsigned DstParts = DstRegs.size();
4391 
4392   unsigned DstIdx = 0; // Low bits of the result.
4393   Register FactorSum =
4394       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4395   DstRegs[DstIdx] = FactorSum;
4396 
4397   unsigned CarrySumPrevDstIdx;
4398   SmallVector<Register, 4> Factors;
4399 
4400   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4401     // Collect low parts of muls for DstIdx.
4402     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4403          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4404       MachineInstrBuilder Mul =
4405           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4406       Factors.push_back(Mul.getReg(0));
4407     }
4408     // Collect high parts of muls from previous DstIdx.
4409     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4410          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4411       MachineInstrBuilder Umulh =
4412           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4413       Factors.push_back(Umulh.getReg(0));
4414     }
4415     // Add CarrySum from additions calculated for previous DstIdx.
4416     if (DstIdx != 1) {
4417       Factors.push_back(CarrySumPrevDstIdx);
4418     }
4419 
4420     Register CarrySum;
4421     // Add all factors and accumulate all carries into CarrySum.
4422     if (DstIdx != DstParts - 1) {
4423       MachineInstrBuilder Uaddo =
4424           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4425       FactorSum = Uaddo.getReg(0);
4426       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4427       for (unsigned i = 2; i < Factors.size(); ++i) {
4428         MachineInstrBuilder Uaddo =
4429             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4430         FactorSum = Uaddo.getReg(0);
4431         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4432         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4433       }
4434     } else {
4435       // Since value for the next index is not calculated, neither is CarrySum.
4436       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4437       for (unsigned i = 2; i < Factors.size(); ++i)
4438         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4439     }
4440 
4441     CarrySumPrevDstIdx = CarrySum;
4442     DstRegs[DstIdx] = FactorSum;
4443     Factors.clear();
4444   }
4445 }
4446 
4447 LegalizerHelper::LegalizeResult
narrowScalarMul(MachineInstr & MI,LLT NarrowTy)4448 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4449   Register DstReg = MI.getOperand(0).getReg();
4450   Register Src1 = MI.getOperand(1).getReg();
4451   Register Src2 = MI.getOperand(2).getReg();
4452 
4453   LLT Ty = MRI.getType(DstReg);
4454   if (Ty.isVector())
4455     return UnableToLegalize;
4456 
4457   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4458   unsigned DstSize = Ty.getSizeInBits();
4459   unsigned NarrowSize = NarrowTy.getSizeInBits();
4460   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4461     return UnableToLegalize;
4462 
4463   unsigned NumDstParts = DstSize / NarrowSize;
4464   unsigned NumSrcParts = SrcSize / NarrowSize;
4465   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4466   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4467 
4468   SmallVector<Register, 2> Src1Parts, Src2Parts;
4469   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4470   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4471   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4472   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4473 
4474   // Take only high half of registers if this is high mul.
4475   ArrayRef<Register> DstRegs(
4476       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4477   MIRBuilder.buildMerge(DstReg, DstRegs);
4478   MI.eraseFromParent();
4479   return Legalized;
4480 }
4481 
4482 LegalizerHelper::LegalizeResult
narrowScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4483 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4484                                      LLT NarrowTy) {
4485   if (TypeIdx != 1)
4486     return UnableToLegalize;
4487 
4488   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4489 
4490   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4491   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4492   // NarrowSize.
4493   if (SizeOp1 % NarrowSize != 0)
4494     return UnableToLegalize;
4495   int NumParts = SizeOp1 / NarrowSize;
4496 
4497   SmallVector<Register, 2> SrcRegs, DstRegs;
4498   SmallVector<uint64_t, 2> Indexes;
4499   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4500 
4501   Register OpReg = MI.getOperand(0).getReg();
4502   uint64_t OpStart = MI.getOperand(2).getImm();
4503   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4504   for (int i = 0; i < NumParts; ++i) {
4505     unsigned SrcStart = i * NarrowSize;
4506 
4507     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4508       // No part of the extract uses this subregister, ignore it.
4509       continue;
4510     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4511       // The entire subregister is extracted, forward the value.
4512       DstRegs.push_back(SrcRegs[i]);
4513       continue;
4514     }
4515 
4516     // OpSegStart is where this destination segment would start in OpReg if it
4517     // extended infinitely in both directions.
4518     int64_t ExtractOffset;
4519     uint64_t SegSize;
4520     if (OpStart < SrcStart) {
4521       ExtractOffset = 0;
4522       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4523     } else {
4524       ExtractOffset = OpStart - SrcStart;
4525       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4526     }
4527 
4528     Register SegReg = SrcRegs[i];
4529     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4530       // A genuine extract is needed.
4531       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4532       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4533     }
4534 
4535     DstRegs.push_back(SegReg);
4536   }
4537 
4538   Register DstReg = MI.getOperand(0).getReg();
4539   if (MRI.getType(DstReg).isVector())
4540     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4541   else if (DstRegs.size() > 1)
4542     MIRBuilder.buildMerge(DstReg, DstRegs);
4543   else
4544     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4545   MI.eraseFromParent();
4546   return Legalized;
4547 }
4548 
4549 LegalizerHelper::LegalizeResult
narrowScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4550 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4551                                     LLT NarrowTy) {
4552   // FIXME: Don't know how to handle secondary types yet.
4553   if (TypeIdx != 0)
4554     return UnableToLegalize;
4555 
4556   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4557   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4558 
4559   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4560   // NarrowSize.
4561   if (SizeOp0 % NarrowSize != 0)
4562     return UnableToLegalize;
4563 
4564   int NumParts = SizeOp0 / NarrowSize;
4565 
4566   SmallVector<Register, 2> SrcRegs, DstRegs;
4567   SmallVector<uint64_t, 2> Indexes;
4568   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4569 
4570   Register OpReg = MI.getOperand(2).getReg();
4571   uint64_t OpStart = MI.getOperand(3).getImm();
4572   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4573   for (int i = 0; i < NumParts; ++i) {
4574     unsigned DstStart = i * NarrowSize;
4575 
4576     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4577       // No part of the insert affects this subregister, forward the original.
4578       DstRegs.push_back(SrcRegs[i]);
4579       continue;
4580     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4581       // The entire subregister is defined by this insert, forward the new
4582       // value.
4583       DstRegs.push_back(OpReg);
4584       continue;
4585     }
4586 
4587     // OpSegStart is where this destination segment would start in OpReg if it
4588     // extended infinitely in both directions.
4589     int64_t ExtractOffset, InsertOffset;
4590     uint64_t SegSize;
4591     if (OpStart < DstStart) {
4592       InsertOffset = 0;
4593       ExtractOffset = DstStart - OpStart;
4594       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4595     } else {
4596       InsertOffset = OpStart - DstStart;
4597       ExtractOffset = 0;
4598       SegSize =
4599         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4600     }
4601 
4602     Register SegReg = OpReg;
4603     if (ExtractOffset != 0 || SegSize != OpSize) {
4604       // A genuine extract is needed.
4605       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4606       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4607     }
4608 
4609     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4610     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4611     DstRegs.push_back(DstReg);
4612   }
4613 
4614   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4615   Register DstReg = MI.getOperand(0).getReg();
4616   if(MRI.getType(DstReg).isVector())
4617     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4618   else
4619     MIRBuilder.buildMerge(DstReg, DstRegs);
4620   MI.eraseFromParent();
4621   return Legalized;
4622 }
4623 
4624 LegalizerHelper::LegalizeResult
narrowScalarBasic(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4625 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4626                                    LLT NarrowTy) {
4627   Register DstReg = MI.getOperand(0).getReg();
4628   LLT DstTy = MRI.getType(DstReg);
4629 
4630   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4631 
4632   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4633   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4634   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4635   LLT LeftoverTy;
4636   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4637                     Src0Regs, Src0LeftoverRegs))
4638     return UnableToLegalize;
4639 
4640   LLT Unused;
4641   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4642                     Src1Regs, Src1LeftoverRegs))
4643     llvm_unreachable("inconsistent extractParts result");
4644 
4645   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4646     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4647                                         {Src0Regs[I], Src1Regs[I]});
4648     DstRegs.push_back(Inst.getReg(0));
4649   }
4650 
4651   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4652     auto Inst = MIRBuilder.buildInstr(
4653       MI.getOpcode(),
4654       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4655     DstLeftoverRegs.push_back(Inst.getReg(0));
4656   }
4657 
4658   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4659               LeftoverTy, DstLeftoverRegs);
4660 
4661   MI.eraseFromParent();
4662   return Legalized;
4663 }
4664 
4665 LegalizerHelper::LegalizeResult
narrowScalarExt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4666 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4667                                  LLT NarrowTy) {
4668   if (TypeIdx != 0)
4669     return UnableToLegalize;
4670 
4671   Register DstReg = MI.getOperand(0).getReg();
4672   Register SrcReg = MI.getOperand(1).getReg();
4673 
4674   LLT DstTy = MRI.getType(DstReg);
4675   if (DstTy.isVector())
4676     return UnableToLegalize;
4677 
4678   SmallVector<Register, 8> Parts;
4679   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4680   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4681   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4682 
4683   MI.eraseFromParent();
4684   return Legalized;
4685 }
4686 
4687 LegalizerHelper::LegalizeResult
narrowScalarSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4688 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4689                                     LLT NarrowTy) {
4690   if (TypeIdx != 0)
4691     return UnableToLegalize;
4692 
4693   Register CondReg = MI.getOperand(1).getReg();
4694   LLT CondTy = MRI.getType(CondReg);
4695   if (CondTy.isVector()) // TODO: Handle vselect
4696     return UnableToLegalize;
4697 
4698   Register DstReg = MI.getOperand(0).getReg();
4699   LLT DstTy = MRI.getType(DstReg);
4700 
4701   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4702   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4703   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4704   LLT LeftoverTy;
4705   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4706                     Src1Regs, Src1LeftoverRegs))
4707     return UnableToLegalize;
4708 
4709   LLT Unused;
4710   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4711                     Src2Regs, Src2LeftoverRegs))
4712     llvm_unreachable("inconsistent extractParts result");
4713 
4714   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4715     auto Select = MIRBuilder.buildSelect(NarrowTy,
4716                                          CondReg, Src1Regs[I], Src2Regs[I]);
4717     DstRegs.push_back(Select.getReg(0));
4718   }
4719 
4720   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4721     auto Select = MIRBuilder.buildSelect(
4722       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4723     DstLeftoverRegs.push_back(Select.getReg(0));
4724   }
4725 
4726   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4727               LeftoverTy, DstLeftoverRegs);
4728 
4729   MI.eraseFromParent();
4730   return Legalized;
4731 }
4732 
4733 LegalizerHelper::LegalizeResult
narrowScalarCTLZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4734 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4735                                   LLT NarrowTy) {
4736   if (TypeIdx != 1)
4737     return UnableToLegalize;
4738 
4739   Register DstReg = MI.getOperand(0).getReg();
4740   Register SrcReg = MI.getOperand(1).getReg();
4741   LLT DstTy = MRI.getType(DstReg);
4742   LLT SrcTy = MRI.getType(SrcReg);
4743   unsigned NarrowSize = NarrowTy.getSizeInBits();
4744 
4745   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4746     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4747 
4748     MachineIRBuilder &B = MIRBuilder;
4749     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4750     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4751     auto C_0 = B.buildConstant(NarrowTy, 0);
4752     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4753                                 UnmergeSrc.getReg(1), C_0);
4754     auto LoCTLZ = IsUndef ?
4755       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4756       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4757     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4758     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4759     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4760     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4761 
4762     MI.eraseFromParent();
4763     return Legalized;
4764   }
4765 
4766   return UnableToLegalize;
4767 }
4768 
4769 LegalizerHelper::LegalizeResult
narrowScalarCTTZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4770 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4771                                   LLT NarrowTy) {
4772   if (TypeIdx != 1)
4773     return UnableToLegalize;
4774 
4775   Register DstReg = MI.getOperand(0).getReg();
4776   Register SrcReg = MI.getOperand(1).getReg();
4777   LLT DstTy = MRI.getType(DstReg);
4778   LLT SrcTy = MRI.getType(SrcReg);
4779   unsigned NarrowSize = NarrowTy.getSizeInBits();
4780 
4781   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4782     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4783 
4784     MachineIRBuilder &B = MIRBuilder;
4785     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4786     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4787     auto C_0 = B.buildConstant(NarrowTy, 0);
4788     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4789                                 UnmergeSrc.getReg(0), C_0);
4790     auto HiCTTZ = IsUndef ?
4791       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4792       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4793     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4794     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4795     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4796     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4797 
4798     MI.eraseFromParent();
4799     return Legalized;
4800   }
4801 
4802   return UnableToLegalize;
4803 }
4804 
4805 LegalizerHelper::LegalizeResult
narrowScalarCTPOP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4806 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4807                                    LLT NarrowTy) {
4808   if (TypeIdx != 1)
4809     return UnableToLegalize;
4810 
4811   Register DstReg = MI.getOperand(0).getReg();
4812   LLT DstTy = MRI.getType(DstReg);
4813   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4814   unsigned NarrowSize = NarrowTy.getSizeInBits();
4815 
4816   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4817     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4818 
4819     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4820     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4821     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4822 
4823     MI.eraseFromParent();
4824     return Legalized;
4825   }
4826 
4827   return UnableToLegalize;
4828 }
4829 
4830 LegalizerHelper::LegalizeResult
lowerBitCount(MachineInstr & MI)4831 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4832   unsigned Opc = MI.getOpcode();
4833   const auto &TII = MIRBuilder.getTII();
4834   auto isSupported = [this](const LegalityQuery &Q) {
4835     auto QAction = LI.getAction(Q).Action;
4836     return QAction == Legal || QAction == Libcall || QAction == Custom;
4837   };
4838   switch (Opc) {
4839   default:
4840     return UnableToLegalize;
4841   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4842     // This trivially expands to CTLZ.
4843     Observer.changingInstr(MI);
4844     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4845     Observer.changedInstr(MI);
4846     return Legalized;
4847   }
4848   case TargetOpcode::G_CTLZ: {
4849     Register DstReg = MI.getOperand(0).getReg();
4850     Register SrcReg = MI.getOperand(1).getReg();
4851     LLT DstTy = MRI.getType(DstReg);
4852     LLT SrcTy = MRI.getType(SrcReg);
4853     unsigned Len = SrcTy.getSizeInBits();
4854 
4855     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4856       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4857       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4858       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4859       auto ICmp = MIRBuilder.buildICmp(
4860           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4861       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4862       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4863       MI.eraseFromParent();
4864       return Legalized;
4865     }
4866     // for now, we do this:
4867     // NewLen = NextPowerOf2(Len);
4868     // x = x | (x >> 1);
4869     // x = x | (x >> 2);
4870     // ...
4871     // x = x | (x >>16);
4872     // x = x | (x >>32); // for 64-bit input
4873     // Upto NewLen/2
4874     // return Len - popcount(x);
4875     //
4876     // Ref: "Hacker's Delight" by Henry Warren
4877     Register Op = SrcReg;
4878     unsigned NewLen = PowerOf2Ceil(Len);
4879     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4880       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4881       auto MIBOp = MIRBuilder.buildOr(
4882           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4883       Op = MIBOp.getReg(0);
4884     }
4885     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4886     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4887                         MIBPop);
4888     MI.eraseFromParent();
4889     return Legalized;
4890   }
4891   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4892     // This trivially expands to CTTZ.
4893     Observer.changingInstr(MI);
4894     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4895     Observer.changedInstr(MI);
4896     return Legalized;
4897   }
4898   case TargetOpcode::G_CTTZ: {
4899     Register DstReg = MI.getOperand(0).getReg();
4900     Register SrcReg = MI.getOperand(1).getReg();
4901     LLT DstTy = MRI.getType(DstReg);
4902     LLT SrcTy = MRI.getType(SrcReg);
4903 
4904     unsigned Len = SrcTy.getSizeInBits();
4905     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4906       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4907       // zero.
4908       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4909       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4910       auto ICmp = MIRBuilder.buildICmp(
4911           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4912       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4913       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4914       MI.eraseFromParent();
4915       return Legalized;
4916     }
4917     // for now, we use: { return popcount(~x & (x - 1)); }
4918     // unless the target has ctlz but not ctpop, in which case we use:
4919     // { return 32 - nlz(~x & (x-1)); }
4920     // Ref: "Hacker's Delight" by Henry Warren
4921     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4922     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4923     auto MIBTmp = MIRBuilder.buildAnd(
4924         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4925     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4926         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4927       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4928       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4929                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4930       MI.eraseFromParent();
4931       return Legalized;
4932     }
4933     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4934     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4935     return Legalized;
4936   }
4937   case TargetOpcode::G_CTPOP: {
4938     Register SrcReg = MI.getOperand(1).getReg();
4939     LLT Ty = MRI.getType(SrcReg);
4940     unsigned Size = Ty.getSizeInBits();
4941     MachineIRBuilder &B = MIRBuilder;
4942 
4943     // Count set bits in blocks of 2 bits. Default approach would be
4944     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4945     // We use following formula instead:
4946     // B2Count = val - { (val >> 1) & 0x55555555 }
4947     // since it gives same result in blocks of 2 with one instruction less.
4948     auto C_1 = B.buildConstant(Ty, 1);
4949     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4950     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4951     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4952     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4953     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4954 
4955     // In order to get count in blocks of 4 add values from adjacent block of 2.
4956     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4957     auto C_2 = B.buildConstant(Ty, 2);
4958     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4959     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4960     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4961     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4962     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4963     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4964 
4965     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4966     // addition since count value sits in range {0,...,8} and 4 bits are enough
4967     // to hold such binary values. After addition high 4 bits still hold count
4968     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4969     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4970     auto C_4 = B.buildConstant(Ty, 4);
4971     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
4972     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
4973     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
4974     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
4975     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
4976 
4977     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
4978     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
4979     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
4980     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
4981     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
4982 
4983     // Shift count result from 8 high bits to low bits.
4984     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
4985     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
4986 
4987     MI.eraseFromParent();
4988     return Legalized;
4989   }
4990   }
4991 }
4992 
4993 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
4994 // representation.
4995 LegalizerHelper::LegalizeResult
lowerU64ToF32BitOps(MachineInstr & MI)4996 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
4997   Register Dst = MI.getOperand(0).getReg();
4998   Register Src = MI.getOperand(1).getReg();
4999   const LLT S64 = LLT::scalar(64);
5000   const LLT S32 = LLT::scalar(32);
5001   const LLT S1 = LLT::scalar(1);
5002 
5003   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5004 
5005   // unsigned cul2f(ulong u) {
5006   //   uint lz = clz(u);
5007   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5008   //   u = (u << lz) & 0x7fffffffffffffffUL;
5009   //   ulong t = u & 0xffffffffffUL;
5010   //   uint v = (e << 23) | (uint)(u >> 40);
5011   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5012   //   return as_float(v + r);
5013   // }
5014 
5015   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5016   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5017 
5018   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5019 
5020   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5021   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5022 
5023   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5024   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5025 
5026   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5027   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5028 
5029   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5030 
5031   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5032   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5033 
5034   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5035   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5036   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5037 
5038   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5039   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5040   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5041   auto One = MIRBuilder.buildConstant(S32, 1);
5042 
5043   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5044   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5045   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5046   MIRBuilder.buildAdd(Dst, V, R);
5047 
5048   MI.eraseFromParent();
5049   return Legalized;
5050 }
5051 
lowerUITOFP(MachineInstr & MI)5052 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5053   Register Dst = MI.getOperand(0).getReg();
5054   Register Src = MI.getOperand(1).getReg();
5055   LLT DstTy = MRI.getType(Dst);
5056   LLT SrcTy = MRI.getType(Src);
5057 
5058   if (SrcTy == LLT::scalar(1)) {
5059     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5060     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5061     MIRBuilder.buildSelect(Dst, Src, True, False);
5062     MI.eraseFromParent();
5063     return Legalized;
5064   }
5065 
5066   if (SrcTy != LLT::scalar(64))
5067     return UnableToLegalize;
5068 
5069   if (DstTy == LLT::scalar(32)) {
5070     // TODO: SelectionDAG has several alternative expansions to port which may
5071     // be more reasonble depending on the available instructions. If a target
5072     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5073     // intermediate type, this is probably worse.
5074     return lowerU64ToF32BitOps(MI);
5075   }
5076 
5077   return UnableToLegalize;
5078 }
5079 
lowerSITOFP(MachineInstr & MI)5080 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5081   Register Dst = MI.getOperand(0).getReg();
5082   Register Src = MI.getOperand(1).getReg();
5083   LLT DstTy = MRI.getType(Dst);
5084   LLT SrcTy = MRI.getType(Src);
5085 
5086   const LLT S64 = LLT::scalar(64);
5087   const LLT S32 = LLT::scalar(32);
5088   const LLT S1 = LLT::scalar(1);
5089 
5090   if (SrcTy == S1) {
5091     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5092     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5093     MIRBuilder.buildSelect(Dst, Src, True, False);
5094     MI.eraseFromParent();
5095     return Legalized;
5096   }
5097 
5098   if (SrcTy != S64)
5099     return UnableToLegalize;
5100 
5101   if (DstTy == S32) {
5102     // signed cl2f(long l) {
5103     //   long s = l >> 63;
5104     //   float r = cul2f((l + s) ^ s);
5105     //   return s ? -r : r;
5106     // }
5107     Register L = Src;
5108     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5109     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5110 
5111     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5112     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5113     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5114 
5115     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5116     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5117                                             MIRBuilder.buildConstant(S64, 0));
5118     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5119     MI.eraseFromParent();
5120     return Legalized;
5121   }
5122 
5123   return UnableToLegalize;
5124 }
5125 
lowerFPTOUI(MachineInstr & MI)5126 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5127   Register Dst = MI.getOperand(0).getReg();
5128   Register Src = MI.getOperand(1).getReg();
5129   LLT DstTy = MRI.getType(Dst);
5130   LLT SrcTy = MRI.getType(Src);
5131   const LLT S64 = LLT::scalar(64);
5132   const LLT S32 = LLT::scalar(32);
5133 
5134   if (SrcTy != S64 && SrcTy != S32)
5135     return UnableToLegalize;
5136   if (DstTy != S32 && DstTy != S64)
5137     return UnableToLegalize;
5138 
5139   // FPTOSI gives same result as FPTOUI for positive signed integers.
5140   // FPTOUI needs to deal with fp values that convert to unsigned integers
5141   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5142 
5143   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5144   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5145                                                 : APFloat::IEEEdouble(),
5146                     APInt::getNullValue(SrcTy.getSizeInBits()));
5147   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5148 
5149   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5150 
5151   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5152   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5153   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5154   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5155   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5156   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5157   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5158 
5159   const LLT S1 = LLT::scalar(1);
5160 
5161   MachineInstrBuilder FCMP =
5162       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5163   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5164 
5165   MI.eraseFromParent();
5166   return Legalized;
5167 }
5168 
lowerFPTOSI(MachineInstr & MI)5169 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5170   Register Dst = MI.getOperand(0).getReg();
5171   Register Src = MI.getOperand(1).getReg();
5172   LLT DstTy = MRI.getType(Dst);
5173   LLT SrcTy = MRI.getType(Src);
5174   const LLT S64 = LLT::scalar(64);
5175   const LLT S32 = LLT::scalar(32);
5176 
5177   // FIXME: Only f32 to i64 conversions are supported.
5178   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5179     return UnableToLegalize;
5180 
5181   // Expand f32 -> i64 conversion
5182   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5183   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5184 
5185   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5186 
5187   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5188   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5189 
5190   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5191   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5192 
5193   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5194                                            APInt::getSignMask(SrcEltBits));
5195   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5196   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5197   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5198   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5199 
5200   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5201   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5202   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5203 
5204   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5205   R = MIRBuilder.buildZExt(DstTy, R);
5206 
5207   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5208   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5209   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5210   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5211 
5212   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5213   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5214 
5215   const LLT S1 = LLT::scalar(1);
5216   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5217                                     S1, Exponent, ExponentLoBit);
5218 
5219   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5220 
5221   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5222   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5223 
5224   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5225 
5226   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5227                                           S1, Exponent, ZeroSrcTy);
5228 
5229   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5230   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5231 
5232   MI.eraseFromParent();
5233   return Legalized;
5234 }
5235 
5236 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5237 LegalizerHelper::LegalizeResult
lowerFPTRUNC_F64_TO_F16(MachineInstr & MI)5238 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5239   Register Dst = MI.getOperand(0).getReg();
5240   Register Src = MI.getOperand(1).getReg();
5241 
5242   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5243     return UnableToLegalize;
5244 
5245   const unsigned ExpMask = 0x7ff;
5246   const unsigned ExpBiasf64 = 1023;
5247   const unsigned ExpBiasf16 = 15;
5248   const LLT S32 = LLT::scalar(32);
5249   const LLT S1 = LLT::scalar(1);
5250 
5251   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5252   Register U = Unmerge.getReg(0);
5253   Register UH = Unmerge.getReg(1);
5254 
5255   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5256   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5257 
5258   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5259   // add the f16 bias (15) to get the biased exponent for the f16 format.
5260   E = MIRBuilder.buildAdd(
5261     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5262 
5263   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5264   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5265 
5266   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5267                                        MIRBuilder.buildConstant(S32, 0x1ff));
5268   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5269 
5270   auto Zero = MIRBuilder.buildConstant(S32, 0);
5271   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5272   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5273   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5274 
5275   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5276   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5277   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5278   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5279 
5280   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5281   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5282 
5283   // N = M | (E << 12);
5284   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5285   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5286 
5287   // B = clamp(1-E, 0, 13);
5288   auto One = MIRBuilder.buildConstant(S32, 1);
5289   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5290   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5291   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5292 
5293   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5294                                        MIRBuilder.buildConstant(S32, 0x1000));
5295 
5296   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5297   auto D0 = MIRBuilder.buildShl(S32, D, B);
5298 
5299   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5300                                              D0, SigSetHigh);
5301   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5302   D = MIRBuilder.buildOr(S32, D, D1);
5303 
5304   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5305   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5306 
5307   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5308   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5309 
5310   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5311                                        MIRBuilder.buildConstant(S32, 3));
5312   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5313 
5314   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5315                                        MIRBuilder.buildConstant(S32, 5));
5316   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5317 
5318   V1 = MIRBuilder.buildOr(S32, V0, V1);
5319   V = MIRBuilder.buildAdd(S32, V, V1);
5320 
5321   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5322                                        E, MIRBuilder.buildConstant(S32, 30));
5323   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5324                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5325 
5326   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5327                                          E, MIRBuilder.buildConstant(S32, 1039));
5328   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5329 
5330   // Extract the sign bit.
5331   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5332   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5333 
5334   // Insert the sign bit
5335   V = MIRBuilder.buildOr(S32, Sign, V);
5336 
5337   MIRBuilder.buildTrunc(Dst, V);
5338   MI.eraseFromParent();
5339   return Legalized;
5340 }
5341 
5342 LegalizerHelper::LegalizeResult
lowerFPTRUNC(MachineInstr & MI)5343 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5344   Register Dst = MI.getOperand(0).getReg();
5345   Register Src = MI.getOperand(1).getReg();
5346 
5347   LLT DstTy = MRI.getType(Dst);
5348   LLT SrcTy = MRI.getType(Src);
5349   const LLT S64 = LLT::scalar(64);
5350   const LLT S16 = LLT::scalar(16);
5351 
5352   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5353     return lowerFPTRUNC_F64_TO_F16(MI);
5354 
5355   return UnableToLegalize;
5356 }
5357 
5358 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5359 // multiplication tree.
lowerFPOWI(MachineInstr & MI)5360 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5361   Register Dst = MI.getOperand(0).getReg();
5362   Register Src0 = MI.getOperand(1).getReg();
5363   Register Src1 = MI.getOperand(2).getReg();
5364   LLT Ty = MRI.getType(Dst);
5365 
5366   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5367   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5368   MI.eraseFromParent();
5369   return Legalized;
5370 }
5371 
minMaxToCompare(unsigned Opc)5372 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5373   switch (Opc) {
5374   case TargetOpcode::G_SMIN:
5375     return CmpInst::ICMP_SLT;
5376   case TargetOpcode::G_SMAX:
5377     return CmpInst::ICMP_SGT;
5378   case TargetOpcode::G_UMIN:
5379     return CmpInst::ICMP_ULT;
5380   case TargetOpcode::G_UMAX:
5381     return CmpInst::ICMP_UGT;
5382   default:
5383     llvm_unreachable("not in integer min/max");
5384   }
5385 }
5386 
lowerMinMax(MachineInstr & MI)5387 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5388   Register Dst = MI.getOperand(0).getReg();
5389   Register Src0 = MI.getOperand(1).getReg();
5390   Register Src1 = MI.getOperand(2).getReg();
5391 
5392   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5393   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5394 
5395   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5396   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5397 
5398   MI.eraseFromParent();
5399   return Legalized;
5400 }
5401 
5402 LegalizerHelper::LegalizeResult
lowerFCopySign(MachineInstr & MI)5403 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5404   Register Dst = MI.getOperand(0).getReg();
5405   Register Src0 = MI.getOperand(1).getReg();
5406   Register Src1 = MI.getOperand(2).getReg();
5407 
5408   const LLT Src0Ty = MRI.getType(Src0);
5409   const LLT Src1Ty = MRI.getType(Src1);
5410 
5411   const int Src0Size = Src0Ty.getScalarSizeInBits();
5412   const int Src1Size = Src1Ty.getScalarSizeInBits();
5413 
5414   auto SignBitMask = MIRBuilder.buildConstant(
5415     Src0Ty, APInt::getSignMask(Src0Size));
5416 
5417   auto NotSignBitMask = MIRBuilder.buildConstant(
5418     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5419 
5420   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5421   MachineInstr *Or;
5422 
5423   if (Src0Ty == Src1Ty) {
5424     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5425     Or = MIRBuilder.buildOr(Dst, And0, And1);
5426   } else if (Src0Size > Src1Size) {
5427     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5428     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5429     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5430     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5431     Or = MIRBuilder.buildOr(Dst, And0, And1);
5432   } else {
5433     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5434     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5435     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5436     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5437     Or = MIRBuilder.buildOr(Dst, And0, And1);
5438   }
5439 
5440   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5441   // constants are a nan and -0.0, but the final result should preserve
5442   // everything.
5443   if (unsigned Flags = MI.getFlags())
5444     Or->setFlags(Flags);
5445 
5446   MI.eraseFromParent();
5447   return Legalized;
5448 }
5449 
5450 LegalizerHelper::LegalizeResult
lowerFMinNumMaxNum(MachineInstr & MI)5451 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5452   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5453     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5454 
5455   Register Dst = MI.getOperand(0).getReg();
5456   Register Src0 = MI.getOperand(1).getReg();
5457   Register Src1 = MI.getOperand(2).getReg();
5458   LLT Ty = MRI.getType(Dst);
5459 
5460   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5461     // Insert canonicalizes if it's possible we need to quiet to get correct
5462     // sNaN behavior.
5463 
5464     // Note this must be done here, and not as an optimization combine in the
5465     // absence of a dedicate quiet-snan instruction as we're using an
5466     // omni-purpose G_FCANONICALIZE.
5467     if (!isKnownNeverSNaN(Src0, MRI))
5468       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5469 
5470     if (!isKnownNeverSNaN(Src1, MRI))
5471       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5472   }
5473 
5474   // If there are no nans, it's safe to simply replace this with the non-IEEE
5475   // version.
5476   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5477   MI.eraseFromParent();
5478   return Legalized;
5479 }
5480 
lowerFMad(MachineInstr & MI)5481 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5482   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5483   Register DstReg = MI.getOperand(0).getReg();
5484   LLT Ty = MRI.getType(DstReg);
5485   unsigned Flags = MI.getFlags();
5486 
5487   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5488                                   Flags);
5489   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5490   MI.eraseFromParent();
5491   return Legalized;
5492 }
5493 
5494 LegalizerHelper::LegalizeResult
lowerIntrinsicRound(MachineInstr & MI)5495 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5496   Register DstReg = MI.getOperand(0).getReg();
5497   Register X = MI.getOperand(1).getReg();
5498   const unsigned Flags = MI.getFlags();
5499   const LLT Ty = MRI.getType(DstReg);
5500   const LLT CondTy = Ty.changeElementSize(1);
5501 
5502   // round(x) =>
5503   //  t = trunc(x);
5504   //  d = fabs(x - t);
5505   //  o = copysign(1.0f, x);
5506   //  return t + (d >= 0.5 ? o : 0.0);
5507 
5508   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5509 
5510   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5511   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5512   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5513   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5514   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5515   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5516 
5517   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5518                                   Flags);
5519   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5520 
5521   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5522 
5523   MI.eraseFromParent();
5524   return Legalized;
5525 }
5526 
5527 LegalizerHelper::LegalizeResult
lowerFFloor(MachineInstr & MI)5528 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5529   Register DstReg = MI.getOperand(0).getReg();
5530   Register SrcReg = MI.getOperand(1).getReg();
5531   unsigned Flags = MI.getFlags();
5532   LLT Ty = MRI.getType(DstReg);
5533   const LLT CondTy = Ty.changeElementSize(1);
5534 
5535   // result = trunc(src);
5536   // if (src < 0.0 && src != result)
5537   //   result += -1.0.
5538 
5539   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5540   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5541 
5542   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5543                                   SrcReg, Zero, Flags);
5544   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5545                                       SrcReg, Trunc, Flags);
5546   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5547   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5548 
5549   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5550   MI.eraseFromParent();
5551   return Legalized;
5552 }
5553 
5554 LegalizerHelper::LegalizeResult
lowerMergeValues(MachineInstr & MI)5555 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5556   const unsigned NumOps = MI.getNumOperands();
5557   Register DstReg = MI.getOperand(0).getReg();
5558   Register Src0Reg = MI.getOperand(1).getReg();
5559   LLT DstTy = MRI.getType(DstReg);
5560   LLT SrcTy = MRI.getType(Src0Reg);
5561   unsigned PartSize = SrcTy.getSizeInBits();
5562 
5563   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5564   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5565 
5566   for (unsigned I = 2; I != NumOps; ++I) {
5567     const unsigned Offset = (I - 1) * PartSize;
5568 
5569     Register SrcReg = MI.getOperand(I).getReg();
5570     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5571 
5572     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5573       MRI.createGenericVirtualRegister(WideTy);
5574 
5575     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5576     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5577     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5578     ResultReg = NextResult;
5579   }
5580 
5581   if (DstTy.isPointer()) {
5582     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5583           DstTy.getAddressSpace())) {
5584       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5585       return UnableToLegalize;
5586     }
5587 
5588     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5589   }
5590 
5591   MI.eraseFromParent();
5592   return Legalized;
5593 }
5594 
5595 LegalizerHelper::LegalizeResult
lowerUnmergeValues(MachineInstr & MI)5596 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5597   const unsigned NumDst = MI.getNumOperands() - 1;
5598   Register SrcReg = MI.getOperand(NumDst).getReg();
5599   Register Dst0Reg = MI.getOperand(0).getReg();
5600   LLT DstTy = MRI.getType(Dst0Reg);
5601   if (DstTy.isPointer())
5602     return UnableToLegalize; // TODO
5603 
5604   SrcReg = coerceToScalar(SrcReg);
5605   if (!SrcReg)
5606     return UnableToLegalize;
5607 
5608   // Expand scalarizing unmerge as bitcast to integer and shift.
5609   LLT IntTy = MRI.getType(SrcReg);
5610 
5611   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5612 
5613   const unsigned DstSize = DstTy.getSizeInBits();
5614   unsigned Offset = DstSize;
5615   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5616     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5617     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5618     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5619   }
5620 
5621   MI.eraseFromParent();
5622   return Legalized;
5623 }
5624 
5625 /// Lower a vector extract or insert by writing the vector to a stack temporary
5626 /// and reloading the element or vector.
5627 ///
5628 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5629 ///  =>
5630 ///  %stack_temp = G_FRAME_INDEX
5631 ///  G_STORE %vec, %stack_temp
5632 ///  %idx = clamp(%idx, %vec.getNumElements())
5633 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5634 ///  %dst = G_LOAD %element_ptr
5635 LegalizerHelper::LegalizeResult
lowerExtractInsertVectorElt(MachineInstr & MI)5636 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5637   Register DstReg = MI.getOperand(0).getReg();
5638   Register SrcVec = MI.getOperand(1).getReg();
5639   Register InsertVal;
5640   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5641     InsertVal = MI.getOperand(2).getReg();
5642 
5643   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5644 
5645   LLT VecTy = MRI.getType(SrcVec);
5646   LLT EltTy = VecTy.getElementType();
5647   if (!EltTy.isByteSized()) { // Not implemented.
5648     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5649     return UnableToLegalize;
5650   }
5651 
5652   unsigned EltBytes = EltTy.getSizeInBytes();
5653   Align VecAlign = getStackTemporaryAlignment(VecTy);
5654   Align EltAlign;
5655 
5656   MachinePointerInfo PtrInfo;
5657   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5658                                         VecAlign, PtrInfo);
5659   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5660 
5661   // Get the pointer to the element, and be sure not to hit undefined behavior
5662   // if the index is out of bounds.
5663   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5664 
5665   int64_t IdxVal;
5666   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5667     int64_t Offset = IdxVal * EltBytes;
5668     PtrInfo = PtrInfo.getWithOffset(Offset);
5669     EltAlign = commonAlignment(VecAlign, Offset);
5670   } else {
5671     // We lose information with a variable offset.
5672     EltAlign = getStackTemporaryAlignment(EltTy);
5673     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5674   }
5675 
5676   if (InsertVal) {
5677     // Write the inserted element
5678     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5679 
5680     // Reload the whole vector.
5681     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5682   } else {
5683     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5684   }
5685 
5686   MI.eraseFromParent();
5687   return Legalized;
5688 }
5689 
5690 LegalizerHelper::LegalizeResult
lowerShuffleVector(MachineInstr & MI)5691 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5692   Register DstReg = MI.getOperand(0).getReg();
5693   Register Src0Reg = MI.getOperand(1).getReg();
5694   Register Src1Reg = MI.getOperand(2).getReg();
5695   LLT Src0Ty = MRI.getType(Src0Reg);
5696   LLT DstTy = MRI.getType(DstReg);
5697   LLT IdxTy = LLT::scalar(32);
5698 
5699   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5700 
5701   if (DstTy.isScalar()) {
5702     if (Src0Ty.isVector())
5703       return UnableToLegalize;
5704 
5705     // This is just a SELECT.
5706     assert(Mask.size() == 1 && "Expected a single mask element");
5707     Register Val;
5708     if (Mask[0] < 0 || Mask[0] > 1)
5709       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5710     else
5711       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5712     MIRBuilder.buildCopy(DstReg, Val);
5713     MI.eraseFromParent();
5714     return Legalized;
5715   }
5716 
5717   Register Undef;
5718   SmallVector<Register, 32> BuildVec;
5719   LLT EltTy = DstTy.getElementType();
5720 
5721   for (int Idx : Mask) {
5722     if (Idx < 0) {
5723       if (!Undef.isValid())
5724         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5725       BuildVec.push_back(Undef);
5726       continue;
5727     }
5728 
5729     if (Src0Ty.isScalar()) {
5730       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5731     } else {
5732       int NumElts = Src0Ty.getNumElements();
5733       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5734       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5735       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5736       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5737       BuildVec.push_back(Extract.getReg(0));
5738     }
5739   }
5740 
5741   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5742   MI.eraseFromParent();
5743   return Legalized;
5744 }
5745 
5746 LegalizerHelper::LegalizeResult
lowerDynStackAlloc(MachineInstr & MI)5747 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5748   const auto &MF = *MI.getMF();
5749   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5750   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5751     return UnableToLegalize;
5752 
5753   Register Dst = MI.getOperand(0).getReg();
5754   Register AllocSize = MI.getOperand(1).getReg();
5755   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5756 
5757   LLT PtrTy = MRI.getType(Dst);
5758   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5759 
5760   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5761   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5762   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5763 
5764   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5765   // have to generate an extra instruction to negate the alloc and then use
5766   // G_PTR_ADD to add the negative offset.
5767   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5768   if (Alignment > Align(1)) {
5769     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5770     AlignMask.negate();
5771     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5772     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5773   }
5774 
5775   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5776   MIRBuilder.buildCopy(SPReg, SPTmp);
5777   MIRBuilder.buildCopy(Dst, SPTmp);
5778 
5779   MI.eraseFromParent();
5780   return Legalized;
5781 }
5782 
5783 LegalizerHelper::LegalizeResult
lowerExtract(MachineInstr & MI)5784 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5785   Register Dst = MI.getOperand(0).getReg();
5786   Register Src = MI.getOperand(1).getReg();
5787   unsigned Offset = MI.getOperand(2).getImm();
5788 
5789   LLT DstTy = MRI.getType(Dst);
5790   LLT SrcTy = MRI.getType(Src);
5791 
5792   if (DstTy.isScalar() &&
5793       (SrcTy.isScalar() ||
5794        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5795     LLT SrcIntTy = SrcTy;
5796     if (!SrcTy.isScalar()) {
5797       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5798       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5799     }
5800 
5801     if (Offset == 0)
5802       MIRBuilder.buildTrunc(Dst, Src);
5803     else {
5804       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5805       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5806       MIRBuilder.buildTrunc(Dst, Shr);
5807     }
5808 
5809     MI.eraseFromParent();
5810     return Legalized;
5811   }
5812 
5813   return UnableToLegalize;
5814 }
5815 
lowerInsert(MachineInstr & MI)5816 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5817   Register Dst = MI.getOperand(0).getReg();
5818   Register Src = MI.getOperand(1).getReg();
5819   Register InsertSrc = MI.getOperand(2).getReg();
5820   uint64_t Offset = MI.getOperand(3).getImm();
5821 
5822   LLT DstTy = MRI.getType(Src);
5823   LLT InsertTy = MRI.getType(InsertSrc);
5824 
5825   if (InsertTy.isVector() ||
5826       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5827     return UnableToLegalize;
5828 
5829   const DataLayout &DL = MIRBuilder.getDataLayout();
5830   if ((DstTy.isPointer() &&
5831        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5832       (InsertTy.isPointer() &&
5833        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5834     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5835     return UnableToLegalize;
5836   }
5837 
5838   LLT IntDstTy = DstTy;
5839 
5840   if (!DstTy.isScalar()) {
5841     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5842     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5843   }
5844 
5845   if (!InsertTy.isScalar()) {
5846     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5847     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5848   }
5849 
5850   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5851   if (Offset != 0) {
5852     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5853     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5854   }
5855 
5856   APInt MaskVal = APInt::getBitsSetWithWrap(
5857       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5858 
5859   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5860   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5861   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5862 
5863   MIRBuilder.buildCast(Dst, Or);
5864   MI.eraseFromParent();
5865   return Legalized;
5866 }
5867 
5868 LegalizerHelper::LegalizeResult
lowerSADDO_SSUBO(MachineInstr & MI)5869 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5870   Register Dst0 = MI.getOperand(0).getReg();
5871   Register Dst1 = MI.getOperand(1).getReg();
5872   Register LHS = MI.getOperand(2).getReg();
5873   Register RHS = MI.getOperand(3).getReg();
5874   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5875 
5876   LLT Ty = MRI.getType(Dst0);
5877   LLT BoolTy = MRI.getType(Dst1);
5878 
5879   if (IsAdd)
5880     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5881   else
5882     MIRBuilder.buildSub(Dst0, LHS, RHS);
5883 
5884   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5885 
5886   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5887 
5888   // For an addition, the result should be less than one of the operands (LHS)
5889   // if and only if the other operand (RHS) is negative, otherwise there will
5890   // be overflow.
5891   // For a subtraction, the result should be less than one of the operands
5892   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5893   // otherwise there will be overflow.
5894   auto ResultLowerThanLHS =
5895       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5896   auto ConditionRHS = MIRBuilder.buildICmp(
5897       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5898 
5899   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5900   MI.eraseFromParent();
5901   return Legalized;
5902 }
5903 
5904 LegalizerHelper::LegalizeResult
lowerAddSubSatToMinMax(MachineInstr & MI)5905 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5906   Register Res = MI.getOperand(0).getReg();
5907   Register LHS = MI.getOperand(1).getReg();
5908   Register RHS = MI.getOperand(2).getReg();
5909   LLT Ty = MRI.getType(Res);
5910   bool IsSigned;
5911   bool IsAdd;
5912   unsigned BaseOp;
5913   switch (MI.getOpcode()) {
5914   default:
5915     llvm_unreachable("unexpected addsat/subsat opcode");
5916   case TargetOpcode::G_UADDSAT:
5917     IsSigned = false;
5918     IsAdd = true;
5919     BaseOp = TargetOpcode::G_ADD;
5920     break;
5921   case TargetOpcode::G_SADDSAT:
5922     IsSigned = true;
5923     IsAdd = true;
5924     BaseOp = TargetOpcode::G_ADD;
5925     break;
5926   case TargetOpcode::G_USUBSAT:
5927     IsSigned = false;
5928     IsAdd = false;
5929     BaseOp = TargetOpcode::G_SUB;
5930     break;
5931   case TargetOpcode::G_SSUBSAT:
5932     IsSigned = true;
5933     IsAdd = false;
5934     BaseOp = TargetOpcode::G_SUB;
5935     break;
5936   }
5937 
5938   if (IsSigned) {
5939     // sadd.sat(a, b) ->
5940     //   hi = 0x7fffffff - smax(a, 0)
5941     //   lo = 0x80000000 - smin(a, 0)
5942     //   a + smin(smax(lo, b), hi)
5943     // ssub.sat(a, b) ->
5944     //   lo = smax(a, -1) - 0x7fffffff
5945     //   hi = smin(a, -1) - 0x80000000
5946     //   a - smin(smax(lo, b), hi)
5947     // TODO: AMDGPU can use a "median of 3" instruction here:
5948     //   a +/- med3(lo, b, hi)
5949     uint64_t NumBits = Ty.getScalarSizeInBits();
5950     auto MaxVal =
5951         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5952     auto MinVal =
5953         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5954     MachineInstrBuilder Hi, Lo;
5955     if (IsAdd) {
5956       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5957       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5958       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5959     } else {
5960       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5961       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5962                                MaxVal);
5963       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5964                                MinVal);
5965     }
5966     auto RHSClamped =
5967         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5968     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5969   } else {
5970     // uadd.sat(a, b) -> a + umin(~a, b)
5971     // usub.sat(a, b) -> a - umin(a, b)
5972     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
5973     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
5974     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
5975   }
5976 
5977   MI.eraseFromParent();
5978   return Legalized;
5979 }
5980 
5981 LegalizerHelper::LegalizeResult
lowerAddSubSatToAddoSubo(MachineInstr & MI)5982 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
5983   Register Res = MI.getOperand(0).getReg();
5984   Register LHS = MI.getOperand(1).getReg();
5985   Register RHS = MI.getOperand(2).getReg();
5986   LLT Ty = MRI.getType(Res);
5987   LLT BoolTy = Ty.changeElementSize(1);
5988   bool IsSigned;
5989   bool IsAdd;
5990   unsigned OverflowOp;
5991   switch (MI.getOpcode()) {
5992   default:
5993     llvm_unreachable("unexpected addsat/subsat opcode");
5994   case TargetOpcode::G_UADDSAT:
5995     IsSigned = false;
5996     IsAdd = true;
5997     OverflowOp = TargetOpcode::G_UADDO;
5998     break;
5999   case TargetOpcode::G_SADDSAT:
6000     IsSigned = true;
6001     IsAdd = true;
6002     OverflowOp = TargetOpcode::G_SADDO;
6003     break;
6004   case TargetOpcode::G_USUBSAT:
6005     IsSigned = false;
6006     IsAdd = false;
6007     OverflowOp = TargetOpcode::G_USUBO;
6008     break;
6009   case TargetOpcode::G_SSUBSAT:
6010     IsSigned = true;
6011     IsAdd = false;
6012     OverflowOp = TargetOpcode::G_SSUBO;
6013     break;
6014   }
6015 
6016   auto OverflowRes =
6017       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6018   Register Tmp = OverflowRes.getReg(0);
6019   Register Ov = OverflowRes.getReg(1);
6020   MachineInstrBuilder Clamp;
6021   if (IsSigned) {
6022     // sadd.sat(a, b) ->
6023     //   {tmp, ov} = saddo(a, b)
6024     //   ov ? (tmp >>s 31) + 0x80000000 : r
6025     // ssub.sat(a, b) ->
6026     //   {tmp, ov} = ssubo(a, b)
6027     //   ov ? (tmp >>s 31) + 0x80000000 : r
6028     uint64_t NumBits = Ty.getScalarSizeInBits();
6029     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6030     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6031     auto MinVal =
6032         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6033     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6034   } else {
6035     // uadd.sat(a, b) ->
6036     //   {tmp, ov} = uaddo(a, b)
6037     //   ov ? 0xffffffff : tmp
6038     // usub.sat(a, b) ->
6039     //   {tmp, ov} = usubo(a, b)
6040     //   ov ? 0 : tmp
6041     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6042   }
6043   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6044 
6045   MI.eraseFromParent();
6046   return Legalized;
6047 }
6048 
6049 LegalizerHelper::LegalizeResult
lowerShlSat(MachineInstr & MI)6050 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6051   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6052           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6053          "Expected shlsat opcode!");
6054   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6055   Register Res = MI.getOperand(0).getReg();
6056   Register LHS = MI.getOperand(1).getReg();
6057   Register RHS = MI.getOperand(2).getReg();
6058   LLT Ty = MRI.getType(Res);
6059   LLT BoolTy = Ty.changeElementSize(1);
6060 
6061   unsigned BW = Ty.getScalarSizeInBits();
6062   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6063   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6064                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6065 
6066   MachineInstrBuilder SatVal;
6067   if (IsSigned) {
6068     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6069     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6070     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6071                                     MIRBuilder.buildConstant(Ty, 0));
6072     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6073   } else {
6074     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6075   }
6076   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, Ty, LHS, Orig);
6077   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6078 
6079   MI.eraseFromParent();
6080   return Legalized;
6081 }
6082 
6083 LegalizerHelper::LegalizeResult
lowerBswap(MachineInstr & MI)6084 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6085   Register Dst = MI.getOperand(0).getReg();
6086   Register Src = MI.getOperand(1).getReg();
6087   const LLT Ty = MRI.getType(Src);
6088   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6089   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6090 
6091   // Swap most and least significant byte, set remaining bytes in Res to zero.
6092   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6093   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6094   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6095   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6096 
6097   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6098   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6099     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6100     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6101     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6102     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6103     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6104     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6105     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6106     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6107     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6108     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6109     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6110     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6111   }
6112   Res.getInstr()->getOperand(0).setReg(Dst);
6113 
6114   MI.eraseFromParent();
6115   return Legalized;
6116 }
6117 
6118 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
SwapN(unsigned N,DstOp Dst,MachineIRBuilder & B,MachineInstrBuilder Src,APInt Mask)6119 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6120                                  MachineInstrBuilder Src, APInt Mask) {
6121   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6122   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6123   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6124   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6125   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6126   return B.buildOr(Dst, LHS, RHS);
6127 }
6128 
6129 LegalizerHelper::LegalizeResult
lowerBitreverse(MachineInstr & MI)6130 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6131   Register Dst = MI.getOperand(0).getReg();
6132   Register Src = MI.getOperand(1).getReg();
6133   const LLT Ty = MRI.getType(Src);
6134   unsigned Size = Ty.getSizeInBits();
6135 
6136   MachineInstrBuilder BSWAP =
6137       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6138 
6139   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6140   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6141   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6142   MachineInstrBuilder Swap4 =
6143       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6144 
6145   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6146   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6147   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6148   MachineInstrBuilder Swap2 =
6149       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6150 
6151   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6152   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6153   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6154   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6155 
6156   MI.eraseFromParent();
6157   return Legalized;
6158 }
6159 
6160 LegalizerHelper::LegalizeResult
lowerReadWriteRegister(MachineInstr & MI)6161 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6162   MachineFunction &MF = MIRBuilder.getMF();
6163 
6164   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6165   int NameOpIdx = IsRead ? 1 : 0;
6166   int ValRegIndex = IsRead ? 0 : 1;
6167 
6168   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6169   const LLT Ty = MRI.getType(ValReg);
6170   const MDString *RegStr = cast<MDString>(
6171     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6172 
6173   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6174   if (!PhysReg.isValid())
6175     return UnableToLegalize;
6176 
6177   if (IsRead)
6178     MIRBuilder.buildCopy(ValReg, PhysReg);
6179   else
6180     MIRBuilder.buildCopy(PhysReg, ValReg);
6181 
6182   MI.eraseFromParent();
6183   return Legalized;
6184 }
6185 
6186 LegalizerHelper::LegalizeResult
lowerSMULH_UMULH(MachineInstr & MI)6187 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6188   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6189   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6190   Register Result = MI.getOperand(0).getReg();
6191   LLT OrigTy = MRI.getType(Result);
6192   auto SizeInBits = OrigTy.getScalarSizeInBits();
6193   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6194 
6195   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6196   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6197   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6198   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6199 
6200   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6201   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6202   MIRBuilder.buildTrunc(Result, Shifted);
6203 
6204   MI.eraseFromParent();
6205   return Legalized;
6206 }
6207 
lowerSelect(MachineInstr & MI)6208 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6209   // Implement vector G_SELECT in terms of XOR, AND, OR.
6210   Register DstReg = MI.getOperand(0).getReg();
6211   Register MaskReg = MI.getOperand(1).getReg();
6212   Register Op1Reg = MI.getOperand(2).getReg();
6213   Register Op2Reg = MI.getOperand(3).getReg();
6214   LLT DstTy = MRI.getType(DstReg);
6215   LLT MaskTy = MRI.getType(MaskReg);
6216   LLT Op1Ty = MRI.getType(Op1Reg);
6217   if (!DstTy.isVector())
6218     return UnableToLegalize;
6219 
6220   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits())
6221     return UnableToLegalize;
6222 
6223   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6224   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6225   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6226   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6227   MI.eraseFromParent();
6228   return Legalized;
6229 }