1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPULegalizerInfo.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIISelLowering.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "SIRegisterInfo.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/CallingConvLower.h"
27 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/Support/LowLevelTypeImpl.h"
30 
31 #define DEBUG_TYPE "amdgpu-call-lowering"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
AMDGPUValueHandler__anond9a63f4d0111::AMDGPUValueHandler38   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
39                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
40       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
41 
42   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
43   /// register.
extendRegisterMin32__anond9a63f4d0111::AMDGPUValueHandler44   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
45     if (VA.getLocVT().getSizeInBits() < 32) {
46       // 16-bit types are reported as legal for 32-bit registers. We need to
47       // extend and do a 32-bit copy to avoid the verifier complaining about it.
48       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
49     }
50 
51     return extendRegister(ValVReg, VA);
52   }
53 };
54 
55 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
AMDGPUOutgoingValueHandler__anond9a63f4d0111::AMDGPUOutgoingValueHandler56   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
57                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
58       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
59 
60   MachineInstrBuilder MIB;
61 
getStackAddress__anond9a63f4d0111::AMDGPUOutgoingValueHandler62   Register getStackAddress(uint64_t Size, int64_t Offset,
63                            MachinePointerInfo &MPO) override {
64     llvm_unreachable("not implemented");
65   }
66 
assignValueToAddress__anond9a63f4d0111::AMDGPUOutgoingValueHandler67   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
68                             MachinePointerInfo &MPO, CCValAssign &VA) override {
69     llvm_unreachable("not implemented");
70   }
71 
assignValueToReg__anond9a63f4d0111::AMDGPUOutgoingValueHandler72   void assignValueToReg(Register ValVReg, Register PhysReg,
73                         CCValAssign &VA) override {
74     Register ExtReg = extendRegisterMin32(ValVReg, VA);
75 
76     // If this is a scalar return, insert a readfirstlane just in case the value
77     // ends up in a VGPR.
78     // FIXME: Assert this is a shader return.
79     const SIRegisterInfo *TRI
80       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
81     if (TRI->isSGPRReg(MRI, PhysReg)) {
82       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
83                                               {MRI.getType(ExtReg)}, false)
84         .addReg(ExtReg);
85       ExtReg = ToSGPR.getReg(0);
86     }
87 
88     MIRBuilder.buildCopy(PhysReg, ExtReg);
89     MIB.addUse(PhysReg, RegState::Implicit);
90   }
91 
assignArg__anond9a63f4d0111::AMDGPUOutgoingValueHandler92   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
93                  CCValAssign::LocInfo LocInfo,
94                  const CallLowering::ArgInfo &Info,
95                  ISD::ArgFlagsTy Flags,
96                  CCState &State) override {
97     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
98   }
99 };
100 
101 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
102   uint64_t StackUsed = 0;
103 
AMDGPUIncomingArgHandler__anond9a63f4d0111::AMDGPUIncomingArgHandler104   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
105                            CCAssignFn *AssignFn)
106       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
107 
getStackAddress__anond9a63f4d0111::AMDGPUIncomingArgHandler108   Register getStackAddress(uint64_t Size, int64_t Offset,
109                            MachinePointerInfo &MPO) override {
110     auto &MFI = MIRBuilder.getMF().getFrameInfo();
111     int FI = MFI.CreateFixedObject(Size, Offset, true);
112     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
113     auto AddrReg = MIRBuilder.buildFrameIndex(
114         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
115     StackUsed = std::max(StackUsed, Size + Offset);
116     return AddrReg.getReg(0);
117   }
118 
assignValueToReg__anond9a63f4d0111::AMDGPUIncomingArgHandler119   void assignValueToReg(Register ValVReg, Register PhysReg,
120                         CCValAssign &VA) override {
121     markPhysRegUsed(PhysReg);
122 
123     if (VA.getLocVT().getSizeInBits() < 32) {
124       // 16-bit types are reported as legal for 32-bit registers. We need to do
125       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
126       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
127       MIRBuilder.buildTrunc(ValVReg, Copy);
128       return;
129     }
130 
131     switch (VA.getLocInfo()) {
132     case CCValAssign::LocInfo::SExt:
133     case CCValAssign::LocInfo::ZExt:
134     case CCValAssign::LocInfo::AExt: {
135       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
136       MIRBuilder.buildTrunc(ValVReg, Copy);
137       break;
138     }
139     default:
140       MIRBuilder.buildCopy(ValVReg, PhysReg);
141       break;
142     }
143   }
144 
assignValueToAddress__anond9a63f4d0111::AMDGPUIncomingArgHandler145   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
146                             MachinePointerInfo &MPO, CCValAssign &VA) override {
147     MachineFunction &MF = MIRBuilder.getMF();
148 
149     // The reported memory location may be wider than the value.
150     const LLT RegTy = MRI.getType(ValVReg);
151     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
152 
153     // FIXME: Get alignment
154     auto MMO = MF.getMachineMemOperand(
155         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
156         inferAlignFromPtrInfo(MF, MPO));
157     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
158   }
159 
160   /// How the physical register gets marked varies between formal
161   /// parameters (it's a basic-block live-in), and a call instruction
162   /// (it's an implicit-def of the BL).
163   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
164 };
165 
166 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
FormalArgHandler__anond9a63f4d0111::FormalArgHandler167   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
168                    CCAssignFn *AssignFn)
169       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
170 
markPhysRegUsed__anond9a63f4d0111::FormalArgHandler171   void markPhysRegUsed(unsigned PhysReg) override {
172     MIRBuilder.getMBB().addLiveIn(PhysReg);
173   }
174 };
175 
176 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
CallReturnHandler__anond9a63f4d0111::CallReturnHandler177   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
178                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
179       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
180 
markPhysRegUsed__anond9a63f4d0111::CallReturnHandler181   void markPhysRegUsed(unsigned PhysReg) override {
182     MIB.addDef(PhysReg, RegState::Implicit);
183   }
184 
185   MachineInstrBuilder MIB;
186 };
187 
188 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
189   MachineInstrBuilder MIB;
190   CCAssignFn *AssignFnVarArg;
191 
192   /// For tail calls, the byte offset of the call's argument area from the
193   /// callee's. Unused elsewhere.
194   int FPDiff;
195 
196   // Cache the SP register vreg if we need it more than once in this call site.
197   Register SPReg;
198 
199   bool IsTailCall;
200 
AMDGPUOutgoingArgHandler__anond9a63f4d0111::AMDGPUOutgoingArgHandler201   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
202                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
203                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
204                            bool IsTailCall = false, int FPDiff = 0)
205       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
206         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
207   }
208 
getStackAddress__anond9a63f4d0111::AMDGPUOutgoingArgHandler209   Register getStackAddress(uint64_t Size, int64_t Offset,
210                            MachinePointerInfo &MPO) override {
211     MachineFunction &MF = MIRBuilder.getMF();
212     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
213     const LLT S32 = LLT::scalar(32);
214 
215     if (IsTailCall) {
216       llvm_unreachable("implement me");
217     }
218 
219     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
220 
221     if (!SPReg)
222       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
223 
224     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
225 
226     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
227     MPO = MachinePointerInfo::getStack(MF, Offset);
228     return AddrReg.getReg(0);
229   }
230 
assignValueToReg__anond9a63f4d0111::AMDGPUOutgoingArgHandler231   void assignValueToReg(Register ValVReg, Register PhysReg,
232                         CCValAssign &VA) override {
233     MIB.addUse(PhysReg, RegState::Implicit);
234     Register ExtReg = extendRegisterMin32(ValVReg, VA);
235     MIRBuilder.buildCopy(PhysReg, ExtReg);
236   }
237 
assignValueToAddress__anond9a63f4d0111::AMDGPUOutgoingArgHandler238   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
239                             MachinePointerInfo &MPO, CCValAssign &VA) override {
240     MachineFunction &MF = MIRBuilder.getMF();
241     uint64_t LocMemOffset = VA.getLocMemOffset();
242     const auto &ST = MF.getSubtarget<GCNSubtarget>();
243 
244     auto MMO = MF.getMachineMemOperand(
245       MPO, MachineMemOperand::MOStore, Size,
246       commonAlignment(ST.getStackAlignment(), LocMemOffset));
247     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
248   }
249 
assignValueToAddress__anond9a63f4d0111::AMDGPUOutgoingArgHandler250   void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
251                             uint64_t Size, MachinePointerInfo &MPO,
252                             CCValAssign &VA) override {
253     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
254                            ? extendRegister(Arg.Regs[0], VA)
255                            : Arg.Regs[0];
256 
257     // If we extended we might need to adjust the MMO's Size.
258     const LLT RegTy = MRI.getType(ValVReg);
259     if (RegTy.getSizeInBytes() > Size)
260       Size = RegTy.getSizeInBytes();
261 
262     assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
263   }
264 };
265 }
266 
AMDGPUCallLowering(const AMDGPUTargetLowering & TLI)267 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
268   : CallLowering(&TLI) {
269 }
270 
271 // FIXME: Compatability shim
extOpcodeToISDExtOpcode(unsigned MIOpc)272 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
273   switch (MIOpc) {
274   case TargetOpcode::G_SEXT:
275     return ISD::SIGN_EXTEND;
276   case TargetOpcode::G_ZEXT:
277     return ISD::ZERO_EXTEND;
278   case TargetOpcode::G_ANYEXT:
279     return ISD::ANY_EXTEND;
280   default:
281     llvm_unreachable("not an extend opcode");
282   }
283 }
284 
splitToValueTypes(MachineIRBuilder & B,const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,CallingConv::ID CallConv,bool IsOutgoing,SplitArgTy PerformArgSplit) const285 void AMDGPUCallLowering::splitToValueTypes(
286   MachineIRBuilder &B,
287   const ArgInfo &OrigArg,
288   SmallVectorImpl<ArgInfo> &SplitArgs,
289   const DataLayout &DL, CallingConv::ID CallConv,
290   bool IsOutgoing,
291   SplitArgTy PerformArgSplit) const {
292   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
293   LLVMContext &Ctx = OrigArg.Ty->getContext();
294 
295   if (OrigArg.Ty->isVoidTy())
296     return;
297 
298   SmallVector<EVT, 4> SplitVTs;
299   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
300 
301   assert(OrigArg.Regs.size() == SplitVTs.size());
302 
303   int SplitIdx = 0;
304   for (EVT VT : SplitVTs) {
305     Register Reg = OrigArg.Regs[SplitIdx];
306     Type *Ty = VT.getTypeForEVT(Ctx);
307     LLT LLTy = getLLTForType(*Ty, DL);
308 
309     if (IsOutgoing && VT.isScalarInteger()) {
310       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
311       if (OrigArg.Flags[0].isSExt()) {
312         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
313         ExtendOp = TargetOpcode::G_SEXT;
314       } else if (OrigArg.Flags[0].isZExt()) {
315         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
316         ExtendOp = TargetOpcode::G_ZEXT;
317       }
318 
319       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
320                                           extOpcodeToISDExtOpcode(ExtendOp));
321       if (ExtVT.getSizeInBits() != VT.getSizeInBits()) {
322         VT = ExtVT;
323         Ty = ExtVT.getTypeForEVT(Ctx);
324         LLTy = getLLTForType(*Ty, DL);
325         Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
326       }
327     }
328 
329     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
330     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
331 
332     if (NumParts == 1) {
333       // No splitting to do, but we want to replace the original type (e.g. [1 x
334       // double] -> double).
335       SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
336 
337       ++SplitIdx;
338       continue;
339     }
340 
341     SmallVector<Register, 8> SplitRegs;
342     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
343     LLT PartLLT = getLLTForType(*PartTy, DL);
344     MachineRegisterInfo &MRI = *B.getMRI();
345 
346     // FIXME: Should we be reporting all of the part registers for a single
347     // argument, and let handleAssignments take care of the repacking?
348     for (unsigned i = 0; i < NumParts; ++i) {
349       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
350       SplitRegs.push_back(PartReg);
351       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
352     }
353 
354     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
355 
356     ++SplitIdx;
357   }
358 }
359 
360 // TODO: Move to generic code
unpackRegsToOrigType(MachineIRBuilder & B,ArrayRef<Register> DstRegs,Register SrcReg,const CallLowering::ArgInfo & Info,LLT SrcTy,LLT PartTy)361 static void unpackRegsToOrigType(MachineIRBuilder &B,
362                                  ArrayRef<Register> DstRegs,
363                                  Register SrcReg,
364                                  const CallLowering::ArgInfo &Info,
365                                  LLT SrcTy,
366                                  LLT PartTy) {
367   assert(DstRegs.size() > 1 && "Nothing to unpack");
368 
369   const unsigned PartSize = PartTy.getSizeInBits();
370 
371   if (SrcTy.isVector() && !PartTy.isVector() &&
372       PartSize > SrcTy.getElementType().getSizeInBits()) {
373     // Vector was scalarized, and the elements extended.
374     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
375     for (int i = 0, e = DstRegs.size(); i != e; ++i)
376       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
377     return;
378   }
379 
380   LLT GCDTy = getGCDType(SrcTy, PartTy);
381   if (GCDTy == PartTy) {
382     // If this already evenly divisible, we can create a simple unmerge.
383     B.buildUnmerge(DstRegs, SrcReg);
384     return;
385   }
386 
387   MachineRegisterInfo &MRI = *B.getMRI();
388   LLT DstTy = MRI.getType(DstRegs[0]);
389   LLT LCMTy = getLCMType(SrcTy, PartTy);
390 
391   const unsigned LCMSize = LCMTy.getSizeInBits();
392   const unsigned DstSize = DstTy.getSizeInBits();
393   const unsigned SrcSize = SrcTy.getSizeInBits();
394 
395   Register UnmergeSrc = SrcReg;
396   if (LCMSize != SrcSize) {
397     // Widen to the common type.
398     Register Undef = B.buildUndef(SrcTy).getReg(0);
399     SmallVector<Register, 8> MergeParts(1, SrcReg);
400     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
401       MergeParts.push_back(Undef);
402 
403     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
404   }
405 
406   // Unmerge to the original registers and pad with dead defs.
407   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
408   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
409        Size += DstSize) {
410     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
411   }
412 
413   B.buildUnmerge(UnmergeResults, UnmergeSrc);
414 }
415 
416 /// Lower the return value for the already existing \p Ret. This assumes that
417 /// \p B's insertion point is correct.
lowerReturnVal(MachineIRBuilder & B,const Value * Val,ArrayRef<Register> VRegs,MachineInstrBuilder & Ret) const418 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
419                                         const Value *Val, ArrayRef<Register> VRegs,
420                                         MachineInstrBuilder &Ret) const {
421   if (!Val)
422     return true;
423 
424   auto &MF = B.getMF();
425   const auto &F = MF.getFunction();
426   const DataLayout &DL = MF.getDataLayout();
427   MachineRegisterInfo *MRI = B.getMRI();
428 
429   CallingConv::ID CC = F.getCallingConv();
430   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
431 
432   ArgInfo OrigRetInfo(VRegs, Val->getType());
433   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
434   SmallVector<ArgInfo, 4> SplitRetInfos;
435 
436   splitToValueTypes(
437     B, OrigRetInfo, SplitRetInfos, DL, CC, true,
438     [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
439         int VTSplitIdx) {
440       unpackRegsToOrigType(B, Regs, SrcReg,
441                            SplitRetInfos[VTSplitIdx],
442                            LLTy, PartLLT);
443     });
444 
445   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
446   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
447   return handleAssignments(B, SplitRetInfos, RetHandler);
448 }
449 
lowerReturn(MachineIRBuilder & B,const Value * Val,ArrayRef<Register> VRegs) const450 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
451                                      const Value *Val,
452                                      ArrayRef<Register> VRegs) const {
453 
454   MachineFunction &MF = B.getMF();
455   MachineRegisterInfo &MRI = MF.getRegInfo();
456   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
457   MFI->setIfReturnsVoid(!Val);
458 
459   assert(!Val == VRegs.empty() && "Return value without a vreg");
460 
461   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
462   const bool IsShader = AMDGPU::isShader(CC);
463   const bool IsWaveEnd =
464       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
465   if (IsWaveEnd) {
466     B.buildInstr(AMDGPU::S_ENDPGM)
467       .addImm(0);
468     return true;
469   }
470 
471   auto const &ST = MF.getSubtarget<GCNSubtarget>();
472 
473   unsigned ReturnOpc =
474       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
475 
476   auto Ret = B.buildInstrNoInsert(ReturnOpc);
477   Register ReturnAddrVReg;
478   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
479     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
480     Ret.addUse(ReturnAddrVReg);
481   }
482 
483   if (!lowerReturnVal(B, Val, VRegs, Ret))
484     return false;
485 
486   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
487     const SIRegisterInfo *TRI = ST.getRegisterInfo();
488     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
489                                          &AMDGPU::SGPR_64RegClass);
490     B.buildCopy(ReturnAddrVReg, LiveInReturn);
491   }
492 
493   // TODO: Handle CalleeSavedRegsViaCopy.
494 
495   B.insertInstr(Ret);
496   return true;
497 }
498 
lowerParameterPtr(Register DstReg,MachineIRBuilder & B,Type * ParamTy,uint64_t Offset) const499 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
500                                            Type *ParamTy,
501                                            uint64_t Offset) const {
502   MachineFunction &MF = B.getMF();
503   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
504   MachineRegisterInfo &MRI = MF.getRegInfo();
505   Register KernArgSegmentPtr =
506     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
507   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
508 
509   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
510 
511   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
512 }
513 
lowerParameter(MachineIRBuilder & B,Type * ParamTy,uint64_t Offset,Align Alignment,Register DstReg) const514 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
515                                         uint64_t Offset, Align Alignment,
516                                         Register DstReg) const {
517   MachineFunction &MF = B.getMF();
518   const Function &F = MF.getFunction();
519   const DataLayout &DL = F.getParent()->getDataLayout();
520   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
521   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
522 
523   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
524   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
525   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
526 
527   MachineMemOperand *MMO = MF.getMachineMemOperand(
528       PtrInfo,
529       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
530           MachineMemOperand::MOInvariant,
531       TypeSize, Alignment);
532 
533   B.buildLoad(DstReg, PtrReg, *MMO);
534 }
535 
536 // Allocate special inputs passed in user SGPRs.
allocateHSAUserSGPRs(CCState & CCInfo,MachineIRBuilder & B,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info)537 static void allocateHSAUserSGPRs(CCState &CCInfo,
538                                  MachineIRBuilder &B,
539                                  MachineFunction &MF,
540                                  const SIRegisterInfo &TRI,
541                                  SIMachineFunctionInfo &Info) {
542   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
543   if (Info.hasPrivateSegmentBuffer()) {
544     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
545     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
546     CCInfo.AllocateReg(PrivateSegmentBufferReg);
547   }
548 
549   if (Info.hasDispatchPtr()) {
550     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
551     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
552     CCInfo.AllocateReg(DispatchPtrReg);
553   }
554 
555   if (Info.hasQueuePtr()) {
556     Register QueuePtrReg = Info.addQueuePtr(TRI);
557     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
558     CCInfo.AllocateReg(QueuePtrReg);
559   }
560 
561   if (Info.hasKernargSegmentPtr()) {
562     MachineRegisterInfo &MRI = MF.getRegInfo();
563     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
564     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
565     Register VReg = MRI.createGenericVirtualRegister(P4);
566     MRI.addLiveIn(InputPtrReg, VReg);
567     B.getMBB().addLiveIn(InputPtrReg);
568     B.buildCopy(VReg, InputPtrReg);
569     CCInfo.AllocateReg(InputPtrReg);
570   }
571 
572   if (Info.hasDispatchID()) {
573     Register DispatchIDReg = Info.addDispatchID(TRI);
574     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
575     CCInfo.AllocateReg(DispatchIDReg);
576   }
577 
578   if (Info.hasFlatScratchInit()) {
579     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
580     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
581     CCInfo.AllocateReg(FlatScratchInitReg);
582   }
583 
584   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
585   // these from the dispatch pointer.
586 }
587 
lowerFormalArgumentsKernel(MachineIRBuilder & B,const Function & F,ArrayRef<ArrayRef<Register>> VRegs) const588 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
589     MachineIRBuilder &B, const Function &F,
590     ArrayRef<ArrayRef<Register>> VRegs) const {
591   MachineFunction &MF = B.getMF();
592   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
593   MachineRegisterInfo &MRI = MF.getRegInfo();
594   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
595   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
596   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
597 
598   const DataLayout &DL = F.getParent()->getDataLayout();
599 
600   SmallVector<CCValAssign, 16> ArgLocs;
601   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
602 
603   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
604 
605   unsigned i = 0;
606   const Align KernArgBaseAlign(16);
607   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
608   uint64_t ExplicitArgOffset = 0;
609 
610   // TODO: Align down to dword alignment and extract bits for extending loads.
611   for (auto &Arg : F.args()) {
612     const bool IsByRef = Arg.hasByRefAttr();
613     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
614     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
615     if (AllocSize == 0)
616       continue;
617 
618     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
619     if (!ABIAlign)
620       ABIAlign = DL.getABITypeAlign(ArgTy);
621 
622     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
623     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
624 
625     if (Arg.use_empty()) {
626       ++i;
627       continue;
628     }
629 
630     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
631 
632     if (IsByRef) {
633       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
634 
635       assert(VRegs[i].size() == 1 &&
636              "expected only one register for byval pointers");
637       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
638         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
639       } else {
640         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
641         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
642         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
643 
644         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
645       }
646     } else {
647       ArrayRef<Register> OrigArgRegs = VRegs[i];
648       Register ArgReg =
649         OrigArgRegs.size() == 1
650         ? OrigArgRegs[0]
651         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
652 
653       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
654       if (OrigArgRegs.size() > 1)
655         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
656     }
657 
658     ++i;
659   }
660 
661   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
662   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
663   return true;
664 }
665 
666 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
mergeVectorRegsToResultRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,ArrayRef<Register> SrcRegs)667 static MachineInstrBuilder mergeVectorRegsToResultRegs(
668   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
669   MachineRegisterInfo &MRI = *B.getMRI();
670   LLT LLTy = MRI.getType(DstRegs[0]);
671   LLT PartLLT = MRI.getType(SrcRegs[0]);
672 
673   // Deal with v3s16 split into v2s16
674   LLT LCMTy = getLCMType(LLTy, PartLLT);
675   if (LCMTy == LLTy) {
676     // Common case where no padding is needed.
677     assert(DstRegs.size() == 1);
678     return B.buildConcatVectors(DstRegs[0], SrcRegs);
679   }
680 
681   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
682   Register Undef = B.buildUndef(PartLLT).getReg(0);
683 
684   // Build vector of undefs.
685   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
686 
687   // Replace the first sources with the real registers.
688   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
689 
690   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
691   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
692 
693   SmallVector<Register, 8> PadDstRegs(NumDst);
694   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
695 
696   // Create the excess dead defs for the unmerge.
697   for (int I = DstRegs.size(); I != NumDst; ++I)
698     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
699 
700   return B.buildUnmerge(PadDstRegs, Widened);
701 }
702 
703 // TODO: Move this to generic code
packSplitRegsToOrigType(MachineIRBuilder & B,ArrayRef<Register> OrigRegs,ArrayRef<Register> Regs,LLT LLTy,LLT PartLLT)704 static void packSplitRegsToOrigType(MachineIRBuilder &B,
705                                     ArrayRef<Register> OrigRegs,
706                                     ArrayRef<Register> Regs,
707                                     LLT LLTy,
708                                     LLT PartLLT) {
709   MachineRegisterInfo &MRI = *B.getMRI();
710 
711   if (!LLTy.isVector() && !PartLLT.isVector()) {
712     assert(OrigRegs.size() == 1);
713     LLT OrigTy = MRI.getType(OrigRegs[0]);
714 
715     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
716     if (SrcSize == OrigTy.getSizeInBits())
717       B.buildMerge(OrigRegs[0], Regs);
718     else {
719       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
720       B.buildTrunc(OrigRegs[0], Widened);
721     }
722 
723     return;
724   }
725 
726   if (LLTy.isVector() && PartLLT.isVector()) {
727     assert(OrigRegs.size() == 1);
728     assert(LLTy.getElementType() == PartLLT.getElementType());
729     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
730     return;
731   }
732 
733   assert(LLTy.isVector() && !PartLLT.isVector());
734 
735   LLT DstEltTy = LLTy.getElementType();
736 
737   // Pointer information was discarded. We'll need to coerce some register types
738   // to avoid violating type constraints.
739   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
740 
741   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
742 
743   if (DstEltTy == PartLLT) {
744     // Vector was trivially scalarized.
745 
746     if (RealDstEltTy.isPointer()) {
747       for (Register Reg : Regs)
748         MRI.setType(Reg, RealDstEltTy);
749     }
750 
751     B.buildBuildVector(OrigRegs[0], Regs);
752   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
753     // Deal with vector with 64-bit elements decomposed to 32-bit
754     // registers. Need to create intermediate 64-bit elements.
755     SmallVector<Register, 8> EltMerges;
756     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
757 
758     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
759 
760     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
761       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
762       // Fix the type in case this is really a vector of pointers.
763       MRI.setType(Merge.getReg(0), RealDstEltTy);
764       EltMerges.push_back(Merge.getReg(0));
765       Regs = Regs.drop_front(PartsPerElt);
766     }
767 
768     B.buildBuildVector(OrigRegs[0], EltMerges);
769   } else {
770     // Vector was split, and elements promoted to a wider type.
771     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
772     auto BV = B.buildBuildVector(BVType, Regs);
773     B.buildTrunc(OrigRegs[0], BV);
774   }
775 }
776 
lowerFormalArguments(MachineIRBuilder & B,const Function & F,ArrayRef<ArrayRef<Register>> VRegs) const777 bool AMDGPUCallLowering::lowerFormalArguments(
778     MachineIRBuilder &B, const Function &F,
779     ArrayRef<ArrayRef<Register>> VRegs) const {
780   CallingConv::ID CC = F.getCallingConv();
781 
782   // The infrastructure for normal calling convention lowering is essentially
783   // useless for kernels. We want to avoid any kind of legalization or argument
784   // splitting.
785   if (CC == CallingConv::AMDGPU_KERNEL)
786     return lowerFormalArgumentsKernel(B, F, VRegs);
787 
788   const bool IsGraphics = AMDGPU::isGraphics(CC);
789   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
790 
791   MachineFunction &MF = B.getMF();
792   MachineBasicBlock &MBB = B.getMBB();
793   MachineRegisterInfo &MRI = MF.getRegInfo();
794   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
795   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
796   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
797   const DataLayout &DL = F.getParent()->getDataLayout();
798 
799 
800   SmallVector<CCValAssign, 16> ArgLocs;
801   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
802 
803   if (!IsEntryFunc) {
804     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
805     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
806                                          &AMDGPU::SGPR_64RegClass);
807     MBB.addLiveIn(ReturnAddrReg);
808     B.buildCopy(LiveInReturn, ReturnAddrReg);
809   }
810 
811   if (Info->hasImplicitBufferPtr()) {
812     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
813     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
814     CCInfo.AllocateReg(ImplicitBufferPtrReg);
815   }
816 
817 
818   SmallVector<ArgInfo, 32> SplitArgs;
819   unsigned Idx = 0;
820   unsigned PSInputNum = 0;
821 
822   for (auto &Arg : F.args()) {
823     if (DL.getTypeStoreSize(Arg.getType()) == 0)
824       continue;
825 
826     const bool InReg = Arg.hasAttribute(Attribute::InReg);
827 
828     // SGPR arguments to functions not implemented.
829     if (!IsGraphics && InReg)
830       return false;
831 
832     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
833         Arg.hasAttribute(Attribute::SwiftError) ||
834         Arg.hasAttribute(Attribute::Nest))
835       return false;
836 
837     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
838       const bool ArgUsed = !Arg.use_empty();
839       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
840 
841       if (!SkipArg) {
842         Info->markPSInputAllocated(PSInputNum);
843         if (ArgUsed)
844           Info->markPSInputEnabled(PSInputNum);
845       }
846 
847       ++PSInputNum;
848 
849       if (SkipArg) {
850         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
851           B.buildUndef(VRegs[Idx][I]);
852 
853         ++Idx;
854         continue;
855       }
856     }
857 
858     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
859     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
860     setArgFlags(OrigArg, OrigArgIdx, DL, F);
861 
862     splitToValueTypes(
863       B, OrigArg, SplitArgs, DL, CC, false,
864       // FIXME: We should probably be passing multiple registers to
865       // handleAssignments to do this
866       [&](ArrayRef<Register> Regs, Register DstReg,
867           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
868         assert(DstReg == VRegs[Idx][VTSplitIdx]);
869         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
870                                 LLTy, PartLLT);
871       });
872 
873     ++Idx;
874   }
875 
876   // At least one interpolation mode must be enabled or else the GPU will
877   // hang.
878   //
879   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
880   // set PSInputAddr, the user wants to enable some bits after the compilation
881   // based on run-time states. Since we can't know what the final PSInputEna
882   // will look like, so we shouldn't do anything here and the user should take
883   // responsibility for the correct programming.
884   //
885   // Otherwise, the following restrictions apply:
886   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
887   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
888   //   enabled too.
889   if (CC == CallingConv::AMDGPU_PS) {
890     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
891         ((Info->getPSInputAddr() & 0xF) == 0 &&
892          Info->isPSInputAllocated(11))) {
893       CCInfo.AllocateReg(AMDGPU::VGPR0);
894       CCInfo.AllocateReg(AMDGPU::VGPR1);
895       Info->markPSInputAllocated(0);
896       Info->markPSInputEnabled(0);
897     }
898 
899     if (Subtarget.isAmdPalOS()) {
900       // For isAmdPalOS, the user does not enable some bits after compilation
901       // based on run-time states; the register values being generated here are
902       // the final ones set in hardware. Therefore we need to apply the
903       // workaround to PSInputAddr and PSInputEnable together.  (The case where
904       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
905       // set up an input arg for a particular interpolation mode, but nothing
906       // uses that input arg. Really we should have an earlier pass that removes
907       // such an arg.)
908       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
909       if ((PsInputBits & 0x7F) == 0 ||
910           ((PsInputBits & 0xF) == 0 &&
911            (PsInputBits >> 11 & 1)))
912         Info->markPSInputEnabled(
913           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
914     }
915   }
916 
917   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
918   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
919 
920   if (!MBB.empty())
921     B.setInstr(*MBB.begin());
922 
923   if (!IsEntryFunc) {
924     // For the fixed ABI, pass workitem IDs in the last argument register.
925     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
926       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
927   }
928 
929   FormalArgHandler Handler(B, MRI, AssignFn);
930   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
931     return false;
932 
933   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
934     // Special inputs come after user arguments.
935     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
936   }
937 
938   // Start adding system SGPRs.
939   if (IsEntryFunc) {
940     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
941   } else {
942     if (!Subtarget.enableFlatScratch())
943       CCInfo.AllocateReg(Info->getScratchRSrcReg());
944     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
945   }
946 
947   // Move back to the end of the basic block.
948   B.setMBB(MBB);
949 
950   return true;
951 }
952 
passSpecialInputs(MachineIRBuilder & MIRBuilder,CCState & CCInfo,SmallVectorImpl<std::pair<MCRegister,Register>> & ArgRegs,CallLoweringInfo & Info) const953 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
954                                            CCState &CCInfo,
955                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
956                                            CallLoweringInfo &Info) const {
957   MachineFunction &MF = MIRBuilder.getMF();
958 
959   const AMDGPUFunctionArgInfo *CalleeArgInfo
960     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
961 
962   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
963   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
964 
965 
966   // TODO: Unify with private memory register handling. This is complicated by
967   // the fact that at least in kernels, the input argument is not necessarily
968   // in the same location as the input.
969   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
970     AMDGPUFunctionArgInfo::DISPATCH_PTR,
971     AMDGPUFunctionArgInfo::QUEUE_PTR,
972     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
973     AMDGPUFunctionArgInfo::DISPATCH_ID,
974     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
975     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
976     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
977   };
978 
979   MachineRegisterInfo &MRI = MF.getRegInfo();
980 
981   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
982   const AMDGPULegalizerInfo *LI
983     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
984 
985   for (auto InputID : InputRegs) {
986     const ArgDescriptor *OutgoingArg;
987     const TargetRegisterClass *ArgRC;
988     LLT ArgTy;
989 
990     std::tie(OutgoingArg, ArgRC, ArgTy) =
991         CalleeArgInfo->getPreloadedValue(InputID);
992     if (!OutgoingArg)
993       continue;
994 
995     const ArgDescriptor *IncomingArg;
996     const TargetRegisterClass *IncomingArgRC;
997     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
998         CallerArgInfo.getPreloadedValue(InputID);
999     assert(IncomingArgRC == ArgRC);
1000 
1001     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
1002 
1003     if (IncomingArg) {
1004       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
1005     } else {
1006       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
1007       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
1008     }
1009 
1010     if (OutgoingArg->isRegister()) {
1011       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1012       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1013         report_fatal_error("failed to allocate implicit input argument");
1014     } else {
1015       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1016       return false;
1017     }
1018   }
1019 
1020   // Pack workitem IDs into a single register or pass it as is if already
1021   // packed.
1022   const ArgDescriptor *OutgoingArg;
1023   const TargetRegisterClass *ArgRC;
1024   LLT ArgTy;
1025 
1026   std::tie(OutgoingArg, ArgRC, ArgTy) =
1027       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1028   if (!OutgoingArg)
1029     std::tie(OutgoingArg, ArgRC, ArgTy) =
1030         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1031   if (!OutgoingArg)
1032     std::tie(OutgoingArg, ArgRC, ArgTy) =
1033         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1034   if (!OutgoingArg)
1035     return false;
1036 
1037   auto WorkitemIDX =
1038       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1039   auto WorkitemIDY =
1040       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1041   auto WorkitemIDZ =
1042       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1043 
1044   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
1045   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
1046   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
1047   const LLT S32 = LLT::scalar(32);
1048 
1049   // If incoming ids are not packed we need to pack them.
1050   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
1051   Register InputReg;
1052   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
1053     InputReg = MRI.createGenericVirtualRegister(S32);
1054     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
1055                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
1056   }
1057 
1058   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
1059     Register Y = MRI.createGenericVirtualRegister(S32);
1060     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
1061                        std::get<2>(WorkitemIDY));
1062 
1063     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
1064     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
1065   }
1066 
1067   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
1068     Register Z = MRI.createGenericVirtualRegister(S32);
1069     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
1070                        std::get<2>(WorkitemIDZ));
1071 
1072     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
1073     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
1074   }
1075 
1076   if (!InputReg) {
1077     InputReg = MRI.createGenericVirtualRegister(S32);
1078 
1079     // Workitem ids are already packed, any of present incoming arguments will
1080     // carry all required fields.
1081     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
1082       IncomingArgX ? *IncomingArgX :
1083         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
1084     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
1085                        &AMDGPU::VGPR_32RegClass, S32);
1086   }
1087 
1088   if (OutgoingArg->isRegister()) {
1089     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1090     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1091       report_fatal_error("failed to allocate implicit input argument");
1092   } else {
1093     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1094     return false;
1095   }
1096 
1097   return true;
1098 }
1099 
1100 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
1101 /// CC.
1102 static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC,const SITargetLowering & TLI)1103 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
1104   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
1105 }
1106 
getCallOpcode(const MachineFunction & CallerF,bool IsIndirect,bool IsTailCall)1107 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1108                               bool IsTailCall) {
1109   return AMDGPU::SI_CALL;
1110 }
1111 
1112 // Add operands to call instruction to track the callee.
addCallTargetOperands(MachineInstrBuilder & CallInst,MachineIRBuilder & MIRBuilder,AMDGPUCallLowering::CallLoweringInfo & Info)1113 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
1114                                   MachineIRBuilder &MIRBuilder,
1115                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
1116   if (Info.Callee.isReg()) {
1117     CallInst.addReg(Info.Callee.getReg());
1118     CallInst.addImm(0);
1119   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
1120     // The call lowering lightly assumed we can directly encode a call target in
1121     // the instruction, which is not the case. Materialize the address here.
1122     const GlobalValue *GV = Info.Callee.getGlobal();
1123     auto Ptr = MIRBuilder.buildGlobalValue(
1124       LLT::pointer(GV->getAddressSpace(), 64), GV);
1125     CallInst.addReg(Ptr.getReg(0));
1126     CallInst.add(Info.Callee);
1127   } else
1128     return false;
1129 
1130   return true;
1131 }
1132 
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info) const1133 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1134                                    CallLoweringInfo &Info) const {
1135   if (Info.IsVarArg) {
1136     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1137     return false;
1138   }
1139 
1140   MachineFunction &MF = MIRBuilder.getMF();
1141   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1142   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1143 
1144   const Function &F = MF.getFunction();
1145   MachineRegisterInfo &MRI = MF.getRegInfo();
1146   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1147   const DataLayout &DL = F.getParent()->getDataLayout();
1148   CallingConv::ID CallConv = F.getCallingConv();
1149 
1150   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1151       CallConv != CallingConv::AMDGPU_Gfx) {
1152     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1153     return false;
1154   }
1155 
1156   if (AMDGPU::isShader(CallConv)) {
1157     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
1158     return false;
1159   }
1160 
1161   SmallVector<ArgInfo, 8> OutArgs;
1162   SmallVector<ArgInfo, 4> SplitRetInfos;
1163 
1164   for (auto &OrigArg : Info.OrigArgs) {
1165     splitToValueTypes(
1166       MIRBuilder, OrigArg, OutArgs, DL, Info.CallConv, true,
1167       // FIXME: We should probably be passing multiple registers to
1168       // handleAssignments to do this
1169       [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
1170           int VTSplitIdx) {
1171         unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
1172       });
1173   }
1174 
1175   // If we can lower as a tail call, do that instead.
1176   bool CanTailCallOpt = false;
1177 
1178   // We must emit a tail call if we have musttail.
1179   if (Info.IsMustTailCall && !CanTailCallOpt) {
1180     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1181     return false;
1182   }
1183 
1184   // Find out which ABI gets to decide where things go.
1185   CCAssignFn *AssignFnFixed;
1186   CCAssignFn *AssignFnVarArg;
1187   std::tie(AssignFnFixed, AssignFnVarArg) =
1188       getAssignFnsForCC(Info.CallConv, TLI);
1189 
1190   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1191     .addImm(0)
1192     .addImm(0);
1193 
1194   // Create a temporarily-floating call instruction so we can add the implicit
1195   // uses of arg registers.
1196   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1197 
1198   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1199   MIB.addDef(TRI->getReturnAddressReg(MF));
1200 
1201   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1202     return false;
1203 
1204   // Tell the call which registers are clobbered.
1205   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1206   MIB.addRegMask(Mask);
1207 
1208   SmallVector<CCValAssign, 16> ArgLocs;
1209   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1210 
1211   // We could pass MIB and directly add the implicit uses to the call
1212   // now. However, as an aesthetic choice, place implicit argument operands
1213   // after the ordinary user argument registers.
1214   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1215 
1216   if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
1217     // With a fixed ABI, allocate fixed registers before user arguments.
1218     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1219       return false;
1220   }
1221 
1222   // Do the actual argument marshalling.
1223   SmallVector<Register, 8> PhysRegs;
1224   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1225                                    AssignFnVarArg, false);
1226   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1227     return false;
1228 
1229   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1230 
1231   if (!ST.enableFlatScratch()) {
1232     // Insert copies for the SRD. In the HSA case, this should be an identity
1233     // copy.
1234     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1235                                                MFI->getScratchRSrcReg());
1236     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1237     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1238   }
1239 
1240   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1241     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1242     MIB.addReg(ArgReg.first, RegState::Implicit);
1243   }
1244 
1245   // Get a count of how many bytes are to be pushed on the stack.
1246   unsigned NumBytes = CCInfo.getNextStackOffset();
1247 
1248   // If Callee is a reg, since it is used by a target specific
1249   // instruction, it must have a register class matching the
1250   // constraint of that instruction.
1251 
1252   // FIXME: We should define regbankselectable call instructions to handle
1253   // divergent call targets.
1254   if (MIB->getOperand(1).isReg()) {
1255     MIB->getOperand(1).setReg(constrainOperandRegClass(
1256         MF, *TRI, MRI, *ST.getInstrInfo(),
1257         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1258         1));
1259   }
1260 
1261   auto OrigInsertPt = MIRBuilder.getInsertPt();
1262 
1263   // Now we can add the actual call instruction to the correct position.
1264   MIRBuilder.insertInstr(MIB);
1265 
1266   // Insert this now to give us an anchor point for managing the insert point.
1267   MachineInstrBuilder CallSeqEnd =
1268     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1269 
1270   SmallVector<ArgInfo, 8> InArgs;
1271   if (!Info.OrigRet.Ty->isVoidTy()) {
1272     splitToValueTypes(
1273       MIRBuilder, Info.OrigRet, InArgs, DL, Info.CallConv, false,
1274       [&](ArrayRef<Register> Regs, Register DstReg,
1275           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
1276         assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
1277         packSplitRegsToOrigType(MIRBuilder,  Info.OrigRet.Regs[VTSplitIdx],
1278                                 Regs, LLTy, PartLLT);
1279       });
1280   }
1281 
1282   // Make sure the raw argument copies are inserted before the marshalling to
1283   // the original types.
1284   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1285 
1286   // Finally we can copy the returned value back into its virtual-register. In
1287   // symmetry with the arguments, the physical register must be an
1288   // implicit-define of the call instruction.
1289   if (!Info.OrigRet.Ty->isVoidTy()) {
1290     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1291                                                       Info.IsVarArg);
1292     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1293     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1294       return false;
1295   }
1296 
1297   uint64_t CalleePopBytes = NumBytes;
1298   CallSeqEnd.addImm(0)
1299             .addImm(CalleePopBytes);
1300 
1301   // Restore the insert point to after the call sequence.
1302   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1303   return true;
1304 }
1305