1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
15 
16 #include "PPCRegisterInfo.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 
19 #define GET_INSTRINFO_HEADER
20 #include "PPCGenInstrInfo.inc"
21 
22 namespace llvm {
23 
24 /// PPCII - This namespace holds all of the PowerPC target-specific
25 /// per-instruction flags.  These must match the corresponding definitions in
26 /// PPC.td and PPCInstrFormats.td.
27 namespace PPCII {
28 enum {
29   // PPC970 Instruction Flags.  These flags describe the characteristics of the
30   // PowerPC 970 (aka G5) dispatch groups and how they are formed out of
31   // raw machine instructions.
32 
33   /// PPC970_First - This instruction starts a new dispatch group, so it will
34   /// always be the first one in the group.
35   PPC970_First = 0x1,
36 
37   /// PPC970_Single - This instruction starts a new dispatch group and
38   /// terminates it, so it will be the sole instruction in the group.
39   PPC970_Single = 0x2,
40 
41   /// PPC970_Cracked - This instruction is cracked into two pieces, requiring
42   /// two dispatch pipes to be available to issue.
43   PPC970_Cracked = 0x4,
44 
45   /// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
46   /// an instruction is issued to.
47   PPC970_Shift = 3,
48   PPC970_Mask = 0x07 << PPC970_Shift
49 };
50 enum PPC970_Unit {
51   /// These are the various PPC970 execution unit pipelines.  Each instruction
52   /// is one of these.
53   PPC970_Pseudo = 0 << PPC970_Shift,   // Pseudo instruction
54   PPC970_FXU    = 1 << PPC970_Shift,   // Fixed Point (aka Integer/ALU) Unit
55   PPC970_LSU    = 2 << PPC970_Shift,   // Load Store Unit
56   PPC970_FPU    = 3 << PPC970_Shift,   // Floating Point Unit
57   PPC970_CRU    = 4 << PPC970_Shift,   // Control Register Unit
58   PPC970_VALU   = 5 << PPC970_Shift,   // Vector ALU
59   PPC970_VPERM  = 6 << PPC970_Shift,   // Vector Permute Unit
60   PPC970_BRU    = 7 << PPC970_Shift    // Branch Unit
61 };
62 
63 enum {
64   /// Shift count to bypass PPC970 flags
65   NewDef_Shift = 6,
66 
67   /// This instruction is an X-Form memory operation.
68   XFormMemOp = 0x1 << NewDef_Shift,
69   /// This instruction is prefixed.
70   Prefixed = 0x1 << (NewDef_Shift+1)
71 };
72 } // end namespace PPCII
73 
74 // Instructions that have an immediate form might be convertible to that
75 // form if the correct input is a result of a load immediate. In order to
76 // know whether the transformation is special, we might need to know some
77 // of the details of the two forms.
78 struct ImmInstrInfo {
79   // Is the immediate field in the immediate form signed or unsigned?
80   uint64_t SignedImm : 1;
81   // Does the immediate need to be a multiple of some value?
82   uint64_t ImmMustBeMultipleOf : 5;
83   // Is R0/X0 treated specially by the original r+r instruction?
84   // If so, in which operand?
85   uint64_t ZeroIsSpecialOrig : 3;
86   // Is R0/X0 treated specially by the new r+i instruction?
87   // If so, in which operand?
88   uint64_t ZeroIsSpecialNew : 3;
89   // Is the operation commutative?
90   uint64_t IsCommutative : 1;
91   // The operand number to check for add-immediate def.
92   uint64_t OpNoForForwarding : 3;
93   // The operand number for the immediate.
94   uint64_t ImmOpNo : 3;
95   // The opcode of the new instruction.
96   uint64_t ImmOpcode : 16;
97   // The size of the immediate.
98   uint64_t ImmWidth : 5;
99   // The immediate should be truncated to N bits.
100   uint64_t TruncateImmTo : 5;
101   // Is the instruction summing the operand
102   uint64_t IsSummingOperands : 1;
103 };
104 
105 // Information required to convert an instruction to just a materialized
106 // immediate.
107 struct LoadImmediateInfo {
108   unsigned Imm : 16;
109   unsigned Is64Bit : 1;
110   unsigned SetCR : 1;
111 };
112 
113 // Index into the OpcodesForSpill array.
114 enum SpillOpcodeKey {
115   SOK_Int4Spill,
116   SOK_Int8Spill,
117   SOK_Float8Spill,
118   SOK_Float4Spill,
119   SOK_CRSpill,
120   SOK_CRBitSpill,
121   SOK_VRVectorSpill,
122   SOK_VSXVectorSpill,
123   SOK_VectorFloat8Spill,
124   SOK_VectorFloat4Spill,
125   SOK_SpillToVSR,
126   SOK_SPESpill,
127   SOK_LastOpcodeSpill // This must be last on the enum.
128 };
129 
130 // Define list of load and store spill opcodes.
131 #define Pwr8LoadOpcodes                                                        \
132   {                                                                            \
133     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
134         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX,    \
135         PPC::SPILLTOVSR_LD, PPC::EVLDD                                         \
136   }
137 
138 #define Pwr9LoadOpcodes                                                        \
139   {                                                                            \
140     PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR,                    \
141         PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64,                \
142         PPC::DFLOADf32, PPC::SPILLTOVSR_LD                                     \
143   }
144 
145 #define Pwr8StoreOpcodes                                                       \
146   {                                                                            \
147     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
148         PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX,                    \
149         PPC::SPILLTOVSR_ST, PPC::EVSTDD                                        \
150   }
151 
152 #define Pwr9StoreOpcodes                                                       \
153   {                                                                            \
154     PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
155         PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32,                \
156         PPC::SPILLTOVSR_ST                                                     \
157   }
158 
159 // Initialize arrays for load and store spill opcodes on supported subtargets.
160 #define StoreOpcodesForSpill                                                   \
161   { Pwr8StoreOpcodes, Pwr9StoreOpcodes }
162 #define LoadOpcodesForSpill                                                    \
163   { Pwr8LoadOpcodes, Pwr9LoadOpcodes }
164 
165 class PPCSubtarget;
166 class PPCInstrInfo : public PPCGenInstrInfo {
167   PPCSubtarget &Subtarget;
168   const PPCRegisterInfo RI;
169   const unsigned StoreSpillOpcodesArray[2][SOK_LastOpcodeSpill] =
170       StoreOpcodesForSpill;
171   const unsigned LoadSpillOpcodesArray[2][SOK_LastOpcodeSpill] =
172       LoadOpcodesForSpill;
173 
174   void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
175                            int FrameIdx, const TargetRegisterClass *RC,
176                            SmallVectorImpl<MachineInstr *> &NewMIs) const;
177   void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
178                             unsigned DestReg, int FrameIdx,
179                             const TargetRegisterClass *RC,
180                             SmallVectorImpl<MachineInstr *> &NewMIs) const;
181 
182   // Replace the instruction with single LI if possible. \p DefMI must be LI or
183   // LI8.
184   bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
185                     unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
186   // If the inst is imm-form and its register operand is produced by a ADDI, put
187   // the imm into the inst directly and remove the ADDI if possible.
188   bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
189                                      unsigned OpNoForForwarding) const;
190   // If the inst is x-form and has imm-form and one of its operand is produced
191   // by a LI, put the imm into the inst directly and remove the LI if possible.
192   bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
193                                  unsigned ConstantOpNo,
194                                  MachineInstr &DefMI) const;
195   // If the inst is x-form and has imm-form and one of its operand is produced
196   // by an add-immediate, try to transform it when possible.
197   bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
198                                   unsigned ConstantOpNo, MachineInstr &DefMI,
199                                   bool KillDefMI) const;
200   // Try to find that, if the instruction 'MI' contains any operand that
201   // could be forwarded from some inst that feeds it. If yes, return the
202   // Def of that operand. And OpNoForForwarding is the operand index in
203   // the 'MI' for that 'Def'. If we see another use of this Def between
204   // the Def and the MI, SeenIntermediateUse becomes 'true'.
205   MachineInstr *getForwardingDefMI(MachineInstr &MI,
206                                    unsigned &OpNoForForwarding,
207                                    bool &SeenIntermediateUse) const;
208 
209   // Can the user MI have it's source at index \p OpNoForForwarding
210   // forwarded from an add-immediate that feeds it?
211   bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
212                                    unsigned OpNoForForwarding) const;
213   bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
214                                    const ImmInstrInfo &III,
215                                    MachineOperand *&ImmMO,
216                                    MachineOperand *&RegMO) const;
217   bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
218                                  const MachineInstr &DefMI,
219                                  const ImmInstrInfo &III,
220                                  int64_t &Imm,
221                                  int64_t BaseImm = 0) const;
222   bool isRegElgibleForForwarding(const MachineOperand &RegMO,
223                                  const MachineInstr &DefMI,
224                                  const MachineInstr &MI, bool KillDefMI,
225                                  bool &IsFwdFeederRegKilled) const;
226   unsigned getSpillTarget() const;
227   const unsigned *getStoreOpcodesForSpillArray() const;
228   const unsigned *getLoadOpcodesForSpillArray() const;
229   int16_t getFMAOpIdxInfo(unsigned Opcode) const;
230   void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern,
231                       SmallVectorImpl<MachineInstr *> &InsInstrs,
232                       SmallVectorImpl<MachineInstr *> &DelInstrs,
233                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
234   virtual void anchor();
235 
236 protected:
237   /// Commutes the operands in the given instruction.
238   /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
239   ///
240   /// Do not call this method for a non-commutable instruction or for
241   /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
242   /// Even though the instruction is commutable, the method may still
243   /// fail to commute the operands, null pointer is returned in such cases.
244   ///
245   /// For example, we can commute rlwimi instructions, but only if the
246   /// rotate amt is zero.  We also have to munge the immediates a bit.
247   MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
248                                        unsigned OpIdx1,
249                                        unsigned OpIdx2) const override;
250 
251 public:
252   explicit PPCInstrInfo(PPCSubtarget &STI);
253 
254   /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
255   /// such, whenever a client has an instance of instruction info, it should
256   /// always be able to get register info as well (through this method).
257   ///
getRegisterInfo()258   const PPCRegisterInfo &getRegisterInfo() const { return RI; }
259 
isXFormMemOp(unsigned Opcode)260   bool isXFormMemOp(unsigned Opcode) const {
261     return get(Opcode).TSFlags & PPCII::XFormMemOp;
262   }
isPrefixed(unsigned Opcode)263   bool isPrefixed(unsigned Opcode) const {
264     return get(Opcode).TSFlags & PPCII::Prefixed;
265   }
266 
isSameClassPhysRegCopy(unsigned Opcode)267   static bool isSameClassPhysRegCopy(unsigned Opcode) {
268     unsigned CopyOpcodes[] = {PPC::OR,        PPC::OR8,   PPC::FMR,
269                               PPC::VOR,       PPC::XXLOR, PPC::XXLORf,
270                               PPC::XSCPSGNDP, PPC::MCRF,  PPC::CROR,
271                               PPC::EVOR,      -1U};
272     for (int i = 0; CopyOpcodes[i] != -1U; i++)
273       if (Opcode == CopyOpcodes[i])
274         return true;
275     return false;
276   }
277 
278   ScheduleHazardRecognizer *
279   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
280                                const ScheduleDAG *DAG) const override;
281   ScheduleHazardRecognizer *
282   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
283                                      const ScheduleDAG *DAG) const override;
284 
285   unsigned getInstrLatency(const InstrItineraryData *ItinData,
286                            const MachineInstr &MI,
287                            unsigned *PredCost = nullptr) const override;
288 
289   int getOperandLatency(const InstrItineraryData *ItinData,
290                         const MachineInstr &DefMI, unsigned DefIdx,
291                         const MachineInstr &UseMI,
292                         unsigned UseIdx) const override;
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx)293   int getOperandLatency(const InstrItineraryData *ItinData,
294                         SDNode *DefNode, unsigned DefIdx,
295                         SDNode *UseNode, unsigned UseIdx) const override {
296     return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
297                                               UseNode, UseIdx);
298   }
299 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx)300   bool hasLowDefLatency(const TargetSchedModel &SchedModel,
301                         const MachineInstr &DefMI,
302                         unsigned DefIdx) const override {
303     // Machine LICM should hoist all instructions in low-register-pressure
304     // situations; none are sufficiently free to justify leaving in a loop
305     // body.
306     return false;
307   }
308 
useMachineCombiner()309   bool useMachineCombiner() const override {
310     return true;
311   }
312 
313   /// When getMachineCombinerPatterns() finds patterns, this function generates
314   /// the instructions that could replace the original code sequence
315   void genAlternativeCodeSequence(
316       MachineInstr &Root, MachineCombinerPattern Pattern,
317       SmallVectorImpl<MachineInstr *> &InsInstrs,
318       SmallVectorImpl<MachineInstr *> &DelInstrs,
319       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
320 
321   /// Return true when there is potentially a faster code sequence for a fma
322   /// chain ending in \p Root. All potential patterns are output in the \p
323   /// P array.
324   bool getFMAPatterns(MachineInstr &Root,
325                       SmallVectorImpl<MachineCombinerPattern> &P) const;
326 
327   /// Return true when there is potentially a faster code sequence
328   /// for an instruction chain ending in <Root>. All potential patterns are
329   /// output in the <Pattern> array.
330   bool getMachineCombinerPatterns(
331       MachineInstr &Root,
332       SmallVectorImpl<MachineCombinerPattern> &P) const override;
333 
334   bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
335 
336   /// On PowerPC, we try to reassociate FMA chain which will increase
337   /// instruction size. Set extension resource length limit to 1 for edge case.
338   /// Resource Length is calculated by scaled resource usage in getCycles().
339   /// Because of the division in getCycles(), it returns different cycles due to
340   /// legacy scaled resource usage. So new resource length may be same with
341   /// legacy or 1 bigger than legacy.
342   /// We need to execlude the 1 bigger case even the resource length is not
343   /// perserved for more FMA chain reassociations on PowerPC.
getExtendResourceLenLimit()344   int getExtendResourceLenLimit() const override { return 1; }
345 
346   void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
347                              MachineInstr &NewMI1,
348                              MachineInstr &NewMI2) const override;
349 
350   void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const override;
351 
352   bool isCoalescableExtInstr(const MachineInstr &MI,
353                              Register &SrcReg, Register &DstReg,
354                              unsigned &SubIdx) const override;
355   unsigned isLoadFromStackSlot(const MachineInstr &MI,
356                                int &FrameIndex) const override;
357   bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
358                                          AAResults *AA) const override;
359   unsigned isStoreToStackSlot(const MachineInstr &MI,
360                               int &FrameIndex) const override;
361 
362   bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
363                              unsigned &SrcOpIdx2) const override;
364 
365   void insertNoop(MachineBasicBlock &MBB,
366                   MachineBasicBlock::iterator MI) const override;
367 
368 
369   // Branch analysis.
370   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
371                      MachineBasicBlock *&FBB,
372                      SmallVectorImpl<MachineOperand> &Cond,
373                      bool AllowModify) const override;
374   unsigned removeBranch(MachineBasicBlock &MBB,
375                         int *BytesRemoved = nullptr) const override;
376   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
377                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
378                         const DebugLoc &DL,
379                         int *BytesAdded = nullptr) const override;
380 
381   // Select analysis.
382   bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
383                        Register, Register, Register, int &, int &,
384                        int &) const override;
385   void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
386                     const DebugLoc &DL, Register DstReg,
387                     ArrayRef<MachineOperand> Cond, Register TrueReg,
388                     Register FalseReg) const override;
389 
390   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
391                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
392                    bool KillSrc) const override;
393 
394   void storeRegToStackSlot(MachineBasicBlock &MBB,
395                            MachineBasicBlock::iterator MBBI,
396                            Register SrcReg, bool isKill, int FrameIndex,
397                            const TargetRegisterClass *RC,
398                            const TargetRegisterInfo *TRI) const override;
399 
400   // Emits a register spill without updating the register class for vector
401   // registers. This ensures that when we spill a vector register the
402   // element order in the register is the same as it was in memory.
403   void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
404                                 MachineBasicBlock::iterator MBBI,
405                                 unsigned SrcReg, bool isKill, int FrameIndex,
406                                 const TargetRegisterClass *RC,
407                                 const TargetRegisterInfo *TRI) const;
408 
409   void loadRegFromStackSlot(MachineBasicBlock &MBB,
410                             MachineBasicBlock::iterator MBBI,
411                             Register DestReg, int FrameIndex,
412                             const TargetRegisterClass *RC,
413                             const TargetRegisterInfo *TRI) const override;
414 
415   // Emits a register reload without updating the register class for vector
416   // registers. This ensures that when we reload a vector register the
417   // element order in the register is the same as it was in memory.
418   void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
419                                  MachineBasicBlock::iterator MBBI,
420                                  unsigned DestReg, int FrameIndex,
421                                  const TargetRegisterClass *RC,
422                                  const TargetRegisterInfo *TRI) const;
423 
424   unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
425 
426   unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
427 
428   bool
429   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
430 
431   bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
432                      MachineRegisterInfo *MRI) const override;
433 
434   bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
435                          Register Reg) const;
436 
437   // If conversion by predication (only supported by some branch instructions).
438   // All of the profitability checks always return true; it is always
439   // profitable to use the predicated branches.
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)440   bool isProfitableToIfCvt(MachineBasicBlock &MBB,
441                           unsigned NumCycles, unsigned ExtraPredCycles,
442                           BranchProbability Probability) const override {
443     return true;
444   }
445 
446   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
447                            unsigned NumT, unsigned ExtraT,
448                            MachineBasicBlock &FMBB,
449                            unsigned NumF, unsigned ExtraF,
450                            BranchProbability Probability) const override;
451 
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)452   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
453                                  BranchProbability Probability) const override {
454     return true;
455   }
456 
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)457   bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
458                                  MachineBasicBlock &FMBB) const override {
459     return false;
460   }
461 
462   // Predication support.
463   bool isPredicated(const MachineInstr &MI) const override;
464 
465   bool isSchedulingBoundary(const MachineInstr &MI,
466                             const MachineBasicBlock *MBB,
467                             const MachineFunction &MF) const override;
468 
469   bool PredicateInstruction(MachineInstr &MI,
470                             ArrayRef<MachineOperand> Pred) const override;
471 
472   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
473                          ArrayRef<MachineOperand> Pred2) const override;
474 
475   bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
476                          bool SkipDead) const override;
477 
478   // Comparison optimization.
479 
480   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
481                       Register &SrcReg2, int &Mask, int &Value) const override;
482 
483   bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
484                             Register SrcReg2, int Mask, int Value,
485                             const MachineRegisterInfo *MRI) const override;
486 
487 
488   /// Return true if get the base operand, byte offset of an instruction and
489   /// the memory width. Width is the size of memory that is being
490   /// loaded/stored (e.g. 1, 2, 4, 8).
491   bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
492                                     const MachineOperand *&BaseOp,
493                                     int64_t &Offset, unsigned &Width,
494                                     const TargetRegisterInfo *TRI) const;
495 
496   /// Get the base operand and byte offset of an instruction that reads/writes
497   /// memory.
498   bool getMemOperandsWithOffsetWidth(
499       const MachineInstr &LdSt,
500       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
501       bool &OffsetIsScalable, unsigned &Width,
502       const TargetRegisterInfo *TRI) const override;
503 
504   /// Returns true if the two given memory operations should be scheduled
505   /// adjacent.
506   bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
507                            ArrayRef<const MachineOperand *> BaseOps2,
508                            unsigned NumLoads, unsigned NumBytes) const override;
509 
510   /// Return true if two MIs access different memory addresses and false
511   /// otherwise
512   bool
513   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
514                                   const MachineInstr &MIb) const override;
515 
516   /// GetInstSize - Return the number of bytes of code the specified
517   /// instruction may be.  This returns the maximum number of bytes.
518   ///
519   unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
520 
521   void getNoop(MCInst &NopInst) const override;
522 
523   std::pair<unsigned, unsigned>
524   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
525 
526   ArrayRef<std::pair<unsigned, const char *>>
527   getSerializableDirectMachineOperandTargetFlags() const override;
528 
529   ArrayRef<std::pair<unsigned, const char *>>
530   getSerializableBitmaskMachineOperandTargetFlags() const override;
531 
532   // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
533   bool expandVSXMemPseudo(MachineInstr &MI) const;
534 
535   // Lower pseudo instructions after register allocation.
536   bool expandPostRAPseudo(MachineInstr &MI) const override;
537 
isVFRegister(unsigned Reg)538   static bool isVFRegister(unsigned Reg) {
539     return Reg >= PPC::VF0 && Reg <= PPC::VF31;
540   }
isVRRegister(unsigned Reg)541   static bool isVRRegister(unsigned Reg) {
542     return Reg >= PPC::V0 && Reg <= PPC::V31;
543   }
544   const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
545   static int getRecordFormOpcode(unsigned Opcode);
546 
547   bool isTOCSaveMI(const MachineInstr &MI) const;
548 
549   bool isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
550                             const unsigned PhiDepth) const;
551 
552   /// Return true if the output of the instruction is always a sign-extended,
553   /// i.e. 0 to 31-th bits are same as 32-th bit.
554   bool isSignExtended(const MachineInstr &MI, const unsigned depth = 0) const {
555     return isSignOrZeroExtended(MI, true, depth);
556   }
557 
558   /// Return true if the output of the instruction is always zero-extended,
559   /// i.e. 0 to 31-th bits are all zeros
560   bool isZeroExtended(const MachineInstr &MI, const unsigned depth = 0) const {
561    return isSignOrZeroExtended(MI, false, depth);
562   }
563 
564   bool convertToImmediateForm(MachineInstr &MI,
565                               MachineInstr **KilledDef = nullptr) const;
566   bool foldFrameOffset(MachineInstr &MI) const;
567   bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
568   bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
569   bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
570   bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
571                                     unsigned &XFormOpcode,
572                                     int64_t &OffsetOfImmInstr,
573                                     ImmInstrInfo &III) const;
574   bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
575                              MachineInstr *&ADDIMI, int64_t &OffsetAddi,
576                              int64_t OffsetImm) const;
577 
578   /// Fixup killed/dead flag for register \p RegNo between instructions [\p
579   /// StartMI, \p EndMI]. Some pre-RA or post-RA transformations may violate
580   /// register killed/dead flags semantics, this function can be called to fix
581   /// up. Before calling this function,
582   /// 1. Ensure that \p RegNo liveness is killed after instruction \p EndMI.
583   /// 2. Ensure that there is no new definition between (\p StartMI, \p EndMI)
584   ///    and possible definition for \p RegNo is \p StartMI or \p EndMI. For
585   ///    pre-RA cases, definition may be \p StartMI through COPY, \p StartMI
586   ///    will be adjust to true definition.
587   /// 3. We can do accurate fixup for the case when all instructions between
588   ///    [\p StartMI, \p EndMI] are in same basic block.
589   /// 4. For the case when \p StartMI and \p EndMI are not in same basic block,
590   ///    we conservatively clear kill flag for all uses of \p RegNo for pre-RA
591   ///    and for post-RA, we give an assertion as without reaching definition
592   ///    analysis post-RA, \p StartMI and \p EndMI are hard to keep right.
593   void fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
594                          unsigned RegNo) const;
595   void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
596   void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
597                                   int64_t Imm) const;
598 
599   bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
600                        bool PostRA) const;
601 
602   // In PostRA phase, try to find instruction defines \p Reg before \p MI.
603   // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
604   MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
605                                bool &SeenIntermediateUse) const;
606 
607   /// getRegNumForOperand - some operands use different numbering schemes
608   /// for the same registers. For example, a VSX instruction may have any of
609   /// vs0-vs63 allocated whereas an Altivec instruction could only have
610   /// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
611   /// register number needed for the opcode/operand number combination.
612   /// The operand number argument will be useful when we need to extend this
613   /// to instructions that use both Altivec and VSX numbering (for different
614   /// operands).
getRegNumForOperand(const MCInstrDesc & Desc,unsigned Reg,unsigned OpNo)615   static unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
616                                       unsigned OpNo) {
617     int16_t regClass = Desc.OpInfo[OpNo].RegClass;
618     switch (regClass) {
619       // We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
620       // VSX32-VSX63 during encoding/disassembling
621       case PPC::VSSRCRegClassID:
622       case PPC::VSFRCRegClassID:
623         if (isVFRegister(Reg))
624           return PPC::VSX32 + (Reg - PPC::VF0);
625         break;
626       // We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
627       // VSX32-VSX63 during encoding/disassembling
628       case PPC::VSRCRegClassID:
629         if (isVRRegister(Reg))
630           return PPC::VSX32 + (Reg - PPC::V0);
631         break;
632       // Other RegClass doesn't need mapping
633       default:
634         break;
635     }
636     return Reg;
637   }
638 
639   /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
640   bool isBDNZ(unsigned Opcode) const;
641 
642   /// Find the hardware loop instruction used to set-up the specified loop.
643   /// On PPC, we have two instructions used to set-up the hardware loop
644   /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
645   /// instructions to indicate the end of a loop.
646   MachineInstr *
647   findLoopInstr(MachineBasicBlock &PreHeader,
648                 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
649 
650   /// Analyze loop L, which must be a single-basic-block loop, and if the
651   /// conditions can be understood enough produce a PipelinerLoopInfo object.
652   std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
653   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
654 };
655 
656 }
657 
658 #endif
659