1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4  * License, v. 2.0. If a copy of the MPL was not distributed with this
5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 
7 #include "SVGPathData.h"
8 
9 #include "gfx2DGlue.h"
10 #include "gfxPlatform.h"
11 #include "mozilla/gfx/2D.h"
12 #include "mozilla/gfx/Types.h"
13 #include "mozilla/gfx/Point.h"
14 #include "mozilla/RefPtr.h"
15 #include "nsError.h"
16 #include "nsString.h"
17 #include "SVGPathDataParser.h"
18 #include <stdarg.h>
19 #include "nsStyleConsts.h"
20 #include "SVGContentUtils.h"
21 #include "SVGGeometryElement.h"
22 #include "SVGPathSegUtils.h"
23 #include <algorithm>
24 
25 using namespace mozilla::dom::SVGPathSeg_Binding;
26 using namespace mozilla::gfx;
27 
28 namespace mozilla {
29 
IsMoveto(uint16_t aSegType)30 static inline bool IsMoveto(uint16_t aSegType) {
31   return aSegType == PATHSEG_MOVETO_ABS || aSegType == PATHSEG_MOVETO_REL;
32 }
33 
IsMoveto(StylePathCommand::Tag aSegType)34 static inline bool IsMoveto(StylePathCommand::Tag aSegType) {
35   return aSegType == StylePathCommand::Tag::MoveTo;
36 }
37 
IsValidType(uint16_t aSegType)38 static inline bool IsValidType(uint16_t aSegType) {
39   return SVGPathSegUtils::IsValidType(aSegType);
40 }
41 
IsValidType(StylePathCommand::Tag aSegType)42 static inline bool IsValidType(StylePathCommand::Tag aSegType) {
43   return aSegType != StylePathCommand::Tag::Unknown;
44 }
45 
IsClosePath(uint16_t aSegType)46 static inline bool IsClosePath(uint16_t aSegType) {
47   return aSegType == PATHSEG_CLOSEPATH;
48 }
49 
IsClosePath(StylePathCommand::Tag aSegType)50 static inline bool IsClosePath(StylePathCommand::Tag aSegType) {
51   return aSegType == StylePathCommand::Tag::ClosePath;
52 }
53 
ToGfxPoint(const StyleCoordPair & aPair)54 static inline Point ToGfxPoint(const StyleCoordPair& aPair) {
55   return {aPair._0, aPair._1};
56 }
57 
IsCubicType(StylePathCommand::Tag aType)58 static inline bool IsCubicType(StylePathCommand::Tag aType) {
59   return aType == StylePathCommand::Tag::CurveTo ||
60          aType == StylePathCommand::Tag::SmoothCurveTo;
61 }
62 
IsQuadraticType(StylePathCommand::Tag aType)63 static inline bool IsQuadraticType(StylePathCommand::Tag aType) {
64   return aType == StylePathCommand::Tag::QuadBezierCurveTo ||
65          aType == StylePathCommand::Tag::SmoothQuadBezierCurveTo;
66 }
67 
CopyFrom(const SVGPathData & rhs)68 nsresult SVGPathData::CopyFrom(const SVGPathData& rhs) {
69   if (!mData.Assign(rhs.mData, fallible)) {
70     return NS_ERROR_OUT_OF_MEMORY;
71   }
72   return NS_OK;
73 }
74 
GetValueAsString(nsAString & aValue) const75 void SVGPathData::GetValueAsString(nsAString& aValue) const {
76   // we need this function in DidChangePathSegList
77   aValue.Truncate();
78   if (!Length()) {
79     return;
80   }
81   uint32_t i = 0;
82   for (;;) {
83     nsAutoString segAsString;
84     SVGPathSegUtils::GetValueAsString(&mData[i], segAsString);
85     // We ignore OOM, since it's not useful for us to return an error.
86     aValue.Append(segAsString);
87     i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
88     if (i >= mData.Length()) {
89       MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
90       return;
91     }
92     aValue.Append(' ');
93   }
94 }
95 
SetValueFromString(const nsAString & aValue)96 nsresult SVGPathData::SetValueFromString(const nsAString& aValue) {
97   // We don't use a temp variable since the spec says to parse everything up to
98   // the first error. We still return any error though so that callers know if
99   // there's a problem.
100 
101   SVGPathDataParser pathParser(aValue, this);
102   return pathParser.Parse() ? NS_OK : NS_ERROR_DOM_SYNTAX_ERR;
103 }
104 
AppendSeg(uint32_t aType,...)105 nsresult SVGPathData::AppendSeg(uint32_t aType, ...) {
106   uint32_t oldLength = mData.Length();
107   uint32_t newLength = oldLength + 1 + SVGPathSegUtils::ArgCountForType(aType);
108   if (!mData.SetLength(newLength, fallible)) {
109     return NS_ERROR_OUT_OF_MEMORY;
110   }
111 
112   mData[oldLength] = SVGPathSegUtils::EncodeType(aType);
113   va_list args;
114   va_start(args, aType);
115   for (uint32_t i = oldLength + 1; i < newLength; ++i) {
116     // NOTE! 'float' is promoted to 'double' when passed through '...'!
117     mData[i] = float(va_arg(args, double));
118   }
119   va_end(args);
120   return NS_OK;
121 }
122 
GetPathLength() const123 float SVGPathData::GetPathLength() const {
124   SVGPathTraversalState state;
125 
126   uint32_t i = 0;
127   while (i < mData.Length()) {
128     SVGPathSegUtils::TraversePathSegment(&mData[i], state);
129     i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
130   }
131 
132   MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
133 
134   return state.length;
135 }
136 
137 #ifdef DEBUG
CountItems() const138 uint32_t SVGPathData::CountItems() const {
139   uint32_t i = 0, count = 0;
140 
141   while (i < mData.Length()) {
142     i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
143     count++;
144   }
145 
146   MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
147 
148   return count;
149 }
150 #endif
151 
GetDistancesFromOriginToEndsOfVisibleSegments(FallibleTArray<double> * aOutput) const152 bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments(
153     FallibleTArray<double>* aOutput) const {
154   SVGPathTraversalState state;
155 
156   aOutput->Clear();
157 
158   uint32_t i = 0;
159   while (i < mData.Length()) {
160     uint32_t segType = SVGPathSegUtils::DecodeType(mData[i]);
161     SVGPathSegUtils::TraversePathSegment(&mData[i], state);
162 
163     // With degenerately large point coordinates, TraversePathSegment can fail
164     // and end up producing NaNs.
165     if (!std::isfinite(state.length)) {
166       return false;
167     }
168 
169     // We skip all moveto commands except an initial moveto. See the text 'A
170     // "move to" command does not count as an additional point when dividing up
171     // the duration...':
172     //
173     // http://www.w3.org/TR/SVG11/animate.html#AnimateMotionElement
174     //
175     // This is important in the non-default case of calcMode="linear". In
176     // this case an equal amount of time is spent on each path segment,
177     // except on moveto segments which are jumped over immediately.
178 
179     if (i == 0 || !IsMoveto(segType)) {
180       if (!aOutput->AppendElement(state.length, fallible)) {
181         return false;
182       }
183     }
184     i += 1 + SVGPathSegUtils::ArgCountForType(segType);
185   }
186 
187   MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt?");
188 
189   return true;
190 }
191 
192 /* static */
GetDistancesFromOriginToEndsOfVisibleSegments(Span<const StylePathCommand> aPath,FallibleTArray<double> * aOutput)193 bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments(
194     Span<const StylePathCommand> aPath, FallibleTArray<double>* aOutput) {
195   SVGPathTraversalState state;
196 
197   aOutput->Clear();
198 
199   bool firstMoveToIsChecked = false;
200   for (const auto& cmd : aPath) {
201     SVGPathSegUtils::TraversePathSegment(cmd, state);
202     if (!std::isfinite(state.length)) {
203       return false;
204     }
205 
206     // We skip all moveto commands except for the initial moveto.
207     if (!cmd.IsMoveTo() || !firstMoveToIsChecked) {
208       if (!aOutput->AppendElement(state.length, fallible)) {
209         return false;
210       }
211     }
212 
213     if (cmd.IsMoveTo() && !firstMoveToIsChecked) {
214       firstMoveToIsChecked = true;
215     }
216   }
217 
218   return true;
219 }
220 
GetPathSegAtLength(float aDistance) const221 uint32_t SVGPathData::GetPathSegAtLength(float aDistance) const {
222   // TODO [SVGWG issue] get specified what happen if 'aDistance' < 0, or
223   // 'aDistance' > the length of the path, or the seg list is empty.
224   // Return -1? Throwing would better help authors avoid tricky bugs (DOM
225   // could do that if we return -1).
226 
227   uint32_t i = 0, segIndex = 0;
228   SVGPathTraversalState state;
229 
230   while (i < mData.Length()) {
231     SVGPathSegUtils::TraversePathSegment(&mData[i], state);
232     if (state.length >= aDistance) {
233       return segIndex;
234     }
235     i += 1 + SVGPathSegUtils::ArgCountForType(mData[i]);
236     segIndex++;
237   }
238 
239   MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
240 
241   return std::max(1U, segIndex) -
242          1;  // -1 because while loop takes us 1 too far
243 }
244 
245 /* static */
GetPathSegAtLength(Span<const StylePathCommand> aPath,float aDistance)246 uint32_t SVGPathData::GetPathSegAtLength(Span<const StylePathCommand> aPath,
247                                          float aDistance) {
248   uint32_t segIndex = 0;
249   SVGPathTraversalState state;
250 
251   for (const auto& cmd : aPath) {
252     SVGPathSegUtils::TraversePathSegment(cmd, state);
253     if (state.length >= aDistance) {
254       return segIndex;
255     }
256     segIndex++;
257   }
258 
259   return std::max(1U, segIndex) - 1;
260 }
261 
262 /**
263  * The SVG spec says we have to paint stroke caps for zero length subpaths:
264  *
265  *   http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
266  *
267  * Cairo only does this for |stroke-linecap: round| and not for
268  * |stroke-linecap: square| (since that's what Adobe Acrobat has always done).
269  * Most likely the other backends that DrawTarget uses have the same behavior.
270  *
271  * To help us conform to the SVG spec we have this helper function to draw an
272  * approximation of square caps for zero length subpaths. It does this by
273  * inserting a subpath containing a single user space axis aligned straight
274  * line that is as small as it can be while minimizing the risk of it being
275  * thrown away by the DrawTarget's backend for being too small to affect
276  * rendering. The idea is that we'll then get stroke caps drawn for this axis
277  * aligned line, creating an axis aligned rectangle that approximates the
278  * square that would ideally be drawn.
279  *
280  * Since we don't have any information about transforms from user space to
281  * device space, we choose the length of the small line that we insert by
282  * making it a small percentage of the stroke width of the path. This should
283  * hopefully allow us to make the line as long as possible (to avoid rounding
284  * issues in the backend resulting in the backend seeing it as having zero
285  * length) while still avoiding the small rectangle being noticeably different
286  * from a square.
287  *
288  * Note that this function inserts a subpath into the current gfx path that
289  * will be present during both fill and stroke operations.
290  */
ApproximateZeroLengthSubpathSquareCaps(PathBuilder * aPB,const Point & aPoint,Float aStrokeWidth)291 static void ApproximateZeroLengthSubpathSquareCaps(PathBuilder* aPB,
292                                                    const Point& aPoint,
293                                                    Float aStrokeWidth) {
294   // Note that caps are proportional to stroke width, so if stroke width is
295   // zero it's actually fine for |tinyLength| below to end up being zero.
296   // However, it would be a waste to inserting a LineTo in that case, so better
297   // not to.
298   MOZ_ASSERT(aStrokeWidth > 0.0f,
299              "Make the caller check for this, or check it here");
300 
301   // The fraction of the stroke width that we choose for the length of the
302   // line is rather arbitrary, other than being chosen to meet the requirements
303   // described in the comment above.
304 
305   Float tinyLength = aStrokeWidth / SVG_ZERO_LENGTH_PATH_FIX_FACTOR;
306 
307   aPB->LineTo(aPoint + Point(tinyLength, 0));
308   aPB->MoveTo(aPoint);
309 }
310 
311 #define MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT  \
312   do {                                                           \
313     if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 &&  \
314         subpathContainsNonMoveTo && IsValidType(prevSegType) &&  \
315         (!IsMoveto(prevSegType) || IsClosePath(segType))) {      \
316       ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart, \
317                                              aStrokeWidth);      \
318     }                                                            \
319   } while (0)
320 
BuildPath(PathBuilder * aBuilder,StyleStrokeLinecap aStrokeLineCap,Float aStrokeWidth) const321 already_AddRefed<Path> SVGPathData::BuildPath(PathBuilder* aBuilder,
322                                               StyleStrokeLinecap aStrokeLineCap,
323                                               Float aStrokeWidth) const {
324   if (mData.IsEmpty() || !IsMoveto(SVGPathSegUtils::DecodeType(mData[0]))) {
325     return nullptr;  // paths without an initial moveto are invalid
326   }
327 
328   bool hasLineCaps = aStrokeLineCap != StyleStrokeLinecap::Butt;
329   bool subpathHasLength = false;  // visual length
330   bool subpathContainsNonMoveTo = false;
331 
332   uint32_t segType = PATHSEG_UNKNOWN;
333   uint32_t prevSegType = PATHSEG_UNKNOWN;
334   Point pathStart(0.0, 0.0);  // start point of [sub]path
335   Point segStart(0.0, 0.0);
336   Point segEnd;
337   Point cp1, cp2;    // previous bezier's control points
338   Point tcp1, tcp2;  // temporaries
339 
340   // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve,
341   // then cp2 is its second control point. If the previous segment was a
342   // quadratic curve, then cp1 is its (only) control point.
343 
344   uint32_t i = 0;
345   while (i < mData.Length()) {
346     segType = SVGPathSegUtils::DecodeType(mData[i++]);
347     uint32_t argCount = SVGPathSegUtils::ArgCountForType(segType);
348 
349     switch (segType) {
350       case PATHSEG_CLOSEPATH:
351         // set this early to allow drawing of square caps for "M{x},{y} Z":
352         subpathContainsNonMoveTo = true;
353         MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
354         segEnd = pathStart;
355         aBuilder->Close();
356         break;
357 
358       case PATHSEG_MOVETO_ABS:
359         MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
360         pathStart = segEnd = Point(mData[i], mData[i + 1]);
361         aBuilder->MoveTo(segEnd);
362         subpathHasLength = false;
363         break;
364 
365       case PATHSEG_MOVETO_REL:
366         MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
367         pathStart = segEnd = segStart + Point(mData[i], mData[i + 1]);
368         aBuilder->MoveTo(segEnd);
369         subpathHasLength = false;
370         break;
371 
372       case PATHSEG_LINETO_ABS:
373         segEnd = Point(mData[i], mData[i + 1]);
374         if (segEnd != segStart) {
375           subpathHasLength = true;
376           aBuilder->LineTo(segEnd);
377         }
378         break;
379 
380       case PATHSEG_LINETO_REL:
381         segEnd = segStart + Point(mData[i], mData[i + 1]);
382         if (segEnd != segStart) {
383           subpathHasLength = true;
384           aBuilder->LineTo(segEnd);
385         }
386         break;
387 
388       case PATHSEG_CURVETO_CUBIC_ABS:
389         cp1 = Point(mData[i], mData[i + 1]);
390         cp2 = Point(mData[i + 2], mData[i + 3]);
391         segEnd = Point(mData[i + 4], mData[i + 5]);
392         if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
393           subpathHasLength = true;
394           aBuilder->BezierTo(cp1, cp2, segEnd);
395         }
396         break;
397 
398       case PATHSEG_CURVETO_CUBIC_REL:
399         cp1 = segStart + Point(mData[i], mData[i + 1]);
400         cp2 = segStart + Point(mData[i + 2], mData[i + 3]);
401         segEnd = segStart + Point(mData[i + 4], mData[i + 5]);
402         if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
403           subpathHasLength = true;
404           aBuilder->BezierTo(cp1, cp2, segEnd);
405         }
406         break;
407 
408       case PATHSEG_CURVETO_QUADRATIC_ABS:
409         cp1 = Point(mData[i], mData[i + 1]);
410         // Convert quadratic curve to cubic curve:
411         tcp1 = segStart + (cp1 - segStart) * 2 / 3;
412         segEnd = Point(mData[i + 2], mData[i + 3]);  // set before setting tcp2!
413         tcp2 = cp1 + (segEnd - cp1) / 3;
414         if (segEnd != segStart || segEnd != cp1) {
415           subpathHasLength = true;
416           aBuilder->BezierTo(tcp1, tcp2, segEnd);
417         }
418         break;
419 
420       case PATHSEG_CURVETO_QUADRATIC_REL:
421         cp1 = segStart + Point(mData[i], mData[i + 1]);
422         // Convert quadratic curve to cubic curve:
423         tcp1 = segStart + (cp1 - segStart) * 2 / 3;
424         segEnd = segStart +
425                  Point(mData[i + 2], mData[i + 3]);  // set before setting tcp2!
426         tcp2 = cp1 + (segEnd - cp1) / 3;
427         if (segEnd != segStart || segEnd != cp1) {
428           subpathHasLength = true;
429           aBuilder->BezierTo(tcp1, tcp2, segEnd);
430         }
431         break;
432 
433       case PATHSEG_ARC_ABS:
434       case PATHSEG_ARC_REL: {
435         Point radii(mData[i], mData[i + 1]);
436         segEnd = Point(mData[i + 5], mData[i + 6]);
437         if (segType == PATHSEG_ARC_REL) {
438           segEnd += segStart;
439         }
440         if (segEnd != segStart) {
441           subpathHasLength = true;
442           if (radii.x == 0.0f || radii.y == 0.0f) {
443             aBuilder->LineTo(segEnd);
444           } else {
445             SVGArcConverter converter(segStart, segEnd, radii, mData[i + 2],
446                                       mData[i + 3] != 0, mData[i + 4] != 0);
447             while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) {
448               aBuilder->BezierTo(cp1, cp2, segEnd);
449             }
450           }
451         }
452         break;
453       }
454 
455       case PATHSEG_LINETO_HORIZONTAL_ABS:
456         segEnd = Point(mData[i], segStart.y);
457         if (segEnd != segStart) {
458           subpathHasLength = true;
459           aBuilder->LineTo(segEnd);
460         }
461         break;
462 
463       case PATHSEG_LINETO_HORIZONTAL_REL:
464         segEnd = segStart + Point(mData[i], 0.0f);
465         if (segEnd != segStart) {
466           subpathHasLength = true;
467           aBuilder->LineTo(segEnd);
468         }
469         break;
470 
471       case PATHSEG_LINETO_VERTICAL_ABS:
472         segEnd = Point(segStart.x, mData[i]);
473         if (segEnd != segStart) {
474           subpathHasLength = true;
475           aBuilder->LineTo(segEnd);
476         }
477         break;
478 
479       case PATHSEG_LINETO_VERTICAL_REL:
480         segEnd = segStart + Point(0.0f, mData[i]);
481         if (segEnd != segStart) {
482           subpathHasLength = true;
483           aBuilder->LineTo(segEnd);
484         }
485         break;
486 
487       case PATHSEG_CURVETO_CUBIC_SMOOTH_ABS:
488         cp1 = SVGPathSegUtils::IsCubicType(prevSegType) ? segStart * 2 - cp2
489                                                         : segStart;
490         cp2 = Point(mData[i], mData[i + 1]);
491         segEnd = Point(mData[i + 2], mData[i + 3]);
492         if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
493           subpathHasLength = true;
494           aBuilder->BezierTo(cp1, cp2, segEnd);
495         }
496         break;
497 
498       case PATHSEG_CURVETO_CUBIC_SMOOTH_REL:
499         cp1 = SVGPathSegUtils::IsCubicType(prevSegType) ? segStart * 2 - cp2
500                                                         : segStart;
501         cp2 = segStart + Point(mData[i], mData[i + 1]);
502         segEnd = segStart + Point(mData[i + 2], mData[i + 3]);
503         if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
504           subpathHasLength = true;
505           aBuilder->BezierTo(cp1, cp2, segEnd);
506         }
507         break;
508 
509       case PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS:
510         cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) ? segStart * 2 - cp1
511                                                             : segStart;
512         // Convert quadratic curve to cubic curve:
513         tcp1 = segStart + (cp1 - segStart) * 2 / 3;
514         segEnd = Point(mData[i], mData[i + 1]);  // set before setting tcp2!
515         tcp2 = cp1 + (segEnd - cp1) / 3;
516         if (segEnd != segStart || segEnd != cp1) {
517           subpathHasLength = true;
518           aBuilder->BezierTo(tcp1, tcp2, segEnd);
519         }
520         break;
521 
522       case PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL:
523         cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType) ? segStart * 2 - cp1
524                                                             : segStart;
525         // Convert quadratic curve to cubic curve:
526         tcp1 = segStart + (cp1 - segStart) * 2 / 3;
527         segEnd = segStart +
528                  Point(mData[i], mData[i + 1]);  // changed before setting tcp2!
529         tcp2 = cp1 + (segEnd - cp1) / 3;
530         if (segEnd != segStart || segEnd != cp1) {
531           subpathHasLength = true;
532           aBuilder->BezierTo(tcp1, tcp2, segEnd);
533         }
534         break;
535 
536       default:
537         MOZ_ASSERT_UNREACHABLE("Bad path segment type");
538         return nullptr;  // according to spec we'd use everything up to the bad
539                          // seg anyway
540     }
541 
542     subpathContainsNonMoveTo = !IsMoveto(segType);
543     i += argCount;
544     prevSegType = segType;
545     segStart = segEnd;
546   }
547 
548   MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
549   MOZ_ASSERT(prevSegType == segType,
550              "prevSegType should be left at the final segType");
551 
552   MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
553 
554   return aBuilder->Finish();
555 }
556 
BuildPathForMeasuring() const557 already_AddRefed<Path> SVGPathData::BuildPathForMeasuring() const {
558   // Since the path that we return will not be used for painting it doesn't
559   // matter what we pass to CreatePathBuilder as aFillRule. Hawever, we do want
560   // to pass something other than NS_STYLE_STROKE_LINECAP_SQUARE as
561   // aStrokeLineCap to avoid the insertion of extra little lines (by
562   // ApproximateZeroLengthSubpathSquareCaps), in which case the value that we
563   // pass as aStrokeWidth doesn't matter (since it's only used to determine the
564   // length of those extra little lines).
565 
566   RefPtr<DrawTarget> drawTarget =
567       gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
568   RefPtr<PathBuilder> builder =
569       drawTarget->CreatePathBuilder(FillRule::FILL_WINDING);
570   return BuildPath(builder, StyleStrokeLinecap::Butt, 0);
571 }
572 
573 /* static */
BuildPathForMeasuring(Span<const StylePathCommand> aPath)574 already_AddRefed<Path> SVGPathData::BuildPathForMeasuring(
575     Span<const StylePathCommand> aPath) {
576   RefPtr<DrawTarget> drawTarget =
577       gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
578   RefPtr<PathBuilder> builder =
579       drawTarget->CreatePathBuilder(FillRule::FILL_WINDING);
580   return BuildPath(aPath, builder, StyleStrokeLinecap::Butt, 0);
581 }
582 
583 // We could simplify this function because this is only used by CSS motion path
584 // and clip-path, which don't render the SVG Path. i.e. The returned path is
585 // used as a reference.
586 /* static */
BuildPath(Span<const StylePathCommand> aPath,PathBuilder * aBuilder,StyleStrokeLinecap aStrokeLineCap,Float aStrokeWidth,float aZoomFactor)587 already_AddRefed<Path> SVGPathData::BuildPath(
588     Span<const StylePathCommand> aPath, PathBuilder* aBuilder,
589     StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth, float aZoomFactor) {
590   if (aPath.IsEmpty() || !aPath[0].IsMoveTo()) {
591     return nullptr;  // paths without an initial moveto are invalid
592   }
593 
594   bool hasLineCaps = aStrokeLineCap != StyleStrokeLinecap::Butt;
595   bool subpathHasLength = false;  // visual length
596   bool subpathContainsNonMoveTo = false;
597 
598   StylePathCommand::Tag segType = StylePathCommand::Tag::Unknown;
599   StylePathCommand::Tag prevSegType = StylePathCommand::Tag::Unknown;
600   Point pathStart(0.0, 0.0);  // start point of [sub]path
601   Point segStart(0.0, 0.0);
602   Point segEnd;
603   Point cp1, cp2;    // previous bezier's control points
604   Point tcp1, tcp2;  // temporaries
605 
606   auto scale = [aZoomFactor](const Point& p) {
607     return Point(p.x * aZoomFactor, p.y * aZoomFactor);
608   };
609 
610   // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve,
611   // then cp2 is its second control point. If the previous segment was a
612   // quadratic curve, then cp1 is its (only) control point.
613 
614   for (const StylePathCommand& cmd : aPath) {
615     segType = cmd.tag;
616     switch (segType) {
617       case StylePathCommand::Tag::ClosePath:
618         // set this early to allow drawing of square caps for "M{x},{y} Z":
619         subpathContainsNonMoveTo = true;
620         MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
621         segEnd = pathStart;
622         aBuilder->Close();
623         break;
624       case StylePathCommand::Tag::MoveTo: {
625         MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
626         const Point& p = ToGfxPoint(cmd.move_to.point);
627         pathStart = segEnd =
628             cmd.move_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p;
629         aBuilder->MoveTo(scale(segEnd));
630         subpathHasLength = false;
631         break;
632       }
633       case StylePathCommand::Tag::LineTo: {
634         const Point& p = ToGfxPoint(cmd.line_to.point);
635         segEnd =
636             cmd.line_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p;
637         if (segEnd != segStart) {
638           subpathHasLength = true;
639           aBuilder->LineTo(scale(segEnd));
640         }
641         break;
642       }
643       case StylePathCommand::Tag::CurveTo:
644         cp1 = ToGfxPoint(cmd.curve_to.control1);
645         cp2 = ToGfxPoint(cmd.curve_to.control2);
646         segEnd = ToGfxPoint(cmd.curve_to.point);
647 
648         if (cmd.curve_to.absolute == StyleIsAbsolute::No) {
649           cp1 += segStart;
650           cp2 += segStart;
651           segEnd += segStart;
652         }
653 
654         if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
655           subpathHasLength = true;
656           aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
657         }
658         break;
659 
660       case StylePathCommand::Tag::QuadBezierCurveTo:
661         cp1 = ToGfxPoint(cmd.quad_bezier_curve_to.control1);
662         segEnd = ToGfxPoint(cmd.quad_bezier_curve_to.point);
663 
664         if (cmd.quad_bezier_curve_to.absolute == StyleIsAbsolute::No) {
665           cp1 += segStart;
666           segEnd += segStart;  // set before setting tcp2!
667         }
668 
669         // Convert quadratic curve to cubic curve:
670         tcp1 = segStart + (cp1 - segStart) * 2 / 3;
671         tcp2 = cp1 + (segEnd - cp1) / 3;
672 
673         if (segEnd != segStart || segEnd != cp1) {
674           subpathHasLength = true;
675           aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd));
676         }
677         break;
678 
679       case StylePathCommand::Tag::EllipticalArc: {
680         const auto& arc = cmd.elliptical_arc;
681         Point radii(arc.rx, arc.ry);
682         segEnd = ToGfxPoint(arc.point);
683         if (arc.absolute == StyleIsAbsolute::No) {
684           segEnd += segStart;
685         }
686         if (segEnd != segStart) {
687           subpathHasLength = true;
688           if (radii.x == 0.0f || radii.y == 0.0f) {
689             aBuilder->LineTo(scale(segEnd));
690           } else {
691             SVGArcConverter converter(segStart, segEnd, radii, arc.angle,
692                                       arc.large_arc_flag._0, arc.sweep_flag._0);
693             while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) {
694               aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
695             }
696           }
697         }
698         break;
699       }
700       case StylePathCommand::Tag::HorizontalLineTo:
701         if (cmd.horizontal_line_to.absolute == StyleIsAbsolute::Yes) {
702           segEnd = Point(cmd.horizontal_line_to.x, segStart.y);
703         } else {
704           segEnd = segStart + Point(cmd.horizontal_line_to.x, 0.0f);
705         }
706 
707         if (segEnd != segStart) {
708           subpathHasLength = true;
709           aBuilder->LineTo(scale(segEnd));
710         }
711         break;
712 
713       case StylePathCommand::Tag::VerticalLineTo:
714         if (cmd.vertical_line_to.absolute == StyleIsAbsolute::Yes) {
715           segEnd = Point(segStart.x, cmd.vertical_line_to.y);
716         } else {
717           segEnd = segStart + Point(0.0f, cmd.vertical_line_to.y);
718         }
719 
720         if (segEnd != segStart) {
721           subpathHasLength = true;
722           aBuilder->LineTo(scale(segEnd));
723         }
724         break;
725 
726       case StylePathCommand::Tag::SmoothCurveTo:
727         cp1 = IsCubicType(prevSegType) ? segStart * 2 - cp2 : segStart;
728         cp2 = ToGfxPoint(cmd.smooth_curve_to.control2);
729         segEnd = ToGfxPoint(cmd.smooth_curve_to.point);
730 
731         if (cmd.smooth_curve_to.absolute == StyleIsAbsolute::No) {
732           cp2 += segStart;
733           segEnd += segStart;
734         }
735 
736         if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
737           subpathHasLength = true;
738           aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
739         }
740         break;
741 
742       case StylePathCommand::Tag::SmoothQuadBezierCurveTo: {
743         cp1 = IsQuadraticType(prevSegType) ? segStart * 2 - cp1 : segStart;
744         // Convert quadratic curve to cubic curve:
745         tcp1 = segStart + (cp1 - segStart) * 2 / 3;
746 
747         const Point& p = ToGfxPoint(cmd.smooth_quad_bezier_curve_to.point);
748         // set before setting tcp2!
749         segEnd =
750             cmd.smooth_quad_bezier_curve_to.absolute == StyleIsAbsolute::Yes
751                 ? p
752                 : segStart + p;
753         tcp2 = cp1 + (segEnd - cp1) / 3;
754 
755         if (segEnd != segStart || segEnd != cp1) {
756           subpathHasLength = true;
757           aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd));
758         }
759         break;
760       }
761       case StylePathCommand::Tag::Unknown:
762         MOZ_ASSERT_UNREACHABLE("Unacceptable path segment type");
763         return nullptr;
764     }
765 
766     subpathContainsNonMoveTo = !IsMoveto(segType);
767     prevSegType = segType;
768     segStart = segEnd;
769   }
770 
771   MOZ_ASSERT(prevSegType == segType,
772              "prevSegType should be left at the final segType");
773 
774   MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT;
775 
776   return aBuilder->Finish();
777 }
778 
AngleOfVector(const Point & aVector)779 static double AngleOfVector(const Point& aVector) {
780   // C99 says about atan2 "A domain error may occur if both arguments are
781   // zero" and "On a domain error, the function returns an implementation-
782   // defined value". In the case of atan2 the implementation-defined value
783   // seems to commonly be zero, but it could just as easily be a NaN value.
784   // We specifically want zero in this case, hence the check:
785 
786   return (aVector != Point(0.0, 0.0)) ? atan2(aVector.y, aVector.x) : 0.0;
787 }
788 
AngleOfVector(const Point & cp1,const Point & cp2)789 static float AngleOfVector(const Point& cp1, const Point& cp2) {
790   return static_cast<float>(AngleOfVector(cp1 - cp2));
791 }
792 
793 // This implements F.6.5 and F.6.6 of
794 // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
795 static std::tuple<float, float, float, float>
796 /* rx, ry, segStartAngle, segEndAngle */
ComputeSegAnglesAndCorrectRadii(const Point & aSegStart,const Point & aSegEnd,const float aAngle,const bool aLargeArcFlag,const bool aSweepFlag,const float aRx,const float aRy)797 ComputeSegAnglesAndCorrectRadii(const Point& aSegStart, const Point& aSegEnd,
798                                 const float aAngle, const bool aLargeArcFlag,
799                                 const bool aSweepFlag, const float aRx,
800                                 const float aRy) {
801   float rx = fabs(aRx);  // F.6.6.1
802   float ry = fabs(aRy);
803 
804   // F.6.5.1:
805   const float angle = static_cast<float>(aAngle * M_PI / 180.0);
806   double x1p = cos(angle) * (aSegStart.x - aSegEnd.x) / 2.0 +
807                sin(angle) * (aSegStart.y - aSegEnd.y) / 2.0;
808   double y1p = -sin(angle) * (aSegStart.x - aSegEnd.x) / 2.0 +
809                cos(angle) * (aSegStart.y - aSegEnd.y) / 2.0;
810 
811   // This is the root in F.6.5.2 and the numerator under that root:
812   double root;
813   double numerator =
814       rx * rx * ry * ry - rx * rx * y1p * y1p - ry * ry * x1p * x1p;
815 
816   if (numerator >= 0.0) {
817     root = sqrt(numerator / (rx * rx * y1p * y1p + ry * ry * x1p * x1p));
818     if (aLargeArcFlag == aSweepFlag) root = -root;
819   } else {
820     // F.6.6 step 3 - |numerator < 0.0|. This is equivalent to the result
821     // of F.6.6.2 (lamedh) being greater than one. What we have here is
822     // ellipse radii that are too small for the ellipse to reach between
823     // segStart and segEnd. We scale the radii up uniformly so that the
824     // ellipse is just big enough to fit (i.e. to the point where there is
825     // exactly one solution).
826 
827     double lamedh =
828         1.0 - numerator / (rx * rx * ry * ry);  // equiv to eqn F.6.6.2
829     double s = sqrt(lamedh);
830     rx = static_cast<float>((double)rx * s);  // F.6.6.3
831     ry = static_cast<float>((double)ry * s);
832     root = 0.0;
833   }
834 
835   double cxp = root * rx * y1p / ry;  // F.6.5.2
836   double cyp = -root * ry * x1p / rx;
837 
838   double theta =
839       AngleOfVector(Point(static_cast<float>((x1p - cxp) / rx),
840                           static_cast<float>((y1p - cyp) / ry)));  // F.6.5.5
841   double delta =
842       AngleOfVector(Point(static_cast<float>((-x1p - cxp) / rx),
843                           static_cast<float>((-y1p - cyp) / ry))) -  // F.6.5.6
844       theta;
845   if (!aSweepFlag && delta > 0) {
846     delta -= 2.0 * M_PI;
847   } else if (aSweepFlag && delta < 0) {
848     delta += 2.0 * M_PI;
849   }
850 
851   double tx1, ty1, tx2, ty2;
852   tx1 = -cos(angle) * rx * sin(theta) - sin(angle) * ry * cos(theta);
853   ty1 = -sin(angle) * rx * sin(theta) + cos(angle) * ry * cos(theta);
854   tx2 = -cos(angle) * rx * sin(theta + delta) -
855         sin(angle) * ry * cos(theta + delta);
856   ty2 = -sin(angle) * rx * sin(theta + delta) +
857         cos(angle) * ry * cos(theta + delta);
858 
859   if (delta < 0.0f) {
860     tx1 = -tx1;
861     ty1 = -ty1;
862     tx2 = -tx2;
863     ty2 = -ty2;
864   }
865 
866   return {rx, ry, static_cast<float>(atan2(ty1, tx1)),
867           static_cast<float>(atan2(ty2, tx2))};
868 }
869 
GetMarkerPositioningData(nsTArray<SVGMark> * aMarks) const870 void SVGPathData::GetMarkerPositioningData(nsTArray<SVGMark>* aMarks) const {
871   // This code should assume that ANY type of segment can appear at ANY index.
872   // It should also assume that segments such as M and Z can appear in weird
873   // places, and repeat multiple times consecutively.
874 
875   // info on current [sub]path (reset every M command):
876   Point pathStart(0.0, 0.0);
877   float pathStartAngle = 0.0f;
878   uint32_t pathStartIndex = 0;
879 
880   // info on previous segment:
881   uint16_t prevSegType = PATHSEG_UNKNOWN;
882   Point prevSegEnd(0.0, 0.0);
883   float prevSegEndAngle = 0.0f;
884   Point prevCP;  // if prev seg was a bezier, this was its last control point
885 
886   uint32_t i = 0;
887   while (i < mData.Length()) {
888     // info on current segment:
889     uint16_t segType =
890         SVGPathSegUtils::DecodeType(mData[i++]);  // advances i to args
891     Point& segStart = prevSegEnd;
892     Point segEnd;
893     float segStartAngle, segEndAngle;
894 
895     switch (segType)  // to find segStartAngle, segEnd and segEndAngle
896     {
897       case PATHSEG_CLOSEPATH:
898         segEnd = pathStart;
899         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
900         break;
901 
902       case PATHSEG_MOVETO_ABS:
903       case PATHSEG_MOVETO_REL:
904         if (segType == PATHSEG_MOVETO_ABS) {
905           segEnd = Point(mData[i], mData[i + 1]);
906         } else {
907           segEnd = segStart + Point(mData[i], mData[i + 1]);
908         }
909         pathStart = segEnd;
910         pathStartIndex = aMarks->Length();
911         // If authors are going to specify multiple consecutive moveto commands
912         // with markers, me might as well make the angle do something useful:
913         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
914         i += 2;
915         break;
916 
917       case PATHSEG_LINETO_ABS:
918       case PATHSEG_LINETO_REL:
919         if (segType == PATHSEG_LINETO_ABS) {
920           segEnd = Point(mData[i], mData[i + 1]);
921         } else {
922           segEnd = segStart + Point(mData[i], mData[i + 1]);
923         }
924         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
925         i += 2;
926         break;
927 
928       case PATHSEG_CURVETO_CUBIC_ABS:
929       case PATHSEG_CURVETO_CUBIC_REL: {
930         Point cp1, cp2;  // control points
931         if (segType == PATHSEG_CURVETO_CUBIC_ABS) {
932           cp1 = Point(mData[i], mData[i + 1]);
933           cp2 = Point(mData[i + 2], mData[i + 3]);
934           segEnd = Point(mData[i + 4], mData[i + 5]);
935         } else {
936           cp1 = segStart + Point(mData[i], mData[i + 1]);
937           cp2 = segStart + Point(mData[i + 2], mData[i + 3]);
938           segEnd = segStart + Point(mData[i + 4], mData[i + 5]);
939         }
940         prevCP = cp2;
941         segStartAngle = AngleOfVector(
942             cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
943         segEndAngle = AngleOfVector(
944             segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
945         i += 6;
946         break;
947       }
948 
949       case PATHSEG_CURVETO_QUADRATIC_ABS:
950       case PATHSEG_CURVETO_QUADRATIC_REL: {
951         Point cp1;  // control point
952         if (segType == PATHSEG_CURVETO_QUADRATIC_ABS) {
953           cp1 = Point(mData[i], mData[i + 1]);
954           segEnd = Point(mData[i + 2], mData[i + 3]);
955         } else {
956           cp1 = segStart + Point(mData[i], mData[i + 1]);
957           segEnd = segStart + Point(mData[i + 2], mData[i + 3]);
958         }
959         prevCP = cp1;
960         segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
961         segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
962         i += 4;
963         break;
964       }
965 
966       case PATHSEG_ARC_ABS:
967       case PATHSEG_ARC_REL: {
968         float rx = mData[i];
969         float ry = mData[i + 1];
970         float angle = mData[i + 2];
971         bool largeArcFlag = mData[i + 3] != 0.0f;
972         bool sweepFlag = mData[i + 4] != 0.0f;
973         if (segType == PATHSEG_ARC_ABS) {
974           segEnd = Point(mData[i + 5], mData[i + 6]);
975         } else {
976           segEnd = segStart + Point(mData[i + 5], mData[i + 6]);
977         }
978 
979         // See section F.6 of SVG 1.1 for details on what we're doing here:
980         // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
981 
982         if (segStart == segEnd) {
983           // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical,
984           // then this is equivalent to omitting the elliptical arc segment
985           // entirely." We take that very literally here, not adding a mark, and
986           // not even setting any of the 'prev' variables so that it's as if
987           // this arc had never existed; note the difference this will make e.g.
988           // if the arc is proceeded by a bezier curve and followed by a
989           // "smooth" bezier curve of the same degree!
990           i += 7;
991           continue;
992         }
993 
994         // Below we have funny interleaving of F.6.6 (Correction of out-of-range
995         // radii) and F.6.5 (Conversion from endpoint to center
996         // parameterization) which is designed to avoid some unnecessary
997         // calculations.
998 
999         if (rx == 0.0 || ry == 0.0) {
1000           // F.6.6 step 1 - straight line or coincidental points
1001           segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1002           i += 7;
1003           break;
1004         }
1005 
1006         std::tie(rx, ry, segStartAngle, segEndAngle) =
1007             ComputeSegAnglesAndCorrectRadii(segStart, segEnd, angle,
1008                                             largeArcFlag, sweepFlag, rx, ry);
1009         i += 7;
1010         break;
1011       }
1012 
1013       case PATHSEG_LINETO_HORIZONTAL_ABS:
1014       case PATHSEG_LINETO_HORIZONTAL_REL:
1015         if (segType == PATHSEG_LINETO_HORIZONTAL_ABS) {
1016           segEnd = Point(mData[i++], segStart.y);
1017         } else {
1018           segEnd = segStart + Point(mData[i++], 0.0f);
1019         }
1020         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1021         break;
1022 
1023       case PATHSEG_LINETO_VERTICAL_ABS:
1024       case PATHSEG_LINETO_VERTICAL_REL:
1025         if (segType == PATHSEG_LINETO_VERTICAL_ABS) {
1026           segEnd = Point(segStart.x, mData[i++]);
1027         } else {
1028           segEnd = segStart + Point(0.0f, mData[i++]);
1029         }
1030         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1031         break;
1032 
1033       case PATHSEG_CURVETO_CUBIC_SMOOTH_ABS:
1034       case PATHSEG_CURVETO_CUBIC_SMOOTH_REL: {
1035         Point cp1 = SVGPathSegUtils::IsCubicType(prevSegType)
1036                         ? segStart * 2 - prevCP
1037                         : segStart;
1038         Point cp2;
1039         if (segType == PATHSEG_CURVETO_CUBIC_SMOOTH_ABS) {
1040           cp2 = Point(mData[i], mData[i + 1]);
1041           segEnd = Point(mData[i + 2], mData[i + 3]);
1042         } else {
1043           cp2 = segStart + Point(mData[i], mData[i + 1]);
1044           segEnd = segStart + Point(mData[i + 2], mData[i + 3]);
1045         }
1046         prevCP = cp2;
1047         segStartAngle = AngleOfVector(
1048             cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
1049         segEndAngle = AngleOfVector(
1050             segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
1051         i += 4;
1052         break;
1053       }
1054 
1055       case PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS:
1056       case PATHSEG_CURVETO_QUADRATIC_SMOOTH_REL: {
1057         Point cp1 = SVGPathSegUtils::IsQuadraticType(prevSegType)
1058                         ? segStart * 2 - prevCP
1059                         : segStart;
1060         if (segType == PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS) {
1061           segEnd = Point(mData[i], mData[i + 1]);
1062         } else {
1063           segEnd = segStart + Point(mData[i], mData[i + 1]);
1064         }
1065         prevCP = cp1;
1066         segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
1067         segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
1068         i += 2;
1069         break;
1070       }
1071 
1072       default:
1073         // Leave any existing marks in aMarks so we have a visual indication of
1074         // when things went wrong.
1075         MOZ_ASSERT(false, "Unknown segment type - path corruption?");
1076         return;
1077     }
1078 
1079     // Set the angle of the mark at the start of this segment:
1080     if (aMarks->Length()) {
1081       SVGMark& mark = aMarks->LastElement();
1082       if (!IsMoveto(segType) && IsMoveto(prevSegType)) {
1083         // start of new subpath
1084         pathStartAngle = mark.angle = segStartAngle;
1085       } else if (IsMoveto(segType) && !IsMoveto(prevSegType)) {
1086         // end of a subpath
1087         if (prevSegType != PATHSEG_CLOSEPATH) mark.angle = prevSegEndAngle;
1088       } else {
1089         if (!(segType == PATHSEG_CLOSEPATH && prevSegType == PATHSEG_CLOSEPATH))
1090           mark.angle =
1091               SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle);
1092       }
1093     }
1094 
1095     // Add the mark at the end of this segment, and set its position:
1096     // XXX(Bug 1631371) Check if this should use a fallible operation as it
1097     // pretended earlier.
1098     aMarks->AppendElement(SVGMark(static_cast<float>(segEnd.x),
1099                                   static_cast<float>(segEnd.y), 0.0f,
1100                                   SVGMark::eMid));
1101 
1102     if (segType == PATHSEG_CLOSEPATH && prevSegType != PATHSEG_CLOSEPATH) {
1103       aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle =
1104           SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle);
1105     }
1106 
1107     prevSegType = segType;
1108     prevSegEnd = segEnd;
1109     prevSegEndAngle = segEndAngle;
1110   }
1111 
1112   MOZ_ASSERT(i == mData.Length(), "Very, very bad - mData corrupt");
1113 
1114   if (aMarks->Length()) {
1115     if (prevSegType != PATHSEG_CLOSEPATH) {
1116       aMarks->LastElement().angle = prevSegEndAngle;
1117     }
1118     aMarks->LastElement().type = SVGMark::eEnd;
1119     aMarks->ElementAt(0).type = SVGMark::eStart;
1120   }
1121 }
1122 
1123 // Basically, this is identical to the above function, but replace |mData| with
1124 // |aPath|. We probably can factor out some identical calculation, but I believe
1125 // the above one will be removed because we will use any kind of array of
1126 // StylePathCommand for SVG d attribute in the future.
1127 /* static */
GetMarkerPositioningData(Span<const StylePathCommand> aPath,nsTArray<SVGMark> * aMarks)1128 void SVGPathData::GetMarkerPositioningData(Span<const StylePathCommand> aPath,
1129                                            nsTArray<SVGMark>* aMarks) {
1130   if (aPath.IsEmpty()) {
1131     return;
1132   }
1133 
1134   // info on current [sub]path (reset every M command):
1135   Point pathStart(0.0, 0.0);
1136   float pathStartAngle = 0.0f;
1137   uint32_t pathStartIndex = 0;
1138 
1139   // info on previous segment:
1140   StylePathCommand::Tag prevSegType = StylePathCommand::Tag::Unknown;
1141   Point prevSegEnd(0.0, 0.0);
1142   float prevSegEndAngle = 0.0f;
1143   Point prevCP;  // if prev seg was a bezier, this was its last control point
1144 
1145   StylePathCommand::Tag segType = StylePathCommand::Tag::Unknown;
1146   for (const StylePathCommand& cmd : aPath) {
1147     segType = cmd.tag;
1148     Point& segStart = prevSegEnd;
1149     Point segEnd;
1150     float segStartAngle, segEndAngle;
1151 
1152     switch (segType)  // to find segStartAngle, segEnd and segEndAngle
1153     {
1154       case StylePathCommand::Tag::ClosePath:
1155         segEnd = pathStart;
1156         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1157         break;
1158 
1159       case StylePathCommand::Tag::MoveTo: {
1160         const Point& p = ToGfxPoint(cmd.move_to.point);
1161         pathStart = segEnd =
1162             cmd.move_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p;
1163         pathStartIndex = aMarks->Length();
1164         // If authors are going to specify multiple consecutive moveto commands
1165         // with markers, me might as well make the angle do something useful:
1166         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1167         break;
1168       }
1169       case StylePathCommand::Tag::LineTo: {
1170         const Point& p = ToGfxPoint(cmd.line_to.point);
1171         segEnd =
1172             cmd.line_to.absolute == StyleIsAbsolute::Yes ? p : segStart + p;
1173         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1174         break;
1175       }
1176       case StylePathCommand::Tag::CurveTo: {
1177         Point cp1 = ToGfxPoint(cmd.curve_to.control1);
1178         Point cp2 = ToGfxPoint(cmd.curve_to.control2);
1179         segEnd = ToGfxPoint(cmd.curve_to.point);
1180 
1181         if (cmd.curve_to.absolute == StyleIsAbsolute::No) {
1182           cp1 += segStart;
1183           cp2 += segStart;
1184           segEnd += segStart;
1185         }
1186 
1187         prevCP = cp2;
1188         segStartAngle = AngleOfVector(
1189             cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
1190         segEndAngle = AngleOfVector(
1191             segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
1192         break;
1193       }
1194       case StylePathCommand::Tag::QuadBezierCurveTo: {
1195         Point cp1 = ToGfxPoint(cmd.quad_bezier_curve_to.control1);
1196         segEnd = ToGfxPoint(cmd.quad_bezier_curve_to.point);
1197 
1198         if (cmd.quad_bezier_curve_to.absolute == StyleIsAbsolute::No) {
1199           cp1 += segStart;
1200           segEnd += segStart;  // set before setting tcp2!
1201         }
1202 
1203         prevCP = cp1;
1204         segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
1205         segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
1206         break;
1207       }
1208       case StylePathCommand::Tag::EllipticalArc: {
1209         const auto& arc = cmd.elliptical_arc;
1210         float rx = arc.rx;
1211         float ry = arc.ry;
1212         float angle = arc.angle;
1213         bool largeArcFlag = arc.large_arc_flag._0;
1214         bool sweepFlag = arc.sweep_flag._0;
1215         Point radii(arc.rx, arc.ry);
1216         segEnd = ToGfxPoint(arc.point);
1217         if (arc.absolute == StyleIsAbsolute::No) {
1218           segEnd += segStart;
1219         }
1220 
1221         // See section F.6 of SVG 1.1 for details on what we're doing here:
1222         // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
1223 
1224         if (segStart == segEnd) {
1225           // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical,
1226           // then this is equivalent to omitting the elliptical arc segment
1227           // entirely." We take that very literally here, not adding a mark, and
1228           // not even setting any of the 'prev' variables so that it's as if
1229           // this arc had never existed; note the difference this will make e.g.
1230           // if the arc is proceeded by a bezier curve and followed by a
1231           // "smooth" bezier curve of the same degree!
1232           continue;
1233         }
1234 
1235         // Below we have funny interleaving of F.6.6 (Correction of out-of-range
1236         // radii) and F.6.5 (Conversion from endpoint to center
1237         // parameterization) which is designed to avoid some unnecessary
1238         // calculations.
1239 
1240         if (rx == 0.0 || ry == 0.0) {
1241           // F.6.6 step 1 - straight line or coincidental points
1242           segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1243           break;
1244         }
1245 
1246         std::tie(rx, ry, segStartAngle, segEndAngle) =
1247             ComputeSegAnglesAndCorrectRadii(segStart, segEnd, angle,
1248                                             largeArcFlag, sweepFlag, rx, ry);
1249         break;
1250       }
1251       case StylePathCommand::Tag::HorizontalLineTo: {
1252         if (cmd.horizontal_line_to.absolute == StyleIsAbsolute::Yes) {
1253           segEnd = Point(cmd.horizontal_line_to.x, segStart.y);
1254         } else {
1255           segEnd = segStart + Point(cmd.horizontal_line_to.x, 0.0f);
1256         }
1257         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1258         break;
1259       }
1260       case StylePathCommand::Tag::VerticalLineTo: {
1261         if (cmd.vertical_line_to.absolute == StyleIsAbsolute::Yes) {
1262           segEnd = Point(segStart.x, cmd.vertical_line_to.y);
1263         } else {
1264           segEnd = segStart + Point(0.0f, cmd.vertical_line_to.y);
1265         }
1266         segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
1267         break;
1268       }
1269       case StylePathCommand::Tag::SmoothCurveTo: {
1270         Point cp1 = IsCubicType(prevSegType) ? segStart * 2 - prevCP : segStart;
1271         Point cp2 = ToGfxPoint(cmd.smooth_curve_to.control2);
1272         segEnd = ToGfxPoint(cmd.smooth_curve_to.point);
1273 
1274         if (cmd.smooth_curve_to.absolute == StyleIsAbsolute::No) {
1275           cp2 += segStart;
1276           segEnd += segStart;
1277         }
1278 
1279         prevCP = cp2;
1280         segStartAngle = AngleOfVector(
1281             cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
1282         segEndAngle = AngleOfVector(
1283             segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
1284         break;
1285       }
1286       case StylePathCommand::Tag::SmoothQuadBezierCurveTo: {
1287         Point cp1 =
1288             IsQuadraticType(prevSegType) ? segStart * 2 - prevCP : segStart;
1289         segEnd =
1290             cmd.smooth_quad_bezier_curve_to.absolute == StyleIsAbsolute::Yes
1291                 ? ToGfxPoint(cmd.smooth_quad_bezier_curve_to.point)
1292                 : segStart + ToGfxPoint(cmd.smooth_quad_bezier_curve_to.point);
1293 
1294         prevCP = cp1;
1295         segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
1296         segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
1297         break;
1298       }
1299       case StylePathCommand::Tag::Unknown:
1300         // Leave any existing marks in aMarks so we have a visual indication of
1301         // when things went wrong.
1302         MOZ_ASSERT_UNREACHABLE("Unknown segment type - path corruption?");
1303         return;
1304     }
1305 
1306     // Set the angle of the mark at the start of this segment:
1307     if (aMarks->Length()) {
1308       SVGMark& mark = aMarks->LastElement();
1309       if (!IsMoveto(segType) && IsMoveto(prevSegType)) {
1310         // start of new subpath
1311         pathStartAngle = mark.angle = segStartAngle;
1312       } else if (IsMoveto(segType) && !IsMoveto(prevSegType)) {
1313         // end of a subpath
1314         if (prevSegType != StylePathCommand::Tag::ClosePath) {
1315           mark.angle = prevSegEndAngle;
1316         }
1317       } else if (!(segType == StylePathCommand::Tag::ClosePath &&
1318                    prevSegType == StylePathCommand::Tag::ClosePath)) {
1319         mark.angle =
1320             SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle);
1321       }
1322     }
1323 
1324     // Add the mark at the end of this segment, and set its position:
1325     // XXX(Bug 1631371) Check if this should use a fallible operation as it
1326     // pretended earlier.
1327     aMarks->AppendElement(SVGMark(static_cast<float>(segEnd.x),
1328                                   static_cast<float>(segEnd.y), 0.0f,
1329                                   SVGMark::eMid));
1330 
1331     if (segType == StylePathCommand::Tag::ClosePath &&
1332         prevSegType != StylePathCommand::Tag::ClosePath) {
1333       aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle =
1334           SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle);
1335     }
1336 
1337     prevSegType = segType;
1338     prevSegEnd = segEnd;
1339     prevSegEndAngle = segEndAngle;
1340   }
1341 
1342   if (aMarks->Length()) {
1343     if (prevSegType != StylePathCommand::Tag::ClosePath) {
1344       aMarks->LastElement().angle = prevSegEndAngle;
1345     }
1346     aMarks->LastElement().type = SVGMark::eEnd;
1347     aMarks->ElementAt(0).type = SVGMark::eStart;
1348   }
1349 }
1350 
SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const1351 size_t SVGPathData::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
1352   return mData.ShallowSizeOfExcludingThis(aMallocSizeOf);
1353 }
1354 
SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const1355 size_t SVGPathData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
1356   return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
1357 }
1358 
1359 }  // namespace mozilla
1360