1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // Due to a header conflict between math.h and intrinsics includes with ceil()
12 // in certain configurations under vs9 this include needs to precede
13 // immintrin.h.
14 #include "./vp9_rtcd.h"
15 
16 #include <immintrin.h>
17 
18 #include "vp9/common/x86/convolve.h"
19 #include "vpx_ports/mem.h"
20 
21 // filters for 16_h8 and 16_v8
22 DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = {
23   0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
24   0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
25 };
26 
27 DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = {
28   2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
29   2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
30 };
31 
32 DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = {
33   4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
34   4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
35 };
36 
37 DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = {
38   6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
39   6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
40 };
41 
42 #if defined(__clang__)
43 # if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ <= 3) || \
44       (defined(__APPLE__) && __clang_major__ == 5 && __clang_minor__ == 0)
45 #  define MM256_BROADCASTSI128_SI256(x) \
46        _mm_broadcastsi128_si256((__m128i const *)&(x))
47 # else  // clang > 3.3, and not 5.0 on macosx.
48 #  define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
49 # endif  // clang <= 3.3
50 #elif defined(__GNUC__)
51 # if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6)
52 #  define MM256_BROADCASTSI128_SI256(x) \
53        _mm_broadcastsi128_si256((__m128i const *)&(x))
54 # elif __GNUC__ == 4 && __GNUC_MINOR__ == 7
55 #  define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x)
56 # else  // gcc > 4.7
57 #  define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
58 # endif  // gcc <= 4.6
59 #else  // !(gcc || clang)
60 # define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
61 #endif  // __clang__
62 
vp9_filter_block1d16_h8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)63 static void vp9_filter_block1d16_h8_avx2(const uint8_t *src_ptr,
64                                          ptrdiff_t src_pixels_per_line,
65                                          uint8_t *output_ptr,
66                                          ptrdiff_t output_pitch,
67                                          uint32_t output_height,
68                                          const int16_t *filter) {
69   __m128i filtersReg;
70   __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
71   __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
72   __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
73   __m256i srcReg32b1, srcReg32b2, filtersReg32;
74   unsigned int i;
75   ptrdiff_t src_stride, dst_stride;
76 
77   // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
78   addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
79   filtersReg = _mm_loadu_si128((const __m128i *)filter);
80   // converting the 16 bit (short) to 8 bit (byte) and have the same data
81   // in both lanes of 128 bit register.
82   filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
83   // have the same data in both lanes of a 256 bit register
84   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
85 
86   // duplicate only the first 16 bits (first and second byte)
87   // across 256 bit register
88   firstFilters = _mm256_shuffle_epi8(filtersReg32,
89                  _mm256_set1_epi16(0x100u));
90   // duplicate only the second 16 bits (third and forth byte)
91   // across 256 bit register
92   secondFilters = _mm256_shuffle_epi8(filtersReg32,
93                   _mm256_set1_epi16(0x302u));
94   // duplicate only the third 16 bits (fifth and sixth byte)
95   // across 256 bit register
96   thirdFilters = _mm256_shuffle_epi8(filtersReg32,
97                  _mm256_set1_epi16(0x504u));
98   // duplicate only the forth 16 bits (seventh and eighth byte)
99   // across 256 bit register
100   forthFilters = _mm256_shuffle_epi8(filtersReg32,
101                  _mm256_set1_epi16(0x706u));
102 
103   filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
104   filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
105   filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
106   filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);
107 
108   // multiple the size of the source and destination stride by two
109   src_stride = src_pixels_per_line << 1;
110   dst_stride = output_pitch << 1;
111   for (i = output_height; i > 1; i-=2) {
112     // load the 2 strides of source
113     srcReg32b1 = _mm256_castsi128_si256(
114                  _mm_loadu_si128((const __m128i *)(src_ptr - 3)));
115     srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
116                  _mm_loadu_si128((const __m128i *)
117                  (src_ptr+src_pixels_per_line-3)), 1);
118 
119     // filter the source buffer
120     srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
121     srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
122 
123     // multiply 2 adjacent elements with the filter and add the result
124     srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
125     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
126 
127     // add and saturate the results together
128     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
129 
130     // filter the source buffer
131     srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
132     srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
133 
134     // multiply 2 adjacent elements with the filter and add the result
135     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
136     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
137 
138     // add and saturate the results together
139     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
140                        _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
141 
142     // reading 2 strides of the next 16 bytes
143     // (part of it was being read by earlier read)
144     srcReg32b2 = _mm256_castsi128_si256(
145                  _mm_loadu_si128((const __m128i *)(src_ptr + 5)));
146     srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
147                  _mm_loadu_si128((const __m128i *)
148                  (src_ptr+src_pixels_per_line+5)), 1);
149 
150     // add and saturate the results together
151     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
152                        _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
153 
154     // filter the source buffer
155     srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
156     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
157 
158     // multiply 2 adjacent elements with the filter and add the result
159     srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
160     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
161 
162     // add and saturate the results together
163     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
164 
165     // filter the source buffer
166     srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
167     srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
168 
169     // multiply 2 adjacent elements with the filter and add the result
170     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
171     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
172 
173     // add and saturate the results together
174     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
175                        _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
176     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
177                        _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
178 
179 
180     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);
181 
182     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);
183 
184     // shift by 7 bit each 16 bit
185     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
186     srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);
187 
188     // shrink to 8 bit each 16 bits, the first lane contain the first
189     // convolve result and the second lane contain the second convolve
190     // result
191     srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
192                                            srcRegFilt32b2_1);
193 
194     src_ptr+=src_stride;
195 
196     // save 16 bytes
197     _mm_store_si128((__m128i*)output_ptr,
198     _mm256_castsi256_si128(srcRegFilt32b1_1));
199 
200     // save the next 16 bits
201     _mm_store_si128((__m128i*)(output_ptr+output_pitch),
202     _mm256_extractf128_si256(srcRegFilt32b1_1, 1));
203     output_ptr+=dst_stride;
204   }
205 
206   // if the number of strides is odd.
207   // process only 16 bytes
208   if (i > 0) {
209     __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
210     __m128i srcRegFilt2, srcRegFilt3;
211 
212     srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
213 
214     // filter the source buffer
215     srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
216                     _mm256_castsi256_si128(filt1Reg));
217     srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
218                   _mm256_castsi256_si128(filt4Reg));
219 
220     // multiply 2 adjacent elements with the filter and add the result
221     srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
222                     _mm256_castsi256_si128(firstFilters));
223     srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
224                   _mm256_castsi256_si128(forthFilters));
225 
226     // add and saturate the results together
227     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
228 
229     // filter the source buffer
230     srcRegFilt3= _mm_shuffle_epi8(srcReg1,
231                  _mm256_castsi256_si128(filt2Reg));
232     srcRegFilt2= _mm_shuffle_epi8(srcReg1,
233                  _mm256_castsi256_si128(filt3Reg));
234 
235     // multiply 2 adjacent elements with the filter and add the result
236     srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
237                   _mm256_castsi256_si128(secondFilters));
238     srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
239                   _mm256_castsi256_si128(thirdFilters));
240 
241     // add and saturate the results together
242     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
243                     _mm_min_epi16(srcRegFilt3, srcRegFilt2));
244 
245     // reading the next 16 bytes
246     // (part of it was being read by earlier read)
247     srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5));
248 
249     // add and saturate the results together
250     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
251                     _mm_max_epi16(srcRegFilt3, srcRegFilt2));
252 
253     // filter the source buffer
254     srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
255                     _mm256_castsi256_si128(filt1Reg));
256     srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
257                   _mm256_castsi256_si128(filt4Reg));
258 
259     // multiply 2 adjacent elements with the filter and add the result
260     srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
261                     _mm256_castsi256_si128(firstFilters));
262     srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
263                   _mm256_castsi256_si128(forthFilters));
264 
265     // add and saturate the results together
266     srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
267 
268     // filter the source buffer
269     srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
270                   _mm256_castsi256_si128(filt2Reg));
271     srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
272                   _mm256_castsi256_si128(filt3Reg));
273 
274     // multiply 2 adjacent elements with the filter and add the result
275     srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
276                   _mm256_castsi256_si128(secondFilters));
277     srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
278                   _mm256_castsi256_si128(thirdFilters));
279 
280     // add and saturate the results together
281     srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
282                     _mm_min_epi16(srcRegFilt3, srcRegFilt2));
283     srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
284                     _mm_max_epi16(srcRegFilt3, srcRegFilt2));
285 
286 
287     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
288                     _mm256_castsi256_si128(addFilterReg64));
289 
290     srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
291                     _mm256_castsi256_si128(addFilterReg64));
292 
293     // shift by 7 bit each 16 bit
294     srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
295     srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);
296 
297     // shrink to 8 bit each 16 bits, the first lane contain the first
298     // convolve result and the second lane contain the second convolve
299     // result
300     srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
301 
302     // save 16 bytes
303     _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
304   }
305 }
306 
vp9_filter_block1d16_v8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)307 static void vp9_filter_block1d16_v8_avx2(const uint8_t *src_ptr,
308                                          ptrdiff_t src_pitch,
309                                          uint8_t *output_ptr,
310                                          ptrdiff_t out_pitch,
311                                          uint32_t output_height,
312                                          const int16_t *filter) {
313   __m128i filtersReg;
314   __m256i addFilterReg64;
315   __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
316   __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
317   __m256i srcReg32b11, srcReg32b12, filtersReg32;
318   __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
319   unsigned int i;
320   ptrdiff_t src_stride, dst_stride;
321 
322   // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
323   addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
324   filtersReg = _mm_loadu_si128((const __m128i *)filter);
325   // converting the 16 bit (short) to  8 bit (byte) and have the
326   // same data in both lanes of 128 bit register.
327   filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
328   // have the same data in both lanes of a 256 bit register
329   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
330 
331   // duplicate only the first 16 bits (first and second byte)
332   // across 256 bit register
333   firstFilters = _mm256_shuffle_epi8(filtersReg32,
334                  _mm256_set1_epi16(0x100u));
335   // duplicate only the second 16 bits (third and forth byte)
336   // across 256 bit register
337   secondFilters = _mm256_shuffle_epi8(filtersReg32,
338                   _mm256_set1_epi16(0x302u));
339   // duplicate only the third 16 bits (fifth and sixth byte)
340   // across 256 bit register
341   thirdFilters = _mm256_shuffle_epi8(filtersReg32,
342                  _mm256_set1_epi16(0x504u));
343   // duplicate only the forth 16 bits (seventh and eighth byte)
344   // across 256 bit register
345   forthFilters = _mm256_shuffle_epi8(filtersReg32,
346                  _mm256_set1_epi16(0x706u));
347 
348   // multiple the size of the source and destination stride by two
349   src_stride = src_pitch << 1;
350   dst_stride = out_pitch << 1;
351 
352   // load 16 bytes 7 times in stride of src_pitch
353   srcReg32b1 = _mm256_castsi128_si256(
354                _mm_loadu_si128((const __m128i *)(src_ptr)));
355   srcReg32b2 = _mm256_castsi128_si256(
356                _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)));
357   srcReg32b3 = _mm256_castsi128_si256(
358                _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)));
359   srcReg32b4 = _mm256_castsi128_si256(
360                _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)));
361   srcReg32b5 = _mm256_castsi128_si256(
362                _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
363   srcReg32b6 = _mm256_castsi128_si256(
364                _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
365   srcReg32b7 = _mm256_castsi128_si256(
366                _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
367 
368   // have each consecutive loads on the same 256 register
369   srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
370                _mm256_castsi256_si128(srcReg32b2), 1);
371   srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
372                _mm256_castsi256_si128(srcReg32b3), 1);
373   srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
374                _mm256_castsi256_si128(srcReg32b4), 1);
375   srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
376                _mm256_castsi256_si128(srcReg32b5), 1);
377   srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
378                _mm256_castsi256_si128(srcReg32b6), 1);
379   srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
380                _mm256_castsi256_si128(srcReg32b7), 1);
381 
382   // merge every two consecutive registers except the last one
383   srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
384   srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
385 
386   // save
387   srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
388 
389   // save
390   srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
391 
392   // save
393   srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
394 
395   // save
396   srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
397 
398 
399   for (i = output_height; i > 1; i-=2) {
400      // load the last 2 loads of 16 bytes and have every two
401      // consecutive loads in the same 256 bit register
402      srcReg32b8 = _mm256_castsi128_si256(
403      _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
404      srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
405      _mm256_castsi256_si128(srcReg32b8), 1);
406      srcReg32b9 = _mm256_castsi128_si256(
407      _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
408      srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
409      _mm256_castsi256_si128(srcReg32b9), 1);
410 
411      // merge every two consecutive registers
412      // save
413      srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
414      srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
415 
416      // multiply 2 adjacent elements with the filter and add the result
417      srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
418      srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
419 
420      // add and saturate the results together
421      srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
422 
423      // multiply 2 adjacent elements with the filter and add the result
424      srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
425      srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
426 
427      // add and saturate the results together
428      srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
429                    _mm256_min_epi16(srcReg32b8, srcReg32b12));
430      srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
431                    _mm256_max_epi16(srcReg32b8, srcReg32b12));
432 
433      // multiply 2 adjacent elements with the filter and add the result
434      srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
435      srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
436 
437      srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);
438 
439      // multiply 2 adjacent elements with the filter and add the result
440      srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
441      srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
442 
443      // add and saturate the results together
444      srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
445                   _mm256_min_epi16(srcReg32b8, srcReg32b12));
446      srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
447                   _mm256_max_epi16(srcReg32b8, srcReg32b12));
448 
449      srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
450      srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);
451 
452      // shift by 7 bit each 16 bit
453      srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
454      srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);
455 
456      // shrink to 8 bit each 16 bits, the first lane contain the first
457      // convolve result and the second lane contain the second convolve
458      // result
459      srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
460 
461      src_ptr+=src_stride;
462 
463      // save 16 bytes
464      _mm_store_si128((__m128i*)output_ptr,
465      _mm256_castsi256_si128(srcReg32b1));
466 
467      // save the next 16 bits
468      _mm_store_si128((__m128i*)(output_ptr+out_pitch),
469      _mm256_extractf128_si256(srcReg32b1, 1));
470 
471      output_ptr+=dst_stride;
472 
473      // save part of the registers for next strides
474      srcReg32b10 = srcReg32b11;
475      srcReg32b1 = srcReg32b3;
476      srcReg32b11 = srcReg32b2;
477      srcReg32b3 = srcReg32b5;
478      srcReg32b2 = srcReg32b4;
479      srcReg32b5 = srcReg32b7;
480      srcReg32b7 = srcReg32b9;
481   }
482   if (i > 0) {
483     __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
484     __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
485     // load the last 16 bytes
486     srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
487 
488     // merge the last 2 results together
489     srcRegFilt4 = _mm_unpacklo_epi8(
490                   _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
491     srcRegFilt7 = _mm_unpackhi_epi8(
492                   _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
493 
494     // multiply 2 adjacent elements with the filter and add the result
495     srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
496                   _mm256_castsi256_si128(firstFilters));
497     srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
498                   _mm256_castsi256_si128(forthFilters));
499     srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
500                   _mm256_castsi256_si128(firstFilters));
501     srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
502                   _mm256_castsi256_si128(forthFilters));
503 
504     // add and saturate the results together
505     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
506     srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
507 
508 
509     // multiply 2 adjacent elements with the filter and add the result
510     srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
511                   _mm256_castsi256_si128(secondFilters));
512     srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
513                   _mm256_castsi256_si128(secondFilters));
514 
515     // multiply 2 adjacent elements with the filter and add the result
516     srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
517                   _mm256_castsi256_si128(thirdFilters));
518     srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
519                   _mm256_castsi256_si128(thirdFilters));
520 
521     // add and saturate the results together
522     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
523                   _mm_min_epi16(srcRegFilt4, srcRegFilt6));
524     srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
525                   _mm_min_epi16(srcRegFilt5, srcRegFilt7));
526 
527     // add and saturate the results together
528     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
529                   _mm_max_epi16(srcRegFilt4, srcRegFilt6));
530     srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
531                   _mm_max_epi16(srcRegFilt5, srcRegFilt7));
532 
533 
534     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
535                   _mm256_castsi256_si128(addFilterReg64));
536     srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
537                   _mm256_castsi256_si128(addFilterReg64));
538 
539     // shift by 7 bit each 16 bit
540     srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
541     srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);
542 
543     // shrink to 8 bit each 16 bits, the first lane contain the first
544     // convolve result and the second lane contain the second convolve
545     // result
546     srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
547 
548     // save 16 bytes
549     _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
550   }
551 }
552 
553 #if HAVE_AVX2 && HAVE_SSSE3
554 filter8_1dfunction vp9_filter_block1d4_v8_ssse3;
555 #if ARCH_X86_64
556 filter8_1dfunction vp9_filter_block1d8_v8_intrin_ssse3;
557 filter8_1dfunction vp9_filter_block1d8_h8_intrin_ssse3;
558 filter8_1dfunction vp9_filter_block1d4_h8_intrin_ssse3;
559 #define vp9_filter_block1d8_v8_avx2 vp9_filter_block1d8_v8_intrin_ssse3
560 #define vp9_filter_block1d8_h8_avx2 vp9_filter_block1d8_h8_intrin_ssse3
561 #define vp9_filter_block1d4_h8_avx2 vp9_filter_block1d4_h8_intrin_ssse3
562 #else  // ARCH_X86
563 filter8_1dfunction vp9_filter_block1d8_v8_ssse3;
564 filter8_1dfunction vp9_filter_block1d8_h8_ssse3;
565 filter8_1dfunction vp9_filter_block1d4_h8_ssse3;
566 #define vp9_filter_block1d8_v8_avx2 vp9_filter_block1d8_v8_ssse3
567 #define vp9_filter_block1d8_h8_avx2 vp9_filter_block1d8_h8_ssse3
568 #define vp9_filter_block1d4_h8_avx2 vp9_filter_block1d4_h8_ssse3
569 #endif  // ARCH_X86_64
570 filter8_1dfunction vp9_filter_block1d16_v2_ssse3;
571 filter8_1dfunction vp9_filter_block1d16_h2_ssse3;
572 filter8_1dfunction vp9_filter_block1d8_v2_ssse3;
573 filter8_1dfunction vp9_filter_block1d8_h2_ssse3;
574 filter8_1dfunction vp9_filter_block1d4_v2_ssse3;
575 filter8_1dfunction vp9_filter_block1d4_h2_ssse3;
576 #define vp9_filter_block1d4_v8_avx2 vp9_filter_block1d4_v8_ssse3
577 #define vp9_filter_block1d16_v2_avx2 vp9_filter_block1d16_v2_ssse3
578 #define vp9_filter_block1d16_h2_avx2 vp9_filter_block1d16_h2_ssse3
579 #define vp9_filter_block1d8_v2_avx2  vp9_filter_block1d8_v2_ssse3
580 #define vp9_filter_block1d8_h2_avx2  vp9_filter_block1d8_h2_ssse3
581 #define vp9_filter_block1d4_v2_avx2  vp9_filter_block1d4_v2_ssse3
582 #define vp9_filter_block1d4_h2_avx2  vp9_filter_block1d4_h2_ssse3
583 // void vp9_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
584 //                                uint8_t *dst, ptrdiff_t dst_stride,
585 //                                const int16_t *filter_x, int x_step_q4,
586 //                                const int16_t *filter_y, int y_step_q4,
587 //                                int w, int h);
588 // void vp9_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
589 //                               uint8_t *dst, ptrdiff_t dst_stride,
590 //                               const int16_t *filter_x, int x_step_q4,
591 //                               const int16_t *filter_y, int y_step_q4,
592 //                               int w, int h);
593 FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2);
594 FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2);
595 
596 // void vp9_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride,
597 //                          uint8_t *dst, ptrdiff_t dst_stride,
598 //                          const int16_t *filter_x, int x_step_q4,
599 //                          const int16_t *filter_y, int y_step_q4,
600 //                          int w, int h);
601 FUN_CONV_2D(, avx2);
602 #endif  // HAVE_AX2 && HAVE_SSSE3
603