1 /*
2  * Copyright (c) 2017, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <stdio.h>
13 #include <tmmintrin.h>
14 
15 #include "config/aom_config.h"
16 #include "config/aom_dsp_rtcd.h"
17 
18 #include "aom_dsp/blend.h"
19 #include "aom/aom_integer.h"
20 #include "aom_dsp/x86/synonyms.h"
21 
22 #include "aom_dsp/x86/masked_sad_intrin_ssse3.h"
23 
24 // For width a multiple of 16
25 static INLINE unsigned int masked_sad_ssse3(const uint8_t *src_ptr,
26                                             int src_stride,
27                                             const uint8_t *a_ptr, int a_stride,
28                                             const uint8_t *b_ptr, int b_stride,
29                                             const uint8_t *m_ptr, int m_stride,
30                                             int width, int height);
31 
32 #define MASKSADMXN_SSSE3(m, n)                                                \
33   unsigned int aom_masked_sad##m##x##n##_ssse3(                               \
34       const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
35       const uint8_t *second_pred, const uint8_t *msk, int msk_stride,         \
36       int invert_mask) {                                                      \
37     if (!invert_mask)                                                         \
38       return masked_sad_ssse3(src, src_stride, ref, ref_stride, second_pred,  \
39                               m, msk, msk_stride, m, n);                      \
40     else                                                                      \
41       return masked_sad_ssse3(src, src_stride, second_pred, m, ref,           \
42                               ref_stride, msk, msk_stride, m, n);             \
43   }
44 
45 #define MASKSAD8XN_SSSE3(n)                                                   \
46   unsigned int aom_masked_sad8x##n##_ssse3(                                   \
47       const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
48       const uint8_t *second_pred, const uint8_t *msk, int msk_stride,         \
49       int invert_mask) {                                                      \
50     if (!invert_mask)                                                         \
51       return aom_masked_sad8xh_ssse3(src, src_stride, ref, ref_stride,        \
52                                      second_pred, 8, msk, msk_stride, n);     \
53     else                                                                      \
54       return aom_masked_sad8xh_ssse3(src, src_stride, second_pred, 8, ref,    \
55                                      ref_stride, msk, msk_stride, n);         \
56   }
57 
58 #define MASKSAD4XN_SSSE3(n)                                                   \
59   unsigned int aom_masked_sad4x##n##_ssse3(                                   \
60       const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
61       const uint8_t *second_pred, const uint8_t *msk, int msk_stride,         \
62       int invert_mask) {                                                      \
63     if (!invert_mask)                                                         \
64       return aom_masked_sad4xh_ssse3(src, src_stride, ref, ref_stride,        \
65                                      second_pred, 4, msk, msk_stride, n);     \
66     else                                                                      \
67       return aom_masked_sad4xh_ssse3(src, src_stride, second_pred, 4, ref,    \
68                                      ref_stride, msk, msk_stride, n);         \
69   }
70 
71 MASKSADMXN_SSSE3(128, 128)
72 MASKSADMXN_SSSE3(128, 64)
73 MASKSADMXN_SSSE3(64, 128)
74 MASKSADMXN_SSSE3(64, 64)
75 MASKSADMXN_SSSE3(64, 32)
76 MASKSADMXN_SSSE3(32, 64)
77 MASKSADMXN_SSSE3(32, 32)
78 MASKSADMXN_SSSE3(32, 16)
79 MASKSADMXN_SSSE3(16, 32)
80 MASKSADMXN_SSSE3(16, 16)
81 MASKSADMXN_SSSE3(16, 8)
82 MASKSAD8XN_SSSE3(16)
83 MASKSAD8XN_SSSE3(8)
84 MASKSAD8XN_SSSE3(4)
85 MASKSAD4XN_SSSE3(8)
86 MASKSAD4XN_SSSE3(4)
87 MASKSAD4XN_SSSE3(16)
88 MASKSADMXN_SSSE3(16, 4)
89 MASKSAD8XN_SSSE3(32)
90 MASKSADMXN_SSSE3(32, 8)
91 MASKSADMXN_SSSE3(16, 64)
92 MASKSADMXN_SSSE3(64, 16)
93 
masked_sad_ssse3(const uint8_t * src_ptr,int src_stride,const uint8_t * a_ptr,int a_stride,const uint8_t * b_ptr,int b_stride,const uint8_t * m_ptr,int m_stride,int width,int height)94 static INLINE unsigned int masked_sad_ssse3(const uint8_t *src_ptr,
95                                             int src_stride,
96                                             const uint8_t *a_ptr, int a_stride,
97                                             const uint8_t *b_ptr, int b_stride,
98                                             const uint8_t *m_ptr, int m_stride,
99                                             int width, int height) {
100   int x, y;
101   __m128i res = _mm_setzero_si128();
102   const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
103 
104   for (y = 0; y < height; y++) {
105     for (x = 0; x < width; x += 16) {
106       const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
107       const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
108       const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
109       const __m128i m = _mm_loadu_si128((const __m128i *)&m_ptr[x]);
110       const __m128i m_inv = _mm_sub_epi8(mask_max, m);
111 
112       // Calculate 16 predicted pixels.
113       // Note that the maximum value of any entry of 'pred_l' or 'pred_r'
114       // is 64 * 255, so we have plenty of space to add rounding constants.
115       const __m128i data_l = _mm_unpacklo_epi8(a, b);
116       const __m128i mask_l = _mm_unpacklo_epi8(m, m_inv);
117       __m128i pred_l = _mm_maddubs_epi16(data_l, mask_l);
118       pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS);
119 
120       const __m128i data_r = _mm_unpackhi_epi8(a, b);
121       const __m128i mask_r = _mm_unpackhi_epi8(m, m_inv);
122       __m128i pred_r = _mm_maddubs_epi16(data_r, mask_r);
123       pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS);
124 
125       const __m128i pred = _mm_packus_epi16(pred_l, pred_r);
126       res = _mm_add_epi32(res, _mm_sad_epu8(pred, src));
127     }
128 
129     src_ptr += src_stride;
130     a_ptr += a_stride;
131     b_ptr += b_stride;
132     m_ptr += m_stride;
133   }
134   // At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'.
135   int32_t sad =
136       _mm_cvtsi128_si32(res) + _mm_cvtsi128_si32(_mm_srli_si128(res, 8));
137   return (sad + 31) >> 6;
138 }
139 
aom_masked_sad8xh_ssse3(const uint8_t * src_ptr,int src_stride,const uint8_t * a_ptr,int a_stride,const uint8_t * b_ptr,int b_stride,const uint8_t * m_ptr,int m_stride,int height)140 unsigned int aom_masked_sad8xh_ssse3(const uint8_t *src_ptr, int src_stride,
141                                      const uint8_t *a_ptr, int a_stride,
142                                      const uint8_t *b_ptr, int b_stride,
143                                      const uint8_t *m_ptr, int m_stride,
144                                      int height) {
145   int y;
146   __m128i res = _mm_setzero_si128();
147   const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
148 
149   for (y = 0; y < height; y += 2) {
150     const __m128i src = _mm_unpacklo_epi64(
151         _mm_loadl_epi64((const __m128i *)src_ptr),
152         _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
153     const __m128i a0 = _mm_loadl_epi64((const __m128i *)a_ptr);
154     const __m128i a1 = _mm_loadl_epi64((const __m128i *)&a_ptr[a_stride]);
155     const __m128i b0 = _mm_loadl_epi64((const __m128i *)b_ptr);
156     const __m128i b1 = _mm_loadl_epi64((const __m128i *)&b_ptr[b_stride]);
157     const __m128i m =
158         _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)m_ptr),
159                            _mm_loadl_epi64((const __m128i *)&m_ptr[m_stride]));
160     const __m128i m_inv = _mm_sub_epi8(mask_max, m);
161 
162     const __m128i data_l = _mm_unpacklo_epi8(a0, b0);
163     const __m128i mask_l = _mm_unpacklo_epi8(m, m_inv);
164     __m128i pred_l = _mm_maddubs_epi16(data_l, mask_l);
165     pred_l = xx_roundn_epu16(pred_l, AOM_BLEND_A64_ROUND_BITS);
166 
167     const __m128i data_r = _mm_unpacklo_epi8(a1, b1);
168     const __m128i mask_r = _mm_unpackhi_epi8(m, m_inv);
169     __m128i pred_r = _mm_maddubs_epi16(data_r, mask_r);
170     pred_r = xx_roundn_epu16(pred_r, AOM_BLEND_A64_ROUND_BITS);
171 
172     const __m128i pred = _mm_packus_epi16(pred_l, pred_r);
173     res = _mm_add_epi32(res, _mm_sad_epu8(pred, src));
174 
175     src_ptr += src_stride * 2;
176     a_ptr += a_stride * 2;
177     b_ptr += b_stride * 2;
178     m_ptr += m_stride * 2;
179   }
180   int32_t sad =
181       _mm_cvtsi128_si32(res) + _mm_cvtsi128_si32(_mm_srli_si128(res, 8));
182   return (sad + 31) >> 6;
183 }
184 
aom_masked_sad4xh_ssse3(const uint8_t * src_ptr,int src_stride,const uint8_t * a_ptr,int a_stride,const uint8_t * b_ptr,int b_stride,const uint8_t * m_ptr,int m_stride,int height)185 unsigned int aom_masked_sad4xh_ssse3(const uint8_t *src_ptr, int src_stride,
186                                      const uint8_t *a_ptr, int a_stride,
187                                      const uint8_t *b_ptr, int b_stride,
188                                      const uint8_t *m_ptr, int m_stride,
189                                      int height) {
190   int y;
191   __m128i res = _mm_setzero_si128();
192   const __m128i mask_max = _mm_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
193 
194   for (y = 0; y < height; y += 2) {
195     // Load two rows at a time, this seems to be a bit faster
196     // than four rows at a time in this case.
197     const __m128i src = _mm_unpacklo_epi32(
198         _mm_cvtsi32_si128(*(uint32_t *)src_ptr),
199         _mm_cvtsi32_si128(*(uint32_t *)&src_ptr[src_stride]));
200     const __m128i a =
201         _mm_unpacklo_epi32(_mm_cvtsi32_si128(*(uint32_t *)a_ptr),
202                            _mm_cvtsi32_si128(*(uint32_t *)&a_ptr[a_stride]));
203     const __m128i b =
204         _mm_unpacklo_epi32(_mm_cvtsi32_si128(*(uint32_t *)b_ptr),
205                            _mm_cvtsi32_si128(*(uint32_t *)&b_ptr[b_stride]));
206     const __m128i m =
207         _mm_unpacklo_epi32(_mm_cvtsi32_si128(*(uint32_t *)m_ptr),
208                            _mm_cvtsi32_si128(*(uint32_t *)&m_ptr[m_stride]));
209     const __m128i m_inv = _mm_sub_epi8(mask_max, m);
210 
211     const __m128i data = _mm_unpacklo_epi8(a, b);
212     const __m128i mask = _mm_unpacklo_epi8(m, m_inv);
213     __m128i pred_16bit = _mm_maddubs_epi16(data, mask);
214     pred_16bit = xx_roundn_epu16(pred_16bit, AOM_BLEND_A64_ROUND_BITS);
215 
216     const __m128i pred = _mm_packus_epi16(pred_16bit, _mm_setzero_si128());
217     res = _mm_add_epi32(res, _mm_sad_epu8(pred, src));
218 
219     src_ptr += src_stride * 2;
220     a_ptr += a_stride * 2;
221     b_ptr += b_stride * 2;
222     m_ptr += m_stride * 2;
223   }
224   // At this point, the SAD is stored in lane 0 of 'res'
225   int32_t sad = _mm_cvtsi128_si32(res);
226   return (sad + 31) >> 6;
227 }
228 
229 // For width a multiple of 8
230 static INLINE unsigned int highbd_masked_sad_ssse3(
231     const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride,
232     const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride,
233     int width, int height);
234 
235 #define HIGHBD_MASKSADMXN_SSSE3(m, n)                                         \
236   unsigned int aom_highbd_masked_sad##m##x##n##_ssse3(                        \
237       const uint8_t *src8, int src_stride, const uint8_t *ref8,               \
238       int ref_stride, const uint8_t *second_pred8, const uint8_t *msk,        \
239       int msk_stride, int invert_mask) {                                      \
240     if (!invert_mask)                                                         \
241       return highbd_masked_sad_ssse3(src8, src_stride, ref8, ref_stride,      \
242                                      second_pred8, m, msk, msk_stride, m, n); \
243     else                                                                      \
244       return highbd_masked_sad_ssse3(src8, src_stride, second_pred8, m, ref8, \
245                                      ref_stride, msk, msk_stride, m, n);      \
246   }
247 
248 #define HIGHBD_MASKSAD4XN_SSSE3(n)                                             \
249   unsigned int aom_highbd_masked_sad4x##n##_ssse3(                             \
250       const uint8_t *src8, int src_stride, const uint8_t *ref8,                \
251       int ref_stride, const uint8_t *second_pred8, const uint8_t *msk,         \
252       int msk_stride, int invert_mask) {                                       \
253     if (!invert_mask)                                                          \
254       return aom_highbd_masked_sad4xh_ssse3(src8, src_stride, ref8,            \
255                                             ref_stride, second_pred8, 4, msk,  \
256                                             msk_stride, n);                    \
257     else                                                                       \
258       return aom_highbd_masked_sad4xh_ssse3(src8, src_stride, second_pred8, 4, \
259                                             ref8, ref_stride, msk, msk_stride, \
260                                             n);                                \
261   }
262 
263 HIGHBD_MASKSADMXN_SSSE3(128, 128)
264 HIGHBD_MASKSADMXN_SSSE3(128, 64)
265 HIGHBD_MASKSADMXN_SSSE3(64, 128)
266 HIGHBD_MASKSADMXN_SSSE3(64, 64)
267 HIGHBD_MASKSADMXN_SSSE3(64, 32)
268 HIGHBD_MASKSADMXN_SSSE3(32, 64)
269 HIGHBD_MASKSADMXN_SSSE3(32, 32)
270 HIGHBD_MASKSADMXN_SSSE3(32, 16)
271 HIGHBD_MASKSADMXN_SSSE3(16, 32)
272 HIGHBD_MASKSADMXN_SSSE3(16, 16)
273 HIGHBD_MASKSADMXN_SSSE3(16, 8)
274 HIGHBD_MASKSADMXN_SSSE3(8, 16)
275 HIGHBD_MASKSADMXN_SSSE3(8, 8)
276 HIGHBD_MASKSADMXN_SSSE3(8, 4)
277 HIGHBD_MASKSAD4XN_SSSE3(8)
278 HIGHBD_MASKSAD4XN_SSSE3(4)
279 HIGHBD_MASKSAD4XN_SSSE3(16)
280 HIGHBD_MASKSADMXN_SSSE3(16, 4)
281 HIGHBD_MASKSADMXN_SSSE3(8, 32)
282 HIGHBD_MASKSADMXN_SSSE3(32, 8)
283 HIGHBD_MASKSADMXN_SSSE3(16, 64)
284 HIGHBD_MASKSADMXN_SSSE3(64, 16)
285 
highbd_masked_sad_ssse3(const uint8_t * src8,int src_stride,const uint8_t * a8,int a_stride,const uint8_t * b8,int b_stride,const uint8_t * m_ptr,int m_stride,int width,int height)286 static INLINE unsigned int highbd_masked_sad_ssse3(
287     const uint8_t *src8, int src_stride, const uint8_t *a8, int a_stride,
288     const uint8_t *b8, int b_stride, const uint8_t *m_ptr, int m_stride,
289     int width, int height) {
290   const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src8);
291   const uint16_t *a_ptr = CONVERT_TO_SHORTPTR(a8);
292   const uint16_t *b_ptr = CONVERT_TO_SHORTPTR(b8);
293   int x, y;
294   __m128i res = _mm_setzero_si128();
295   const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
296   const __m128i round_const =
297       _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
298   const __m128i one = _mm_set1_epi16(1);
299 
300   for (y = 0; y < height; y++) {
301     for (x = 0; x < width; x += 8) {
302       const __m128i src = _mm_loadu_si128((const __m128i *)&src_ptr[x]);
303       const __m128i a = _mm_loadu_si128((const __m128i *)&a_ptr[x]);
304       const __m128i b = _mm_loadu_si128((const __m128i *)&b_ptr[x]);
305       // Zero-extend mask to 16 bits
306       const __m128i m = _mm_unpacklo_epi8(
307           _mm_loadl_epi64((const __m128i *)&m_ptr[x]), _mm_setzero_si128());
308       const __m128i m_inv = _mm_sub_epi16(mask_max, m);
309 
310       const __m128i data_l = _mm_unpacklo_epi16(a, b);
311       const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
312       __m128i pred_l = _mm_madd_epi16(data_l, mask_l);
313       pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
314                               AOM_BLEND_A64_ROUND_BITS);
315 
316       const __m128i data_r = _mm_unpackhi_epi16(a, b);
317       const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
318       __m128i pred_r = _mm_madd_epi16(data_r, mask_r);
319       pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
320                               AOM_BLEND_A64_ROUND_BITS);
321 
322       // Note: the maximum value in pred_l/r is (2^bd)-1 < 2^15,
323       // so it is safe to do signed saturation here.
324       const __m128i pred = _mm_packs_epi32(pred_l, pred_r);
325       // There is no 16-bit SAD instruction, so we have to synthesize
326       // an 8-element SAD. We do this by storing 4 32-bit partial SADs,
327       // and accumulating them at the end
328       const __m128i diff = _mm_abs_epi16(_mm_sub_epi16(pred, src));
329       res = _mm_add_epi32(res, _mm_madd_epi16(diff, one));
330     }
331 
332     src_ptr += src_stride;
333     a_ptr += a_stride;
334     b_ptr += b_stride;
335     m_ptr += m_stride;
336   }
337   // At this point, we have four 32-bit partial SADs stored in 'res'.
338   res = _mm_hadd_epi32(res, res);
339   res = _mm_hadd_epi32(res, res);
340   int sad = _mm_cvtsi128_si32(res);
341   return (sad + 31) >> 6;
342 }
343 
aom_highbd_masked_sad4xh_ssse3(const uint8_t * src8,int src_stride,const uint8_t * a8,int a_stride,const uint8_t * b8,int b_stride,const uint8_t * m_ptr,int m_stride,int height)344 unsigned int aom_highbd_masked_sad4xh_ssse3(const uint8_t *src8, int src_stride,
345                                             const uint8_t *a8, int a_stride,
346                                             const uint8_t *b8, int b_stride,
347                                             const uint8_t *m_ptr, int m_stride,
348                                             int height) {
349   const uint16_t *src_ptr = CONVERT_TO_SHORTPTR(src8);
350   const uint16_t *a_ptr = CONVERT_TO_SHORTPTR(a8);
351   const uint16_t *b_ptr = CONVERT_TO_SHORTPTR(b8);
352   int y;
353   __m128i res = _mm_setzero_si128();
354   const __m128i mask_max = _mm_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
355   const __m128i round_const =
356       _mm_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
357   const __m128i one = _mm_set1_epi16(1);
358 
359   for (y = 0; y < height; y += 2) {
360     const __m128i src = _mm_unpacklo_epi64(
361         _mm_loadl_epi64((const __m128i *)src_ptr),
362         _mm_loadl_epi64((const __m128i *)&src_ptr[src_stride]));
363     const __m128i a =
364         _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)a_ptr),
365                            _mm_loadl_epi64((const __m128i *)&a_ptr[a_stride]));
366     const __m128i b =
367         _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i *)b_ptr),
368                            _mm_loadl_epi64((const __m128i *)&b_ptr[b_stride]));
369     // Zero-extend mask to 16 bits
370     const __m128i m = _mm_unpacklo_epi8(
371         _mm_unpacklo_epi32(
372             _mm_cvtsi32_si128(*(const uint32_t *)m_ptr),
373             _mm_cvtsi32_si128(*(const uint32_t *)&m_ptr[m_stride])),
374         _mm_setzero_si128());
375     const __m128i m_inv = _mm_sub_epi16(mask_max, m);
376 
377     const __m128i data_l = _mm_unpacklo_epi16(a, b);
378     const __m128i mask_l = _mm_unpacklo_epi16(m, m_inv);
379     __m128i pred_l = _mm_madd_epi16(data_l, mask_l);
380     pred_l = _mm_srai_epi32(_mm_add_epi32(pred_l, round_const),
381                             AOM_BLEND_A64_ROUND_BITS);
382 
383     const __m128i data_r = _mm_unpackhi_epi16(a, b);
384     const __m128i mask_r = _mm_unpackhi_epi16(m, m_inv);
385     __m128i pred_r = _mm_madd_epi16(data_r, mask_r);
386     pred_r = _mm_srai_epi32(_mm_add_epi32(pred_r, round_const),
387                             AOM_BLEND_A64_ROUND_BITS);
388 
389     const __m128i pred = _mm_packs_epi32(pred_l, pred_r);
390     const __m128i diff = _mm_abs_epi16(_mm_sub_epi16(pred, src));
391     res = _mm_add_epi32(res, _mm_madd_epi16(diff, one));
392 
393     src_ptr += src_stride * 2;
394     a_ptr += a_stride * 2;
395     b_ptr += b_stride * 2;
396     m_ptr += m_stride * 2;
397   }
398   res = _mm_hadd_epi32(res, res);
399   res = _mm_hadd_epi32(res, res);
400   int sad = _mm_cvtsi128_si32(res);
401   return (sad + 31) >> 6;
402 }
403