1// Package difflib is a partial port of Python difflib module.
2//
3// It provides tools to compare sequences of strings and generate textual diffs.
4//
5// The following class and functions have been ported:
6//
7// - SequenceMatcher
8//
9// - unified_diff
10//
11// - context_diff
12//
13// Getting unified diffs was the main goal of the port. Keep in mind this code
14// is mostly suitable to output text differences in a human friendly way, there
15// are no guarantees generated diffs are consumable by patch(1).
16package difflib
17
18import (
19	"bufio"
20	"bytes"
21	"fmt"
22	"io"
23	"strings"
24)
25
26func min(a, b int) int {
27	if a < b {
28		return a
29	}
30	return b
31}
32
33func max(a, b int) int {
34	if a > b {
35		return a
36	}
37	return b
38}
39
40func calculateRatio(matches, length int) float64 {
41	if length > 0 {
42		return 2.0 * float64(matches) / float64(length)
43	}
44	return 1.0
45}
46
47type Match struct {
48	A    int
49	B    int
50	Size int
51}
52
53type OpCode struct {
54	Tag byte
55	I1  int
56	I2  int
57	J1  int
58	J2  int
59}
60
61// SequenceMatcher compares sequence of strings. The basic
62// algorithm predates, and is a little fancier than, an algorithm
63// published in the late 1980's by Ratcliff and Obershelp under the
64// hyperbolic name "gestalt pattern matching".  The basic idea is to find
65// the longest contiguous matching subsequence that contains no "junk"
66// elements (R-O doesn't address junk).  The same idea is then applied
67// recursively to the pieces of the sequences to the left and to the right
68// of the matching subsequence.  This does not yield minimal edit
69// sequences, but does tend to yield matches that "look right" to people.
70//
71// SequenceMatcher tries to compute a "human-friendly diff" between two
72// sequences.  Unlike e.g. UNIX(tm) diff, the fundamental notion is the
73// longest *contiguous* & junk-free matching subsequence.  That's what
74// catches peoples' eyes.  The Windows(tm) windiff has another interesting
75// notion, pairing up elements that appear uniquely in each sequence.
76// That, and the method here, appear to yield more intuitive difference
77// reports than does diff.  This method appears to be the least vulnerable
78// to synching up on blocks of "junk lines", though (like blank lines in
79// ordinary text files, or maybe "<P>" lines in HTML files).  That may be
80// because this is the only method of the 3 that has a *concept* of
81// "junk" <wink>.
82//
83// Timing:  Basic R-O is cubic time worst case and quadratic time expected
84// case.  SequenceMatcher is quadratic time for the worst case and has
85// expected-case behavior dependent in a complicated way on how many
86// elements the sequences have in common; best case time is linear.
87type SequenceMatcher struct {
88	a              []string
89	b              []string
90	b2j            map[string][]int
91	IsJunk         func(string) bool
92	autoJunk       bool
93	bJunk          map[string]struct{}
94	matchingBlocks []Match
95	fullBCount     map[string]int
96	bPopular       map[string]struct{}
97	opCodes        []OpCode
98}
99
100func NewMatcher(a, b []string) *SequenceMatcher {
101	m := SequenceMatcher{autoJunk: true}
102	m.SetSeqs(a, b)
103	return &m
104}
105
106func NewMatcherWithJunk(a, b []string, autoJunk bool,
107	isJunk func(string) bool) *SequenceMatcher {
108
109	m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
110	m.SetSeqs(a, b)
111	return &m
112}
113
114// Set two sequences to be compared.
115func (m *SequenceMatcher) SetSeqs(a, b []string) {
116	m.SetSeq1(a)
117	m.SetSeq2(b)
118}
119
120// Set the first sequence to be compared. The second sequence to be compared is
121// not changed.
122//
123// SequenceMatcher computes and caches detailed information about the second
124// sequence, so if you want to compare one sequence S against many sequences,
125// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
126// sequences.
127//
128// See also SetSeqs() and SetSeq2().
129func (m *SequenceMatcher) SetSeq1(a []string) {
130	if &a == &m.a {
131		return
132	}
133	m.a = a
134	m.matchingBlocks = nil
135	m.opCodes = nil
136}
137
138// Set the second sequence to be compared. The first sequence to be compared is
139// not changed.
140func (m *SequenceMatcher) SetSeq2(b []string) {
141	if &b == &m.b {
142		return
143	}
144	m.b = b
145	m.matchingBlocks = nil
146	m.opCodes = nil
147	m.fullBCount = nil
148	m.chainB()
149}
150
151func (m *SequenceMatcher) chainB() {
152	// Populate line -> index mapping
153	b2j := map[string][]int{}
154	for i, s := range m.b {
155		indices := b2j[s]
156		indices = append(indices, i)
157		b2j[s] = indices
158	}
159
160	// Purge junk elements
161	m.bJunk = map[string]struct{}{}
162	if m.IsJunk != nil {
163		junk := m.bJunk
164		for s, _ := range b2j {
165			if m.IsJunk(s) {
166				junk[s] = struct{}{}
167			}
168		}
169		for s, _ := range junk {
170			delete(b2j, s)
171		}
172	}
173
174	// Purge remaining popular elements
175	popular := map[string]struct{}{}
176	n := len(m.b)
177	if m.autoJunk && n >= 200 {
178		ntest := n/100 + 1
179		for s, indices := range b2j {
180			if len(indices) > ntest {
181				popular[s] = struct{}{}
182			}
183		}
184		for s, _ := range popular {
185			delete(b2j, s)
186		}
187	}
188	m.bPopular = popular
189	m.b2j = b2j
190}
191
192func (m *SequenceMatcher) isBJunk(s string) bool {
193	_, ok := m.bJunk[s]
194	return ok
195}
196
197// Find longest matching block in a[alo:ahi] and b[blo:bhi].
198//
199// If IsJunk is not defined:
200//
201// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
202//     alo <= i <= i+k <= ahi
203//     blo <= j <= j+k <= bhi
204// and for all (i',j',k') meeting those conditions,
205//     k >= k'
206//     i <= i'
207//     and if i == i', j <= j'
208//
209// In other words, of all maximal matching blocks, return one that
210// starts earliest in a, and of all those maximal matching blocks that
211// start earliest in a, return the one that starts earliest in b.
212//
213// If IsJunk is defined, first the longest matching block is
214// determined as above, but with the additional restriction that no
215// junk element appears in the block.  Then that block is extended as
216// far as possible by matching (only) junk elements on both sides.  So
217// the resulting block never matches on junk except as identical junk
218// happens to be adjacent to an "interesting" match.
219//
220// If no blocks match, return (alo, blo, 0).
221func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
222	// CAUTION:  stripping common prefix or suffix would be incorrect.
223	// E.g.,
224	//    ab
225	//    acab
226	// Longest matching block is "ab", but if common prefix is
227	// stripped, it's "a" (tied with "b").  UNIX(tm) diff does so
228	// strip, so ends up claiming that ab is changed to acab by
229	// inserting "ca" in the middle.  That's minimal but unintuitive:
230	// "it's obvious" that someone inserted "ac" at the front.
231	// Windiff ends up at the same place as diff, but by pairing up
232	// the unique 'b's and then matching the first two 'a's.
233	besti, bestj, bestsize := alo, blo, 0
234
235	// find longest junk-free match
236	// during an iteration of the loop, j2len[j] = length of longest
237	// junk-free match ending with a[i-1] and b[j]
238	j2len := map[int]int{}
239	for i := alo; i != ahi; i++ {
240		// look at all instances of a[i] in b; note that because
241		// b2j has no junk keys, the loop is skipped if a[i] is junk
242		newj2len := map[int]int{}
243		for _, j := range m.b2j[m.a[i]] {
244			// a[i] matches b[j]
245			if j < blo {
246				continue
247			}
248			if j >= bhi {
249				break
250			}
251			k := j2len[j-1] + 1
252			newj2len[j] = k
253			if k > bestsize {
254				besti, bestj, bestsize = i-k+1, j-k+1, k
255			}
256		}
257		j2len = newj2len
258	}
259
260	// Extend the best by non-junk elements on each end.  In particular,
261	// "popular" non-junk elements aren't in b2j, which greatly speeds
262	// the inner loop above, but also means "the best" match so far
263	// doesn't contain any junk *or* popular non-junk elements.
264	for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
265		m.a[besti-1] == m.b[bestj-1] {
266		besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
267	}
268	for besti+bestsize < ahi && bestj+bestsize < bhi &&
269		!m.isBJunk(m.b[bestj+bestsize]) &&
270		m.a[besti+bestsize] == m.b[bestj+bestsize] {
271		bestsize += 1
272	}
273
274	// Now that we have a wholly interesting match (albeit possibly
275	// empty!), we may as well suck up the matching junk on each
276	// side of it too.  Can't think of a good reason not to, and it
277	// saves post-processing the (possibly considerable) expense of
278	// figuring out what to do with it.  In the case of an empty
279	// interesting match, this is clearly the right thing to do,
280	// because no other kind of match is possible in the regions.
281	for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
282		m.a[besti-1] == m.b[bestj-1] {
283		besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
284	}
285	for besti+bestsize < ahi && bestj+bestsize < bhi &&
286		m.isBJunk(m.b[bestj+bestsize]) &&
287		m.a[besti+bestsize] == m.b[bestj+bestsize] {
288		bestsize += 1
289	}
290
291	return Match{A: besti, B: bestj, Size: bestsize}
292}
293
294// Return list of triples describing matching subsequences.
295//
296// Each triple is of the form (i, j, n), and means that
297// a[i:i+n] == b[j:j+n].  The triples are monotonically increasing in
298// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
299// adjacent triples in the list, and the second is not the last triple in the
300// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
301// adjacent equal blocks.
302//
303// The last triple is a dummy, (len(a), len(b), 0), and is the only
304// triple with n==0.
305func (m *SequenceMatcher) GetMatchingBlocks() []Match {
306	if m.matchingBlocks != nil {
307		return m.matchingBlocks
308	}
309
310	var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
311	matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
312		match := m.findLongestMatch(alo, ahi, blo, bhi)
313		i, j, k := match.A, match.B, match.Size
314		if match.Size > 0 {
315			if alo < i && blo < j {
316				matched = matchBlocks(alo, i, blo, j, matched)
317			}
318			matched = append(matched, match)
319			if i+k < ahi && j+k < bhi {
320				matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
321			}
322		}
323		return matched
324	}
325	matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
326
327	// It's possible that we have adjacent equal blocks in the
328	// matching_blocks list now.
329	nonAdjacent := []Match{}
330	i1, j1, k1 := 0, 0, 0
331	for _, b := range matched {
332		// Is this block adjacent to i1, j1, k1?
333		i2, j2, k2 := b.A, b.B, b.Size
334		if i1+k1 == i2 && j1+k1 == j2 {
335			// Yes, so collapse them -- this just increases the length of
336			// the first block by the length of the second, and the first
337			// block so lengthened remains the block to compare against.
338			k1 += k2
339		} else {
340			// Not adjacent.  Remember the first block (k1==0 means it's
341			// the dummy we started with), and make the second block the
342			// new block to compare against.
343			if k1 > 0 {
344				nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
345			}
346			i1, j1, k1 = i2, j2, k2
347		}
348	}
349	if k1 > 0 {
350		nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
351	}
352
353	nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
354	m.matchingBlocks = nonAdjacent
355	return m.matchingBlocks
356}
357
358// Return list of 5-tuples describing how to turn a into b.
359//
360// Each tuple is of the form (tag, i1, i2, j1, j2).  The first tuple
361// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
362// tuple preceding it, and likewise for j1 == the previous j2.
363//
364// The tags are characters, with these meanings:
365//
366// 'r' (replace):  a[i1:i2] should be replaced by b[j1:j2]
367//
368// 'd' (delete):   a[i1:i2] should be deleted, j1==j2 in this case.
369//
370// 'i' (insert):   b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
371//
372// 'e' (equal):    a[i1:i2] == b[j1:j2]
373func (m *SequenceMatcher) GetOpCodes() []OpCode {
374	if m.opCodes != nil {
375		return m.opCodes
376	}
377	i, j := 0, 0
378	matching := m.GetMatchingBlocks()
379	opCodes := make([]OpCode, 0, len(matching))
380	for _, m := range matching {
381		//  invariant:  we've pumped out correct diffs to change
382		//  a[:i] into b[:j], and the next matching block is
383		//  a[ai:ai+size] == b[bj:bj+size]. So we need to pump
384		//  out a diff to change a[i:ai] into b[j:bj], pump out
385		//  the matching block, and move (i,j) beyond the match
386		ai, bj, size := m.A, m.B, m.Size
387		tag := byte(0)
388		if i < ai && j < bj {
389			tag = 'r'
390		} else if i < ai {
391			tag = 'd'
392		} else if j < bj {
393			tag = 'i'
394		}
395		if tag > 0 {
396			opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
397		}
398		i, j = ai+size, bj+size
399		// the list of matching blocks is terminated by a
400		// sentinel with size 0
401		if size > 0 {
402			opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
403		}
404	}
405	m.opCodes = opCodes
406	return m.opCodes
407}
408
409// Isolate change clusters by eliminating ranges with no changes.
410//
411// Return a generator of groups with up to n lines of context.
412// Each group is in the same format as returned by GetOpCodes().
413func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
414	if n < 0 {
415		n = 3
416	}
417	codes := m.GetOpCodes()
418	if len(codes) == 0 {
419		codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
420	}
421	// Fixup leading and trailing groups if they show no changes.
422	if codes[0].Tag == 'e' {
423		c := codes[0]
424		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
425		codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
426	}
427	if codes[len(codes)-1].Tag == 'e' {
428		c := codes[len(codes)-1]
429		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
430		codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
431	}
432	nn := n + n
433	groups := [][]OpCode{}
434	group := []OpCode{}
435	for _, c := range codes {
436		i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
437		// End the current group and start a new one whenever
438		// there is a large range with no changes.
439		if c.Tag == 'e' && i2-i1 > nn {
440			group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
441				j1, min(j2, j1+n)})
442			groups = append(groups, group)
443			group = []OpCode{}
444			i1, j1 = max(i1, i2-n), max(j1, j2-n)
445		}
446		group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
447	}
448	if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
449		groups = append(groups, group)
450	}
451	return groups
452}
453
454// Return a measure of the sequences' similarity (float in [0,1]).
455//
456// Where T is the total number of elements in both sequences, and
457// M is the number of matches, this is 2.0*M / T.
458// Note that this is 1 if the sequences are identical, and 0 if
459// they have nothing in common.
460//
461// .Ratio() is expensive to compute if you haven't already computed
462// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
463// want to try .QuickRatio() or .RealQuickRation() first to get an
464// upper bound.
465func (m *SequenceMatcher) Ratio() float64 {
466	matches := 0
467	for _, m := range m.GetMatchingBlocks() {
468		matches += m.Size
469	}
470	return calculateRatio(matches, len(m.a)+len(m.b))
471}
472
473// Return an upper bound on ratio() relatively quickly.
474//
475// This isn't defined beyond that it is an upper bound on .Ratio(), and
476// is faster to compute.
477func (m *SequenceMatcher) QuickRatio() float64 {
478	// viewing a and b as multisets, set matches to the cardinality
479	// of their intersection; this counts the number of matches
480	// without regard to order, so is clearly an upper bound
481	if m.fullBCount == nil {
482		m.fullBCount = map[string]int{}
483		for _, s := range m.b {
484			m.fullBCount[s] = m.fullBCount[s] + 1
485		}
486	}
487
488	// avail[x] is the number of times x appears in 'b' less the
489	// number of times we've seen it in 'a' so far ... kinda
490	avail := map[string]int{}
491	matches := 0
492	for _, s := range m.a {
493		n, ok := avail[s]
494		if !ok {
495			n = m.fullBCount[s]
496		}
497		avail[s] = n - 1
498		if n > 0 {
499			matches += 1
500		}
501	}
502	return calculateRatio(matches, len(m.a)+len(m.b))
503}
504
505// Return an upper bound on ratio() very quickly.
506//
507// This isn't defined beyond that it is an upper bound on .Ratio(), and
508// is faster to compute than either .Ratio() or .QuickRatio().
509func (m *SequenceMatcher) RealQuickRatio() float64 {
510	la, lb := len(m.a), len(m.b)
511	return calculateRatio(min(la, lb), la+lb)
512}
513
514// Convert range to the "ed" format
515func formatRangeUnified(start, stop int) string {
516	// Per the diff spec at http://www.unix.org/single_unix_specification/
517	beginning := start + 1 // lines start numbering with one
518	length := stop - start
519	if length == 1 {
520		return fmt.Sprintf("%d", beginning)
521	}
522	if length == 0 {
523		beginning -= 1 // empty ranges begin at line just before the range
524	}
525	return fmt.Sprintf("%d,%d", beginning, length)
526}
527
528// Unified diff parameters
529type UnifiedDiff struct {
530	A        []string // First sequence lines
531	FromFile string   // First file name
532	FromDate string   // First file time
533	B        []string // Second sequence lines
534	ToFile   string   // Second file name
535	ToDate   string   // Second file time
536	Eol      string   // Headers end of line, defaults to LF
537	Context  int      // Number of context lines
538}
539
540// Compare two sequences of lines; generate the delta as a unified diff.
541//
542// Unified diffs are a compact way of showing line changes and a few
543// lines of context.  The number of context lines is set by 'n' which
544// defaults to three.
545//
546// By default, the diff control lines (those with ---, +++, or @@) are
547// created with a trailing newline.  This is helpful so that inputs
548// created from file.readlines() result in diffs that are suitable for
549// file.writelines() since both the inputs and outputs have trailing
550// newlines.
551//
552// For inputs that do not have trailing newlines, set the lineterm
553// argument to "" so that the output will be uniformly newline free.
554//
555// The unidiff format normally has a header for filenames and modification
556// times.  Any or all of these may be specified using strings for
557// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
558// The modification times are normally expressed in the ISO 8601 format.
559func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
560	buf := bufio.NewWriter(writer)
561	defer buf.Flush()
562	wf := func(format string, args ...interface{}) error {
563		_, err := buf.WriteString(fmt.Sprintf(format, args...))
564		return err
565	}
566	ws := func(s string) error {
567		_, err := buf.WriteString(s)
568		return err
569	}
570
571	if len(diff.Eol) == 0 {
572		diff.Eol = "\n"
573	}
574
575	started := false
576	m := NewMatcher(diff.A, diff.B)
577	for _, g := range m.GetGroupedOpCodes(diff.Context) {
578		if !started {
579			started = true
580			fromDate := ""
581			if len(diff.FromDate) > 0 {
582				fromDate = "\t" + diff.FromDate
583			}
584			toDate := ""
585			if len(diff.ToDate) > 0 {
586				toDate = "\t" + diff.ToDate
587			}
588			if diff.FromFile != "" || diff.ToFile != "" {
589				err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
590				if err != nil {
591					return err
592				}
593				err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
594				if err != nil {
595					return err
596				}
597			}
598		}
599		first, last := g[0], g[len(g)-1]
600		range1 := formatRangeUnified(first.I1, last.I2)
601		range2 := formatRangeUnified(first.J1, last.J2)
602		if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
603			return err
604		}
605		for _, c := range g {
606			i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
607			if c.Tag == 'e' {
608				for _, line := range diff.A[i1:i2] {
609					if err := ws(" " + line); err != nil {
610						return err
611					}
612				}
613				continue
614			}
615			if c.Tag == 'r' || c.Tag == 'd' {
616				for _, line := range diff.A[i1:i2] {
617					if err := ws("-" + line); err != nil {
618						return err
619					}
620				}
621			}
622			if c.Tag == 'r' || c.Tag == 'i' {
623				for _, line := range diff.B[j1:j2] {
624					if err := ws("+" + line); err != nil {
625						return err
626					}
627				}
628			}
629		}
630	}
631	return nil
632}
633
634// Like WriteUnifiedDiff but returns the diff a string.
635func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
636	w := &bytes.Buffer{}
637	err := WriteUnifiedDiff(w, diff)
638	return string(w.Bytes()), err
639}
640
641// Convert range to the "ed" format.
642func formatRangeContext(start, stop int) string {
643	// Per the diff spec at http://www.unix.org/single_unix_specification/
644	beginning := start + 1 // lines start numbering with one
645	length := stop - start
646	if length == 0 {
647		beginning -= 1 // empty ranges begin at line just before the range
648	}
649	if length <= 1 {
650		return fmt.Sprintf("%d", beginning)
651	}
652	return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
653}
654
655type ContextDiff UnifiedDiff
656
657// Compare two sequences of lines; generate the delta as a context diff.
658//
659// Context diffs are a compact way of showing line changes and a few
660// lines of context. The number of context lines is set by diff.Context
661// which defaults to three.
662//
663// By default, the diff control lines (those with *** or ---) are
664// created with a trailing newline.
665//
666// For inputs that do not have trailing newlines, set the diff.Eol
667// argument to "" so that the output will be uniformly newline free.
668//
669// The context diff format normally has a header for filenames and
670// modification times.  Any or all of these may be specified using
671// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
672// The modification times are normally expressed in the ISO 8601 format.
673// If not specified, the strings default to blanks.
674func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
675	buf := bufio.NewWriter(writer)
676	defer buf.Flush()
677	var diffErr error
678	wf := func(format string, args ...interface{}) {
679		_, err := buf.WriteString(fmt.Sprintf(format, args...))
680		if diffErr == nil && err != nil {
681			diffErr = err
682		}
683	}
684	ws := func(s string) {
685		_, err := buf.WriteString(s)
686		if diffErr == nil && err != nil {
687			diffErr = err
688		}
689	}
690
691	if len(diff.Eol) == 0 {
692		diff.Eol = "\n"
693	}
694
695	prefix := map[byte]string{
696		'i': "+ ",
697		'd': "- ",
698		'r': "! ",
699		'e': "  ",
700	}
701
702	started := false
703	m := NewMatcher(diff.A, diff.B)
704	for _, g := range m.GetGroupedOpCodes(diff.Context) {
705		if !started {
706			started = true
707			fromDate := ""
708			if len(diff.FromDate) > 0 {
709				fromDate = "\t" + diff.FromDate
710			}
711			toDate := ""
712			if len(diff.ToDate) > 0 {
713				toDate = "\t" + diff.ToDate
714			}
715			if diff.FromFile != "" || diff.ToFile != "" {
716				wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
717				wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
718			}
719		}
720
721		first, last := g[0], g[len(g)-1]
722		ws("***************" + diff.Eol)
723
724		range1 := formatRangeContext(first.I1, last.I2)
725		wf("*** %s ****%s", range1, diff.Eol)
726		for _, c := range g {
727			if c.Tag == 'r' || c.Tag == 'd' {
728				for _, cc := range g {
729					if cc.Tag == 'i' {
730						continue
731					}
732					for _, line := range diff.A[cc.I1:cc.I2] {
733						ws(prefix[cc.Tag] + line)
734					}
735				}
736				break
737			}
738		}
739
740		range2 := formatRangeContext(first.J1, last.J2)
741		wf("--- %s ----%s", range2, diff.Eol)
742		for _, c := range g {
743			if c.Tag == 'r' || c.Tag == 'i' {
744				for _, cc := range g {
745					if cc.Tag == 'd' {
746						continue
747					}
748					for _, line := range diff.B[cc.J1:cc.J2] {
749						ws(prefix[cc.Tag] + line)
750					}
751				}
752				break
753			}
754		}
755	}
756	return diffErr
757}
758
759// Like WriteContextDiff but returns the diff a string.
760func GetContextDiffString(diff ContextDiff) (string, error) {
761	w := &bytes.Buffer{}
762	err := WriteContextDiff(w, diff)
763	return string(w.Bytes()), err
764}
765
766// Split a string on "\n" while preserving them. The output can be used
767// as input for UnifiedDiff and ContextDiff structures.
768func SplitLines(s string) []string {
769	lines := strings.SplitAfter(s, "\n")
770	lines[len(lines)-1] += "\n"
771	return lines
772}
773