1package assert
2
3import (
4	"bufio"
5	"bytes"
6	"encoding/json"
7	"errors"
8	"fmt"
9	"math"
10	"os"
11	"reflect"
12	"regexp"
13	"runtime"
14	"runtime/debug"
15	"strings"
16	"time"
17	"unicode"
18	"unicode/utf8"
19
20	"github.com/davecgh/go-spew/spew"
21	"github.com/pmezard/go-difflib/difflib"
22	yaml "gopkg.in/yaml.v2"
23)
24
25//go:generate sh -c "cd ../_codegen && go build && cd - && ../_codegen/_codegen -output-package=assert -template=assertion_format.go.tmpl"
26
27// TestingT is an interface wrapper around *testing.T
28type TestingT interface {
29	Errorf(format string, args ...interface{})
30}
31
32// ComparisonAssertionFunc is a common function prototype when comparing two values.  Can be useful
33// for table driven tests.
34type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool
35
36// ValueAssertionFunc is a common function prototype when validating a single value.  Can be useful
37// for table driven tests.
38type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool
39
40// BoolAssertionFunc is a common function prototype when validating a bool value.  Can be useful
41// for table driven tests.
42type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool
43
44// ErrorAssertionFunc is a common function prototype when validating an error value.  Can be useful
45// for table driven tests.
46type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool
47
48// Comparison a custom function that returns true on success and false on failure
49type Comparison func() (success bool)
50
51/*
52	Helper functions
53*/
54
55// ObjectsAreEqual determines if two objects are considered equal.
56//
57// This function does no assertion of any kind.
58func ObjectsAreEqual(expected, actual interface{}) bool {
59	if expected == nil || actual == nil {
60		return expected == actual
61	}
62
63	exp, ok := expected.([]byte)
64	if !ok {
65		return reflect.DeepEqual(expected, actual)
66	}
67
68	act, ok := actual.([]byte)
69	if !ok {
70		return false
71	}
72	if exp == nil || act == nil {
73		return exp == nil && act == nil
74	}
75	return bytes.Equal(exp, act)
76}
77
78// ObjectsAreEqualValues gets whether two objects are equal, or if their
79// values are equal.
80func ObjectsAreEqualValues(expected, actual interface{}) bool {
81	if ObjectsAreEqual(expected, actual) {
82		return true
83	}
84
85	actualType := reflect.TypeOf(actual)
86	if actualType == nil {
87		return false
88	}
89	expectedValue := reflect.ValueOf(expected)
90	if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
91		// Attempt comparison after type conversion
92		return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
93	}
94
95	return false
96}
97
98/* CallerInfo is necessary because the assert functions use the testing object
99internally, causing it to print the file:line of the assert method, rather than where
100the problem actually occurred in calling code.*/
101
102// CallerInfo returns an array of strings containing the file and line number
103// of each stack frame leading from the current test to the assert call that
104// failed.
105func CallerInfo() []string {
106
107	pc := uintptr(0)
108	file := ""
109	line := 0
110	ok := false
111	name := ""
112
113	callers := []string{}
114	for i := 0; ; i++ {
115		pc, file, line, ok = runtime.Caller(i)
116		if !ok {
117			// The breaks below failed to terminate the loop, and we ran off the
118			// end of the call stack.
119			break
120		}
121
122		// This is a huge edge case, but it will panic if this is the case, see #180
123		if file == "<autogenerated>" {
124			break
125		}
126
127		f := runtime.FuncForPC(pc)
128		if f == nil {
129			break
130		}
131		name = f.Name()
132
133		// testing.tRunner is the standard library function that calls
134		// tests. Subtests are called directly by tRunner, without going through
135		// the Test/Benchmark/Example function that contains the t.Run calls, so
136		// with subtests we should break when we hit tRunner, without adding it
137		// to the list of callers.
138		if name == "testing.tRunner" {
139			break
140		}
141
142		parts := strings.Split(file, "/")
143		file = parts[len(parts)-1]
144		if len(parts) > 1 {
145			dir := parts[len(parts)-2]
146			if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
147				callers = append(callers, fmt.Sprintf("%s:%d", file, line))
148			}
149		}
150
151		// Drop the package
152		segments := strings.Split(name, ".")
153		name = segments[len(segments)-1]
154		if isTest(name, "Test") ||
155			isTest(name, "Benchmark") ||
156			isTest(name, "Example") {
157			break
158		}
159	}
160
161	return callers
162}
163
164// Stolen from the `go test` tool.
165// isTest tells whether name looks like a test (or benchmark, according to prefix).
166// It is a Test (say) if there is a character after Test that is not a lower-case letter.
167// We don't want TesticularCancer.
168func isTest(name, prefix string) bool {
169	if !strings.HasPrefix(name, prefix) {
170		return false
171	}
172	if len(name) == len(prefix) { // "Test" is ok
173		return true
174	}
175	rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
176	return !unicode.IsLower(rune)
177}
178
179func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
180	if len(msgAndArgs) == 0 || msgAndArgs == nil {
181		return ""
182	}
183	if len(msgAndArgs) == 1 {
184		msg := msgAndArgs[0]
185		if msgAsStr, ok := msg.(string); ok {
186			return msgAsStr
187		}
188		return fmt.Sprintf("%+v", msg)
189	}
190	if len(msgAndArgs) > 1 {
191		return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
192	}
193	return ""
194}
195
196// Aligns the provided message so that all lines after the first line start at the same location as the first line.
197// Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab).
198// The longestLabelLen parameter specifies the length of the longest label in the output (required becaues this is the
199// basis on which the alignment occurs).
200func indentMessageLines(message string, longestLabelLen int) string {
201	outBuf := new(bytes.Buffer)
202
203	for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
204		// no need to align first line because it starts at the correct location (after the label)
205		if i != 0 {
206			// append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
207			outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
208		}
209		outBuf.WriteString(scanner.Text())
210	}
211
212	return outBuf.String()
213}
214
215type failNower interface {
216	FailNow()
217}
218
219// FailNow fails test
220func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
221	if h, ok := t.(tHelper); ok {
222		h.Helper()
223	}
224	Fail(t, failureMessage, msgAndArgs...)
225
226	// We cannot extend TestingT with FailNow() and
227	// maintain backwards compatibility, so we fallback
228	// to panicking when FailNow is not available in
229	// TestingT.
230	// See issue #263
231
232	if t, ok := t.(failNower); ok {
233		t.FailNow()
234	} else {
235		panic("test failed and t is missing `FailNow()`")
236	}
237	return false
238}
239
240// Fail reports a failure through
241func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
242	if h, ok := t.(tHelper); ok {
243		h.Helper()
244	}
245	content := []labeledContent{
246		{"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
247		{"Error", failureMessage},
248	}
249
250	// Add test name if the Go version supports it
251	if n, ok := t.(interface {
252		Name() string
253	}); ok {
254		content = append(content, labeledContent{"Test", n.Name()})
255	}
256
257	message := messageFromMsgAndArgs(msgAndArgs...)
258	if len(message) > 0 {
259		content = append(content, labeledContent{"Messages", message})
260	}
261
262	t.Errorf("\n%s", ""+labeledOutput(content...))
263
264	return false
265}
266
267type labeledContent struct {
268	label   string
269	content string
270}
271
272// labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
273//
274//   \t{{label}}:{{align_spaces}}\t{{content}}\n
275//
276// The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
277// If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
278// alignment is achieved, "\t{{content}}\n" is added for the output.
279//
280// If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line.
281func labeledOutput(content ...labeledContent) string {
282	longestLabel := 0
283	for _, v := range content {
284		if len(v.label) > longestLabel {
285			longestLabel = len(v.label)
286		}
287	}
288	var output string
289	for _, v := range content {
290		output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
291	}
292	return output
293}
294
295// Implements asserts that an object is implemented by the specified interface.
296//
297//    assert.Implements(t, (*MyInterface)(nil), new(MyObject))
298func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
299	if h, ok := t.(tHelper); ok {
300		h.Helper()
301	}
302	interfaceType := reflect.TypeOf(interfaceObject).Elem()
303
304	if object == nil {
305		return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
306	}
307	if !reflect.TypeOf(object).Implements(interfaceType) {
308		return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
309	}
310
311	return true
312}
313
314// IsType asserts that the specified objects are of the same type.
315func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
316	if h, ok := t.(tHelper); ok {
317		h.Helper()
318	}
319
320	if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
321		return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
322	}
323
324	return true
325}
326
327// Equal asserts that two objects are equal.
328//
329//    assert.Equal(t, 123, 123)
330//
331// Pointer variable equality is determined based on the equality of the
332// referenced values (as opposed to the memory addresses). Function equality
333// cannot be determined and will always fail.
334func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
335	if h, ok := t.(tHelper); ok {
336		h.Helper()
337	}
338	if err := validateEqualArgs(expected, actual); err != nil {
339		return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
340			expected, actual, err), msgAndArgs...)
341	}
342
343	if !ObjectsAreEqual(expected, actual) {
344		diff := diff(expected, actual)
345		expected, actual = formatUnequalValues(expected, actual)
346		return Fail(t, fmt.Sprintf("Not equal: \n"+
347			"expected: %s\n"+
348			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
349	}
350
351	return true
352
353}
354
355// validateEqualArgs checks whether provided arguments can be safely used in the
356// Equal/NotEqual functions.
357func validateEqualArgs(expected, actual interface{}) error {
358	if expected == nil && actual == nil {
359		return nil
360	}
361
362	if isFunction(expected) || isFunction(actual) {
363		return errors.New("cannot take func type as argument")
364	}
365	return nil
366}
367
368// Same asserts that two pointers reference the same object.
369//
370//    assert.Same(t, ptr1, ptr2)
371//
372// Both arguments must be pointer variables. Pointer variable sameness is
373// determined based on the equality of both type and value.
374func Same(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
375	if h, ok := t.(tHelper); ok {
376		h.Helper()
377	}
378
379	if !samePointers(expected, actual) {
380		return Fail(t, fmt.Sprintf("Not same: \n"+
381			"expected: %p %#v\n"+
382			"actual  : %p %#v", expected, expected, actual, actual), msgAndArgs...)
383	}
384
385	return true
386}
387
388// NotSame asserts that two pointers do not reference the same object.
389//
390//    assert.NotSame(t, ptr1, ptr2)
391//
392// Both arguments must be pointer variables. Pointer variable sameness is
393// determined based on the equality of both type and value.
394func NotSame(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
395	if h, ok := t.(tHelper); ok {
396		h.Helper()
397	}
398
399	if samePointers(expected, actual) {
400		return Fail(t, fmt.Sprintf(
401			"Expected and actual point to the same object: %p %#v",
402			expected, expected), msgAndArgs...)
403	}
404	return true
405}
406
407// samePointers compares two generic interface objects and returns whether
408// they point to the same object
409func samePointers(first, second interface{}) bool {
410	firstPtr, secondPtr := reflect.ValueOf(first), reflect.ValueOf(second)
411	if firstPtr.Kind() != reflect.Ptr || secondPtr.Kind() != reflect.Ptr {
412		return false
413	}
414
415	firstType, secondType := reflect.TypeOf(first), reflect.TypeOf(second)
416	if firstType != secondType {
417		return false
418	}
419
420	// compare pointer addresses
421	return first == second
422}
423
424// formatUnequalValues takes two values of arbitrary types and returns string
425// representations appropriate to be presented to the user.
426//
427// If the values are not of like type, the returned strings will be prefixed
428// with the type name, and the value will be enclosed in parenthesis similar
429// to a type conversion in the Go grammar.
430func formatUnequalValues(expected, actual interface{}) (e string, a string) {
431	if reflect.TypeOf(expected) != reflect.TypeOf(actual) {
432		return fmt.Sprintf("%T(%#v)", expected, expected),
433			fmt.Sprintf("%T(%#v)", actual, actual)
434	}
435	switch expected.(type) {
436	case time.Duration:
437		return fmt.Sprintf("%v", expected), fmt.Sprintf("%v", actual)
438	}
439	return fmt.Sprintf("%#v", expected), fmt.Sprintf("%#v", actual)
440}
441
442// EqualValues asserts that two objects are equal or convertable to the same types
443// and equal.
444//
445//    assert.EqualValues(t, uint32(123), int32(123))
446func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
447	if h, ok := t.(tHelper); ok {
448		h.Helper()
449	}
450
451	if !ObjectsAreEqualValues(expected, actual) {
452		diff := diff(expected, actual)
453		expected, actual = formatUnequalValues(expected, actual)
454		return Fail(t, fmt.Sprintf("Not equal: \n"+
455			"expected: %s\n"+
456			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
457	}
458
459	return true
460
461}
462
463// Exactly asserts that two objects are equal in value and type.
464//
465//    assert.Exactly(t, int32(123), int64(123))
466func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
467	if h, ok := t.(tHelper); ok {
468		h.Helper()
469	}
470
471	aType := reflect.TypeOf(expected)
472	bType := reflect.TypeOf(actual)
473
474	if aType != bType {
475		return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
476	}
477
478	return Equal(t, expected, actual, msgAndArgs...)
479
480}
481
482// NotNil asserts that the specified object is not nil.
483//
484//    assert.NotNil(t, err)
485func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
486	if h, ok := t.(tHelper); ok {
487		h.Helper()
488	}
489	if !isNil(object) {
490		return true
491	}
492	return Fail(t, "Expected value not to be nil.", msgAndArgs...)
493}
494
495// containsKind checks if a specified kind in the slice of kinds.
496func containsKind(kinds []reflect.Kind, kind reflect.Kind) bool {
497	for i := 0; i < len(kinds); i++ {
498		if kind == kinds[i] {
499			return true
500		}
501	}
502
503	return false
504}
505
506// isNil checks if a specified object is nil or not, without Failing.
507func isNil(object interface{}) bool {
508	if object == nil {
509		return true
510	}
511
512	value := reflect.ValueOf(object)
513	kind := value.Kind()
514	isNilableKind := containsKind(
515		[]reflect.Kind{
516			reflect.Chan, reflect.Func,
517			reflect.Interface, reflect.Map,
518			reflect.Ptr, reflect.Slice},
519		kind)
520
521	if isNilableKind && value.IsNil() {
522		return true
523	}
524
525	return false
526}
527
528// Nil asserts that the specified object is nil.
529//
530//    assert.Nil(t, err)
531func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
532	if h, ok := t.(tHelper); ok {
533		h.Helper()
534	}
535	if isNil(object) {
536		return true
537	}
538	return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
539}
540
541// isEmpty gets whether the specified object is considered empty or not.
542func isEmpty(object interface{}) bool {
543
544	// get nil case out of the way
545	if object == nil {
546		return true
547	}
548
549	objValue := reflect.ValueOf(object)
550
551	switch objValue.Kind() {
552	// collection types are empty when they have no element
553	case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
554		return objValue.Len() == 0
555		// pointers are empty if nil or if the value they point to is empty
556	case reflect.Ptr:
557		if objValue.IsNil() {
558			return true
559		}
560		deref := objValue.Elem().Interface()
561		return isEmpty(deref)
562		// for all other types, compare against the zero value
563	default:
564		zero := reflect.Zero(objValue.Type())
565		return reflect.DeepEqual(object, zero.Interface())
566	}
567}
568
569// Empty asserts that the specified object is empty.  I.e. nil, "", false, 0 or either
570// a slice or a channel with len == 0.
571//
572//  assert.Empty(t, obj)
573func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
574	if h, ok := t.(tHelper); ok {
575		h.Helper()
576	}
577
578	pass := isEmpty(object)
579	if !pass {
580		Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
581	}
582
583	return pass
584
585}
586
587// NotEmpty asserts that the specified object is NOT empty.  I.e. not nil, "", false, 0 or either
588// a slice or a channel with len == 0.
589//
590//  if assert.NotEmpty(t, obj) {
591//    assert.Equal(t, "two", obj[1])
592//  }
593func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
594	if h, ok := t.(tHelper); ok {
595		h.Helper()
596	}
597
598	pass := !isEmpty(object)
599	if !pass {
600		Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
601	}
602
603	return pass
604
605}
606
607// getLen try to get length of object.
608// return (false, 0) if impossible.
609func getLen(x interface{}) (ok bool, length int) {
610	v := reflect.ValueOf(x)
611	defer func() {
612		if e := recover(); e != nil {
613			ok = false
614		}
615	}()
616	return true, v.Len()
617}
618
619// Len asserts that the specified object has specific length.
620// Len also fails if the object has a type that len() not accept.
621//
622//    assert.Len(t, mySlice, 3)
623func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
624	if h, ok := t.(tHelper); ok {
625		h.Helper()
626	}
627	ok, l := getLen(object)
628	if !ok {
629		return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
630	}
631
632	if l != length {
633		return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
634	}
635	return true
636}
637
638// True asserts that the specified value is true.
639//
640//    assert.True(t, myBool)
641func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
642	if h, ok := t.(tHelper); ok {
643		h.Helper()
644	}
645	if h, ok := t.(interface {
646		Helper()
647	}); ok {
648		h.Helper()
649	}
650
651	if value != true {
652		return Fail(t, "Should be true", msgAndArgs...)
653	}
654
655	return true
656
657}
658
659// False asserts that the specified value is false.
660//
661//    assert.False(t, myBool)
662func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
663	if h, ok := t.(tHelper); ok {
664		h.Helper()
665	}
666
667	if value != false {
668		return Fail(t, "Should be false", msgAndArgs...)
669	}
670
671	return true
672
673}
674
675// NotEqual asserts that the specified values are NOT equal.
676//
677//    assert.NotEqual(t, obj1, obj2)
678//
679// Pointer variable equality is determined based on the equality of the
680// referenced values (as opposed to the memory addresses).
681func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
682	if h, ok := t.(tHelper); ok {
683		h.Helper()
684	}
685	if err := validateEqualArgs(expected, actual); err != nil {
686		return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
687			expected, actual, err), msgAndArgs...)
688	}
689
690	if ObjectsAreEqual(expected, actual) {
691		return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
692	}
693
694	return true
695
696}
697
698// containsElement try loop over the list check if the list includes the element.
699// return (false, false) if impossible.
700// return (true, false) if element was not found.
701// return (true, true) if element was found.
702func includeElement(list interface{}, element interface{}) (ok, found bool) {
703
704	listValue := reflect.ValueOf(list)
705	listKind := reflect.TypeOf(list).Kind()
706	defer func() {
707		if e := recover(); e != nil {
708			ok = false
709			found = false
710		}
711	}()
712
713	if listKind == reflect.String {
714		elementValue := reflect.ValueOf(element)
715		return true, strings.Contains(listValue.String(), elementValue.String())
716	}
717
718	if listKind == reflect.Map {
719		mapKeys := listValue.MapKeys()
720		for i := 0; i < len(mapKeys); i++ {
721			if ObjectsAreEqual(mapKeys[i].Interface(), element) {
722				return true, true
723			}
724		}
725		return true, false
726	}
727
728	for i := 0; i < listValue.Len(); i++ {
729		if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
730			return true, true
731		}
732	}
733	return true, false
734
735}
736
737// Contains asserts that the specified string, list(array, slice...) or map contains the
738// specified substring or element.
739//
740//    assert.Contains(t, "Hello World", "World")
741//    assert.Contains(t, ["Hello", "World"], "World")
742//    assert.Contains(t, {"Hello": "World"}, "Hello")
743func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
744	if h, ok := t.(tHelper); ok {
745		h.Helper()
746	}
747
748	ok, found := includeElement(s, contains)
749	if !ok {
750		return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
751	}
752	if !found {
753		return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
754	}
755
756	return true
757
758}
759
760// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
761// specified substring or element.
762//
763//    assert.NotContains(t, "Hello World", "Earth")
764//    assert.NotContains(t, ["Hello", "World"], "Earth")
765//    assert.NotContains(t, {"Hello": "World"}, "Earth")
766func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
767	if h, ok := t.(tHelper); ok {
768		h.Helper()
769	}
770
771	ok, found := includeElement(s, contains)
772	if !ok {
773		return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
774	}
775	if found {
776		return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
777	}
778
779	return true
780
781}
782
783// Subset asserts that the specified list(array, slice...) contains all
784// elements given in the specified subset(array, slice...).
785//
786//    assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
787func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
788	if h, ok := t.(tHelper); ok {
789		h.Helper()
790	}
791	if subset == nil {
792		return true // we consider nil to be equal to the nil set
793	}
794
795	subsetValue := reflect.ValueOf(subset)
796	defer func() {
797		if e := recover(); e != nil {
798			ok = false
799		}
800	}()
801
802	listKind := reflect.TypeOf(list).Kind()
803	subsetKind := reflect.TypeOf(subset).Kind()
804
805	if listKind != reflect.Array && listKind != reflect.Slice {
806		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
807	}
808
809	if subsetKind != reflect.Array && subsetKind != reflect.Slice {
810		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
811	}
812
813	for i := 0; i < subsetValue.Len(); i++ {
814		element := subsetValue.Index(i).Interface()
815		ok, found := includeElement(list, element)
816		if !ok {
817			return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
818		}
819		if !found {
820			return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", list, element), msgAndArgs...)
821		}
822	}
823
824	return true
825}
826
827// NotSubset asserts that the specified list(array, slice...) contains not all
828// elements given in the specified subset(array, slice...).
829//
830//    assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
831func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
832	if h, ok := t.(tHelper); ok {
833		h.Helper()
834	}
835	if subset == nil {
836		return Fail(t, fmt.Sprintf("nil is the empty set which is a subset of every set"), msgAndArgs...)
837	}
838
839	subsetValue := reflect.ValueOf(subset)
840	defer func() {
841		if e := recover(); e != nil {
842			ok = false
843		}
844	}()
845
846	listKind := reflect.TypeOf(list).Kind()
847	subsetKind := reflect.TypeOf(subset).Kind()
848
849	if listKind != reflect.Array && listKind != reflect.Slice {
850		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
851	}
852
853	if subsetKind != reflect.Array && subsetKind != reflect.Slice {
854		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
855	}
856
857	for i := 0; i < subsetValue.Len(); i++ {
858		element := subsetValue.Index(i).Interface()
859		ok, found := includeElement(list, element)
860		if !ok {
861			return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
862		}
863		if !found {
864			return true
865		}
866	}
867
868	return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
869}
870
871// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
872// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
873// the number of appearances of each of them in both lists should match.
874//
875// assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
876func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
877	if h, ok := t.(tHelper); ok {
878		h.Helper()
879	}
880	if isEmpty(listA) && isEmpty(listB) {
881		return true
882	}
883
884	aKind := reflect.TypeOf(listA).Kind()
885	bKind := reflect.TypeOf(listB).Kind()
886
887	if aKind != reflect.Array && aKind != reflect.Slice {
888		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listA, aKind), msgAndArgs...)
889	}
890
891	if bKind != reflect.Array && bKind != reflect.Slice {
892		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listB, bKind), msgAndArgs...)
893	}
894
895	aValue := reflect.ValueOf(listA)
896	bValue := reflect.ValueOf(listB)
897
898	aLen := aValue.Len()
899	bLen := bValue.Len()
900
901	if aLen != bLen {
902		return Fail(t, fmt.Sprintf("lengths don't match: %d != %d", aLen, bLen), msgAndArgs...)
903	}
904
905	// Mark indexes in bValue that we already used
906	visited := make([]bool, bLen)
907	for i := 0; i < aLen; i++ {
908		element := aValue.Index(i).Interface()
909		found := false
910		for j := 0; j < bLen; j++ {
911			if visited[j] {
912				continue
913			}
914			if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
915				visited[j] = true
916				found = true
917				break
918			}
919		}
920		if !found {
921			return Fail(t, fmt.Sprintf("element %s appears more times in %s than in %s", element, aValue, bValue), msgAndArgs...)
922		}
923	}
924
925	return true
926}
927
928// Condition uses a Comparison to assert a complex condition.
929func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
930	if h, ok := t.(tHelper); ok {
931		h.Helper()
932	}
933	result := comp()
934	if !result {
935		Fail(t, "Condition failed!", msgAndArgs...)
936	}
937	return result
938}
939
940// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
941// methods, and represents a simple func that takes no arguments, and returns nothing.
942type PanicTestFunc func()
943
944// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
945func didPanic(f PanicTestFunc) (bool, interface{}, string) {
946
947	didPanic := false
948	var message interface{}
949	var stack string
950	func() {
951
952		defer func() {
953			if message = recover(); message != nil {
954				didPanic = true
955				stack = string(debug.Stack())
956			}
957		}()
958
959		// call the target function
960		f()
961
962	}()
963
964	return didPanic, message, stack
965
966}
967
968// Panics asserts that the code inside the specified PanicTestFunc panics.
969//
970//   assert.Panics(t, func(){ GoCrazy() })
971func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
972	if h, ok := t.(tHelper); ok {
973		h.Helper()
974	}
975
976	if funcDidPanic, panicValue, _ := didPanic(f); !funcDidPanic {
977		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
978	}
979
980	return true
981}
982
983// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
984// the recovered panic value equals the expected panic value.
985//
986//   assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
987func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
988	if h, ok := t.(tHelper); ok {
989		h.Helper()
990	}
991
992	funcDidPanic, panicValue, panickedStack := didPanic(f)
993	if !funcDidPanic {
994		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
995	}
996	if panicValue != expected {
997		return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, expected, panicValue, panickedStack), msgAndArgs...)
998	}
999
1000	return true
1001}
1002
1003// PanicsWithError asserts that the code inside the specified PanicTestFunc
1004// panics, and that the recovered panic value is an error that satisfies the
1005// EqualError comparison.
1006//
1007//   assert.PanicsWithError(t, "crazy error", func(){ GoCrazy() })
1008func PanicsWithError(t TestingT, errString string, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1009	if h, ok := t.(tHelper); ok {
1010		h.Helper()
1011	}
1012
1013	funcDidPanic, panicValue, panickedStack := didPanic(f)
1014	if !funcDidPanic {
1015		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
1016	}
1017	panicErr, ok := panicValue.(error)
1018	if !ok || panicErr.Error() != errString {
1019		return Fail(t, fmt.Sprintf("func %#v should panic with error message:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, errString, panicValue, panickedStack), msgAndArgs...)
1020	}
1021
1022	return true
1023}
1024
1025// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
1026//
1027//   assert.NotPanics(t, func(){ RemainCalm() })
1028func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1029	if h, ok := t.(tHelper); ok {
1030		h.Helper()
1031	}
1032
1033	if funcDidPanic, panicValue, panickedStack := didPanic(f); funcDidPanic {
1034		return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v\n\tPanic stack:\t%s", f, panicValue, panickedStack), msgAndArgs...)
1035	}
1036
1037	return true
1038}
1039
1040// WithinDuration asserts that the two times are within duration delta of each other.
1041//
1042//   assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
1043func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
1044	if h, ok := t.(tHelper); ok {
1045		h.Helper()
1046	}
1047
1048	dt := expected.Sub(actual)
1049	if dt < -delta || dt > delta {
1050		return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1051	}
1052
1053	return true
1054}
1055
1056func toFloat(x interface{}) (float64, bool) {
1057	var xf float64
1058	xok := true
1059
1060	switch xn := x.(type) {
1061	case uint8:
1062		xf = float64(xn)
1063	case uint16:
1064		xf = float64(xn)
1065	case uint32:
1066		xf = float64(xn)
1067	case uint64:
1068		xf = float64(xn)
1069	case int:
1070		xf = float64(xn)
1071	case int8:
1072		xf = float64(xn)
1073	case int16:
1074		xf = float64(xn)
1075	case int32:
1076		xf = float64(xn)
1077	case int64:
1078		xf = float64(xn)
1079	case float32:
1080		xf = float64(xn)
1081	case float64:
1082		xf = float64(xn)
1083	case time.Duration:
1084		xf = float64(xn)
1085	default:
1086		xok = false
1087	}
1088
1089	return xf, xok
1090}
1091
1092// InDelta asserts that the two numerals are within delta of each other.
1093//
1094// 	 assert.InDelta(t, math.Pi, 22/7.0, 0.01)
1095func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1096	if h, ok := t.(tHelper); ok {
1097		h.Helper()
1098	}
1099
1100	af, aok := toFloat(expected)
1101	bf, bok := toFloat(actual)
1102
1103	if !aok || !bok {
1104		return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
1105	}
1106
1107	if math.IsNaN(af) {
1108		return Fail(t, fmt.Sprintf("Expected must not be NaN"), msgAndArgs...)
1109	}
1110
1111	if math.IsNaN(bf) {
1112		return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
1113	}
1114
1115	dt := af - bf
1116	if dt < -delta || dt > delta {
1117		return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1118	}
1119
1120	return true
1121}
1122
1123// InDeltaSlice is the same as InDelta, except it compares two slices.
1124func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1125	if h, ok := t.(tHelper); ok {
1126		h.Helper()
1127	}
1128	if expected == nil || actual == nil ||
1129		reflect.TypeOf(actual).Kind() != reflect.Slice ||
1130		reflect.TypeOf(expected).Kind() != reflect.Slice {
1131		return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1132	}
1133
1134	actualSlice := reflect.ValueOf(actual)
1135	expectedSlice := reflect.ValueOf(expected)
1136
1137	for i := 0; i < actualSlice.Len(); i++ {
1138		result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...)
1139		if !result {
1140			return result
1141		}
1142	}
1143
1144	return true
1145}
1146
1147// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
1148func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1149	if h, ok := t.(tHelper); ok {
1150		h.Helper()
1151	}
1152	if expected == nil || actual == nil ||
1153		reflect.TypeOf(actual).Kind() != reflect.Map ||
1154		reflect.TypeOf(expected).Kind() != reflect.Map {
1155		return Fail(t, "Arguments must be maps", msgAndArgs...)
1156	}
1157
1158	expectedMap := reflect.ValueOf(expected)
1159	actualMap := reflect.ValueOf(actual)
1160
1161	if expectedMap.Len() != actualMap.Len() {
1162		return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
1163	}
1164
1165	for _, k := range expectedMap.MapKeys() {
1166		ev := expectedMap.MapIndex(k)
1167		av := actualMap.MapIndex(k)
1168
1169		if !ev.IsValid() {
1170			return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
1171		}
1172
1173		if !av.IsValid() {
1174			return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
1175		}
1176
1177		if !InDelta(
1178			t,
1179			ev.Interface(),
1180			av.Interface(),
1181			delta,
1182			msgAndArgs...,
1183		) {
1184			return false
1185		}
1186	}
1187
1188	return true
1189}
1190
1191func calcRelativeError(expected, actual interface{}) (float64, error) {
1192	af, aok := toFloat(expected)
1193	if !aok {
1194		return 0, fmt.Errorf("expected value %q cannot be converted to float", expected)
1195	}
1196	if af == 0 {
1197		return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
1198	}
1199	bf, bok := toFloat(actual)
1200	if !bok {
1201		return 0, fmt.Errorf("actual value %q cannot be converted to float", actual)
1202	}
1203
1204	return math.Abs(af-bf) / math.Abs(af), nil
1205}
1206
1207// InEpsilon asserts that expected and actual have a relative error less than epsilon
1208func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1209	if h, ok := t.(tHelper); ok {
1210		h.Helper()
1211	}
1212	actualEpsilon, err := calcRelativeError(expected, actual)
1213	if err != nil {
1214		return Fail(t, err.Error(), msgAndArgs...)
1215	}
1216	if actualEpsilon > epsilon {
1217		return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
1218			"        < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
1219	}
1220
1221	return true
1222}
1223
1224// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
1225func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1226	if h, ok := t.(tHelper); ok {
1227		h.Helper()
1228	}
1229	if expected == nil || actual == nil ||
1230		reflect.TypeOf(actual).Kind() != reflect.Slice ||
1231		reflect.TypeOf(expected).Kind() != reflect.Slice {
1232		return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1233	}
1234
1235	actualSlice := reflect.ValueOf(actual)
1236	expectedSlice := reflect.ValueOf(expected)
1237
1238	for i := 0; i < actualSlice.Len(); i++ {
1239		result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
1240		if !result {
1241			return result
1242		}
1243	}
1244
1245	return true
1246}
1247
1248/*
1249	Errors
1250*/
1251
1252// NoError asserts that a function returned no error (i.e. `nil`).
1253//
1254//   actualObj, err := SomeFunction()
1255//   if assert.NoError(t, err) {
1256//	   assert.Equal(t, expectedObj, actualObj)
1257//   }
1258func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
1259	if h, ok := t.(tHelper); ok {
1260		h.Helper()
1261	}
1262	if err != nil {
1263		return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
1264	}
1265
1266	return true
1267}
1268
1269// Error asserts that a function returned an error (i.e. not `nil`).
1270//
1271//   actualObj, err := SomeFunction()
1272//   if assert.Error(t, err) {
1273//	   assert.Equal(t, expectedError, err)
1274//   }
1275func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
1276	if h, ok := t.(tHelper); ok {
1277		h.Helper()
1278	}
1279
1280	if err == nil {
1281		return Fail(t, "An error is expected but got nil.", msgAndArgs...)
1282	}
1283
1284	return true
1285}
1286
1287// EqualError asserts that a function returned an error (i.e. not `nil`)
1288// and that it is equal to the provided error.
1289//
1290//   actualObj, err := SomeFunction()
1291//   assert.EqualError(t, err,  expectedErrorString)
1292func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
1293	if h, ok := t.(tHelper); ok {
1294		h.Helper()
1295	}
1296	if !Error(t, theError, msgAndArgs...) {
1297		return false
1298	}
1299	expected := errString
1300	actual := theError.Error()
1301	// don't need to use deep equals here, we know they are both strings
1302	if expected != actual {
1303		return Fail(t, fmt.Sprintf("Error message not equal:\n"+
1304			"expected: %q\n"+
1305			"actual  : %q", expected, actual), msgAndArgs...)
1306	}
1307	return true
1308}
1309
1310// matchRegexp return true if a specified regexp matches a string.
1311func matchRegexp(rx interface{}, str interface{}) bool {
1312
1313	var r *regexp.Regexp
1314	if rr, ok := rx.(*regexp.Regexp); ok {
1315		r = rr
1316	} else {
1317		r = regexp.MustCompile(fmt.Sprint(rx))
1318	}
1319
1320	return (r.FindStringIndex(fmt.Sprint(str)) != nil)
1321
1322}
1323
1324// Regexp asserts that a specified regexp matches a string.
1325//
1326//  assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
1327//  assert.Regexp(t, "start...$", "it's not starting")
1328func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1329	if h, ok := t.(tHelper); ok {
1330		h.Helper()
1331	}
1332
1333	match := matchRegexp(rx, str)
1334
1335	if !match {
1336		Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
1337	}
1338
1339	return match
1340}
1341
1342// NotRegexp asserts that a specified regexp does not match a string.
1343//
1344//  assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
1345//  assert.NotRegexp(t, "^start", "it's not starting")
1346func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1347	if h, ok := t.(tHelper); ok {
1348		h.Helper()
1349	}
1350	match := matchRegexp(rx, str)
1351
1352	if match {
1353		Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
1354	}
1355
1356	return !match
1357
1358}
1359
1360// Zero asserts that i is the zero value for its type.
1361func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1362	if h, ok := t.(tHelper); ok {
1363		h.Helper()
1364	}
1365	if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1366		return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
1367	}
1368	return true
1369}
1370
1371// NotZero asserts that i is not the zero value for its type.
1372func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1373	if h, ok := t.(tHelper); ok {
1374		h.Helper()
1375	}
1376	if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1377		return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
1378	}
1379	return true
1380}
1381
1382// FileExists checks whether a file exists in the given path. It also fails if
1383// the path points to a directory or there is an error when trying to check the file.
1384func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1385	if h, ok := t.(tHelper); ok {
1386		h.Helper()
1387	}
1388	info, err := os.Lstat(path)
1389	if err != nil {
1390		if os.IsNotExist(err) {
1391			return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1392		}
1393		return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1394	}
1395	if info.IsDir() {
1396		return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
1397	}
1398	return true
1399}
1400
1401// NoFileExists checks whether a file does not exist in a given path. It fails
1402// if the path points to an existing _file_ only.
1403func NoFileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1404	if h, ok := t.(tHelper); ok {
1405		h.Helper()
1406	}
1407	info, err := os.Lstat(path)
1408	if err != nil {
1409		return true
1410	}
1411	if info.IsDir() {
1412		return true
1413	}
1414	return Fail(t, fmt.Sprintf("file %q exists", path), msgAndArgs...)
1415}
1416
1417// DirExists checks whether a directory exists in the given path. It also fails
1418// if the path is a file rather a directory or there is an error checking whether it exists.
1419func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1420	if h, ok := t.(tHelper); ok {
1421		h.Helper()
1422	}
1423	info, err := os.Lstat(path)
1424	if err != nil {
1425		if os.IsNotExist(err) {
1426			return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1427		}
1428		return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1429	}
1430	if !info.IsDir() {
1431		return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
1432	}
1433	return true
1434}
1435
1436// NoDirExists checks whether a directory does not exist in the given path.
1437// It fails if the path points to an existing _directory_ only.
1438func NoDirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1439	if h, ok := t.(tHelper); ok {
1440		h.Helper()
1441	}
1442	info, err := os.Lstat(path)
1443	if err != nil {
1444		if os.IsNotExist(err) {
1445			return true
1446		}
1447		return true
1448	}
1449	if !info.IsDir() {
1450		return true
1451	}
1452	return Fail(t, fmt.Sprintf("directory %q exists", path), msgAndArgs...)
1453}
1454
1455// JSONEq asserts that two JSON strings are equivalent.
1456//
1457//  assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
1458func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1459	if h, ok := t.(tHelper); ok {
1460		h.Helper()
1461	}
1462	var expectedJSONAsInterface, actualJSONAsInterface interface{}
1463
1464	if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
1465		return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1466	}
1467
1468	if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
1469		return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
1470	}
1471
1472	return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
1473}
1474
1475// YAMLEq asserts that two YAML strings are equivalent.
1476func YAMLEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1477	if h, ok := t.(tHelper); ok {
1478		h.Helper()
1479	}
1480	var expectedYAMLAsInterface, actualYAMLAsInterface interface{}
1481
1482	if err := yaml.Unmarshal([]byte(expected), &expectedYAMLAsInterface); err != nil {
1483		return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid yaml.\nYAML parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1484	}
1485
1486	if err := yaml.Unmarshal([]byte(actual), &actualYAMLAsInterface); err != nil {
1487		return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid yaml.\nYAML error: '%s'", actual, err.Error()), msgAndArgs...)
1488	}
1489
1490	return Equal(t, expectedYAMLAsInterface, actualYAMLAsInterface, msgAndArgs...)
1491}
1492
1493func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
1494	t := reflect.TypeOf(v)
1495	k := t.Kind()
1496
1497	if k == reflect.Ptr {
1498		t = t.Elem()
1499		k = t.Kind()
1500	}
1501	return t, k
1502}
1503
1504// diff returns a diff of both values as long as both are of the same type and
1505// are a struct, map, slice, array or string. Otherwise it returns an empty string.
1506func diff(expected interface{}, actual interface{}) string {
1507	if expected == nil || actual == nil {
1508		return ""
1509	}
1510
1511	et, ek := typeAndKind(expected)
1512	at, _ := typeAndKind(actual)
1513
1514	if et != at {
1515		return ""
1516	}
1517
1518	if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String {
1519		return ""
1520	}
1521
1522	var e, a string
1523	if et != reflect.TypeOf("") {
1524		e = spewConfig.Sdump(expected)
1525		a = spewConfig.Sdump(actual)
1526	} else {
1527		e = reflect.ValueOf(expected).String()
1528		a = reflect.ValueOf(actual).String()
1529	}
1530
1531	diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
1532		A:        difflib.SplitLines(e),
1533		B:        difflib.SplitLines(a),
1534		FromFile: "Expected",
1535		FromDate: "",
1536		ToFile:   "Actual",
1537		ToDate:   "",
1538		Context:  1,
1539	})
1540
1541	return "\n\nDiff:\n" + diff
1542}
1543
1544func isFunction(arg interface{}) bool {
1545	if arg == nil {
1546		return false
1547	}
1548	return reflect.TypeOf(arg).Kind() == reflect.Func
1549}
1550
1551var spewConfig = spew.ConfigState{
1552	Indent:                  " ",
1553	DisablePointerAddresses: true,
1554	DisableCapacities:       true,
1555	SortKeys:                true,
1556}
1557
1558type tHelper interface {
1559	Helper()
1560}
1561
1562// Eventually asserts that given condition will be met in waitFor time,
1563// periodically checking target function each tick.
1564//
1565//    assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond)
1566func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
1567	if h, ok := t.(tHelper); ok {
1568		h.Helper()
1569	}
1570
1571	ch := make(chan bool, 1)
1572
1573	timer := time.NewTimer(waitFor)
1574	defer timer.Stop()
1575
1576	ticker := time.NewTicker(tick)
1577	defer ticker.Stop()
1578
1579	for tick := ticker.C; ; {
1580		select {
1581		case <-timer.C:
1582			return Fail(t, "Condition never satisfied", msgAndArgs...)
1583		case <-tick:
1584			tick = nil
1585			go func() { ch <- condition() }()
1586		case v := <-ch:
1587			if v {
1588				return true
1589			}
1590			tick = ticker.C
1591		}
1592	}
1593}
1594
1595// Never asserts that the given condition doesn't satisfy in waitFor time,
1596// periodically checking the target function each tick.
1597//
1598//    assert.Never(t, func() bool { return false; }, time.Second, 10*time.Millisecond)
1599func Never(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
1600	if h, ok := t.(tHelper); ok {
1601		h.Helper()
1602	}
1603
1604	ch := make(chan bool, 1)
1605
1606	timer := time.NewTimer(waitFor)
1607	defer timer.Stop()
1608
1609	ticker := time.NewTicker(tick)
1610	defer ticker.Stop()
1611
1612	for tick := ticker.C; ; {
1613		select {
1614		case <-timer.C:
1615			return true
1616		case <-tick:
1617			tick = nil
1618			go func() { ch <- condition() }()
1619		case v := <-ch:
1620			if v {
1621				return Fail(t, "Condition satisfied", msgAndArgs...)
1622			}
1623			tick = ticker.C
1624		}
1625	}
1626}
1627