1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package parse builds parse trees for templates as defined by text/template
6// and html/template. Clients should use those packages to construct templates
7// rather than this one, which provides shared internal data structures not
8// intended for general use.
9package parse
10
11import (
12	"bytes"
13	"fmt"
14	"runtime"
15	"strconv"
16	"strings"
17)
18
19// Tree is the representation of a single parsed template.
20type Tree struct {
21	Name      string    // name of the template represented by the tree.
22	ParseName string    // name of the top-level template during parsing, for error messages.
23	Root      *ListNode // top-level root of the tree.
24	text      string    // text parsed to create the template (or its parent)
25	// Parsing only; cleared after parse.
26	funcs     []map[string]interface{}
27	lex       *lexer
28	token     [3]item // three-token lookahead for parser.
29	peekCount int
30	vars      []string // variables defined at the moment.
31}
32
33// Copy returns a copy of the Tree. Any parsing state is discarded.
34func (t *Tree) Copy() *Tree {
35	if t == nil {
36		return nil
37	}
38	return &Tree{
39		Name:      t.Name,
40		ParseName: t.ParseName,
41		Root:      t.Root.CopyList(),
42		text:      t.text,
43	}
44}
45
46// Parse returns a map from template name to parse.Tree, created by parsing the
47// templates described in the argument string. The top-level template will be
48// given the specified name. If an error is encountered, parsing stops and an
49// empty map is returned with the error.
50func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) {
51	treeSet = make(map[string]*Tree)
52	t := New(name)
53	t.text = text
54	_, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
55	return
56}
57
58// next returns the next token.
59func (t *Tree) next() item {
60	if t.peekCount > 0 {
61		t.peekCount--
62	} else {
63		t.token[0] = t.lex.nextItem()
64	}
65	return t.token[t.peekCount]
66}
67
68// backup backs the input stream up one token.
69func (t *Tree) backup() {
70	t.peekCount++
71}
72
73// backup2 backs the input stream up two tokens.
74// The zeroth token is already there.
75func (t *Tree) backup2(t1 item) {
76	t.token[1] = t1
77	t.peekCount = 2
78}
79
80// backup3 backs the input stream up three tokens
81// The zeroth token is already there.
82func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
83	t.token[1] = t1
84	t.token[2] = t2
85	t.peekCount = 3
86}
87
88// peek returns but does not consume the next token.
89func (t *Tree) peek() item {
90	if t.peekCount > 0 {
91		return t.token[t.peekCount-1]
92	}
93	t.peekCount = 1
94	t.token[0] = t.lex.nextItem()
95	return t.token[0]
96}
97
98// nextNonSpace returns the next non-space token.
99func (t *Tree) nextNonSpace() (token item) {
100	for {
101		token = t.next()
102		if token.typ != itemSpace {
103			break
104		}
105	}
106	return token
107}
108
109// peekNonSpace returns but does not consume the next non-space token.
110func (t *Tree) peekNonSpace() (token item) {
111	for {
112		token = t.next()
113		if token.typ != itemSpace {
114			break
115		}
116	}
117	t.backup()
118	return token
119}
120
121// Parsing.
122
123// New allocates a new parse tree with the given name.
124func New(name string, funcs ...map[string]interface{}) *Tree {
125	return &Tree{
126		Name:  name,
127		funcs: funcs,
128	}
129}
130
131// ErrorContext returns a textual representation of the location of the node in the input text.
132// The receiver is only used when the node does not have a pointer to the tree inside,
133// which can occur in old code.
134func (t *Tree) ErrorContext(n Node) (location, context string) {
135	pos := int(n.Position())
136	tree := n.tree()
137	if tree == nil {
138		tree = t
139	}
140	text := tree.text[:pos]
141	byteNum := strings.LastIndex(text, "\n")
142	if byteNum == -1 {
143		byteNum = pos // On first line.
144	} else {
145		byteNum++ // After the newline.
146		byteNum = pos - byteNum
147	}
148	lineNum := 1 + strings.Count(text, "\n")
149	context = n.String()
150	if len(context) > 20 {
151		context = fmt.Sprintf("%.20s...", context)
152	}
153	return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
154}
155
156// errorf formats the error and terminates processing.
157func (t *Tree) errorf(format string, args ...interface{}) {
158	t.Root = nil
159	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format)
160	panic(fmt.Errorf(format, args...))
161}
162
163// error terminates processing.
164func (t *Tree) error(err error) {
165	t.errorf("%s", err)
166}
167
168// expect consumes the next token and guarantees it has the required type.
169func (t *Tree) expect(expected itemType, context string) item {
170	token := t.nextNonSpace()
171	if token.typ != expected {
172		t.unexpected(token, context)
173	}
174	return token
175}
176
177// expectOneOf consumes the next token and guarantees it has one of the required types.
178func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
179	token := t.nextNonSpace()
180	if token.typ != expected1 && token.typ != expected2 {
181		t.unexpected(token, context)
182	}
183	return token
184}
185
186// unexpected complains about the token and terminates processing.
187func (t *Tree) unexpected(token item, context string) {
188	t.errorf("unexpected %s in %s", token, context)
189}
190
191// recover is the handler that turns panics into returns from the top level of Parse.
192func (t *Tree) recover(errp *error) {
193	e := recover()
194	if e != nil {
195		if _, ok := e.(runtime.Error); ok {
196			panic(e)
197		}
198		if t != nil {
199			t.stopParse()
200		}
201		*errp = e.(error)
202	}
203	return
204}
205
206// startParse initializes the parser, using the lexer.
207func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) {
208	t.Root = nil
209	t.lex = lex
210	t.vars = []string{"$"}
211	t.funcs = funcs
212}
213
214// stopParse terminates parsing.
215func (t *Tree) stopParse() {
216	t.lex = nil
217	t.vars = nil
218	t.funcs = nil
219}
220
221// Parse parses the template definition string to construct a representation of
222// the template for execution. If either action delimiter string is empty, the
223// default ("{{" or "}}") is used. Embedded template definitions are added to
224// the treeSet map.
225func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
226	defer t.recover(&err)
227	t.ParseName = t.Name
228	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim))
229	t.text = text
230	t.parse(treeSet)
231	t.add(treeSet)
232	t.stopParse()
233	return t, nil
234}
235
236// add adds tree to the treeSet.
237func (t *Tree) add(treeSet map[string]*Tree) {
238	tree := treeSet[t.Name]
239	if tree == nil || IsEmptyTree(tree.Root) {
240		treeSet[t.Name] = t
241		return
242	}
243	if !IsEmptyTree(t.Root) {
244		t.errorf("template: multiple definition of template %q", t.Name)
245	}
246}
247
248// IsEmptyTree reports whether this tree (node) is empty of everything but space.
249func IsEmptyTree(n Node) bool {
250	switch n := n.(type) {
251	case nil:
252		return true
253	case *ActionNode:
254	case *IfNode:
255	case *ListNode:
256		for _, node := range n.Nodes {
257			if !IsEmptyTree(node) {
258				return false
259			}
260		}
261		return true
262	case *RangeNode:
263	case *TemplateNode:
264	case *TextNode:
265		return len(bytes.TrimSpace(n.Text)) == 0
266	case *WithNode:
267	default:
268		panic("unknown node: " + n.String())
269	}
270	return false
271}
272
273// parse is the top-level parser for a template, essentially the same
274// as itemList except it also parses {{define}} actions.
275// It runs to EOF.
276func (t *Tree) parse(treeSet map[string]*Tree) (next Node) {
277	t.Root = t.newList(t.peek().pos)
278	for t.peek().typ != itemEOF {
279		if t.peek().typ == itemLeftDelim {
280			delim := t.next()
281			if t.nextNonSpace().typ == itemDefine {
282				newT := New("definition") // name will be updated once we know it.
283				newT.text = t.text
284				newT.ParseName = t.ParseName
285				newT.startParse(t.funcs, t.lex)
286				newT.parseDefinition(treeSet)
287				continue
288			}
289			t.backup2(delim)
290		}
291		n := t.textOrAction()
292		if n.Type() == nodeEnd {
293			t.errorf("unexpected %s", n)
294		}
295		t.Root.append(n)
296	}
297	return nil
298}
299
300// parseDefinition parses a {{define}} ...  {{end}} template definition and
301// installs the definition in the treeSet map.  The "define" keyword has already
302// been scanned.
303func (t *Tree) parseDefinition(treeSet map[string]*Tree) {
304	const context = "define clause"
305	name := t.expectOneOf(itemString, itemRawString, context)
306	var err error
307	t.Name, err = strconv.Unquote(name.val)
308	if err != nil {
309		t.error(err)
310	}
311	t.expect(itemRightDelim, context)
312	var end Node
313	t.Root, end = t.itemList()
314	if end.Type() != nodeEnd {
315		t.errorf("unexpected %s in %s", end, context)
316	}
317	t.add(treeSet)
318	t.stopParse()
319}
320
321// itemList:
322//	textOrAction*
323// Terminates at {{end}} or {{else}}, returned separately.
324func (t *Tree) itemList() (list *ListNode, next Node) {
325	list = t.newList(t.peekNonSpace().pos)
326	for t.peekNonSpace().typ != itemEOF {
327		n := t.textOrAction()
328		switch n.Type() {
329		case nodeEnd, nodeElse:
330			return list, n
331		}
332		list.append(n)
333	}
334	t.errorf("unexpected EOF")
335	return
336}
337
338// textOrAction:
339//	text | action
340func (t *Tree) textOrAction() Node {
341	switch token := t.nextNonSpace(); token.typ {
342	case itemElideNewline:
343		return t.elideNewline()
344	case itemText:
345		return t.newText(token.pos, token.val)
346	case itemLeftDelim:
347		return t.action()
348	default:
349		t.unexpected(token, "input")
350	}
351	return nil
352}
353
354// elideNewline:
355// Remove newlines trailing rightDelim if \\ is present.
356func (t *Tree) elideNewline() Node {
357	token := t.peek()
358	if token.typ != itemText {
359		t.unexpected(token, "input")
360		return nil
361	}
362
363	t.next()
364	stripped := strings.TrimLeft(token.val, "\n\r")
365	diff := len(token.val) - len(stripped)
366	if diff > 0 {
367		// This is a bit nasty. We mutate the token in-place to remove
368		// preceding newlines.
369		token.pos += Pos(diff)
370		token.val = stripped
371	}
372	return t.newText(token.pos, token.val)
373}
374
375// Action:
376//	control
377//	command ("|" command)*
378// Left delim is past. Now get actions.
379// First word could be a keyword such as range.
380func (t *Tree) action() (n Node) {
381	switch token := t.nextNonSpace(); token.typ {
382	case itemElse:
383		return t.elseControl()
384	case itemEnd:
385		return t.endControl()
386	case itemIf:
387		return t.ifControl()
388	case itemRange:
389		return t.rangeControl()
390	case itemTemplate:
391		return t.templateControl()
392	case itemWith:
393		return t.withControl()
394	}
395	t.backup()
396	// Do not pop variables; they persist until "end".
397	return t.newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command"))
398}
399
400// Pipeline:
401//	declarations? command ('|' command)*
402func (t *Tree) pipeline(context string) (pipe *PipeNode) {
403	var decl []*VariableNode
404	pos := t.peekNonSpace().pos
405	// Are there declarations?
406	for {
407		if v := t.peekNonSpace(); v.typ == itemVariable {
408			t.next()
409			// Since space is a token, we need 3-token look-ahead here in the worst case:
410			// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
411			// argument variable rather than a declaration. So remember the token
412			// adjacent to the variable so we can push it back if necessary.
413			tokenAfterVariable := t.peek()
414			if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") {
415				t.nextNonSpace()
416				variable := t.newVariable(v.pos, v.val)
417				decl = append(decl, variable)
418				t.vars = append(t.vars, v.val)
419				if next.typ == itemChar && next.val == "," {
420					if context == "range" && len(decl) < 2 {
421						continue
422					}
423					t.errorf("too many declarations in %s", context)
424				}
425			} else if tokenAfterVariable.typ == itemSpace {
426				t.backup3(v, tokenAfterVariable)
427			} else {
428				t.backup2(v)
429			}
430		}
431		break
432	}
433	pipe = t.newPipeline(pos, t.lex.lineNumber(), decl)
434	for {
435		switch token := t.nextNonSpace(); token.typ {
436		case itemRightDelim, itemRightParen:
437			if len(pipe.Cmds) == 0 {
438				t.errorf("missing value for %s", context)
439			}
440			if token.typ == itemRightParen {
441				t.backup()
442			}
443			return
444		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
445			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
446			t.backup()
447			pipe.append(t.command())
448		default:
449			t.unexpected(token, context)
450		}
451	}
452}
453
454func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
455	defer t.popVars(len(t.vars))
456	line = t.lex.lineNumber()
457	pipe = t.pipeline(context)
458	var next Node
459	list, next = t.itemList()
460	switch next.Type() {
461	case nodeEnd: //done
462	case nodeElse:
463		if allowElseIf {
464			// Special case for "else if". If the "else" is followed immediately by an "if",
465			// the elseControl will have left the "if" token pending. Treat
466			//	{{if a}}_{{else if b}}_{{end}}
467			// as
468			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
469			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
470			// is assumed. This technique works even for long if-else-if chains.
471			// TODO: Should we allow else-if in with and range?
472			if t.peek().typ == itemIf {
473				t.next() // Consume the "if" token.
474				elseList = t.newList(next.Position())
475				elseList.append(t.ifControl())
476				// Do not consume the next item - only one {{end}} required.
477				break
478			}
479		}
480		elseList, next = t.itemList()
481		if next.Type() != nodeEnd {
482			t.errorf("expected end; found %s", next)
483		}
484	}
485	return pipe.Position(), line, pipe, list, elseList
486}
487
488// If:
489//	{{if pipeline}} itemList {{end}}
490//	{{if pipeline}} itemList {{else}} itemList {{end}}
491// If keyword is past.
492func (t *Tree) ifControl() Node {
493	return t.newIf(t.parseControl(true, "if"))
494}
495
496// Range:
497//	{{range pipeline}} itemList {{end}}
498//	{{range pipeline}} itemList {{else}} itemList {{end}}
499// Range keyword is past.
500func (t *Tree) rangeControl() Node {
501	return t.newRange(t.parseControl(false, "range"))
502}
503
504// With:
505//	{{with pipeline}} itemList {{end}}
506//	{{with pipeline}} itemList {{else}} itemList {{end}}
507// If keyword is past.
508func (t *Tree) withControl() Node {
509	return t.newWith(t.parseControl(false, "with"))
510}
511
512// End:
513//	{{end}}
514// End keyword is past.
515func (t *Tree) endControl() Node {
516	return t.newEnd(t.expect(itemRightDelim, "end").pos)
517}
518
519// Else:
520//	{{else}}
521// Else keyword is past.
522func (t *Tree) elseControl() Node {
523	// Special case for "else if".
524	peek := t.peekNonSpace()
525	if peek.typ == itemIf {
526		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
527		return t.newElse(peek.pos, t.lex.lineNumber())
528	}
529	return t.newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber())
530}
531
532// Template:
533//	{{template stringValue pipeline}}
534// Template keyword is past.  The name must be something that can evaluate
535// to a string.
536func (t *Tree) templateControl() Node {
537	var name string
538	token := t.nextNonSpace()
539	switch token.typ {
540	case itemString, itemRawString:
541		s, err := strconv.Unquote(token.val)
542		if err != nil {
543			t.error(err)
544		}
545		name = s
546	default:
547		t.unexpected(token, "template invocation")
548	}
549	var pipe *PipeNode
550	if t.nextNonSpace().typ != itemRightDelim {
551		t.backup()
552		// Do not pop variables; they persist until "end".
553		pipe = t.pipeline("template")
554	}
555	return t.newTemplate(token.pos, t.lex.lineNumber(), name, pipe)
556}
557
558// command:
559//	operand (space operand)*
560// space-separated arguments up to a pipeline character or right delimiter.
561// we consume the pipe character but leave the right delim to terminate the action.
562func (t *Tree) command() *CommandNode {
563	cmd := t.newCommand(t.peekNonSpace().pos)
564	for {
565		t.peekNonSpace() // skip leading spaces.
566		operand := t.operand()
567		if operand != nil {
568			cmd.append(operand)
569		}
570		switch token := t.next(); token.typ {
571		case itemSpace:
572			continue
573		case itemError:
574			t.errorf("%s", token.val)
575		case itemRightDelim, itemRightParen:
576			t.backup()
577		case itemPipe:
578		default:
579			t.errorf("unexpected %s in operand; missing space?", token)
580		}
581		break
582	}
583	if len(cmd.Args) == 0 {
584		t.errorf("empty command")
585	}
586	return cmd
587}
588
589// operand:
590//	term .Field*
591// An operand is a space-separated component of a command,
592// a term possibly followed by field accesses.
593// A nil return means the next item is not an operand.
594func (t *Tree) operand() Node {
595	node := t.term()
596	if node == nil {
597		return nil
598	}
599	if t.peek().typ == itemField {
600		chain := t.newChain(t.peek().pos, node)
601		for t.peek().typ == itemField {
602			chain.Add(t.next().val)
603		}
604		// Compatibility with original API: If the term is of type NodeField
605		// or NodeVariable, just put more fields on the original.
606		// Otherwise, keep the Chain node.
607		// TODO: Switch to Chains always when we can.
608		switch node.Type() {
609		case NodeField:
610			node = t.newField(chain.Position(), chain.String())
611		case NodeVariable:
612			node = t.newVariable(chain.Position(), chain.String())
613		default:
614			node = chain
615		}
616	}
617	return node
618}
619
620// term:
621//	literal (number, string, nil, boolean)
622//	function (identifier)
623//	.
624//	.Field
625//	$
626//	'(' pipeline ')'
627// A term is a simple "expression".
628// A nil return means the next item is not a term.
629func (t *Tree) term() Node {
630	switch token := t.nextNonSpace(); token.typ {
631	case itemError:
632		t.errorf("%s", token.val)
633	case itemIdentifier:
634		if !t.hasFunction(token.val) {
635			t.errorf("function %q not defined", token.val)
636		}
637		return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
638	case itemDot:
639		return t.newDot(token.pos)
640	case itemNil:
641		return t.newNil(token.pos)
642	case itemVariable:
643		return t.useVar(token.pos, token.val)
644	case itemField:
645		return t.newField(token.pos, token.val)
646	case itemBool:
647		return t.newBool(token.pos, token.val == "true")
648	case itemCharConstant, itemComplex, itemNumber:
649		number, err := t.newNumber(token.pos, token.val, token.typ)
650		if err != nil {
651			t.error(err)
652		}
653		return number
654	case itemLeftParen:
655		pipe := t.pipeline("parenthesized pipeline")
656		if token := t.next(); token.typ != itemRightParen {
657			t.errorf("unclosed right paren: unexpected %s", token)
658		}
659		return pipe
660	case itemString, itemRawString:
661		s, err := strconv.Unquote(token.val)
662		if err != nil {
663			t.error(err)
664		}
665		return t.newString(token.pos, token.val, s)
666	}
667	t.backup()
668	return nil
669}
670
671// hasFunction reports if a function name exists in the Tree's maps.
672func (t *Tree) hasFunction(name string) bool {
673	for _, funcMap := range t.funcs {
674		if funcMap == nil {
675			continue
676		}
677		if funcMap[name] != nil {
678			return true
679		}
680	}
681	return false
682}
683
684// popVars trims the variable list to the specified length
685func (t *Tree) popVars(n int) {
686	t.vars = t.vars[:n]
687}
688
689// useVar returns a node for a variable reference. It errors if the
690// variable is not defined.
691func (t *Tree) useVar(pos Pos, name string) Node {
692	v := t.newVariable(pos, name)
693	for _, varName := range t.vars {
694		if varName == v.Ident[0] {
695			return v
696		}
697	}
698	t.errorf("undefined variable %q", v.Ident[0])
699	return nil
700}
701