1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 
8 #include <cstdlib>
9 #include <cmath>
10 #include <limits>
11 #include <stdlib.h>
12 
13 #include "unicode/plurrule.h"
14 #include "cmemory.h"
15 #include "number_decnum.h"
16 #include "putilimp.h"
17 #include "number_decimalquantity.h"
18 #include "number_roundingutils.h"
19 #include "double-conversion.h"
20 #include "charstr.h"
21 #include "number_utils.h"
22 #include "uassert.h"
23 
24 using namespace icu;
25 using namespace icu::number;
26 using namespace icu::number::impl;
27 
28 using icu::double_conversion::DoubleToStringConverter;
29 using icu::double_conversion::StringToDoubleConverter;
30 
31 namespace {
32 
33 int8_t NEGATIVE_FLAG = 1;
34 int8_t INFINITY_FLAG = 2;
35 int8_t NAN_FLAG = 4;
36 
37 /** Helper function for safe subtraction (no overflow). */
safeSubtract(int32_t a,int32_t b)38 inline int32_t safeSubtract(int32_t a, int32_t b) {
39     // Note: In C++, signed integer subtraction is undefined behavior.
40     int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
41     if (b < 0 && diff < a) { return INT32_MAX; }
42     if (b > 0 && diff > a) { return INT32_MIN; }
43     return diff;
44 }
45 
46 static double DOUBLE_MULTIPLIERS[] = {
47         1e0,
48         1e1,
49         1e2,
50         1e3,
51         1e4,
52         1e5,
53         1e6,
54         1e7,
55         1e8,
56         1e9,
57         1e10,
58         1e11,
59         1e12,
60         1e13,
61         1e14,
62         1e15,
63         1e16,
64         1e17,
65         1e18,
66         1e19,
67         1e20,
68         1e21};
69 
70 }  // namespace
71 
72 icu::IFixedDecimal::~IFixedDecimal() = default;
73 
DecimalQuantity()74 DecimalQuantity::DecimalQuantity() {
75     setBcdToZero();
76     flags = 0;
77 }
78 
~DecimalQuantity()79 DecimalQuantity::~DecimalQuantity() {
80     if (usingBytes) {
81         uprv_free(fBCD.bcdBytes.ptr);
82         fBCD.bcdBytes.ptr = nullptr;
83         usingBytes = false;
84     }
85 }
86 
DecimalQuantity(const DecimalQuantity & other)87 DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
88     *this = other;
89 }
90 
DecimalQuantity(DecimalQuantity && src)91 DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
92     *this = std::move(src);
93 }
94 
operator =(const DecimalQuantity & other)95 DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
96     if (this == &other) {
97         return *this;
98     }
99     copyBcdFrom(other);
100     copyFieldsFrom(other);
101     return *this;
102 }
103 
operator =(DecimalQuantity && src)104 DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
105     if (this == &src) {
106         return *this;
107     }
108     moveBcdFrom(src);
109     copyFieldsFrom(src);
110     return *this;
111 }
112 
copyFieldsFrom(const DecimalQuantity & other)113 void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
114     bogus = other.bogus;
115     lReqPos = other.lReqPos;
116     rReqPos = other.rReqPos;
117     scale = other.scale;
118     precision = other.precision;
119     flags = other.flags;
120     origDouble = other.origDouble;
121     origDelta = other.origDelta;
122     isApproximate = other.isApproximate;
123 }
124 
clear()125 void DecimalQuantity::clear() {
126     lReqPos = 0;
127     rReqPos = 0;
128     flags = 0;
129     setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
130 }
131 
setMinInteger(int32_t minInt)132 void DecimalQuantity::setMinInteger(int32_t minInt) {
133     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
134     U_ASSERT(minInt >= 0);
135 
136     // Special behavior: do not set minInt to be less than what is already set.
137     // This is so significant digits rounding can set the integer length.
138     if (minInt < lReqPos) {
139         minInt = lReqPos;
140     }
141 
142     // Save values into internal state
143     lReqPos = minInt;
144 }
145 
setMinFraction(int32_t minFrac)146 void DecimalQuantity::setMinFraction(int32_t minFrac) {
147     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
148     U_ASSERT(minFrac >= 0);
149 
150     // Save values into internal state
151     // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
152     rReqPos = -minFrac;
153 }
154 
applyMaxInteger(int32_t maxInt)155 void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
156     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
157     U_ASSERT(maxInt >= 0);
158 
159     if (precision == 0) {
160         return;
161     }
162 
163     if (maxInt <= scale) {
164         setBcdToZero();
165         return;
166     }
167 
168     int32_t magnitude = getMagnitude();
169     if (maxInt <= magnitude) {
170         popFromLeft(magnitude - maxInt + 1);
171         compact();
172     }
173 }
174 
getPositionFingerprint() const175 uint64_t DecimalQuantity::getPositionFingerprint() const {
176     uint64_t fingerprint = 0;
177     fingerprint ^= (lReqPos << 16);
178     fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
179     return fingerprint;
180 }
181 
roundToIncrement(double roundingIncrement,RoundingMode roundingMode,UErrorCode & status)182 void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
183                                        UErrorCode& status) {
184     // Do not call this method with an increment having only a 1 or a 5 digit!
185     // Use a more efficient call to either roundToMagnitude() or roundToNickel().
186     // Check a few popular rounding increments; a more thorough check is in Java.
187     U_ASSERT(roundingIncrement != 0.01);
188     U_ASSERT(roundingIncrement != 0.05);
189     U_ASSERT(roundingIncrement != 0.1);
190     U_ASSERT(roundingIncrement != 0.5);
191     U_ASSERT(roundingIncrement != 1);
192     U_ASSERT(roundingIncrement != 5);
193 
194     DecNum incrementDN;
195     incrementDN.setTo(roundingIncrement, status);
196     if (U_FAILURE(status)) { return; }
197 
198     // Divide this DecimalQuantity by the increment, round, then multiply back.
199     divideBy(incrementDN, status);
200     if (U_FAILURE(status)) { return; }
201     roundToMagnitude(0, roundingMode, status);
202     if (U_FAILURE(status)) { return; }
203     multiplyBy(incrementDN, status);
204     if (U_FAILURE(status)) { return; }
205 }
206 
multiplyBy(const DecNum & multiplicand,UErrorCode & status)207 void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
208     if (isZeroish()) {
209         return;
210     }
211     // Convert to DecNum, multiply, and convert back.
212     DecNum decnum;
213     toDecNum(decnum, status);
214     if (U_FAILURE(status)) { return; }
215     decnum.multiplyBy(multiplicand, status);
216     if (U_FAILURE(status)) { return; }
217     setToDecNum(decnum, status);
218 }
219 
divideBy(const DecNum & divisor,UErrorCode & status)220 void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
221     if (isZeroish()) {
222         return;
223     }
224     // Convert to DecNum, multiply, and convert back.
225     DecNum decnum;
226     toDecNum(decnum, status);
227     if (U_FAILURE(status)) { return; }
228     decnum.divideBy(divisor, status);
229     if (U_FAILURE(status)) { return; }
230     setToDecNum(decnum, status);
231 }
232 
negate()233 void DecimalQuantity::negate() {
234     flags ^= NEGATIVE_FLAG;
235 }
236 
getMagnitude() const237 int32_t DecimalQuantity::getMagnitude() const {
238     U_ASSERT(precision != 0);
239     return scale + precision - 1;
240 }
241 
adjustMagnitude(int32_t delta)242 bool DecimalQuantity::adjustMagnitude(int32_t delta) {
243     if (precision != 0) {
244         // i.e., scale += delta; origDelta += delta
245         bool overflow = uprv_add32_overflow(scale, delta, &scale);
246         overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
247         // Make sure that precision + scale won't overflow, either
248         int32_t dummy;
249         overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
250         return overflow;
251     }
252     return false;
253 }
254 
getPluralOperand(PluralOperand operand) const255 double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
256     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
257     // See the comment at the top of this file explaining the "isApproximate" field.
258     U_ASSERT(!isApproximate);
259 
260     switch (operand) {
261         case PLURAL_OPERAND_I:
262             // Invert the negative sign if necessary
263             return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
264         case PLURAL_OPERAND_F:
265             return static_cast<double>(toFractionLong(true));
266         case PLURAL_OPERAND_T:
267             return static_cast<double>(toFractionLong(false));
268         case PLURAL_OPERAND_V:
269             return fractionCount();
270         case PLURAL_OPERAND_W:
271             return fractionCountWithoutTrailingZeros();
272         default:
273             return std::abs(toDouble());
274     }
275 }
276 
hasIntegerValue() const277 bool DecimalQuantity::hasIntegerValue() const {
278     return scale >= 0;
279 }
280 
getUpperDisplayMagnitude() const281 int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
282     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
283     // See the comment in the header file explaining the "isApproximate" field.
284     U_ASSERT(!isApproximate);
285 
286     int32_t magnitude = scale + precision;
287     int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
288     return result - 1;
289 }
290 
getLowerDisplayMagnitude() const291 int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
292     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
293     // See the comment in the header file explaining the "isApproximate" field.
294     U_ASSERT(!isApproximate);
295 
296     int32_t magnitude = scale;
297     int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
298     return result;
299 }
300 
getDigit(int32_t magnitude) const301 int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
302     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
303     // See the comment at the top of this file explaining the "isApproximate" field.
304     U_ASSERT(!isApproximate);
305 
306     return getDigitPos(magnitude - scale);
307 }
308 
fractionCount() const309 int32_t DecimalQuantity::fractionCount() const {
310     return -getLowerDisplayMagnitude();
311 }
312 
fractionCountWithoutTrailingZeros() const313 int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
314     return -scale > 0 ? -scale : 0;  // max(-scale, 0)
315 }
316 
isNegative() const317 bool DecimalQuantity::isNegative() const {
318     return (flags & NEGATIVE_FLAG) != 0;
319 }
320 
signum() const321 Signum DecimalQuantity::signum() const {
322     if (isNegative()) {
323         return SIGNUM_NEG;
324     } else if (isZeroish() && !isInfinite()) {
325         return SIGNUM_ZERO;
326     } else {
327         return SIGNUM_POS;
328     }
329 }
330 
isInfinite() const331 bool DecimalQuantity::isInfinite() const {
332     return (flags & INFINITY_FLAG) != 0;
333 }
334 
isNaN() const335 bool DecimalQuantity::isNaN() const {
336     return (flags & NAN_FLAG) != 0;
337 }
338 
isZeroish() const339 bool DecimalQuantity::isZeroish() const {
340     return precision == 0;
341 }
342 
setToInt(int32_t n)343 DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
344     setBcdToZero();
345     flags = 0;
346     if (n == INT32_MIN) {
347         flags |= NEGATIVE_FLAG;
348         // leave as INT32_MIN; handled below in _setToInt()
349     } else if (n < 0) {
350         flags |= NEGATIVE_FLAG;
351         n = -n;
352     }
353     if (n != 0) {
354         _setToInt(n);
355         compact();
356     }
357     return *this;
358 }
359 
_setToInt(int32_t n)360 void DecimalQuantity::_setToInt(int32_t n) {
361     if (n == INT32_MIN) {
362         readLongToBcd(-static_cast<int64_t>(n));
363     } else {
364         readIntToBcd(n);
365     }
366 }
367 
setToLong(int64_t n)368 DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
369     setBcdToZero();
370     flags = 0;
371     if (n < 0 && n > INT64_MIN) {
372         flags |= NEGATIVE_FLAG;
373         n = -n;
374     }
375     if (n != 0) {
376         _setToLong(n);
377         compact();
378     }
379     return *this;
380 }
381 
_setToLong(int64_t n)382 void DecimalQuantity::_setToLong(int64_t n) {
383     if (n == INT64_MIN) {
384         DecNum decnum;
385         UErrorCode localStatus = U_ZERO_ERROR;
386         decnum.setTo("9.223372036854775808E+18", localStatus);
387         if (U_FAILURE(localStatus)) { return; } // unexpected
388         flags |= NEGATIVE_FLAG;
389         readDecNumberToBcd(decnum);
390     } else if (n <= INT32_MAX) {
391         readIntToBcd(static_cast<int32_t>(n));
392     } else {
393         readLongToBcd(n);
394     }
395 }
396 
setToDouble(double n)397 DecimalQuantity &DecimalQuantity::setToDouble(double n) {
398     setBcdToZero();
399     flags = 0;
400     // signbit() from <math.h> handles +0.0 vs -0.0
401     if (std::signbit(n)) {
402         flags |= NEGATIVE_FLAG;
403         n = -n;
404     }
405     if (std::isnan(n) != 0) {
406         flags |= NAN_FLAG;
407     } else if (std::isfinite(n) == 0) {
408         flags |= INFINITY_FLAG;
409     } else if (n != 0) {
410         _setToDoubleFast(n);
411         compact();
412     }
413     return *this;
414 }
415 
_setToDoubleFast(double n)416 void DecimalQuantity::_setToDoubleFast(double n) {
417     isApproximate = true;
418     origDouble = n;
419     origDelta = 0;
420 
421     // Make sure the double is an IEEE 754 double.  If not, fall back to the slow path right now.
422     // TODO: Make a fast path for other types of doubles.
423     if (!std::numeric_limits<double>::is_iec559) {
424         convertToAccurateDouble();
425         // Turn off the approximate double flag, since the value is now exact.
426         isApproximate = false;
427         origDouble = 0.0;
428         return;
429     }
430 
431     // To get the bits from the double, use memcpy, which takes care of endianness.
432     uint64_t ieeeBits;
433     uprv_memcpy(&ieeeBits, &n, sizeof(n));
434     int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
435 
436     // Not all integers can be represented exactly for exponent > 52
437     if (exponent <= 52 && static_cast<int64_t>(n) == n) {
438         _setToLong(static_cast<int64_t>(n));
439         return;
440     }
441 
442     // 3.3219... is log2(10)
443     auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809489);
444     if (fracLength >= 0) {
445         int32_t i = fracLength;
446         // 1e22 is the largest exact double.
447         for (; i >= 22; i -= 22) n *= 1e22;
448         n *= DOUBLE_MULTIPLIERS[i];
449     } else {
450         int32_t i = fracLength;
451         // 1e22 is the largest exact double.
452         for (; i <= -22; i += 22) n /= 1e22;
453         n /= DOUBLE_MULTIPLIERS[-i];
454     }
455     auto result = static_cast<int64_t>(std::round(n));
456     if (result != 0) {
457         _setToLong(result);
458         scale -= fracLength;
459     }
460 }
461 
convertToAccurateDouble()462 void DecimalQuantity::convertToAccurateDouble() {
463     U_ASSERT(origDouble != 0);
464     int32_t delta = origDelta;
465 
466     // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
467     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
468     bool sign; // unused; always positive
469     int32_t length;
470     int32_t point;
471     DoubleToStringConverter::DoubleToAscii(
472         origDouble,
473         DoubleToStringConverter::DtoaMode::SHORTEST,
474         0,
475         buffer,
476         sizeof(buffer),
477         &sign,
478         &length,
479         &point
480     );
481 
482     setBcdToZero();
483     readDoubleConversionToBcd(buffer, length, point);
484     scale += delta;
485     explicitExactDouble = true;
486 }
487 
setToDecNumber(StringPiece n,UErrorCode & status)488 DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
489     setBcdToZero();
490     flags = 0;
491 
492     // Compute the decNumber representation
493     DecNum decnum;
494     decnum.setTo(n, status);
495 
496     _setToDecNum(decnum, status);
497     return *this;
498 }
499 
setToDecNum(const DecNum & decnum,UErrorCode & status)500 DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
501     setBcdToZero();
502     flags = 0;
503 
504     _setToDecNum(decnum, status);
505     return *this;
506 }
507 
_setToDecNum(const DecNum & decnum,UErrorCode & status)508 void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
509     if (U_FAILURE(status)) { return; }
510     if (decnum.isNegative()) {
511         flags |= NEGATIVE_FLAG;
512     }
513     if (!decnum.isZero()) {
514         readDecNumberToBcd(decnum);
515         compact();
516     }
517 }
518 
toLong(bool truncateIfOverflow) const519 int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
520     // NOTE: Call sites should be guarded by fitsInLong(), like this:
521     // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
522     // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
523     uint64_t result = 0L;
524     int32_t upperMagnitude = scale + precision - 1;
525     if (truncateIfOverflow) {
526         upperMagnitude = std::min(upperMagnitude, 17);
527     }
528     for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
529         result = result * 10 + getDigitPos(magnitude - scale);
530     }
531     if (isNegative()) {
532         return static_cast<int64_t>(0LL - result); // i.e., -result
533     }
534     return static_cast<int64_t>(result);
535 }
536 
toFractionLong(bool includeTrailingZeros) const537 uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
538     uint64_t result = 0L;
539     int32_t magnitude = -1;
540     int32_t lowerMagnitude = scale;
541     if (includeTrailingZeros) {
542         lowerMagnitude = std::min(lowerMagnitude, rReqPos);
543     }
544     for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
545         result = result * 10 + getDigitPos(magnitude - scale);
546     }
547     // Remove trailing zeros; this can happen during integer overflow cases.
548     if (!includeTrailingZeros) {
549         while (result > 0 && (result % 10) == 0) {
550             result /= 10;
551         }
552     }
553     return result;
554 }
555 
fitsInLong(bool ignoreFraction) const556 bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
557     if (isInfinite() || isNaN()) {
558         return false;
559     }
560     if (isZeroish()) {
561         return true;
562     }
563     if (scale < 0 && !ignoreFraction) {
564         return false;
565     }
566     int magnitude = getMagnitude();
567     if (magnitude < 18) {
568         return true;
569     }
570     if (magnitude > 18) {
571         return false;
572     }
573     // Hard case: the magnitude is 10^18.
574     // The largest int64 is: 9,223,372,036,854,775,807
575     for (int p = 0; p < precision; p++) {
576         int8_t digit = getDigit(18 - p);
577         static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
578         if (digit < INT64_BCD[p]) {
579             return true;
580         } else if (digit > INT64_BCD[p]) {
581             return false;
582         }
583     }
584     // Exactly equal to max long plus one.
585     return isNegative();
586 }
587 
toDouble() const588 double DecimalQuantity::toDouble() const {
589     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
590     // See the comment in the header file explaining the "isApproximate" field.
591     U_ASSERT(!isApproximate);
592 
593     if (isNaN()) {
594         return NAN;
595     } else if (isInfinite()) {
596         return isNegative() ? -INFINITY : INFINITY;
597     }
598 
599     // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
600     StringToDoubleConverter converter(0, 0, 0, "", "");
601     UnicodeString numberString = this->toScientificString();
602     int32_t count;
603     return converter.StringToDouble(
604             reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
605             numberString.length(),
606             &count);
607 }
608 
toDecNum(DecNum & output,UErrorCode & status) const609 void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
610     // Special handling for zero
611     if (precision == 0) {
612         output.setTo("0", status);
613     }
614 
615     // Use the BCD constructor. We need to do a little bit of work to convert, though.
616     // The decNumber constructor expects most-significant first, but we store least-significant first.
617     MaybeStackArray<uint8_t, 20> ubcd(precision);
618     for (int32_t m = 0; m < precision; m++) {
619         ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
620     }
621     output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
622 }
623 
truncate()624 void DecimalQuantity::truncate() {
625     if (scale < 0) {
626         shiftRight(-scale);
627         scale = 0;
628         compact();
629     }
630 }
631 
roundToNickel(int32_t magnitude,RoundingMode roundingMode,UErrorCode & status)632 void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
633     roundToMagnitude(magnitude, roundingMode, true, status);
634 }
635 
roundToMagnitude(int32_t magnitude,RoundingMode roundingMode,UErrorCode & status)636 void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
637     roundToMagnitude(magnitude, roundingMode, false, status);
638 }
639 
roundToMagnitude(int32_t magnitude,RoundingMode roundingMode,bool nickel,UErrorCode & status)640 void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
641     // The position in the BCD at which rounding will be performed; digits to the right of position
642     // will be rounded away.
643     int position = safeSubtract(magnitude, scale);
644 
645     // "trailing" = least significant digit to the left of rounding
646     int8_t trailingDigit = getDigitPos(position);
647 
648     if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
649         // All digits are to the left of the rounding magnitude.
650     } else if (precision == 0) {
651         // No rounding for zero.
652     } else {
653         // Perform rounding logic.
654         // "leading" = most significant digit to the right of rounding
655         int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
656 
657         // Compute which section of the number we are in.
658         // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
659         // LOWER means we are between the bottom edge and the midpoint, like 1.391
660         // MIDPOINT means we are exactly in the middle, like 1.500
661         // UPPER means we are between the midpoint and the top edge, like 1.916
662         roundingutils::Section section;
663         if (!isApproximate) {
664             if (nickel && trailingDigit != 2 && trailingDigit != 7) {
665                 // Nickel rounding, and not at .02x or .07x
666                 if (trailingDigit < 2) {
667                     // .00, .01 => down to .00
668                     section = roundingutils::SECTION_LOWER;
669                 } else if (trailingDigit < 5) {
670                     // .03, .04 => up to .05
671                     section = roundingutils::SECTION_UPPER;
672                 } else if (trailingDigit < 7) {
673                     // .05, .06 => down to .05
674                     section = roundingutils::SECTION_LOWER;
675                 } else {
676                     // .08, .09 => up to .10
677                     section = roundingutils::SECTION_UPPER;
678                 }
679             } else if (leadingDigit < 5) {
680                 // Includes nickel rounding .020-.024 and .070-.074
681                 section = roundingutils::SECTION_LOWER;
682             } else if (leadingDigit > 5) {
683                 // Includes nickel rounding .026-.029 and .076-.079
684                 section = roundingutils::SECTION_UPPER;
685             } else {
686                 // Includes nickel rounding .025 and .075
687                 section = roundingutils::SECTION_MIDPOINT;
688                 for (int p = safeSubtract(position, 2); p >= 0; p--) {
689                     if (getDigitPos(p) != 0) {
690                         section = roundingutils::SECTION_UPPER;
691                         break;
692                     }
693                 }
694             }
695         } else {
696             int32_t p = safeSubtract(position, 2);
697             int32_t minP = uprv_max(0, precision - 14);
698             if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
699                 section = roundingutils::SECTION_LOWER_EDGE;
700                 for (; p >= minP; p--) {
701                     if (getDigitPos(p) != 0) {
702                         section = roundingutils::SECTION_LOWER;
703                         break;
704                     }
705                 }
706             } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
707                 section = roundingutils::SECTION_MIDPOINT;
708                 for (; p >= minP; p--) {
709                     if (getDigitPos(p) != 9) {
710                         section = roundingutils::SECTION_LOWER;
711                         break;
712                     }
713                 }
714             } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
715                 section = roundingutils::SECTION_MIDPOINT;
716                 for (; p >= minP; p--) {
717                     if (getDigitPos(p) != 0) {
718                         section = roundingutils::SECTION_UPPER;
719                         break;
720                     }
721                 }
722             } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
723                 section = roundingutils::SECTION_UPPER_EDGE;
724                 for (; p >= minP; p--) {
725                     if (getDigitPos(p) != 9) {
726                         section = roundingutils::SECTION_UPPER;
727                         break;
728                     }
729                 }
730             } else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
731                 // Nickel rounding, and not at .02x or .07x
732                 if (trailingDigit < 2) {
733                     // .00, .01 => down to .00
734                     section = roundingutils::SECTION_LOWER;
735                 } else if (trailingDigit < 5) {
736                     // .03, .04 => up to .05
737                     section = roundingutils::SECTION_UPPER;
738                 } else if (trailingDigit < 7) {
739                     // .05, .06 => down to .05
740                     section = roundingutils::SECTION_LOWER;
741                 } else {
742                     // .08, .09 => up to .10
743                     section = roundingutils::SECTION_UPPER;
744                 }
745             } else if (leadingDigit < 5) {
746                 // Includes nickel rounding .020-.024 and .070-.074
747                 section = roundingutils::SECTION_LOWER;
748             } else {
749                 // Includes nickel rounding .026-.029 and .076-.079
750                 section = roundingutils::SECTION_UPPER;
751             }
752 
753             bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
754             if (safeSubtract(position, 1) < precision - 14 ||
755                 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
756                 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
757                 // Oops! This means that we have to get the exact representation of the double,
758                 // because the zone of uncertainty is along the rounding boundary.
759                 convertToAccurateDouble();
760                 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
761                 return;
762             }
763 
764             // Turn off the approximate double flag, since the value is now confirmed to be exact.
765             isApproximate = false;
766             origDouble = 0.0;
767             origDelta = 0;
768 
769             if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
770                 // All digits are to the left of the rounding magnitude.
771                 return;
772             }
773 
774             // Good to continue rounding.
775             if (section == -1) { section = roundingutils::SECTION_LOWER; }
776             if (section == -2) { section = roundingutils::SECTION_UPPER; }
777         }
778 
779         // Nickel rounding "half even" goes to the nearest whole (away from the 5).
780         bool isEven = nickel
781                 ? (trailingDigit < 2 || trailingDigit > 7
782                         || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
783                         || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
784                 : (trailingDigit % 2) == 0;
785 
786         bool roundDown = roundingutils::getRoundingDirection(isEven,
787                 isNegative(),
788                 section,
789                 roundingMode,
790                 status);
791         if (U_FAILURE(status)) {
792             return;
793         }
794 
795         // Perform truncation
796         if (position >= precision) {
797             setBcdToZero();
798             scale = magnitude;
799         } else {
800             shiftRight(position);
801         }
802 
803         if (nickel) {
804             if (trailingDigit < 5 && roundDown) {
805                 setDigitPos(0, 0);
806                 compact();
807                 return;
808             } else if (trailingDigit >= 5 && !roundDown) {
809                 setDigitPos(0, 9);
810                 trailingDigit = 9;
811                 // do not return: use the bubbling logic below
812             } else {
813                 setDigitPos(0, 5);
814                 // compact not necessary: digit at position 0 is nonzero
815                 return;
816             }
817         }
818 
819         // Bubble the result to the higher digits
820         if (!roundDown) {
821             if (trailingDigit == 9) {
822                 int bubblePos = 0;
823                 // Note: in the long implementation, the most digits BCD can have at this point is
824                 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
825                 for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
826                 shiftRight(bubblePos); // shift off the trailing 9s
827             }
828             int8_t digit0 = getDigitPos(0);
829             U_ASSERT(digit0 != 9);
830             setDigitPos(0, static_cast<int8_t>(digit0 + 1));
831             precision += 1; // in case an extra digit got added
832         }
833 
834         compact();
835     }
836 }
837 
roundToInfinity()838 void DecimalQuantity::roundToInfinity() {
839     if (isApproximate) {
840         convertToAccurateDouble();
841     }
842 }
843 
appendDigit(int8_t value,int32_t leadingZeros,bool appendAsInteger)844 void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
845     U_ASSERT(leadingZeros >= 0);
846 
847     // Zero requires special handling to maintain the invariant that the least-significant digit
848     // in the BCD is nonzero.
849     if (value == 0) {
850         if (appendAsInteger && precision != 0) {
851             scale += leadingZeros + 1;
852         }
853         return;
854     }
855 
856     // Deal with trailing zeros
857     if (scale > 0) {
858         leadingZeros += scale;
859         if (appendAsInteger) {
860             scale = 0;
861         }
862     }
863 
864     // Append digit
865     shiftLeft(leadingZeros + 1);
866     setDigitPos(0, value);
867 
868     // Fix scale if in integer mode
869     if (appendAsInteger) {
870         scale += leadingZeros + 1;
871     }
872 }
873 
toPlainString() const874 UnicodeString DecimalQuantity::toPlainString() const {
875     U_ASSERT(!isApproximate);
876     UnicodeString sb;
877     if (isNegative()) {
878         sb.append(u'-');
879     }
880     if (precision == 0 || getMagnitude() < 0) {
881         sb.append(u'0');
882     }
883     for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
884         if (m == -1) { sb.append(u'.'); }
885         sb.append(getDigit(m) + u'0');
886     }
887     return sb;
888 }
889 
toScientificString() const890 UnicodeString DecimalQuantity::toScientificString() const {
891     U_ASSERT(!isApproximate);
892     UnicodeString result;
893     if (isNegative()) {
894         result.append(u'-');
895     }
896     if (precision == 0) {
897         result.append(u"0E+0", -1);
898         return result;
899     }
900     int32_t upperPos = precision - 1;
901     int32_t lowerPos = 0;
902     int32_t p = upperPos;
903     result.append(u'0' + getDigitPos(p));
904     if ((--p) >= lowerPos) {
905         result.append(u'.');
906         for (; p >= lowerPos; p--) {
907             result.append(u'0' + getDigitPos(p));
908         }
909     }
910     result.append(u'E');
911     int32_t _scale = upperPos + scale;
912     if (_scale == INT32_MIN) {
913         result.append({u"-2147483648", -1});
914         return result;
915     } else if (_scale < 0) {
916         _scale *= -1;
917         result.append(u'-');
918     } else {
919         result.append(u'+');
920     }
921     if (_scale == 0) {
922         result.append(u'0');
923     }
924     int32_t insertIndex = result.length();
925     while (_scale > 0) {
926         std::div_t res = std::div(_scale, 10);
927         result.insert(insertIndex, u'0' + res.rem);
928         _scale = res.quot;
929     }
930     return result;
931 }
932 
933 ////////////////////////////////////////////////////
934 /// End of DecimalQuantity_AbstractBCD.java      ///
935 /// Start of DecimalQuantity_DualStorageBCD.java ///
936 ////////////////////////////////////////////////////
937 
getDigitPos(int32_t position) const938 int8_t DecimalQuantity::getDigitPos(int32_t position) const {
939     if (usingBytes) {
940         if (position < 0 || position >= precision) { return 0; }
941         return fBCD.bcdBytes.ptr[position];
942     } else {
943         if (position < 0 || position >= 16) { return 0; }
944         return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
945     }
946 }
947 
setDigitPos(int32_t position,int8_t value)948 void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
949     U_ASSERT(position >= 0);
950     if (usingBytes) {
951         ensureCapacity(position + 1);
952         fBCD.bcdBytes.ptr[position] = value;
953     } else if (position >= 16) {
954         switchStorage();
955         ensureCapacity(position + 1);
956         fBCD.bcdBytes.ptr[position] = value;
957     } else {
958         int shift = position * 4;
959         fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
960     }
961 }
962 
shiftLeft(int32_t numDigits)963 void DecimalQuantity::shiftLeft(int32_t numDigits) {
964     if (!usingBytes && precision + numDigits > 16) {
965         switchStorage();
966     }
967     if (usingBytes) {
968         ensureCapacity(precision + numDigits);
969         int i = precision + numDigits - 1;
970         for (; i >= numDigits; i--) {
971             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits];
972         }
973         for (; i >= 0; i--) {
974             fBCD.bcdBytes.ptr[i] = 0;
975         }
976     } else {
977         fBCD.bcdLong <<= (numDigits * 4);
978     }
979     scale -= numDigits;
980     precision += numDigits;
981 }
982 
shiftRight(int32_t numDigits)983 void DecimalQuantity::shiftRight(int32_t numDigits) {
984     if (usingBytes) {
985         int i = 0;
986         for (; i < precision - numDigits; i++) {
987             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
988         }
989         for (; i < precision; i++) {
990             fBCD.bcdBytes.ptr[i] = 0;
991         }
992     } else {
993         fBCD.bcdLong >>= (numDigits * 4);
994     }
995     scale += numDigits;
996     precision -= numDigits;
997 }
998 
popFromLeft(int32_t numDigits)999 void DecimalQuantity::popFromLeft(int32_t numDigits) {
1000     U_ASSERT(numDigits <= precision);
1001     if (usingBytes) {
1002         int i = precision - 1;
1003         for (; i >= precision - numDigits; i--) {
1004             fBCD.bcdBytes.ptr[i] = 0;
1005         }
1006     } else {
1007         fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
1008     }
1009     precision -= numDigits;
1010 }
1011 
setBcdToZero()1012 void DecimalQuantity::setBcdToZero() {
1013     if (usingBytes) {
1014         uprv_free(fBCD.bcdBytes.ptr);
1015         fBCD.bcdBytes.ptr = nullptr;
1016         usingBytes = false;
1017     }
1018     fBCD.bcdLong = 0L;
1019     scale = 0;
1020     precision = 0;
1021     isApproximate = false;
1022     origDouble = 0;
1023     origDelta = 0;
1024 }
1025 
readIntToBcd(int32_t n)1026 void DecimalQuantity::readIntToBcd(int32_t n) {
1027     U_ASSERT(n != 0);
1028     // ints always fit inside the long implementation.
1029     uint64_t result = 0L;
1030     int i = 16;
1031     for (; n != 0; n /= 10, i--) {
1032         result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
1033     }
1034     U_ASSERT(!usingBytes);
1035     fBCD.bcdLong = result >> (i * 4);
1036     scale = 0;
1037     precision = 16 - i;
1038 }
1039 
readLongToBcd(int64_t n)1040 void DecimalQuantity::readLongToBcd(int64_t n) {
1041     U_ASSERT(n != 0);
1042     if (n >= 10000000000000000L) {
1043         ensureCapacity();
1044         int i = 0;
1045         for (; n != 0L; n /= 10L, i++) {
1046             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
1047         }
1048         U_ASSERT(usingBytes);
1049         scale = 0;
1050         precision = i;
1051     } else {
1052         uint64_t result = 0L;
1053         int i = 16;
1054         for (; n != 0L; n /= 10L, i--) {
1055             result = (result >> 4) + ((n % 10) << 60);
1056         }
1057         U_ASSERT(i >= 0);
1058         U_ASSERT(!usingBytes);
1059         fBCD.bcdLong = result >> (i * 4);
1060         scale = 0;
1061         precision = 16 - i;
1062     }
1063 }
1064 
readDecNumberToBcd(const DecNum & decnum)1065 void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
1066     const decNumber* dn = decnum.getRawDecNumber();
1067     if (dn->digits > 16) {
1068         ensureCapacity(dn->digits);
1069         for (int32_t i = 0; i < dn->digits; i++) {
1070             fBCD.bcdBytes.ptr[i] = dn->lsu[i];
1071         }
1072     } else {
1073         uint64_t result = 0L;
1074         for (int32_t i = 0; i < dn->digits; i++) {
1075             result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
1076         }
1077         fBCD.bcdLong = result;
1078     }
1079     scale = dn->exponent;
1080     precision = dn->digits;
1081 }
1082 
readDoubleConversionToBcd(const char * buffer,int32_t length,int32_t point)1083 void DecimalQuantity::readDoubleConversionToBcd(
1084         const char* buffer, int32_t length, int32_t point) {
1085     // NOTE: Despite the fact that double-conversion's API is called
1086     // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
1087     if (length > 16) {
1088         ensureCapacity(length);
1089         for (int32_t i = 0; i < length; i++) {
1090             fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
1091         }
1092     } else {
1093         uint64_t result = 0L;
1094         for (int32_t i = 0; i < length; i++) {
1095             result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
1096         }
1097         fBCD.bcdLong = result;
1098     }
1099     scale = point - length;
1100     precision = length;
1101 }
1102 
compact()1103 void DecimalQuantity::compact() {
1104     if (usingBytes) {
1105         int32_t delta = 0;
1106         for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
1107         if (delta == precision) {
1108             // Number is zero
1109             setBcdToZero();
1110             return;
1111         } else {
1112             // Remove trailing zeros
1113             shiftRight(delta);
1114         }
1115 
1116         // Compute precision
1117         int32_t leading = precision - 1;
1118         for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
1119         precision = leading + 1;
1120 
1121         // Switch storage mechanism if possible
1122         if (precision <= 16) {
1123             switchStorage();
1124         }
1125 
1126     } else {
1127         if (fBCD.bcdLong == 0L) {
1128             // Number is zero
1129             setBcdToZero();
1130             return;
1131         }
1132 
1133         // Compact the number (remove trailing zeros)
1134         // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
1135         int32_t delta = 0;
1136         for (; delta < precision && getDigitPos(delta) == 0; delta++);
1137         fBCD.bcdLong >>= delta * 4;
1138         scale += delta;
1139 
1140         // Compute precision
1141         int32_t leading = precision - 1;
1142         for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
1143         precision = leading + 1;
1144     }
1145 }
1146 
ensureCapacity()1147 void DecimalQuantity::ensureCapacity() {
1148     ensureCapacity(40);
1149 }
1150 
ensureCapacity(int32_t capacity)1151 void DecimalQuantity::ensureCapacity(int32_t capacity) {
1152     if (capacity == 0) { return; }
1153     int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
1154     if (!usingBytes) {
1155         // TODO: There is nothing being done to check for memory allocation failures.
1156         // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
1157         // make these arrays half the size.
1158         fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
1159         fBCD.bcdBytes.len = capacity;
1160         // Initialize the byte array to zeros (this is done automatically in Java)
1161         uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
1162     } else if (oldCapacity < capacity) {
1163         auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
1164         uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
1165         // Initialize the rest of the byte array to zeros (this is done automatically in Java)
1166         uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
1167         uprv_free(fBCD.bcdBytes.ptr);
1168         fBCD.bcdBytes.ptr = bcd1;
1169         fBCD.bcdBytes.len = capacity * 2;
1170     }
1171     usingBytes = true;
1172 }
1173 
switchStorage()1174 void DecimalQuantity::switchStorage() {
1175     if (usingBytes) {
1176         // Change from bytes to long
1177         uint64_t bcdLong = 0L;
1178         for (int i = precision - 1; i >= 0; i--) {
1179             bcdLong <<= 4;
1180             bcdLong |= fBCD.bcdBytes.ptr[i];
1181         }
1182         uprv_free(fBCD.bcdBytes.ptr);
1183         fBCD.bcdBytes.ptr = nullptr;
1184         fBCD.bcdLong = bcdLong;
1185         usingBytes = false;
1186     } else {
1187         // Change from long to bytes
1188         // Copy the long into a local variable since it will get munged when we allocate the bytes
1189         uint64_t bcdLong = fBCD.bcdLong;
1190         ensureCapacity();
1191         for (int i = 0; i < precision; i++) {
1192             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
1193             bcdLong >>= 4;
1194         }
1195         U_ASSERT(usingBytes);
1196     }
1197 }
1198 
copyBcdFrom(const DecimalQuantity & other)1199 void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
1200     setBcdToZero();
1201     if (other.usingBytes) {
1202         ensureCapacity(other.precision);
1203         uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
1204     } else {
1205         fBCD.bcdLong = other.fBCD.bcdLong;
1206     }
1207 }
1208 
moveBcdFrom(DecimalQuantity & other)1209 void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
1210     setBcdToZero();
1211     if (other.usingBytes) {
1212         usingBytes = true;
1213         fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
1214         fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
1215         // Take ownership away from the old instance:
1216         other.fBCD.bcdBytes.ptr = nullptr;
1217         other.usingBytes = false;
1218     } else {
1219         fBCD.bcdLong = other.fBCD.bcdLong;
1220     }
1221 }
1222 
checkHealth() const1223 const char16_t* DecimalQuantity::checkHealth() const {
1224     if (usingBytes) {
1225         if (precision == 0) { return u"Zero precision but we are in byte mode"; }
1226         int32_t capacity = fBCD.bcdBytes.len;
1227         if (precision > capacity) { return u"Precision exceeds length of byte array"; }
1228         if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
1229         if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
1230         for (int i = 0; i < precision; i++) {
1231             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
1232             if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
1233         }
1234         for (int i = precision; i < capacity; i++) {
1235             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
1236         }
1237     } else {
1238         if (precision == 0 && fBCD.bcdLong != 0) {
1239             return u"Value in bcdLong even though precision is zero";
1240         }
1241         if (precision > 16) { return u"Precision exceeds length of long"; }
1242         if (precision != 0 && getDigitPos(precision - 1) == 0) {
1243             return u"Most significant digit is zero in long mode";
1244         }
1245         if (precision != 0 && getDigitPos(0) == 0) {
1246             return u"Least significant digit is zero in long mode";
1247         }
1248         for (int i = 0; i < precision; i++) {
1249             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
1250             if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
1251         }
1252         for (int i = precision; i < 16; i++) {
1253             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
1254         }
1255     }
1256 
1257     // No error
1258     return nullptr;
1259 }
1260 
operator ==(const DecimalQuantity & other) const1261 bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
1262     bool basicEquals =
1263             scale == other.scale
1264             && precision == other.precision
1265             && flags == other.flags
1266             && lReqPos == other.lReqPos
1267             && rReqPos == other.rReqPos
1268             && isApproximate == other.isApproximate;
1269     if (!basicEquals) {
1270         return false;
1271     }
1272 
1273     if (precision == 0) {
1274         return true;
1275     } else if (isApproximate) {
1276         return origDouble == other.origDouble && origDelta == other.origDelta;
1277     } else {
1278         for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
1279             if (getDigit(m) != other.getDigit(m)) {
1280                 return false;
1281             }
1282         }
1283         return true;
1284     }
1285 }
1286 
toString() const1287 UnicodeString DecimalQuantity::toString() const {
1288     MaybeStackArray<char, 30> digits(precision + 1);
1289     for (int32_t i = 0; i < precision; i++) {
1290         digits[i] = getDigitPos(precision - i - 1) + '0';
1291     }
1292     digits[precision] = 0; // terminate buffer
1293     char buffer8[100];
1294     snprintf(
1295             buffer8,
1296             sizeof(buffer8),
1297             "<DecimalQuantity %d:%d %s %s%s%s%d>",
1298             lReqPos,
1299             rReqPos,
1300             (usingBytes ? "bytes" : "long"),
1301             (isNegative() ? "-" : ""),
1302             (precision == 0 ? "0" : digits.getAlias()),
1303             "E",
1304             scale);
1305     return UnicodeString(buffer8, -1, US_INV);
1306 }
1307 
1308 #endif /* #if !UCONFIG_NO_FORMATTING */
1309