1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "ui/gfx/skbitmap_operations.h"
6 
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <algorithm>
11 
12 #include "base/logging.h"
13 #include "third_party/skia/include/core/SkBitmap.h"
14 #include "third_party/skia/include/core/SkCanvas.h"
15 #include "third_party/skia/include/core/SkColorFilter.h"
16 #include "third_party/skia/include/core/SkColorPriv.h"
17 #include "third_party/skia/include/core/SkUnPreMultiply.h"
18 #include "third_party/skia/include/effects/SkBlurImageFilter.h"
19 #include "ui/gfx/geometry/insets.h"
20 #include "ui/gfx/geometry/point.h"
21 #include "ui/gfx/geometry/size.h"
22 
23 // static
CreateInvertedBitmap(const SkBitmap & image)24 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
25   DCHECK(image.colorType() == kN32_SkColorType);
26 
27   SkBitmap inverted;
28   inverted.allocN32Pixels(image.width(), image.height());
29 
30   for (int y = 0; y < image.height(); ++y) {
31     uint32_t* image_row = image.getAddr32(0, y);
32     uint32_t* dst_row = inverted.getAddr32(0, y);
33 
34     for (int x = 0; x < image.width(); ++x) {
35       uint32_t image_pixel = image_row[x];
36       dst_row[x] = (image_pixel & 0xFF000000) |
37                    (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
38     }
39   }
40 
41   return inverted;
42 }
43 
44 // static
CreateBlendedBitmap(const SkBitmap & first,const SkBitmap & second,double alpha)45 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
46                                                  const SkBitmap& second,
47                                                  double alpha) {
48   DCHECK((alpha >= 0) && (alpha <= 1));
49   DCHECK(first.width() == second.width());
50   DCHECK(first.height() == second.height());
51   DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
52   DCHECK(first.colorType() == kN32_SkColorType);
53 
54   // Optimize for case where we won't need to blend anything.
55   static const double alpha_min = 1.0 / 255;
56   static const double alpha_max = 254.0 / 255;
57   if (alpha < alpha_min)
58     return first;
59   else if (alpha > alpha_max)
60     return second;
61 
62   SkBitmap blended;
63   blended.allocN32Pixels(first.width(), first.height());
64 
65   double first_alpha = 1 - alpha;
66 
67   for (int y = 0; y < first.height(); ++y) {
68     uint32_t* first_row = first.getAddr32(0, y);
69     uint32_t* second_row = second.getAddr32(0, y);
70     uint32_t* dst_row = blended.getAddr32(0, y);
71 
72     for (int x = 0; x < first.width(); ++x) {
73       uint32_t first_pixel = first_row[x];
74       uint32_t second_pixel = second_row[x];
75 
76       int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
77                                (SkColorGetA(second_pixel) * alpha));
78       int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
79                                (SkColorGetR(second_pixel) * alpha));
80       int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
81                                (SkColorGetG(second_pixel) * alpha));
82       int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
83                                (SkColorGetB(second_pixel) * alpha));
84 
85       dst_row[x] = SkColorSetARGB(a, r, g, b);
86     }
87   }
88 
89   return blended;
90 }
91 
92 // static
CreateMaskedBitmap(const SkBitmap & rgb,const SkBitmap & alpha)93 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
94                                                 const SkBitmap& alpha) {
95   DCHECK(rgb.width() == alpha.width());
96   DCHECK(rgb.height() == alpha.height());
97   DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
98   DCHECK(rgb.colorType() == kN32_SkColorType);
99   DCHECK(alpha.colorType() == kN32_SkColorType);
100 
101   SkBitmap masked;
102   masked.allocN32Pixels(rgb.width(), rgb.height());
103 
104   for (int y = 0; y < masked.height(); ++y) {
105     uint32_t* rgb_row = rgb.getAddr32(0, y);
106     uint32_t* alpha_row = alpha.getAddr32(0, y);
107     uint32_t* dst_row = masked.getAddr32(0, y);
108 
109     for (int x = 0; x < masked.width(); ++x) {
110       unsigned alpha32 = SkGetPackedA32(alpha_row[x]);
111       unsigned scale = SkAlpha255To256(alpha32);
112       dst_row[x] = SkAlphaMulQ(rgb_row[x], scale);
113     }
114   }
115 
116   return masked;
117 }
118 
119 // static
CreateButtonBackground(SkColor color,const SkBitmap & image,const SkBitmap & mask)120 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
121                                                     const SkBitmap& image,
122                                                     const SkBitmap& mask) {
123   // Despite this assert, it seems like image is actually unpremultiplied.
124   // The math producing dst_row[x] below is a correct SrcOver when
125   // bg_* are premultiplied and img_* are unpremultiplied.
126   DCHECK(image.colorType() == kN32_SkColorType);
127   DCHECK(mask.colorType() == kN32_SkColorType);
128 
129   SkBitmap background;
130   background.allocN32Pixels(mask.width(), mask.height());
131 
132   double bg_a = SkColorGetA(color);
133   double bg_r = SkColorGetR(color) * (bg_a / 255.0);
134   double bg_g = SkColorGetG(color) * (bg_a / 255.0);
135   double bg_b = SkColorGetB(color) * (bg_a / 255.0);
136 
137   for (int y = 0; y < mask.height(); ++y) {
138     uint32_t* dst_row = background.getAddr32(0, y);
139     uint32_t* image_row = image.getAddr32(0, y % image.height());
140     uint32_t* mask_row = mask.getAddr32(0, y);
141 
142     for (int x = 0; x < mask.width(); ++x) {
143       uint32_t image_pixel = image_row[x % image.width()];
144 
145       double img_a = SkColorGetA(image_pixel);
146       double img_r = SkColorGetR(image_pixel);
147       double img_g = SkColorGetG(image_pixel);
148       double img_b = SkColorGetB(image_pixel);
149 
150       double img_alpha = img_a / 255.0;
151       double img_inv = 1 - img_alpha;
152 
153       double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
154 
155       dst_row[x] = SkColorSetARGB(
156           // This is pretty weird; why not the usual SrcOver alpha?
157           static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
158           static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
159           static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
160           static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
161     }
162   }
163 
164   return background;
165 }
166 
167 namespace {
168 namespace HSLShift {
169 
170 // TODO(viettrungluu): Some things have yet to be optimized at all.
171 
172 // Notes on and conventions used in the following code
173 //
174 // Conventions:
175 //  - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
176 //  - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
177 //  - variables derived from S, L shift parameters: |sdec| and |sinc| for S
178 //    increase and decrease factors, |ldec| and |linc| for L (see also below)
179 //
180 // To try to optimize HSL shifts, we do several things:
181 //  - Avoid unpremultiplying (then processing) then premultiplying. This means
182 //    that R, G, B values (and also L, but not H and S) should be treated as
183 //    having a range of 0..A (where A is alpha).
184 //  - Do things in integer/fixed-point. This avoids costly conversions between
185 //    floating-point and integer, though I should study the tradeoff more
186 //    carefully (presumably, at some point of processing complexity, converting
187 //    and processing using simpler floating-point code will begin to win in
188 //    performance). Also to be studied is the speed/type of floating point
189 //    conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
190 //
191 // Conventions for fixed-point arithmetic
192 //  - Each function has a constant denominator (called |den|, which should be a
193 //    power of 2), appropriate for the computations done in that function.
194 //  - A value |x| is then typically represented by a numerator, named |x_num|,
195 //    so that its actual value is |x_num / den| (casting to floating-point
196 //    before division).
197 //  - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
198 //    den| (casting appropriately).
199 //  - When necessary, a value |x| may also be represented as a numerator over
200 //    the denominator squared (set |den2 = den * den|). In such a case, the
201 //    corresponding variable is called |x_num2| (so that its actual value is
202 //    |x_num^2 / den2|.
203 //  - The representation of the product of |x| and |y| is be called |x_y_num| if
204 //    |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
205 //    the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
206 
207 // Routine used to process a line; typically specialized for specific kinds of
208 // HSL shifts (to optimize).
209 typedef void (*LineProcessor)(const color_utils::HSL&,
210                               const SkPMColor*,
211                               SkPMColor*,
212                               int width);
213 
214 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
215 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
216 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
217 
218 // Epsilon used to judge when shift values are close enough to various critical
219 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
220 // be small enough, but let's play it safe>
221 const double epsilon = 0.0005;
222 
223 // Line processor: default/universal (i.e., old-school).
LineProcDefault(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)224 void LineProcDefault(const color_utils::HSL& hsl_shift,
225                      const SkPMColor* in,
226                      SkPMColor* out,
227                      int width) {
228   for (int x = 0; x < width; x++) {
229     out[x] = SkPreMultiplyColor(color_utils::HSLShift(
230         SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
231   }
232 }
233 
234 // Line processor: no-op (i.e., copy).
LineProcCopy(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)235 void LineProcCopy(const color_utils::HSL& hsl_shift,
236                   const SkPMColor* in,
237                   SkPMColor* out,
238                   int width) {
239   DCHECK(hsl_shift.h < 0);
240   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
241   DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
242   memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
243 }
244 
245 // Line processor: H no-op, S no-op, L decrease.
LineProcHnopSnopLdec(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)246 void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift,
247                           const SkPMColor* in,
248                           SkPMColor* out,
249                           int width) {
250   const uint32_t den = 65536;
251 
252   DCHECK(hsl_shift.h < 0);
253   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
254   DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
255 
256   uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
257   for (int x = 0; x < width; x++) {
258     uint32_t a = SkGetPackedA32(in[x]);
259     uint32_t r = SkGetPackedR32(in[x]);
260     uint32_t g = SkGetPackedG32(in[x]);
261     uint32_t b = SkGetPackedB32(in[x]);
262     r = r * ldec_num / den;
263     g = g * ldec_num / den;
264     b = b * ldec_num / den;
265     out[x] = SkPackARGB32(a, r, g, b);
266   }
267 }
268 
269 // Line processor: H no-op, S no-op, L increase.
LineProcHnopSnopLinc(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)270 void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift,
271                           const SkPMColor* in,
272                           SkPMColor* out,
273                           int width) {
274   const uint32_t den = 65536;
275 
276   DCHECK(hsl_shift.h < 0);
277   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
278   DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
279 
280   uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
281   for (int x = 0; x < width; x++) {
282     uint32_t a = SkGetPackedA32(in[x]);
283     uint32_t r = SkGetPackedR32(in[x]);
284     uint32_t g = SkGetPackedG32(in[x]);
285     uint32_t b = SkGetPackedB32(in[x]);
286     r += (a - r) * linc_num / den;
287     g += (a - g) * linc_num / den;
288     b += (a - b) * linc_num / den;
289     out[x] = SkPackARGB32(a, r, g, b);
290   }
291 }
292 
293 // Saturation changes modifications in RGB
294 //
295 // (Note that as a further complication, the values we deal in are
296 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical
297 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
298 // generality, assume that R/G/B values are in the range 0..1.)
299 //
300 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
301 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
302 //
303 // For H to remain constant, first, the (numerical) order of R/G/B (from
304 // smallest to largest) must remain the same. Second, all the ratios
305 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
306 // course, if Max = Min, then S = 0 and no saturation change is well-defined,
307 // since H is not well-defined).
308 //
309 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med
310 // the remaining colour. Increasing saturation (to the maximum) is accomplished
311 // by increasing the value of C_max while simultaneously decreasing C_min and
312 // changing C_med so that the ratios are maintained; for the latter, it suffices
313 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
314 // (Med-Min)/(Max-Min)).
315 
316 // Line processor: H no-op, S decrease, L no-op.
LineProcHnopSdecLnop(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)317 void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift,
318                           const SkPMColor* in,
319                           SkPMColor* out,
320                           int width) {
321   DCHECK(hsl_shift.h < 0);
322   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
323   DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
324 
325   const int32_t denom = 65536;
326   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
327   for (int x = 0; x < width; x++) {
328     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
329     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
330     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
331     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
332 
333     int32_t vmax, vmin;
334     if (r > g) {  // This uses 3 compares rather than 4.
335       vmax = std::max(r, b);
336       vmin = std::min(g, b);
337     } else {
338       vmax = std::max(g, b);
339       vmin = std::min(r, b);
340     }
341 
342     // Use denom * L to avoid rounding.
343     int32_t denom_l = (vmax + vmin) * (denom / 2);
344     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
345 
346     r = (denom_l + r * s_numer - s_numer_l) / denom;
347     g = (denom_l + g * s_numer - s_numer_l) / denom;
348     b = (denom_l + b * s_numer - s_numer_l) / denom;
349     out[x] = SkPackARGB32(a, r, g, b);
350   }
351 }
352 
353 // Line processor: H no-op, S decrease, L decrease.
LineProcHnopSdecLdec(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)354 void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift,
355                           const SkPMColor* in,
356                           SkPMColor* out,
357                           int width) {
358   DCHECK(hsl_shift.h < 0);
359   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
360   DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
361 
362   // Can't be too big since we need room for denom*denom and a bit for sign.
363   const int32_t denom = 1024;
364   int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
365   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
366   for (int x = 0; x < width; x++) {
367     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
368     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
369     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
370     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
371 
372     int32_t vmax, vmin;
373     if (r > g) {  // This uses 3 compares rather than 4.
374       vmax = std::max(r, b);
375       vmin = std::min(g, b);
376     } else {
377       vmax = std::max(g, b);
378       vmin = std::min(r, b);
379     }
380 
381     // Use denom * L to avoid rounding.
382     int32_t denom_l = (vmax + vmin) * (denom / 2);
383     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
384 
385     r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
386     g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
387     b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
388     out[x] = SkPackARGB32(a, r, g, b);
389   }
390 }
391 
392 // Line processor: H no-op, S decrease, L increase.
LineProcHnopSdecLinc(const color_utils::HSL & hsl_shift,const SkPMColor * in,SkPMColor * out,int width)393 void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift,
394                           const SkPMColor* in,
395                           SkPMColor* out,
396                           int width) {
397   DCHECK(hsl_shift.h < 0);
398   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
399   DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
400 
401   // Can't be too big since we need room for denom*denom and a bit for sign.
402   const int32_t denom = 1024;
403   int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
404   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
405   for (int x = 0; x < width; x++) {
406     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
407     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
408     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
409     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
410 
411     int32_t vmax, vmin;
412     if (r > g) {  // This uses 3 compares rather than 4.
413       vmax = std::max(r, b);
414       vmin = std::min(g, b);
415     } else {
416       vmax = std::max(g, b);
417       vmin = std::min(r, b);
418     }
419 
420     // Use denom * L to avoid rounding.
421     int32_t denom_l = (vmax + vmin) * (denom / 2);
422     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
423 
424     r = denom_l + r * s_numer - s_numer_l;
425     g = denom_l + g * s_numer - s_numer_l;
426     b = denom_l + b * s_numer - s_numer_l;
427 
428     r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
429     g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
430     b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
431     out[x] = SkPackARGB32(a, r, g, b);
432   }
433 }
434 
435 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
436   { // H: kOpHNone
437     { // S: kOpSNone
438       LineProcCopy,         // L: kOpLNone
439       LineProcHnopSnopLdec, // L: kOpLDec
440       LineProcHnopSnopLinc  // L: kOpLInc
441     },
442     { // S: kOpSDec
443       LineProcHnopSdecLnop, // L: kOpLNone
444       LineProcHnopSdecLdec, // L: kOpLDec
445       LineProcHnopSdecLinc  // L: kOpLInc
446     },
447     { // S: kOpSInc
448       LineProcDefault, // L: kOpLNone
449       LineProcDefault, // L: kOpLDec
450       LineProcDefault  // L: kOpLInc
451     }
452   },
453   { // H: kOpHShift
454     { // S: kOpSNone
455       LineProcDefault, // L: kOpLNone
456       LineProcDefault, // L: kOpLDec
457       LineProcDefault  // L: kOpLInc
458     },
459     { // S: kOpSDec
460       LineProcDefault, // L: kOpLNone
461       LineProcDefault, // L: kOpLDec
462       LineProcDefault  // L: kOpLInc
463     },
464     { // S: kOpSInc
465       LineProcDefault, // L: kOpLNone
466       LineProcDefault, // L: kOpLDec
467       LineProcDefault  // L: kOpLInc
468     }
469   }
470 };
471 
472 }  // namespace HSLShift
473 }  // namespace
474 
475 // static
CreateHSLShiftedBitmap(const SkBitmap & bitmap,const color_utils::HSL & hsl_shift)476 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
477     const SkBitmap& bitmap,
478     const color_utils::HSL& hsl_shift) {
479   // Default to NOPs.
480   HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
481   HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
482   HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
483 
484   if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
485     H_op = HSLShift::kOpHShift;
486 
487   // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
488   if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
489     S_op = HSLShift::kOpSDec;
490   else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
491     S_op = HSLShift::kOpSInc;
492 
493   // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
494   if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
495     L_op = HSLShift::kOpLDec;
496   else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
497     L_op = HSLShift::kOpLInc;
498 
499   HSLShift::LineProcessor line_proc =
500       HSLShift::kLineProcessors[H_op][S_op][L_op];
501 
502   DCHECK(bitmap.empty() == false);
503   DCHECK(bitmap.colorType() == kN32_SkColorType);
504 
505   SkBitmap shifted;
506   shifted.allocN32Pixels(bitmap.width(), bitmap.height());
507 
508   // Loop through the pixels of the original bitmap.
509   for (int y = 0; y < bitmap.height(); ++y) {
510     SkPMColor* pixels = bitmap.getAddr32(0, y);
511     SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
512 
513     (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
514   }
515 
516   return shifted;
517 }
518 
519 // static
CreateTiledBitmap(const SkBitmap & source,int src_x,int src_y,int dst_w,int dst_h)520 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
521                                                int src_x, int src_y,
522                                                int dst_w, int dst_h) {
523   DCHECK(source.colorType() == kN32_SkColorType);
524 
525   SkBitmap cropped;
526   cropped.allocN32Pixels(dst_w, dst_h);
527 
528   // Loop through the pixels of the original bitmap.
529   for (int y = 0; y < dst_h; ++y) {
530     int y_pix = (src_y + y) % source.height();
531     while (y_pix < 0)
532       y_pix += source.height();
533 
534     uint32_t* source_row = source.getAddr32(0, y_pix);
535     uint32_t* dst_row = cropped.getAddr32(0, y);
536 
537     for (int x = 0; x < dst_w; ++x) {
538       int x_pix = (src_x + x) % source.width();
539       while (x_pix < 0)
540         x_pix += source.width();
541 
542       dst_row[x] = source_row[x_pix];
543     }
544   }
545 
546   return cropped;
547 }
548 
549 // static
DownsampleByTwoUntilSize(const SkBitmap & bitmap,int min_w,int min_h)550 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
551                                                       int min_w, int min_h) {
552   if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
553       (min_w < 0) || (min_h < 0))
554     return bitmap;
555 
556   // Since bitmaps are refcounted, this copy will be fast.
557   SkBitmap current = bitmap;
558   while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
559          (current.width() > 1) && (current.height() > 1))
560     current = DownsampleByTwo(current);
561   return current;
562 }
563 
564 // static
DownsampleByTwo(const SkBitmap & bitmap)565 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
566   // Handle the nop case.
567   if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
568     return bitmap;
569 
570   SkBitmap result;
571   result.allocN32Pixels((bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
572 
573   const int resultLastX = result.width() - 1;
574   const int srcLastX = bitmap.width() - 1;
575 
576   for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
577     const int src_y = dest_y << 1;
578     const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y);
579     const SkPMColor* SK_RESTRICT cur_src1 = cur_src0;
580     if (src_y + 1 < bitmap.height())
581       cur_src1 = bitmap.getAddr32(0, src_y + 1);
582 
583     SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y);
584 
585     for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) {
586       // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
587       // clever in that it does two channels at once: alpha and green ("ag")
588       // and red and blue ("rb"). Each channel gets averaged across 4 pixels
589       // to get the result.
590       int bump_x = (dest_x << 1) < srcLastX;
591       SkPMColor tmp, ag, rb;
592 
593       // Top left pixel of the 2x2 block.
594       tmp = cur_src0[0];
595       ag = (tmp >> 8) & 0xFF00FF;
596       rb = tmp & 0xFF00FF;
597 
598       // Top right pixel of the 2x2 block.
599       tmp = cur_src0[bump_x];
600       ag += (tmp >> 8) & 0xFF00FF;
601       rb += tmp & 0xFF00FF;
602 
603       // Bottom left pixel of the 2x2 block.
604       tmp = cur_src1[0];
605       ag += (tmp >> 8) & 0xFF00FF;
606       rb += tmp & 0xFF00FF;
607 
608       // Bottom right pixel of the 2x2 block.
609       tmp = cur_src1[bump_x];
610       ag += (tmp >> 8) & 0xFF00FF;
611       rb += tmp & 0xFF00FF;
612 
613       // Put the channels back together, dividing each by 4 to get the average.
614       // |ag| has the alpha and green channels shifted right by 8 bits from
615       // there they should end up, so shifting left by 6 gives them in the
616       // correct position divided by 4.
617       *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
618 
619       cur_src0 += 2;
620       cur_src1 += 2;
621     }
622   }
623 
624   return result;
625 }
626 
627 // static
UnPreMultiply(const SkBitmap & bitmap)628 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
629   if (bitmap.isNull())
630     return bitmap;
631   if (bitmap.isOpaque())
632     return bitmap;
633 
634   const SkImageInfo& opaque_info =
635       bitmap.info().makeAlphaType(kOpaque_SkAlphaType);
636   SkBitmap opaque_bitmap;
637   opaque_bitmap.allocPixels(opaque_info);
638 
639   for (int y = 0; y < opaque_bitmap.height(); y++) {
640     for (int x = 0; x < opaque_bitmap.width(); x++) {
641       uint32_t src_pixel = *bitmap.getAddr32(x, y);
642       uint32_t* dst_pixel = opaque_bitmap.getAddr32(x, y);
643       SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
644       *dst_pixel = unmultiplied;
645     }
646   }
647 
648   return opaque_bitmap;
649 }
650 
651 // static
CreateTransposedBitmap(const SkBitmap & image)652 SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) {
653   DCHECK(image.colorType() == kN32_SkColorType);
654 
655   SkBitmap transposed;
656   transposed.allocN32Pixels(image.height(), image.width());
657 
658   for (int y = 0; y < image.height(); ++y) {
659     uint32_t* image_row = image.getAddr32(0, y);
660     for (int x = 0; x < image.width(); ++x) {
661       uint32_t* dst = transposed.getAddr32(y, x);
662       *dst = image_row[x];
663     }
664   }
665 
666   return transposed;
667 }
668 
669 // static
CreateColorMask(const SkBitmap & bitmap,SkColor c)670 SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap,
671                                              SkColor c) {
672   DCHECK(bitmap.colorType() == kN32_SkColorType);
673 
674   SkBitmap color_mask;
675   color_mask.allocN32Pixels(bitmap.width(), bitmap.height());
676   color_mask.eraseARGB(0, 0, 0, 0);
677 
678   SkCanvas canvas(color_mask);
679 
680   SkPaint paint;
681   paint.setColorFilter(SkColorFilters::Blend(c, SkBlendMode::kSrcIn));
682   canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint);
683   return color_mask;
684 }
685 
686 // static
CreateDropShadow(const SkBitmap & bitmap,const gfx::ShadowValues & shadows)687 SkBitmap SkBitmapOperations::CreateDropShadow(
688     const SkBitmap& bitmap,
689     const gfx::ShadowValues& shadows) {
690   DCHECK(bitmap.colorType() == kN32_SkColorType);
691 
692   // Shadow margin insets are negative values because they grow outside.
693   // Negate them here as grow direction is not important and only pixel value
694   // is of interest here.
695   gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows);
696 
697   SkBitmap image_with_shadow;
698   image_with_shadow.allocN32Pixels(bitmap.width() + shadow_margin.width(),
699                                    bitmap.height() + shadow_margin.height());
700   image_with_shadow.eraseARGB(0, 0, 0, 0);
701 
702   SkCanvas canvas(image_with_shadow);
703   canvas.translate(SkIntToScalar(shadow_margin.left()),
704                    SkIntToScalar(shadow_margin.top()));
705 
706   SkPaint paint;
707   for (size_t i = 0; i < shadows.size(); ++i) {
708     const gfx::ShadowValue& shadow = shadows[i];
709     SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap,
710                                                                 shadow.color());
711 
712     // The blur is halved to produce a shadow that correctly fits within the
713     // |shadow_margin|.
714     SkScalar sigma = SkDoubleToScalar(shadow.blur() / 2);
715     paint.setImageFilter(SkBlurImageFilter::Make(sigma, sigma, nullptr));
716 
717     canvas.saveLayer(0, &paint);
718     canvas.drawBitmap(shadow_image,
719                       SkIntToScalar(shadow.x()),
720                       SkIntToScalar(shadow.y()));
721     canvas.restore();
722   }
723 
724   canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0));
725   return image_with_shadow;
726 }
727 
728 // static
Rotate(const SkBitmap & source,RotationAmount rotation)729 SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source,
730                                     RotationAmount rotation) {
731   // SkCanvas::drawBitmap() fails silently with unpremultiplied SkBitmap.
732   DCHECK_NE(source.info().alphaType(), kUnpremul_SkAlphaType);
733 
734   SkBitmap result;
735   SkScalar angle = SkFloatToScalar(0.0f);
736 
737   switch (rotation) {
738    case ROTATION_90_CW:
739      angle = SkFloatToScalar(90.0f);
740      result.allocN32Pixels(source.height(), source.width());
741      break;
742    case ROTATION_180_CW:
743      angle = SkFloatToScalar(180.0f);
744      result.allocN32Pixels(source.width(), source.height());
745      break;
746    case ROTATION_270_CW:
747      angle = SkFloatToScalar(270.0f);
748      result.allocN32Pixels(source.height(), source.width());
749      break;
750   }
751 
752   SkCanvas canvas(result);
753   canvas.clear(SkColorSetARGB(0, 0, 0, 0));
754 
755   canvas.translate(SkFloatToScalar(result.width() * 0.5f),
756                    SkFloatToScalar(result.height() * 0.5f));
757   canvas.rotate(angle);
758   canvas.translate(-SkFloatToScalar(source.width() * 0.5f),
759                    -SkFloatToScalar(source.height() * 0.5f));
760   canvas.drawBitmap(source, 0, 0);
761   canvas.flush();
762 
763   return result;
764 }
765