1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless decoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 
18 #include "src/dsp/common_sse2.h"
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/lossless_common.h"
21 #include <assert.h>
22 #include <emmintrin.h>
23 
24 //------------------------------------------------------------------------------
25 // Predictor Transform
26 
ClampedAddSubtractFull_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)27 static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0,
28                                                         uint32_t c1,
29                                                         uint32_t c2) {
30   const __m128i zero = _mm_setzero_si128();
31   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
32   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
33   const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
34   const __m128i V1 = _mm_add_epi16(C0, C1);
35   const __m128i V2 = _mm_sub_epi16(V1, C2);
36   const __m128i b = _mm_packus_epi16(V2, V2);
37   const uint32_t output = _mm_cvtsi128_si32(b);
38   return output;
39 }
40 
ClampedAddSubtractHalf_SSE2(uint32_t c0,uint32_t c1,uint32_t c2)41 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0,
42                                                         uint32_t c1,
43                                                         uint32_t c2) {
44   const __m128i zero = _mm_setzero_si128();
45   const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero);
46   const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero);
47   const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero);
48   const __m128i avg = _mm_add_epi16(C1, C0);
49   const __m128i A0 = _mm_srli_epi16(avg, 1);
50   const __m128i A1 = _mm_sub_epi16(A0, B0);
51   const __m128i BgtA = _mm_cmpgt_epi16(B0, A0);
52   const __m128i A2 = _mm_sub_epi16(A1, BgtA);
53   const __m128i A3 = _mm_srai_epi16(A2, 1);
54   const __m128i A4 = _mm_add_epi16(A0, A3);
55   const __m128i A5 = _mm_packus_epi16(A4, A4);
56   const uint32_t output = _mm_cvtsi128_si32(A5);
57   return output;
58 }
59 
Select_SSE2(uint32_t a,uint32_t b,uint32_t c)60 static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) {
61   int pa_minus_pb;
62   const __m128i zero = _mm_setzero_si128();
63   const __m128i A0 = _mm_cvtsi32_si128(a);
64   const __m128i B0 = _mm_cvtsi32_si128(b);
65   const __m128i C0 = _mm_cvtsi32_si128(c);
66   const __m128i AC0 = _mm_subs_epu8(A0, C0);
67   const __m128i CA0 = _mm_subs_epu8(C0, A0);
68   const __m128i BC0 = _mm_subs_epu8(B0, C0);
69   const __m128i CB0 = _mm_subs_epu8(C0, B0);
70   const __m128i AC = _mm_or_si128(AC0, CA0);
71   const __m128i BC = _mm_or_si128(BC0, CB0);
72   const __m128i pa = _mm_unpacklo_epi8(AC, zero);  // |a - c|
73   const __m128i pb = _mm_unpacklo_epi8(BC, zero);  // |b - c|
74   const __m128i diff = _mm_sub_epi16(pb, pa);
75   {
76     int16_t out[8];
77     _mm_storeu_si128((__m128i*)out, diff);
78     pa_minus_pb = out[0] + out[1] + out[2] + out[3];
79   }
80   return (pa_minus_pb <= 0) ? a : b;
81 }
82 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)83 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
84                                        const __m128i* const a1,
85                                        __m128i* const avg) {
86   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
87   const __m128i ones = _mm_set1_epi8(1);
88   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
89   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
90   *avg = _mm_sub_epi8(avg1, one);
91 }
92 
Average2_uint32_SSE2(const uint32_t a0,const uint32_t a1,__m128i * const avg)93 static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0,
94                                              const uint32_t a1,
95                                              __m128i* const avg) {
96   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
97   const __m128i ones = _mm_set1_epi8(1);
98   const __m128i A0 = _mm_cvtsi32_si128(a0);
99   const __m128i A1 = _mm_cvtsi32_si128(a1);
100   const __m128i avg1 = _mm_avg_epu8(A0, A1);
101   const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones);
102   *avg = _mm_sub_epi8(avg1, one);
103 }
104 
Average2_uint32_16_SSE2(uint32_t a0,uint32_t a1)105 static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) {
106   const __m128i zero = _mm_setzero_si128();
107   const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero);
108   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
109   const __m128i sum = _mm_add_epi16(A1, A0);
110   return _mm_srli_epi16(sum, 1);
111 }
112 
Average2_SSE2(uint32_t a0,uint32_t a1)113 static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) {
114   __m128i output;
115   Average2_uint32_SSE2(a0, a1, &output);
116   return _mm_cvtsi128_si32(output);
117 }
118 
Average3_SSE2(uint32_t a0,uint32_t a1,uint32_t a2)119 static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1,
120                                           uint32_t a2) {
121   const __m128i zero = _mm_setzero_si128();
122   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2);
123   const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero);
124   const __m128i sum = _mm_add_epi16(avg1, A1);
125   const __m128i avg2 = _mm_srli_epi16(sum, 1);
126   const __m128i A2 = _mm_packus_epi16(avg2, avg2);
127   const uint32_t output = _mm_cvtsi128_si32(A2);
128   return output;
129 }
130 
Average4_SSE2(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)131 static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1,
132                                           uint32_t a2, uint32_t a3) {
133   const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1);
134   const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3);
135   const __m128i sum = _mm_add_epi16(avg2, avg1);
136   const __m128i avg3 = _mm_srli_epi16(sum, 1);
137   const __m128i A0 = _mm_packus_epi16(avg3, avg3);
138   const uint32_t output = _mm_cvtsi128_si32(A0);
139   return output;
140 }
141 
Predictor5_SSE2(uint32_t left,const uint32_t * const top)142 static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) {
143   const uint32_t pred = Average3_SSE2(left, top[0], top[1]);
144   return pred;
145 }
Predictor6_SSE2(uint32_t left,const uint32_t * const top)146 static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) {
147   const uint32_t pred = Average2_SSE2(left, top[-1]);
148   return pred;
149 }
Predictor7_SSE2(uint32_t left,const uint32_t * const top)150 static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) {
151   const uint32_t pred = Average2_SSE2(left, top[0]);
152   return pred;
153 }
Predictor8_SSE2(uint32_t left,const uint32_t * const top)154 static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) {
155   const uint32_t pred = Average2_SSE2(top[-1], top[0]);
156   (void)left;
157   return pred;
158 }
Predictor9_SSE2(uint32_t left,const uint32_t * const top)159 static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) {
160   const uint32_t pred = Average2_SSE2(top[0], top[1]);
161   (void)left;
162   return pred;
163 }
Predictor10_SSE2(uint32_t left,const uint32_t * const top)164 static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) {
165   const uint32_t pred = Average4_SSE2(left, top[-1], top[0], top[1]);
166   return pred;
167 }
Predictor11_SSE2(uint32_t left,const uint32_t * const top)168 static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) {
169   const uint32_t pred = Select_SSE2(top[0], left, top[-1]);
170   return pred;
171 }
Predictor12_SSE2(uint32_t left,const uint32_t * const top)172 static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) {
173   const uint32_t pred = ClampedAddSubtractFull_SSE2(left, top[0], top[-1]);
174   return pred;
175 }
Predictor13_SSE2(uint32_t left,const uint32_t * const top)176 static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) {
177   const uint32_t pred = ClampedAddSubtractHalf_SSE2(left, top[0], top[-1]);
178   return pred;
179 }
180 
181 // Batch versions of those functions.
182 
183 // Predictor0: ARGB_BLACK.
PredictorAdd0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)184 static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper,
185                                int num_pixels, uint32_t* out) {
186   int i;
187   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
188   for (i = 0; i + 4 <= num_pixels; i += 4) {
189     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
190     const __m128i res = _mm_add_epi8(src, black);
191     _mm_storeu_si128((__m128i*)&out[i], res);
192   }
193   if (i != num_pixels) {
194     VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i);
195   }
196 }
197 
198 // Predictor1: left.
PredictorAdd1_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)199 static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper,
200                                int num_pixels, uint32_t* out) {
201   int i;
202   __m128i prev = _mm_set1_epi32(out[-1]);
203   for (i = 0; i + 4 <= num_pixels; i += 4) {
204     // a | b | c | d
205     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
206     // 0 | a | b | c
207     const __m128i shift0 = _mm_slli_si128(src, 4);
208     // a | a + b | b + c | c + d
209     const __m128i sum0 = _mm_add_epi8(src, shift0);
210     // 0 | 0 | a | a + b
211     const __m128i shift1 = _mm_slli_si128(sum0, 8);
212     // a | a + b | a + b + c | a + b + c + d
213     const __m128i sum1 = _mm_add_epi8(sum0, shift1);
214     const __m128i res = _mm_add_epi8(sum1, prev);
215     _mm_storeu_si128((__m128i*)&out[i], res);
216     // replicate prev output on the four lanes
217     prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6));
218   }
219   if (i != num_pixels) {
220     VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i);
221   }
222 }
223 
224 // Macro that adds 32-bit integers from IN using mod 256 arithmetic
225 // per 8 bit channel.
226 #define GENERATE_PREDICTOR_1(X, IN)                                           \
227 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
228                                   int num_pixels, uint32_t* out) {            \
229   int i;                                                                      \
230   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
231     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
232     const __m128i other = _mm_loadu_si128((const __m128i*)&(IN));             \
233     const __m128i res = _mm_add_epi8(src, other);                             \
234     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
235   }                                                                           \
236   if (i != num_pixels) {                                                      \
237     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
238   }                                                                           \
239 }
240 
241 // Predictor2: Top.
242 GENERATE_PREDICTOR_1(2, upper[i])
243 // Predictor3: Top-right.
244 GENERATE_PREDICTOR_1(3, upper[i + 1])
245 // Predictor4: Top-left.
246 GENERATE_PREDICTOR_1(4, upper[i - 1])
247 #undef GENERATE_PREDICTOR_1
248 
249 // Due to averages with integers, values cannot be accumulated in parallel for
250 // predictors 5 to 7.
GENERATE_PREDICTOR_ADD(Predictor5_SSE2,PredictorAdd5_SSE2)251 GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2)
252 GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2)
253 GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2)
254 
255 #define GENERATE_PREDICTOR_2(X, IN)                                           \
256 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
257                                    int num_pixels, uint32_t* out) {           \
258   int i;                                                                      \
259   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
260     const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN));            \
261     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);             \
262     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
263     __m128i avg, res;                                                         \
264     Average2_m128i(&T, &Tother, &avg);                                        \
265     res = _mm_add_epi8(avg, src);                                             \
266     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
267   }                                                                           \
268   if (i != num_pixels) {                                                      \
269     VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
270   }                                                                           \
271 }
272 // Predictor8: average TL T.
273 GENERATE_PREDICTOR_2(8, upper[i - 1])
274 // Predictor9: average T TR.
275 GENERATE_PREDICTOR_2(9, upper[i + 1])
276 #undef GENERATE_PREDICTOR_2
277 
278 // Predictor10: average of (average of (L,TL), average of (T, TR)).
279 #define DO_PRED10(OUT) do {               \
280   __m128i avgLTL, avg;                    \
281   Average2_m128i(&L, &TL, &avgLTL);       \
282   Average2_m128i(&avgTTR, &avgLTL, &avg); \
283   L = _mm_add_epi8(avg, src);             \
284   out[i + (OUT)] = _mm_cvtsi128_si32(L);  \
285 } while (0)
286 
287 #define DO_PRED10_SHIFT do {                                  \
288   /* Rotate the pre-computed values for the next iteration.*/ \
289   avgTTR = _mm_srli_si128(avgTTR, 4);                         \
290   TL = _mm_srli_si128(TL, 4);                                 \
291   src = _mm_srli_si128(src, 4);                               \
292 } while (0)
293 
294 static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper,
295                                 int num_pixels, uint32_t* out) {
296   int i;
297   __m128i L = _mm_cvtsi32_si128(out[-1]);
298   for (i = 0; i + 4 <= num_pixels; i += 4) {
299     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
300     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
301     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
302     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
303     __m128i avgTTR;
304     Average2_m128i(&T, &TR, &avgTTR);
305     DO_PRED10(0);
306     DO_PRED10_SHIFT;
307     DO_PRED10(1);
308     DO_PRED10_SHIFT;
309     DO_PRED10(2);
310     DO_PRED10_SHIFT;
311     DO_PRED10(3);
312   }
313   if (i != num_pixels) {
314     VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i);
315   }
316 }
317 #undef DO_PRED10
318 #undef DO_PRED10_SHIFT
319 
320 // Predictor11: select.
321 #define DO_PRED11(OUT) do {                                            \
322   const __m128i L_lo = _mm_unpacklo_epi32(L, T);                       \
323   const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);                     \
324   const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/   \
325   const __m128i mask = _mm_cmpgt_epi32(pb, pa);                        \
326   const __m128i A = _mm_and_si128(mask, L);                            \
327   const __m128i B = _mm_andnot_si128(mask, T);                         \
328   const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \
329   L = _mm_add_epi8(src, pred);                                         \
330   out[i + (OUT)] = _mm_cvtsi128_si32(L);                               \
331 } while (0)
332 
333 #define DO_PRED11_SHIFT do {                                \
334   /* Shift the pre-computed value for the next iteration.*/ \
335   T = _mm_srli_si128(T, 4);                                 \
336   TL = _mm_srli_si128(TL, 4);                               \
337   src = _mm_srli_si128(src, 4);                             \
338   pa = _mm_srli_si128(pa, 4);                               \
339 } while (0)
340 
PredictorAdd11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)341 static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper,
342                                 int num_pixels, uint32_t* out) {
343   int i;
344   __m128i pa;
345   __m128i L = _mm_cvtsi32_si128(out[-1]);
346   for (i = 0; i + 4 <= num_pixels; i += 4) {
347     __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
348     __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
349     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
350     {
351       // We can unpack with any value on the upper 32 bits, provided it's the
352       // same on both operands (so that their sum of abs diff is zero). Here we
353       // use T.
354       const __m128i T_lo = _mm_unpacklo_epi32(T, T);
355       const __m128i TL_lo = _mm_unpacklo_epi32(TL, T);
356       const __m128i T_hi = _mm_unpackhi_epi32(T, T);
357       const __m128i TL_hi = _mm_unpackhi_epi32(TL, T);
358       const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo);
359       const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi);
360       pa = _mm_packs_epi32(s_lo, s_hi);  // pa = sum |T-TL|
361     }
362     DO_PRED11(0);
363     DO_PRED11_SHIFT;
364     DO_PRED11(1);
365     DO_PRED11_SHIFT;
366     DO_PRED11(2);
367     DO_PRED11_SHIFT;
368     DO_PRED11(3);
369   }
370   if (i != num_pixels) {
371     VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i);
372   }
373 }
374 #undef DO_PRED11
375 #undef DO_PRED11_SHIFT
376 
377 // Predictor12: ClampedAddSubtractFull.
378 #define DO_PRED12(DIFF, LANE, OUT) do {            \
379   const __m128i all = _mm_add_epi16(L, (DIFF));    \
380   const __m128i alls = _mm_packus_epi16(all, all); \
381   const __m128i res = _mm_add_epi8(src, alls);     \
382   out[i + (OUT)] = _mm_cvtsi128_si32(res);         \
383   L = _mm_unpacklo_epi8(res, zero);                \
384 } while (0)
385 
386 #define DO_PRED12_SHIFT(DIFF, LANE) do {                    \
387   /* Shift the pre-computed value for the next iteration.*/ \
388   if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8);      \
389   src = _mm_srli_si128(src, 4);                             \
390 } while (0)
391 
PredictorAdd12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)392 static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper,
393                                 int num_pixels, uint32_t* out) {
394   int i;
395   const __m128i zero = _mm_setzero_si128();
396   const __m128i L8 = _mm_cvtsi32_si128(out[-1]);
397   __m128i L = _mm_unpacklo_epi8(L8, zero);
398   for (i = 0; i + 4 <= num_pixels; i += 4) {
399     // Load 4 pixels at a time.
400     __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
401     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
402     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
403     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
404     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
405     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
406     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
407     __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
408     __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
409     DO_PRED12(diff_lo, 0, 0);
410     DO_PRED12_SHIFT(diff_lo, 0);
411     DO_PRED12(diff_lo, 1, 1);
412     DO_PRED12_SHIFT(diff_lo, 1);
413     DO_PRED12(diff_hi, 0, 2);
414     DO_PRED12_SHIFT(diff_hi, 0);
415     DO_PRED12(diff_hi, 1, 3);
416   }
417   if (i != num_pixels) {
418     VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i);
419   }
420 }
421 #undef DO_PRED12
422 #undef DO_PRED12_SHIFT
423 
424 // Due to averages with integers, values cannot be accumulated in parallel for
425 // predictors 13.
GENERATE_PREDICTOR_ADD(Predictor13_SSE2,PredictorAdd13_SSE2)426 GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2)
427 
428 //------------------------------------------------------------------------------
429 // Subtract-Green Transform
430 
431 static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels,
432                                       uint32_t* dst) {
433   int i;
434   for (i = 0; i + 4 <= num_pixels; i += 4) {
435     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
436     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
437     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
438     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
439     const __m128i out = _mm_add_epi8(in, C);
440     _mm_storeu_si128((__m128i*)&dst[i], out);
441   }
442   // fallthrough and finish off with plain-C
443   if (i != num_pixels) {
444     VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i);
445   }
446 }
447 
448 //------------------------------------------------------------------------------
449 // Color Transform
450 
TransformColorInverse_SSE2(const VP8LMultipliers * const m,const uint32_t * const src,int num_pixels,uint32_t * dst)451 static void TransformColorInverse_SSE2(const VP8LMultipliers* const m,
452                                        const uint32_t* const src,
453                                        int num_pixels, uint32_t* dst) {
454 // sign-extended multiplying constants, pre-shifted by 5.
455 #define CST(X)  (((int16_t)(m->X << 8)) >> 5)   // sign-extend
456 #define MK_CST_16(HI, LO) \
457   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
458   const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_));
459   const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0);
460 #undef MK_CST_16
461 #undef CST
462   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
463   int i;
464   for (i = 0; i + 4 <= num_pixels; i += 4) {
465     const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb
466     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
467     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
468     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
469     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
470     const __m128i E = _mm_add_epi8(in, D);             // x r'  x   b'
471     const __m128i F = _mm_slli_epi16(E, 8);            // r' 0   b' 0
472     const __m128i G = _mm_mulhi_epi16(F, mults_b2);    // x db2  0  0
473     const __m128i H = _mm_srli_epi32(G, 8);            // 0  x db2  0
474     const __m128i I = _mm_add_epi8(H, F);              // r' x  b'' 0
475     const __m128i J = _mm_srli_epi16(I, 8);            // 0  r'  0  b''
476     const __m128i out = _mm_or_si128(J, A);
477     _mm_storeu_si128((__m128i*)&dst[i], out);
478   }
479   // Fall-back to C-version for left-overs.
480   if (i != num_pixels) {
481     VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i);
482   }
483 }
484 
485 //------------------------------------------------------------------------------
486 // Color-space conversion functions
487 
ConvertBGRAToRGB_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)488 static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels,
489                                   uint8_t* dst) {
490   const __m128i* in = (const __m128i*)src;
491   __m128i* out = (__m128i*)dst;
492 
493   while (num_pixels >= 32) {
494     // Load the BGRA buffers.
495     __m128i in0 = _mm_loadu_si128(in + 0);
496     __m128i in1 = _mm_loadu_si128(in + 1);
497     __m128i in2 = _mm_loadu_si128(in + 2);
498     __m128i in3 = _mm_loadu_si128(in + 3);
499     __m128i in4 = _mm_loadu_si128(in + 4);
500     __m128i in5 = _mm_loadu_si128(in + 5);
501     __m128i in6 = _mm_loadu_si128(in + 6);
502     __m128i in7 = _mm_loadu_si128(in + 7);
503     VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3);
504     VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7);
505     // At this points, in1/in5 contains red only, in2/in6 green only ...
506     // Pack the colors in 24b RGB.
507     VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7);
508     _mm_storeu_si128(out + 0, in1);
509     _mm_storeu_si128(out + 1, in5);
510     _mm_storeu_si128(out + 2, in2);
511     _mm_storeu_si128(out + 3, in6);
512     _mm_storeu_si128(out + 4, in3);
513     _mm_storeu_si128(out + 5, in7);
514     in += 8;
515     out += 6;
516     num_pixels -= 32;
517   }
518   // left-overs
519   if (num_pixels > 0) {
520     VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
521   }
522 }
523 
ConvertBGRAToRGBA_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)524 static void ConvertBGRAToRGBA_SSE2(const uint32_t* src,
525                                    int num_pixels, uint8_t* dst) {
526   const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ffu);
527   const __m128i* in = (const __m128i*)src;
528   __m128i* out = (__m128i*)dst;
529   while (num_pixels >= 8) {
530     const __m128i A1 = _mm_loadu_si128(in++);
531     const __m128i A2 = _mm_loadu_si128(in++);
532     const __m128i B1 = _mm_and_si128(A1, red_blue_mask);     // R 0 B 0
533     const __m128i B2 = _mm_and_si128(A2, red_blue_mask);     // R 0 B 0
534     const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1);  // 0 G 0 A
535     const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2);  // 0 G 0 A
536     const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1));
537     const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1));
538     const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1));
539     const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1));
540     const __m128i F1 = _mm_or_si128(E1, C1);
541     const __m128i F2 = _mm_or_si128(E2, C2);
542     _mm_storeu_si128(out++, F1);
543     _mm_storeu_si128(out++, F2);
544     num_pixels -= 8;
545   }
546   // left-overs
547   if (num_pixels > 0) {
548     VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
549   }
550 }
551 
ConvertBGRAToRGBA4444_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)552 static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src,
553                                        int num_pixels, uint8_t* dst) {
554   const __m128i mask_0x0f = _mm_set1_epi8(0x0f);
555   const __m128i mask_0xf0 = _mm_set1_epi8(0xf0);
556   const __m128i* in = (const __m128i*)src;
557   __m128i* out = (__m128i*)dst;
558   while (num_pixels >= 8) {
559     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
560     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
561     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
562     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
563     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);    // b0b2b4b6g0g2g4g6...
564     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);    // b1b3b5b7g1g3g5g7...
565     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);    // b0...b7 | g0...g7
566     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);    // r0...r7 | a0...a7
567     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);   // g0...g7 | a0...a7
568     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);   // r0...r7 | b0...b7
569     const __m128i ga1 = _mm_srli_epi16(ga0, 4);         // g0-|g1-|...|a6-|a7-
570     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0);  // -r0|-r1|...|-b6|-a7
571     const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f);  // g0-|g1-|...|a6-|a7-
572     const __m128i rgba0 = _mm_or_si128(ga2, rb1);       // rg0..rg7 | ba0..ba7
573     const __m128i rgba1 = _mm_srli_si128(rgba0, 8);     // ba0..ba7 | 0
574 #if (WEBP_SWAP_16BIT_CSP == 1)
575     const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0);  // barg0...barg7
576 #else
577     const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1);  // rgba0...rgba7
578 #endif
579     _mm_storeu_si128(out++, rgba);
580     num_pixels -= 8;
581   }
582   // left-overs
583   if (num_pixels > 0) {
584     VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
585   }
586 }
587 
ConvertBGRAToRGB565_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)588 static void ConvertBGRAToRGB565_SSE2(const uint32_t* src,
589                                      int num_pixels, uint8_t* dst) {
590   const __m128i mask_0xe0 = _mm_set1_epi8(0xe0);
591   const __m128i mask_0xf8 = _mm_set1_epi8(0xf8);
592   const __m128i mask_0x07 = _mm_set1_epi8(0x07);
593   const __m128i* in = (const __m128i*)src;
594   __m128i* out = (__m128i*)dst;
595   while (num_pixels >= 8) {
596     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
597     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
598     const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4);  // b0b4g0g4r0r4a0a4...
599     const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4);  // b2b6g2g6r2r6a2a6...
600     const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h);      // b0b2b4b6g0g2g4g6...
601     const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h);      // b1b3b5b7g1g3g5g7...
602     const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h);      // b0...b7 | g0...g7
603     const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h);      // r0...r7 | a0...a7
604     const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h);     // g0...g7 | a0...a7
605     const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l);     // r0...r7 | b0...b7
606     const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8);    // -r0..-r7|-b0..-b7
607     const __m128i g_lo1 = _mm_srli_epi16(ga0, 5);
608     const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07);  // g0-...g7-|xx (3b)
609     const __m128i g_hi1 = _mm_slli_epi16(ga0, 3);
610     const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0);  // -g0...-g7|xx (3b)
611     const __m128i b0 = _mm_srli_si128(rb1, 8);              // -b0...-b7|0
612     const __m128i rg1 = _mm_or_si128(rb1, g_lo2);           // gr0...gr7|xx
613     const __m128i b1 = _mm_srli_epi16(b0, 3);
614     const __m128i gb1 = _mm_or_si128(b1, g_hi2);            // bg0...bg7|xx
615 #if (WEBP_SWAP_16BIT_CSP == 1)
616     const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1);     // rggb0...rggb7
617 #else
618     const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1);     // bgrb0...bgrb7
619 #endif
620     _mm_storeu_si128(out++, rgba);
621     num_pixels -= 8;
622   }
623   // left-overs
624   if (num_pixels > 0) {
625     VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out);
626   }
627 }
628 
ConvertBGRAToBGR_SSE2(const uint32_t * src,int num_pixels,uint8_t * dst)629 static void ConvertBGRAToBGR_SSE2(const uint32_t* src,
630                                   int num_pixels, uint8_t* dst) {
631   const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff);
632   const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0);
633   const __m128i* in = (const __m128i*)src;
634   const uint8_t* const end = dst + num_pixels * 3;
635   // the last storel_epi64 below writes 8 bytes starting at offset 18
636   while (dst + 26 <= end) {
637     const __m128i bgra0 = _mm_loadu_si128(in++);     // bgra0|bgra1|bgra2|bgra3
638     const __m128i bgra4 = _mm_loadu_si128(in++);     // bgra4|bgra5|bgra6|bgra7
639     const __m128i a0l = _mm_and_si128(bgra0, mask_l);   // bgr0|0|bgr0|0
640     const __m128i a4l = _mm_and_si128(bgra4, mask_l);   // bgr0|0|bgr0|0
641     const __m128i a0h = _mm_and_si128(bgra0, mask_h);   // 0|bgr0|0|bgr0
642     const __m128i a4h = _mm_and_si128(bgra4, mask_h);   // 0|bgr0|0|bgr0
643     const __m128i b0h = _mm_srli_epi64(a0h, 8);         // 000b|gr00|000b|gr00
644     const __m128i b4h = _mm_srli_epi64(a4h, 8);         // 000b|gr00|000b|gr00
645     const __m128i c0 = _mm_or_si128(a0l, b0h);          // rgbrgb00|rgbrgb00
646     const __m128i c4 = _mm_or_si128(a4l, b4h);          // rgbrgb00|rgbrgb00
647     const __m128i c2 = _mm_srli_si128(c0, 8);
648     const __m128i c6 = _mm_srli_si128(c4, 8);
649     _mm_storel_epi64((__m128i*)(dst +   0), c0);
650     _mm_storel_epi64((__m128i*)(dst +   6), c2);
651     _mm_storel_epi64((__m128i*)(dst +  12), c4);
652     _mm_storel_epi64((__m128i*)(dst +  18), c6);
653     dst += 24;
654     num_pixels -= 8;
655   }
656   // left-overs
657   if (num_pixels > 0) {
658     VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst);
659   }
660 }
661 
662 //------------------------------------------------------------------------------
663 // Entry point
664 
665 extern void VP8LDspInitSSE2(void);
666 
VP8LDspInitSSE2(void)667 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) {
668   VP8LPredictors[5] = Predictor5_SSE2;
669   VP8LPredictors[6] = Predictor6_SSE2;
670   VP8LPredictors[7] = Predictor7_SSE2;
671   VP8LPredictors[8] = Predictor8_SSE2;
672   VP8LPredictors[9] = Predictor9_SSE2;
673   VP8LPredictors[10] = Predictor10_SSE2;
674   VP8LPredictors[11] = Predictor11_SSE2;
675   VP8LPredictors[12] = Predictor12_SSE2;
676   VP8LPredictors[13] = Predictor13_SSE2;
677 
678   VP8LPredictorsAdd[0] = PredictorAdd0_SSE2;
679   VP8LPredictorsAdd[1] = PredictorAdd1_SSE2;
680   VP8LPredictorsAdd[2] = PredictorAdd2_SSE2;
681   VP8LPredictorsAdd[3] = PredictorAdd3_SSE2;
682   VP8LPredictorsAdd[4] = PredictorAdd4_SSE2;
683   VP8LPredictorsAdd[5] = PredictorAdd5_SSE2;
684   VP8LPredictorsAdd[6] = PredictorAdd6_SSE2;
685   VP8LPredictorsAdd[7] = PredictorAdd7_SSE2;
686   VP8LPredictorsAdd[8] = PredictorAdd8_SSE2;
687   VP8LPredictorsAdd[9] = PredictorAdd9_SSE2;
688   VP8LPredictorsAdd[10] = PredictorAdd10_SSE2;
689   VP8LPredictorsAdd[11] = PredictorAdd11_SSE2;
690   VP8LPredictorsAdd[12] = PredictorAdd12_SSE2;
691   VP8LPredictorsAdd[13] = PredictorAdd13_SSE2;
692 
693   VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2;
694   VP8LTransformColorInverse = TransformColorInverse_SSE2;
695 
696   VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2;
697   VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2;
698   VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2;
699   VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2;
700   VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2;
701 }
702 
703 #else  // !WEBP_USE_SSE2
704 
705 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2)
706 
707 #endif  // WEBP_USE_SSE2
708