1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #ifdef HAVE_LIMITS_H
32 #include <limits.h>
33 #endif
34 #ifndef CHAR_BIT
35 #define CHAR_BIT 8
36 #endif
37
38 bfd_boolean literal_prefix_dollar_hex = FALSE;
39
40 static void floating_constant (expressionS * expressionP);
41 static valueT generic_bignum_to_int32 (void);
42 #ifdef BFD64
43 static valueT generic_bignum_to_int64 (void);
44 #endif
45 static void integer_constant (int radix, expressionS * expressionP);
46 static void mri_char_constant (expressionS *);
47 static void clean_up_expression (expressionS * expressionP);
48 static segT operand (expressionS *, enum expr_mode);
49 static operatorT operatorf (int *);
50
51 /* We keep a mapping of expression symbols to file positions, so that
52 we can provide better error messages. */
53
54 struct expr_symbol_line {
55 struct expr_symbol_line *next;
56 symbolS *sym;
57 const char *file;
58 unsigned int line;
59 };
60
61 static struct expr_symbol_line *expr_symbol_lines;
62
63 /* Build a dummy symbol to hold a complex expression. This is how we
64 build expressions up out of other expressions. The symbol is put
65 into the fake section expr_section. */
66
67 symbolS *
make_expr_symbol(expressionS * expressionP)68 make_expr_symbol (expressionS *expressionP)
69 {
70 expressionS zero;
71 symbolS *symbolP;
72 struct expr_symbol_line *n;
73
74 if (expressionP->X_op == O_symbol
75 && expressionP->X_add_number == 0)
76 return expressionP->X_add_symbol;
77
78 if (expressionP->X_op == O_big)
79 {
80 /* This won't work, because the actual value is stored in
81 generic_floating_point_number or generic_bignum, and we are
82 going to lose it if we haven't already. */
83 if (expressionP->X_add_number > 0)
84 as_bad (_("bignum invalid"));
85 else
86 as_bad (_("floating point number invalid"));
87 zero.X_op = O_constant;
88 zero.X_add_number = 0;
89 zero.X_unsigned = 0;
90 zero.X_extrabit = 0;
91 clean_up_expression (&zero);
92 expressionP = &zero;
93 }
94
95 /* Putting constant symbols in absolute_section rather than
96 expr_section is convenient for the old a.out code, for which
97 S_GET_SEGMENT does not always retrieve the value put in by
98 S_SET_SEGMENT. */
99 symbolP = symbol_create (FAKE_LABEL_NAME,
100 (expressionP->X_op == O_constant
101 ? absolute_section
102 : expressionP->X_op == O_register
103 ? reg_section
104 : expr_section),
105 0, &zero_address_frag);
106 symbol_set_value_expression (symbolP, expressionP);
107
108 if (expressionP->X_op == O_constant)
109 resolve_symbol_value (symbolP);
110
111 n = XNEW (struct expr_symbol_line);
112 n->sym = symbolP;
113 n->file = as_where (&n->line);
114 n->next = expr_symbol_lines;
115 expr_symbol_lines = n;
116
117 return symbolP;
118 }
119
120 /* Return the file and line number for an expr symbol. Return
121 non-zero if something was found, 0 if no information is known for
122 the symbol. */
123
124 int
expr_symbol_where(symbolS * sym,const char ** pfile,unsigned int * pline)125 expr_symbol_where (symbolS *sym, const char **pfile, unsigned int *pline)
126 {
127 struct expr_symbol_line *l;
128
129 for (l = expr_symbol_lines; l != NULL; l = l->next)
130 {
131 if (l->sym == sym)
132 {
133 *pfile = l->file;
134 *pline = l->line;
135 return 1;
136 }
137 }
138
139 return 0;
140 }
141
142 /* Utilities for building expressions.
143 Since complex expressions are recorded as symbols for use in other
144 expressions these return a symbolS * and not an expressionS *.
145 These explicitly do not take an "add_number" argument. */
146 /* ??? For completeness' sake one might want expr_build_symbol.
147 It would just return its argument. */
148
149 /* Build an expression for an unsigned constant.
150 The corresponding one for signed constants is missing because
151 there's currently no need for it. One could add an unsigned_p flag
152 but that seems more clumsy. */
153
154 symbolS *
expr_build_uconstant(offsetT value)155 expr_build_uconstant (offsetT value)
156 {
157 expressionS e;
158
159 e.X_op = O_constant;
160 e.X_add_number = value;
161 e.X_unsigned = 1;
162 e.X_extrabit = 0;
163 return make_expr_symbol (&e);
164 }
165
166 /* Build an expression for the current location ('.'). */
167
168 symbolS *
expr_build_dot(void)169 expr_build_dot (void)
170 {
171 expressionS e;
172
173 current_location (&e);
174 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
175 }
176
177 /* Build any floating-point literal here.
178 Also build any bignum literal here. */
179
180 /* Seems atof_machine can backscan through generic_bignum and hit whatever
181 happens to be loaded before it in memory. And its way too complicated
182 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
183 and never write into the early words, thus they'll always be zero.
184 I hate Dean's floating-point code. Bleh. */
185 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
186
187 FLONUM_TYPE generic_floating_point_number = {
188 &generic_bignum[6], /* low. (JF: Was 0) */
189 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
190 0, /* leader. */
191 0, /* exponent. */
192 0 /* sign. */
193 };
194
195
196 static void
floating_constant(expressionS * expressionP)197 floating_constant (expressionS *expressionP)
198 {
199 /* input_line_pointer -> floating-point constant. */
200 int error_code;
201
202 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
203 &generic_floating_point_number);
204
205 if (error_code)
206 {
207 if (error_code == ERROR_EXPONENT_OVERFLOW)
208 {
209 as_bad (_("bad floating-point constant: exponent overflow"));
210 }
211 else
212 {
213 as_bad (_("bad floating-point constant: unknown error code=%d"),
214 error_code);
215 }
216 }
217 expressionP->X_op = O_big;
218 /* input_line_pointer -> just after constant, which may point to
219 whitespace. */
220 expressionP->X_add_number = -1;
221 }
222
223 static valueT
generic_bignum_to_int32(void)224 generic_bignum_to_int32 (void)
225 {
226 valueT number =
227 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
228 | (generic_bignum[0] & LITTLENUM_MASK);
229 number &= 0xffffffff;
230 return number;
231 }
232
233 #ifdef BFD64
234 static valueT
generic_bignum_to_int64(void)235 generic_bignum_to_int64 (void)
236 {
237 valueT number =
238 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
239 << LITTLENUM_NUMBER_OF_BITS)
240 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
241 << LITTLENUM_NUMBER_OF_BITS)
242 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
243 << LITTLENUM_NUMBER_OF_BITS)
244 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
245 return number;
246 }
247 #endif
248
249 static void
integer_constant(int radix,expressionS * expressionP)250 integer_constant (int radix, expressionS *expressionP)
251 {
252 char *start; /* Start of number. */
253 char *suffix = NULL;
254 char c;
255 valueT number; /* Offset or (absolute) value. */
256 short int digit; /* Value of next digit in current radix. */
257 short int maxdig = 0; /* Highest permitted digit value. */
258 int too_many_digits = 0; /* If we see >= this number of. */
259 char *name; /* Points to name of symbol. */
260 symbolS *symbolP; /* Points to symbol. */
261
262 int small; /* True if fits in 32 bits. */
263
264 /* May be bignum, or may fit in 32 bits. */
265 /* Most numbers fit into 32 bits, and we want this case to be fast.
266 so we pretend it will fit into 32 bits. If, after making up a 32
267 bit number, we realise that we have scanned more digits than
268 comfortably fit into 32 bits, we re-scan the digits coding them
269 into a bignum. For decimal and octal numbers we are
270 conservative: Some numbers may be assumed bignums when in fact
271 they do fit into 32 bits. Numbers of any radix can have excess
272 leading zeros: We strive to recognise this and cast them back
273 into 32 bits. We must check that the bignum really is more than
274 32 bits, and change it back to a 32-bit number if it fits. The
275 number we are looking for is expected to be positive, but if it
276 fits into 32 bits as an unsigned number, we let it be a 32-bit
277 number. The cavalier approach is for speed in ordinary cases. */
278 /* This has been extended for 64 bits. We blindly assume that if
279 you're compiling in 64-bit mode, the target is a 64-bit machine.
280 This should be cleaned up. */
281
282 #ifdef BFD64
283 #define valuesize 64
284 #else /* includes non-bfd case, mostly */
285 #define valuesize 32
286 #endif
287
288 if (is_end_of_line[(unsigned char) *input_line_pointer])
289 {
290 expressionP->X_op = O_absent;
291 return;
292 }
293
294 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
295 {
296 int flt = 0;
297
298 /* In MRI mode, the number may have a suffix indicating the
299 radix. For that matter, it might actually be a floating
300 point constant. */
301 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
302 {
303 if (*suffix == 'e' || *suffix == 'E')
304 flt = 1;
305 }
306
307 if (suffix == input_line_pointer)
308 {
309 radix = 10;
310 suffix = NULL;
311 }
312 else
313 {
314 c = *--suffix;
315 c = TOUPPER (c);
316 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
317 we distinguish between 'B' and 'b'. This is the case for
318 Z80. */
319 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
320 radix = 2;
321 else if (c == 'D')
322 radix = 10;
323 else if (c == 'O' || c == 'Q')
324 radix = 8;
325 else if (c == 'H')
326 radix = 16;
327 else if (suffix[1] == '.' || c == 'E' || flt)
328 {
329 floating_constant (expressionP);
330 return;
331 }
332 else
333 {
334 radix = 10;
335 suffix = NULL;
336 }
337 }
338 }
339
340 switch (radix)
341 {
342 case 2:
343 maxdig = 2;
344 too_many_digits = valuesize + 1;
345 break;
346 case 8:
347 maxdig = radix = 8;
348 too_many_digits = (valuesize + 2) / 3 + 1;
349 break;
350 case 16:
351 maxdig = radix = 16;
352 too_many_digits = (valuesize + 3) / 4 + 1;
353 break;
354 case 10:
355 maxdig = radix = 10;
356 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
357 }
358 #undef valuesize
359 start = input_line_pointer;
360 c = *input_line_pointer++;
361 for (number = 0;
362 (digit = hex_value (c)) < maxdig;
363 c = *input_line_pointer++)
364 {
365 number = number * radix + digit;
366 }
367 /* c contains character after number. */
368 /* input_line_pointer->char after c. */
369 small = (input_line_pointer - start - 1) < too_many_digits;
370
371 if (radix == 16 && c == '_')
372 {
373 /* This is literal of the form 0x333_0_12345678_1.
374 This example is equivalent to 0x00000333000000001234567800000001. */
375
376 int num_little_digits = 0;
377 int i;
378 input_line_pointer = start; /* -> 1st digit. */
379
380 know (LITTLENUM_NUMBER_OF_BITS == 16);
381
382 for (c = '_'; c == '_'; num_little_digits += 2)
383 {
384
385 /* Convert one 64-bit word. */
386 int ndigit = 0;
387 number = 0;
388 for (c = *input_line_pointer++;
389 (digit = hex_value (c)) < maxdig;
390 c = *(input_line_pointer++))
391 {
392 number = number * radix + digit;
393 ndigit++;
394 }
395
396 /* Check for 8 digit per word max. */
397 if (ndigit > 8)
398 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
399
400 /* Add this chunk to the bignum.
401 Shift things down 2 little digits. */
402 know (LITTLENUM_NUMBER_OF_BITS == 16);
403 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
404 i >= 2;
405 i--)
406 generic_bignum[i] = generic_bignum[i - 2];
407
408 /* Add the new digits as the least significant new ones. */
409 generic_bignum[0] = number & 0xffffffff;
410 generic_bignum[1] = number >> 16;
411 }
412
413 /* Again, c is char after number, input_line_pointer->after c. */
414
415 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
416 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
417
418 gas_assert (num_little_digits >= 4);
419
420 if (num_little_digits != 8)
421 as_bad (_("a bignum with underscores must have exactly 4 words"));
422
423 /* We might have some leading zeros. These can be trimmed to give
424 us a change to fit this constant into a small number. */
425 while (generic_bignum[num_little_digits - 1] == 0
426 && num_little_digits > 1)
427 num_little_digits--;
428
429 if (num_little_digits <= 2)
430 {
431 /* will fit into 32 bits. */
432 number = generic_bignum_to_int32 ();
433 small = 1;
434 }
435 #ifdef BFD64
436 else if (num_little_digits <= 4)
437 {
438 /* Will fit into 64 bits. */
439 number = generic_bignum_to_int64 ();
440 small = 1;
441 }
442 #endif
443 else
444 {
445 small = 0;
446
447 /* Number of littlenums in the bignum. */
448 number = num_little_digits;
449 }
450 }
451 else if (!small)
452 {
453 /* We saw a lot of digits. manufacture a bignum the hard way. */
454 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
455 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
456 long carry;
457
458 leader = generic_bignum;
459 generic_bignum[0] = 0;
460 generic_bignum[1] = 0;
461 generic_bignum[2] = 0;
462 generic_bignum[3] = 0;
463 input_line_pointer = start; /* -> 1st digit. */
464 c = *input_line_pointer++;
465 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
466 {
467 for (pointer = generic_bignum; pointer <= leader; pointer++)
468 {
469 long work;
470
471 work = carry + radix * *pointer;
472 *pointer = work & LITTLENUM_MASK;
473 carry = work >> LITTLENUM_NUMBER_OF_BITS;
474 }
475 if (carry)
476 {
477 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
478 {
479 /* Room to grow a longer bignum. */
480 *++leader = carry;
481 }
482 }
483 }
484 /* Again, c is char after number. */
485 /* input_line_pointer -> after c. */
486 know (LITTLENUM_NUMBER_OF_BITS == 16);
487 if (leader < generic_bignum + 2)
488 {
489 /* Will fit into 32 bits. */
490 number = generic_bignum_to_int32 ();
491 small = 1;
492 }
493 #ifdef BFD64
494 else if (leader < generic_bignum + 4)
495 {
496 /* Will fit into 64 bits. */
497 number = generic_bignum_to_int64 ();
498 small = 1;
499 }
500 #endif
501 else
502 {
503 /* Number of littlenums in the bignum. */
504 number = leader - generic_bignum + 1;
505 }
506 }
507
508 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
509 && suffix != NULL
510 && input_line_pointer - 1 == suffix)
511 c = *input_line_pointer++;
512
513 #ifndef tc_allow_U_suffix
514 #define tc_allow_U_suffix 1
515 #endif
516 /* PR 19910: Look for, and ignore, a U suffix to the number. */
517 if (tc_allow_U_suffix && (c == 'U' || c == 'u'))
518 c = * input_line_pointer++;
519
520 #ifndef tc_allow_L_suffix
521 #define tc_allow_L_suffix 1
522 #endif
523 /* PR 20732: Look for, and ignore, a L or LL suffix to the number. */
524 if (tc_allow_L_suffix)
525 while (c == 'L' || c == 'l')
526 c = * input_line_pointer++;
527
528 if (small)
529 {
530 /* Here with number, in correct radix. c is the next char.
531 Note that unlike un*x, we allow "011f" "0x9f" to both mean
532 the same as the (conventional) "9f".
533 This is simply easier than checking for strict canonical
534 form. Syntax sux! */
535
536 if (LOCAL_LABELS_FB && c == 'b')
537 {
538 /* Backward ref to local label.
539 Because it is backward, expect it to be defined. */
540 /* Construct a local label. */
541 name = fb_label_name ((int) number, 0);
542
543 /* Seen before, or symbol is defined: OK. */
544 symbolP = symbol_find (name);
545 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
546 {
547 /* Local labels are never absolute. Don't waste time
548 checking absoluteness. */
549 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
550
551 expressionP->X_op = O_symbol;
552 expressionP->X_add_symbol = symbolP;
553 }
554 else
555 {
556 /* Either not seen or not defined. */
557 /* @@ Should print out the original string instead of
558 the parsed number. */
559 as_bad (_("backward ref to unknown label \"%d:\""),
560 (int) number);
561 expressionP->X_op = O_constant;
562 }
563
564 expressionP->X_add_number = 0;
565 } /* case 'b' */
566 else if (LOCAL_LABELS_FB && c == 'f')
567 {
568 /* Forward reference. Expect symbol to be undefined or
569 unknown. undefined: seen it before. unknown: never seen
570 it before.
571
572 Construct a local label name, then an undefined symbol.
573 Don't create a xseg frag for it: caller may do that.
574 Just return it as never seen before. */
575 name = fb_label_name ((int) number, 1);
576 symbolP = symbol_find_or_make (name);
577 /* We have no need to check symbol properties. */
578 #ifndef many_segments
579 /* Since "know" puts its arg into a "string", we
580 can't have newlines in the argument. */
581 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
582 #endif
583 expressionP->X_op = O_symbol;
584 expressionP->X_add_symbol = symbolP;
585 expressionP->X_add_number = 0;
586 } /* case 'f' */
587 else if (LOCAL_LABELS_DOLLAR && c == '$')
588 {
589 /* If the dollar label is *currently* defined, then this is just
590 another reference to it. If it is not *currently* defined,
591 then this is a fresh instantiation of that number, so create
592 it. */
593
594 if (dollar_label_defined ((long) number))
595 {
596 name = dollar_label_name ((long) number, 0);
597 symbolP = symbol_find (name);
598 know (symbolP != NULL);
599 }
600 else
601 {
602 name = dollar_label_name ((long) number, 1);
603 symbolP = symbol_find_or_make (name);
604 }
605
606 expressionP->X_op = O_symbol;
607 expressionP->X_add_symbol = symbolP;
608 expressionP->X_add_number = 0;
609 } /* case '$' */
610 else
611 {
612 expressionP->X_op = O_constant;
613 expressionP->X_add_number = number;
614 input_line_pointer--; /* Restore following character. */
615 } /* Really just a number. */
616 }
617 else
618 {
619 /* Not a small number. */
620 expressionP->X_op = O_big;
621 expressionP->X_add_number = number; /* Number of littlenums. */
622 input_line_pointer--; /* -> char following number. */
623 }
624 }
625
626 /* Parse an MRI multi character constant. */
627
628 static void
mri_char_constant(expressionS * expressionP)629 mri_char_constant (expressionS *expressionP)
630 {
631 int i;
632
633 if (*input_line_pointer == '\''
634 && input_line_pointer[1] != '\'')
635 {
636 expressionP->X_op = O_constant;
637 expressionP->X_add_number = 0;
638 return;
639 }
640
641 /* In order to get the correct byte ordering, we must build the
642 number in reverse. */
643 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
644 {
645 int j;
646
647 generic_bignum[i] = 0;
648 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
649 {
650 if (*input_line_pointer == '\'')
651 {
652 if (input_line_pointer[1] != '\'')
653 break;
654 ++input_line_pointer;
655 }
656 generic_bignum[i] <<= 8;
657 generic_bignum[i] += *input_line_pointer;
658 ++input_line_pointer;
659 }
660
661 if (i < SIZE_OF_LARGE_NUMBER - 1)
662 {
663 /* If there is more than one littlenum, left justify the
664 last one to make it match the earlier ones. If there is
665 only one, we can just use the value directly. */
666 for (; j < CHARS_PER_LITTLENUM; j++)
667 generic_bignum[i] <<= 8;
668 }
669
670 if (*input_line_pointer == '\''
671 && input_line_pointer[1] != '\'')
672 break;
673 }
674
675 if (i < 0)
676 {
677 as_bad (_("character constant too large"));
678 i = 0;
679 }
680
681 if (i > 0)
682 {
683 int c;
684 int j;
685
686 c = SIZE_OF_LARGE_NUMBER - i;
687 for (j = 0; j < c; j++)
688 generic_bignum[j] = generic_bignum[i + j];
689 i = c;
690 }
691
692 know (LITTLENUM_NUMBER_OF_BITS == 16);
693 if (i > 2)
694 {
695 expressionP->X_op = O_big;
696 expressionP->X_add_number = i;
697 }
698 else
699 {
700 expressionP->X_op = O_constant;
701 if (i < 2)
702 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
703 else
704 expressionP->X_add_number =
705 (((generic_bignum[1] & LITTLENUM_MASK)
706 << LITTLENUM_NUMBER_OF_BITS)
707 | (generic_bignum[0] & LITTLENUM_MASK));
708 }
709
710 /* Skip the final closing quote. */
711 ++input_line_pointer;
712 }
713
714 /* Return an expression representing the current location. This
715 handles the magic symbol `.'. */
716
717 void
current_location(expressionS * expressionp)718 current_location (expressionS *expressionp)
719 {
720 if (now_seg == absolute_section)
721 {
722 expressionp->X_op = O_constant;
723 expressionp->X_add_number = abs_section_offset;
724 }
725 else
726 {
727 expressionp->X_op = O_symbol;
728 expressionp->X_add_symbol = &dot_symbol;
729 expressionp->X_add_number = 0;
730 }
731 }
732
733 /* In: Input_line_pointer points to 1st char of operand, which may
734 be a space.
735
736 Out: An expressionS.
737 The operand may have been empty: in this case X_op == O_absent.
738 Input_line_pointer->(next non-blank) char after operand. */
739
740 static segT
operand(expressionS * expressionP,enum expr_mode mode)741 operand (expressionS *expressionP, enum expr_mode mode)
742 {
743 char c;
744 symbolS *symbolP; /* Points to symbol. */
745 char *name; /* Points to name of symbol. */
746 segT segment;
747
748 /* All integers are regarded as unsigned unless they are negated.
749 This is because the only thing which cares whether a number is
750 unsigned is the code in emit_expr which extends constants into
751 bignums. It should only sign extend negative numbers, so that
752 something like ``.quad 0x80000000'' is not sign extended even
753 though it appears negative if valueT is 32 bits. */
754 expressionP->X_unsigned = 1;
755 expressionP->X_extrabit = 0;
756
757 /* Digits, assume it is a bignum. */
758
759 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
760 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
761
762 if (is_end_of_line[(unsigned char) c])
763 goto eol;
764
765 switch (c)
766 {
767 case '1':
768 case '2':
769 case '3':
770 case '4':
771 case '5':
772 case '6':
773 case '7':
774 case '8':
775 case '9':
776 input_line_pointer--;
777
778 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
779 ? 0 : 10,
780 expressionP);
781 break;
782
783 #ifdef LITERAL_PREFIXPERCENT_BIN
784 case '%':
785 integer_constant (2, expressionP);
786 break;
787 #endif
788
789 case '0':
790 /* Non-decimal radix. */
791
792 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
793 {
794 char *s;
795
796 /* Check for a hex or float constant. */
797 for (s = input_line_pointer; hex_p (*s); s++)
798 ;
799 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
800 {
801 --input_line_pointer;
802 integer_constant (0, expressionP);
803 break;
804 }
805 }
806 c = *input_line_pointer;
807 switch (c)
808 {
809 case 'o':
810 case 'O':
811 case 'q':
812 case 'Q':
813 case '8':
814 case '9':
815 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
816 {
817 integer_constant (0, expressionP);
818 break;
819 }
820 /* Fall through. */
821 default:
822 default_case:
823 if (c && strchr (FLT_CHARS, c))
824 {
825 input_line_pointer++;
826 floating_constant (expressionP);
827 expressionP->X_add_number = - TOLOWER (c);
828 }
829 else
830 {
831 /* The string was only zero. */
832 expressionP->X_op = O_constant;
833 expressionP->X_add_number = 0;
834 }
835
836 break;
837
838 case 'x':
839 case 'X':
840 if (flag_m68k_mri)
841 goto default_case;
842 input_line_pointer++;
843 integer_constant (16, expressionP);
844 break;
845
846 case 'b':
847 if (LOCAL_LABELS_FB && !flag_m68k_mri
848 && input_line_pointer[1] != '0'
849 && input_line_pointer[1] != '1')
850 {
851 /* Parse this as a back reference to label 0. */
852 input_line_pointer--;
853 integer_constant (10, expressionP);
854 break;
855 }
856 /* Otherwise, parse this as a binary number. */
857 /* Fall through. */
858 case 'B':
859 if (input_line_pointer[1] == '0'
860 || input_line_pointer[1] == '1')
861 {
862 input_line_pointer++;
863 integer_constant (2, expressionP);
864 break;
865 }
866 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
867 input_line_pointer++;
868 goto default_case;
869
870 case '0':
871 case '1':
872 case '2':
873 case '3':
874 case '4':
875 case '5':
876 case '6':
877 case '7':
878 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
879 ? 0 : 8,
880 expressionP);
881 break;
882
883 case 'f':
884 if (LOCAL_LABELS_FB)
885 {
886 int is_label = 1;
887
888 /* If it says "0f" and it could possibly be a floating point
889 number, make it one. Otherwise, make it a local label,
890 and try to deal with parsing the rest later. */
891 if (!is_end_of_line[(unsigned char) input_line_pointer[1]]
892 && strchr (FLT_CHARS, 'f') != NULL)
893 {
894 char *cp = input_line_pointer + 1;
895
896 atof_generic (&cp, ".", EXP_CHARS,
897 &generic_floating_point_number);
898
899 /* Was nothing parsed, or does it look like an
900 expression? */
901 is_label = (cp == input_line_pointer + 1
902 || (cp == input_line_pointer + 2
903 && (cp[-1] == '-' || cp[-1] == '+'))
904 || *cp == 'f'
905 || *cp == 'b');
906 }
907 if (is_label)
908 {
909 input_line_pointer--;
910 integer_constant (10, expressionP);
911 break;
912 }
913 }
914 /* Fall through. */
915
916 case 'd':
917 case 'D':
918 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
919 {
920 integer_constant (0, expressionP);
921 break;
922 }
923 /* Fall through. */
924 case 'F':
925 case 'r':
926 case 'e':
927 case 'E':
928 case 'g':
929 case 'G':
930 input_line_pointer++;
931 floating_constant (expressionP);
932 expressionP->X_add_number = - TOLOWER (c);
933 break;
934
935 case '$':
936 if (LOCAL_LABELS_DOLLAR)
937 {
938 integer_constant (10, expressionP);
939 break;
940 }
941 else
942 goto default_case;
943 }
944
945 break;
946
947 #ifndef NEED_INDEX_OPERATOR
948 case '[':
949 # ifdef md_need_index_operator
950 if (md_need_index_operator())
951 goto de_fault;
952 # endif
953 #endif
954 /* Fall through. */
955 case '(':
956 /* Didn't begin with digit & not a name. */
957 segment = expr (0, expressionP, mode);
958 /* expression () will pass trailing whitespace. */
959 if ((c == '(' && *input_line_pointer != ')')
960 || (c == '[' && *input_line_pointer != ']'))
961 {
962 if (* input_line_pointer)
963 as_bad (_("found '%c', expected: '%c'"),
964 * input_line_pointer, c == '(' ? ')' : ']');
965 else
966 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
967 }
968 else
969 input_line_pointer++;
970 SKIP_WHITESPACE ();
971 /* Here with input_line_pointer -> char after "(...)". */
972 return segment;
973
974 #ifdef TC_M68K
975 case 'E':
976 if (! flag_m68k_mri || *input_line_pointer != '\'')
977 goto de_fault;
978 as_bad (_("EBCDIC constants are not supported"));
979 /* Fall through. */
980 case 'A':
981 if (! flag_m68k_mri || *input_line_pointer != '\'')
982 goto de_fault;
983 ++input_line_pointer;
984 #endif
985 /* Fall through. */
986 case '\'':
987 if (! flag_m68k_mri)
988 {
989 /* Warning: to conform to other people's assemblers NO
990 ESCAPEMENT is permitted for a single quote. The next
991 character, parity errors and all, is taken as the value
992 of the operand. VERY KINKY. */
993 expressionP->X_op = O_constant;
994 expressionP->X_add_number = *input_line_pointer++;
995 break;
996 }
997
998 mri_char_constant (expressionP);
999 break;
1000
1001 #ifdef TC_M68K
1002 case '"':
1003 /* Double quote is the bitwise not operator in MRI mode. */
1004 if (! flag_m68k_mri)
1005 goto de_fault;
1006 #endif
1007 /* Fall through. */
1008 case '~':
1009 /* '~' is permitted to start a label on the Delta. */
1010 if (is_name_beginner (c))
1011 goto isname;
1012 /* Fall through. */
1013 case '!':
1014 case '-':
1015 case '+':
1016 {
1017 #ifdef md_operator
1018 unary:
1019 #endif
1020 operand (expressionP, mode);
1021 if (expressionP->X_op == O_constant)
1022 {
1023 /* input_line_pointer -> char after operand. */
1024 if (c == '-')
1025 {
1026 expressionP->X_add_number
1027 = - (addressT) expressionP->X_add_number;
1028 /* Notice: '-' may overflow: no warning is given.
1029 This is compatible with other people's
1030 assemblers. Sigh. */
1031 expressionP->X_unsigned = 0;
1032 if (expressionP->X_add_number)
1033 expressionP->X_extrabit ^= 1;
1034 }
1035 else if (c == '~' || c == '"')
1036 expressionP->X_add_number = ~ expressionP->X_add_number;
1037 else if (c == '!')
1038 expressionP->X_add_number = ! expressionP->X_add_number;
1039 }
1040 else if (expressionP->X_op == O_big
1041 && expressionP->X_add_number <= 0
1042 && c == '-'
1043 && (generic_floating_point_number.sign == '+'
1044 || generic_floating_point_number.sign == 'P'))
1045 {
1046 /* Negative flonum (eg, -1.000e0). */
1047 if (generic_floating_point_number.sign == '+')
1048 generic_floating_point_number.sign = '-';
1049 else
1050 generic_floating_point_number.sign = 'N';
1051 }
1052 else if (expressionP->X_op == O_big
1053 && expressionP->X_add_number > 0)
1054 {
1055 int i;
1056
1057 if (c == '~' || c == '-')
1058 {
1059 for (i = 0; i < expressionP->X_add_number; ++i)
1060 generic_bignum[i] = ~generic_bignum[i];
1061
1062 /* Extend the bignum to at least the size of .octa. */
1063 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1064 {
1065 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1066 for (; i < expressionP->X_add_number; ++i)
1067 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1068 }
1069
1070 if (c == '-')
1071 for (i = 0; i < expressionP->X_add_number; ++i)
1072 {
1073 generic_bignum[i] += 1;
1074 if (generic_bignum[i])
1075 break;
1076 }
1077 }
1078 else if (c == '!')
1079 {
1080 for (i = 0; i < expressionP->X_add_number; ++i)
1081 if (generic_bignum[i] != 0)
1082 break;
1083 expressionP->X_add_number = i >= expressionP->X_add_number;
1084 expressionP->X_op = O_constant;
1085 expressionP->X_unsigned = 1;
1086 expressionP->X_extrabit = 0;
1087 }
1088 }
1089 else if (expressionP->X_op != O_illegal
1090 && expressionP->X_op != O_absent)
1091 {
1092 if (c != '+')
1093 {
1094 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1095 if (c == '-')
1096 expressionP->X_op = O_uminus;
1097 else if (c == '~' || c == '"')
1098 expressionP->X_op = O_bit_not;
1099 else
1100 expressionP->X_op = O_logical_not;
1101 expressionP->X_add_number = 0;
1102 }
1103 }
1104 else
1105 as_warn (_("Unary operator %c ignored because bad operand follows"),
1106 c);
1107 }
1108 break;
1109
1110 #if !defined (DOLLAR_DOT) && !defined (TC_M68K)
1111 case '$':
1112 if (literal_prefix_dollar_hex)
1113 {
1114 /* $L is the start of a local label, not a hex constant. */
1115 if (* input_line_pointer == 'L')
1116 goto isname;
1117 integer_constant (16, expressionP);
1118 }
1119 else
1120 {
1121 goto isname;
1122 }
1123 break;
1124 #else
1125 case '$':
1126 /* '$' is the program counter when in MRI mode, or when
1127 DOLLAR_DOT is defined. */
1128 #ifndef DOLLAR_DOT
1129 if (! flag_m68k_mri)
1130 goto de_fault;
1131 #endif
1132 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1133 {
1134 /* In MRI mode and on Z80, '$' is also used as the prefix
1135 for a hexadecimal constant. */
1136 integer_constant (16, expressionP);
1137 break;
1138 }
1139
1140 if (is_part_of_name (*input_line_pointer))
1141 goto isname;
1142
1143 current_location (expressionP);
1144 break;
1145 #endif
1146
1147 case '.':
1148 if (!is_part_of_name (*input_line_pointer))
1149 {
1150 current_location (expressionP);
1151 break;
1152 }
1153 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1154 && ! is_part_of_name (input_line_pointer[8]))
1155 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1156 && ! is_part_of_name (input_line_pointer[7])))
1157 {
1158 int start;
1159
1160 start = (input_line_pointer[1] == 't'
1161 || input_line_pointer[1] == 'T');
1162 input_line_pointer += start ? 8 : 7;
1163 SKIP_WHITESPACE ();
1164
1165 /* Cover for the as_bad () invocations below. */
1166 expressionP->X_op = O_absent;
1167
1168 if (*input_line_pointer != '(')
1169 as_bad (_("syntax error in .startof. or .sizeof."));
1170 else
1171 {
1172 char *buf;
1173
1174 ++input_line_pointer;
1175 SKIP_WHITESPACE ();
1176 c = get_symbol_name (& name);
1177 if (! *name)
1178 {
1179 as_bad (_("expected symbol name"));
1180 (void) restore_line_pointer (c);
1181 if (c != ')')
1182 ignore_rest_of_line ();
1183 else
1184 ++input_line_pointer;
1185 break;
1186 }
1187
1188 buf = concat (start ? ".startof." : ".sizeof.", name,
1189 (char *) NULL);
1190 symbolP = symbol_make (buf);
1191 free (buf);
1192
1193 expressionP->X_op = O_symbol;
1194 expressionP->X_add_symbol = symbolP;
1195 expressionP->X_add_number = 0;
1196
1197 *input_line_pointer = c;
1198 SKIP_WHITESPACE_AFTER_NAME ();
1199 if (*input_line_pointer != ')')
1200 as_bad (_("syntax error in .startof. or .sizeof."));
1201 else
1202 ++input_line_pointer;
1203 }
1204 break;
1205 }
1206 else
1207 {
1208 goto isname;
1209 }
1210
1211 case ',':
1212 eol:
1213 /* Can't imagine any other kind of operand. */
1214 expressionP->X_op = O_absent;
1215 input_line_pointer--;
1216 break;
1217
1218 #ifdef TC_M68K
1219 case '%':
1220 if (! flag_m68k_mri)
1221 goto de_fault;
1222 integer_constant (2, expressionP);
1223 break;
1224
1225 case '@':
1226 if (! flag_m68k_mri)
1227 goto de_fault;
1228 integer_constant (8, expressionP);
1229 break;
1230
1231 case ':':
1232 if (! flag_m68k_mri)
1233 goto de_fault;
1234
1235 /* In MRI mode, this is a floating point constant represented
1236 using hexadecimal digits. */
1237
1238 ++input_line_pointer;
1239 integer_constant (16, expressionP);
1240 break;
1241
1242 case '*':
1243 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1244 goto de_fault;
1245
1246 current_location (expressionP);
1247 break;
1248 #endif
1249
1250 default:
1251 #if defined(md_need_index_operator) || defined(TC_M68K)
1252 de_fault:
1253 #endif
1254 if (is_name_beginner (c) || c == '"') /* Here if did not begin with a digit. */
1255 {
1256 /* Identifier begins here.
1257 This is kludged for speed, so code is repeated. */
1258 isname:
1259 -- input_line_pointer;
1260 c = get_symbol_name (&name);
1261
1262 #ifdef md_operator
1263 {
1264 operatorT op = md_operator (name, 1, &c);
1265
1266 switch (op)
1267 {
1268 case O_uminus:
1269 restore_line_pointer (c);
1270 c = '-';
1271 goto unary;
1272 case O_bit_not:
1273 restore_line_pointer (c);
1274 c = '~';
1275 goto unary;
1276 case O_logical_not:
1277 restore_line_pointer (c);
1278 c = '!';
1279 goto unary;
1280 case O_illegal:
1281 as_bad (_("invalid use of operator \"%s\""), name);
1282 break;
1283 default:
1284 break;
1285 }
1286
1287 if (op != O_absent && op != O_illegal)
1288 {
1289 restore_line_pointer (c);
1290 expr (9, expressionP, mode);
1291 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1292 expressionP->X_op_symbol = NULL;
1293 expressionP->X_add_number = 0;
1294 expressionP->X_op = op;
1295 break;
1296 }
1297 }
1298 #endif
1299
1300 #ifdef md_parse_name
1301 /* This is a hook for the backend to parse certain names
1302 specially in certain contexts. If a name always has a
1303 specific value, it can often be handled by simply
1304 entering it in the symbol table. */
1305 if (md_parse_name (name, expressionP, mode, &c))
1306 {
1307 restore_line_pointer (c);
1308 break;
1309 }
1310 #endif
1311
1312 symbolP = symbol_find_or_make (name);
1313
1314 /* If we have an absolute symbol or a reg, then we know its
1315 value now. */
1316 segment = S_GET_SEGMENT (symbolP);
1317 if (mode != expr_defer
1318 && segment == absolute_section
1319 && !S_FORCE_RELOC (symbolP, 0))
1320 {
1321 expressionP->X_op = O_constant;
1322 expressionP->X_add_number = S_GET_VALUE (symbolP);
1323 }
1324 else if (mode != expr_defer && segment == reg_section)
1325 {
1326 expressionP->X_op = O_register;
1327 expressionP->X_add_number = S_GET_VALUE (symbolP);
1328 }
1329 else
1330 {
1331 expressionP->X_op = O_symbol;
1332 expressionP->X_add_symbol = symbolP;
1333 expressionP->X_add_number = 0;
1334 }
1335
1336 restore_line_pointer (c);
1337 }
1338 else
1339 {
1340 /* Let the target try to parse it. Success is indicated by changing
1341 the X_op field to something other than O_absent and pointing
1342 input_line_pointer past the expression. If it can't parse the
1343 expression, X_op and input_line_pointer should be unchanged. */
1344 expressionP->X_op = O_absent;
1345 --input_line_pointer;
1346 md_operand (expressionP);
1347 if (expressionP->X_op == O_absent)
1348 {
1349 ++input_line_pointer;
1350 as_bad (_("bad expression"));
1351 expressionP->X_op = O_constant;
1352 expressionP->X_add_number = 0;
1353 }
1354 }
1355 break;
1356 }
1357
1358 /* It is more 'efficient' to clean up the expressionS when they are
1359 created. Doing it here saves lines of code. */
1360 clean_up_expression (expressionP);
1361 SKIP_ALL_WHITESPACE (); /* -> 1st char after operand. */
1362 know (*input_line_pointer != ' ');
1363
1364 /* The PA port needs this information. */
1365 if (expressionP->X_add_symbol)
1366 symbol_mark_used (expressionP->X_add_symbol);
1367
1368 if (mode != expr_defer)
1369 {
1370 expressionP->X_add_symbol
1371 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1372 expressionP->X_op_symbol
1373 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1374 }
1375
1376 switch (expressionP->X_op)
1377 {
1378 default:
1379 return absolute_section;
1380 case O_symbol:
1381 return S_GET_SEGMENT (expressionP->X_add_symbol);
1382 case O_register:
1383 return reg_section;
1384 }
1385 }
1386
1387 /* Internal. Simplify a struct expression for use by expr (). */
1388
1389 /* In: address of an expressionS.
1390 The X_op field of the expressionS may only take certain values.
1391 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1392
1393 Out: expressionS may have been modified:
1394 Unused fields zeroed to help expr (). */
1395
1396 static void
clean_up_expression(expressionS * expressionP)1397 clean_up_expression (expressionS *expressionP)
1398 {
1399 switch (expressionP->X_op)
1400 {
1401 case O_illegal:
1402 case O_absent:
1403 expressionP->X_add_number = 0;
1404 /* Fall through. */
1405 case O_big:
1406 case O_constant:
1407 case O_register:
1408 expressionP->X_add_symbol = NULL;
1409 /* Fall through. */
1410 case O_symbol:
1411 case O_uminus:
1412 case O_bit_not:
1413 expressionP->X_op_symbol = NULL;
1414 break;
1415 default:
1416 break;
1417 }
1418 }
1419
1420 /* Expression parser. */
1421
1422 /* We allow an empty expression, and just assume (absolute,0) silently.
1423 Unary operators and parenthetical expressions are treated as operands.
1424 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1425
1426 We used to do an aho/ullman shift-reduce parser, but the logic got so
1427 warped that I flushed it and wrote a recursive-descent parser instead.
1428 Now things are stable, would anybody like to write a fast parser?
1429 Most expressions are either register (which does not even reach here)
1430 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1431 So I guess it doesn't really matter how inefficient more complex expressions
1432 are parsed.
1433
1434 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1435 Also, we have consumed any leading or trailing spaces (operand does that)
1436 and done all intervening operators.
1437
1438 This returns the segment of the result, which will be
1439 absolute_section or the segment of a symbol. */
1440
1441 #undef __
1442 #define __ O_illegal
1443 #ifndef O_SINGLE_EQ
1444 #define O_SINGLE_EQ O_illegal
1445 #endif
1446
1447 /* Maps ASCII -> operators. */
1448 static const operatorT op_encoding[256] = {
1449 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1450 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1451
1452 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1453 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1454 __, __, __, __, __, __, __, __,
1455 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1456 __, __, __, __, __, __, __, __,
1457 __, __, __, __, __, __, __, __,
1458 __, __, __, __, __, __, __, __,
1459 __, __, __,
1460 #ifdef NEED_INDEX_OPERATOR
1461 O_index,
1462 #else
1463 __,
1464 #endif
1465 __, __, O_bit_exclusive_or, __,
1466 __, __, __, __, __, __, __, __,
1467 __, __, __, __, __, __, __, __,
1468 __, __, __, __, __, __, __, __,
1469 __, __, __, __, O_bit_inclusive_or, __, __, __,
1470
1471 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1472 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1473 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1474 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1475 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1476 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1477 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1478 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1479 };
1480
1481 /* Rank Examples
1482 0 operand, (expression)
1483 1 ||
1484 2 &&
1485 3 == <> < <= >= >
1486 4 + -
1487 5 used for * / % in MRI mode
1488 6 & ^ ! |
1489 7 * / % << >>
1490 8 unary - unary ~
1491 */
1492 static operator_rankT op_rank[O_max] = {
1493 0, /* O_illegal */
1494 0, /* O_absent */
1495 0, /* O_constant */
1496 0, /* O_symbol */
1497 0, /* O_symbol_rva */
1498 0, /* O_register */
1499 0, /* O_big */
1500 9, /* O_uminus */
1501 9, /* O_bit_not */
1502 9, /* O_logical_not */
1503 8, /* O_multiply */
1504 8, /* O_divide */
1505 8, /* O_modulus */
1506 8, /* O_left_shift */
1507 8, /* O_right_shift */
1508 7, /* O_bit_inclusive_or */
1509 7, /* O_bit_or_not */
1510 7, /* O_bit_exclusive_or */
1511 7, /* O_bit_and */
1512 5, /* O_add */
1513 5, /* O_subtract */
1514 4, /* O_eq */
1515 4, /* O_ne */
1516 4, /* O_lt */
1517 4, /* O_le */
1518 4, /* O_ge */
1519 4, /* O_gt */
1520 3, /* O_logical_and */
1521 2, /* O_logical_or */
1522 1, /* O_index */
1523 };
1524
1525 /* Unfortunately, in MRI mode for the m68k, multiplication and
1526 division have lower precedence than the bit wise operators. This
1527 function sets the operator precedences correctly for the current
1528 mode. Also, MRI uses a different bit_not operator, and this fixes
1529 that as well. */
1530
1531 #define STANDARD_MUL_PRECEDENCE 8
1532 #define MRI_MUL_PRECEDENCE 6
1533
1534 void
expr_set_precedence(void)1535 expr_set_precedence (void)
1536 {
1537 if (flag_m68k_mri)
1538 {
1539 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1540 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1541 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1542 }
1543 else
1544 {
1545 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1546 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1547 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1548 }
1549 }
1550
1551 void
expr_set_rank(operatorT op,operator_rankT rank)1552 expr_set_rank (operatorT op, operator_rankT rank)
1553 {
1554 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1555 op_rank[op] = rank;
1556 }
1557
1558 /* Initialize the expression parser. */
1559
1560 void
expr_begin(void)1561 expr_begin (void)
1562 {
1563 expr_set_precedence ();
1564
1565 /* Verify that X_op field is wide enough. */
1566 {
1567 expressionS e;
1568 e.X_op = O_max;
1569 gas_assert (e.X_op == O_max);
1570 }
1571 }
1572
1573 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1574 sets NUM_CHARS to the number of characters in the operator.
1575 Does not advance INPUT_LINE_POINTER. */
1576
1577 static inline operatorT
operatorf(int * num_chars)1578 operatorf (int *num_chars)
1579 {
1580 int c;
1581 operatorT ret;
1582
1583 c = *input_line_pointer & 0xff;
1584 *num_chars = 1;
1585
1586 if (is_end_of_line[c])
1587 return O_illegal;
1588
1589 #ifdef md_operator
1590 if (is_name_beginner (c))
1591 {
1592 char *name;
1593 char ec = get_symbol_name (& name);
1594
1595 ret = md_operator (name, 2, &ec);
1596 switch (ret)
1597 {
1598 case O_absent:
1599 *input_line_pointer = ec;
1600 input_line_pointer = name;
1601 break;
1602 case O_uminus:
1603 case O_bit_not:
1604 case O_logical_not:
1605 as_bad (_("invalid use of operator \"%s\""), name);
1606 ret = O_illegal;
1607 /* FALLTHROUGH */
1608 default:
1609 *input_line_pointer = ec;
1610 *num_chars = input_line_pointer - name;
1611 input_line_pointer = name;
1612 return ret;
1613 }
1614 }
1615 #endif
1616
1617 switch (c)
1618 {
1619 default:
1620 ret = op_encoding[c];
1621 #ifdef md_operator
1622 if (ret == O_illegal)
1623 {
1624 char *start = input_line_pointer;
1625
1626 ret = md_operator (NULL, 2, NULL);
1627 if (ret != O_illegal)
1628 *num_chars = input_line_pointer - start;
1629 input_line_pointer = start;
1630 }
1631 #endif
1632 return ret;
1633
1634 case '+':
1635 case '-':
1636 return op_encoding[c];
1637
1638 case '<':
1639 switch (input_line_pointer[1])
1640 {
1641 default:
1642 return op_encoding[c];
1643 case '<':
1644 ret = O_left_shift;
1645 break;
1646 case '>':
1647 ret = O_ne;
1648 break;
1649 case '=':
1650 ret = O_le;
1651 break;
1652 }
1653 *num_chars = 2;
1654 return ret;
1655
1656 case '=':
1657 if (input_line_pointer[1] != '=')
1658 return op_encoding[c];
1659
1660 *num_chars = 2;
1661 return O_eq;
1662
1663 case '>':
1664 switch (input_line_pointer[1])
1665 {
1666 default:
1667 return op_encoding[c];
1668 case '>':
1669 ret = O_right_shift;
1670 break;
1671 case '=':
1672 ret = O_ge;
1673 break;
1674 }
1675 *num_chars = 2;
1676 return ret;
1677
1678 case '!':
1679 switch (input_line_pointer[1])
1680 {
1681 case '!':
1682 /* We accept !! as equivalent to ^ for MRI compatibility. */
1683 *num_chars = 2;
1684 return O_bit_exclusive_or;
1685 case '=':
1686 /* We accept != as equivalent to <>. */
1687 *num_chars = 2;
1688 return O_ne;
1689 default:
1690 if (flag_m68k_mri)
1691 return O_bit_inclusive_or;
1692 return op_encoding[c];
1693 }
1694
1695 case '|':
1696 if (input_line_pointer[1] != '|')
1697 return op_encoding[c];
1698
1699 *num_chars = 2;
1700 return O_logical_or;
1701
1702 case '&':
1703 if (input_line_pointer[1] != '&')
1704 return op_encoding[c];
1705
1706 *num_chars = 2;
1707 return O_logical_and;
1708 }
1709
1710 /* NOTREACHED */
1711 }
1712
1713 /* Implement "word-size + 1 bit" addition for
1714 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1715 is used so that the full range of unsigned word values and the full range of
1716 signed word values can be represented in an O_constant expression, which is
1717 useful e.g. for .sleb128 directives. */
1718
1719 void
add_to_result(expressionS * resultP,offsetT amount,int rhs_highbit)1720 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1721 {
1722 valueT ures = resultP->X_add_number;
1723 valueT uamount = amount;
1724
1725 resultP->X_add_number += amount;
1726
1727 resultP->X_extrabit ^= rhs_highbit;
1728
1729 if (ures + uamount < ures)
1730 resultP->X_extrabit ^= 1;
1731 }
1732
1733 /* Similarly, for subtraction. */
1734
1735 void
subtract_from_result(expressionS * resultP,offsetT amount,int rhs_highbit)1736 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1737 {
1738 valueT ures = resultP->X_add_number;
1739 valueT uamount = amount;
1740
1741 resultP->X_add_number -= amount;
1742
1743 resultP->X_extrabit ^= rhs_highbit;
1744
1745 if (ures < uamount)
1746 resultP->X_extrabit ^= 1;
1747 }
1748
1749 /* Parse an expression. */
1750
1751 segT
expr(int rankarg,expressionS * resultP,enum expr_mode mode)1752 expr (int rankarg, /* Larger # is higher rank. */
1753 expressionS *resultP, /* Deliver result here. */
1754 enum expr_mode mode /* Controls behavior. */)
1755 {
1756 operator_rankT rank = (operator_rankT) rankarg;
1757 segT retval;
1758 expressionS right;
1759 operatorT op_left;
1760 operatorT op_right;
1761 int op_chars;
1762
1763 know (rankarg >= 0);
1764
1765 /* Save the value of dot for the fixup code. */
1766 if (rank == 0)
1767 {
1768 dot_value = frag_now_fix ();
1769 dot_frag = frag_now;
1770 }
1771
1772 retval = operand (resultP, mode);
1773
1774 /* operand () gobbles spaces. */
1775 know (*input_line_pointer != ' ');
1776
1777 op_left = operatorf (&op_chars);
1778 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1779 {
1780 segT rightseg;
1781 offsetT frag_off;
1782
1783 input_line_pointer += op_chars; /* -> after operator. */
1784
1785 right.X_md = 0;
1786 rightseg = expr (op_rank[(int) op_left], &right, mode);
1787 if (right.X_op == O_absent)
1788 {
1789 as_warn (_("missing operand; zero assumed"));
1790 right.X_op = O_constant;
1791 right.X_add_number = 0;
1792 right.X_add_symbol = NULL;
1793 right.X_op_symbol = NULL;
1794 }
1795
1796 know (*input_line_pointer != ' ');
1797
1798 if (op_left == O_index)
1799 {
1800 if (*input_line_pointer != ']')
1801 as_bad ("missing right bracket");
1802 else
1803 {
1804 ++input_line_pointer;
1805 SKIP_WHITESPACE ();
1806 }
1807 }
1808
1809 op_right = operatorf (&op_chars);
1810
1811 know (op_right == O_illegal || op_left == O_index
1812 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1813 know ((int) op_left >= (int) O_multiply);
1814 #ifndef md_operator
1815 know ((int) op_left <= (int) O_index);
1816 #else
1817 know ((int) op_left < (int) O_max);
1818 #endif
1819
1820 /* input_line_pointer->after right-hand quantity. */
1821 /* left-hand quantity in resultP. */
1822 /* right-hand quantity in right. */
1823 /* operator in op_left. */
1824
1825 if (resultP->X_op == O_big)
1826 {
1827 if (resultP->X_add_number > 0)
1828 as_warn (_("left operand is a bignum; integer 0 assumed"));
1829 else
1830 as_warn (_("left operand is a float; integer 0 assumed"));
1831 resultP->X_op = O_constant;
1832 resultP->X_add_number = 0;
1833 resultP->X_add_symbol = NULL;
1834 resultP->X_op_symbol = NULL;
1835 }
1836 if (right.X_op == O_big)
1837 {
1838 if (right.X_add_number > 0)
1839 as_warn (_("right operand is a bignum; integer 0 assumed"));
1840 else
1841 as_warn (_("right operand is a float; integer 0 assumed"));
1842 right.X_op = O_constant;
1843 right.X_add_number = 0;
1844 right.X_add_symbol = NULL;
1845 right.X_op_symbol = NULL;
1846 }
1847
1848 if (mode == expr_defer
1849 && ((resultP->X_add_symbol != NULL
1850 && S_IS_FORWARD_REF (resultP->X_add_symbol))
1851 || (right.X_add_symbol != NULL
1852 && S_IS_FORWARD_REF (right.X_add_symbol))))
1853 goto general;
1854
1855 /* Optimize common cases. */
1856 #ifdef md_optimize_expr
1857 if (md_optimize_expr (resultP, op_left, &right))
1858 {
1859 /* Skip. */
1860 ;
1861 }
1862 else
1863 #endif
1864 #ifndef md_register_arithmetic
1865 # define md_register_arithmetic 1
1866 #endif
1867 if (op_left == O_add && right.X_op == O_constant
1868 && (md_register_arithmetic || resultP->X_op != O_register))
1869 {
1870 /* X + constant. */
1871 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1872 }
1873 /* This case comes up in PIC code. */
1874 else if (op_left == O_subtract
1875 && right.X_op == O_symbol
1876 && resultP->X_op == O_symbol
1877 && retval == rightseg
1878 #ifdef md_allow_local_subtract
1879 && md_allow_local_subtract (resultP, & right, rightseg)
1880 #endif
1881 && ((SEG_NORMAL (rightseg)
1882 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1883 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1884 || right.X_add_symbol == resultP->X_add_symbol)
1885 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1886 symbol_get_frag (right.X_add_symbol),
1887 &frag_off))
1888 {
1889 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1890 - S_GET_VALUE (right.X_add_symbol);
1891 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1892 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1893 add_to_result (resultP, symval_diff, symval_diff < 0);
1894 resultP->X_op = O_constant;
1895 resultP->X_add_symbol = 0;
1896 }
1897 else if (op_left == O_subtract && right.X_op == O_constant
1898 && (md_register_arithmetic || resultP->X_op != O_register))
1899 {
1900 /* X - constant. */
1901 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1902 }
1903 else if (op_left == O_add && resultP->X_op == O_constant
1904 && (md_register_arithmetic || right.X_op != O_register))
1905 {
1906 /* Constant + X. */
1907 resultP->X_op = right.X_op;
1908 resultP->X_add_symbol = right.X_add_symbol;
1909 resultP->X_op_symbol = right.X_op_symbol;
1910 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1911 retval = rightseg;
1912 }
1913 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1914 {
1915 /* Constant OP constant. */
1916 offsetT v = right.X_add_number;
1917 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1918 {
1919 as_warn (_("division by zero"));
1920 v = 1;
1921 }
1922 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1923 && (op_left == O_left_shift || op_left == O_right_shift))
1924 {
1925 as_warn_value_out_of_range (_("shift count"), v, 0,
1926 sizeof(valueT) * CHAR_BIT - 1,
1927 NULL, 0);
1928 resultP->X_add_number = v = 0;
1929 }
1930 switch (op_left)
1931 {
1932 default: goto general;
1933 case O_multiply: resultP->X_add_number *= v; break;
1934 case O_divide: resultP->X_add_number /= v; break;
1935 case O_modulus: resultP->X_add_number %= v; break;
1936 case O_left_shift: resultP->X_add_number <<= v; break;
1937 case O_right_shift:
1938 /* We always use unsigned shifts, to avoid relying on
1939 characteristics of the compiler used to compile gas. */
1940 resultP->X_add_number =
1941 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1942 break;
1943 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1944 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1945 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1946 case O_bit_and: resultP->X_add_number &= v; break;
1947 /* Constant + constant (O_add) is handled by the
1948 previous if statement for constant + X, so is omitted
1949 here. */
1950 case O_subtract:
1951 subtract_from_result (resultP, v, 0);
1952 break;
1953 case O_eq:
1954 resultP->X_add_number =
1955 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1956 break;
1957 case O_ne:
1958 resultP->X_add_number =
1959 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1960 break;
1961 case O_lt:
1962 resultP->X_add_number =
1963 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1964 break;
1965 case O_le:
1966 resultP->X_add_number =
1967 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1968 break;
1969 case O_ge:
1970 resultP->X_add_number =
1971 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1972 break;
1973 case O_gt:
1974 resultP->X_add_number =
1975 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1976 break;
1977 case O_logical_and:
1978 resultP->X_add_number = resultP->X_add_number && v;
1979 break;
1980 case O_logical_or:
1981 resultP->X_add_number = resultP->X_add_number || v;
1982 break;
1983 }
1984 }
1985 else if (resultP->X_op == O_symbol
1986 && right.X_op == O_symbol
1987 && (op_left == O_add
1988 || op_left == O_subtract
1989 || (resultP->X_add_number == 0
1990 && right.X_add_number == 0)))
1991 {
1992 /* Symbol OP symbol. */
1993 resultP->X_op = op_left;
1994 resultP->X_op_symbol = right.X_add_symbol;
1995 if (op_left == O_add)
1996 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1997 else if (op_left == O_subtract)
1998 {
1999 subtract_from_result (resultP, right.X_add_number,
2000 right.X_extrabit);
2001 if (retval == rightseg
2002 && SEG_NORMAL (retval)
2003 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
2004 && !S_FORCE_RELOC (right.X_add_symbol, 0))
2005 {
2006 retval = absolute_section;
2007 rightseg = absolute_section;
2008 }
2009 }
2010 }
2011 else
2012 {
2013 general:
2014 /* The general case. */
2015 resultP->X_add_symbol = make_expr_symbol (resultP);
2016 resultP->X_op_symbol = make_expr_symbol (&right);
2017 resultP->X_op = op_left;
2018 resultP->X_add_number = 0;
2019 resultP->X_unsigned = 1;
2020 resultP->X_extrabit = 0;
2021 }
2022
2023 if (retval != rightseg)
2024 {
2025 if (retval == undefined_section)
2026 ;
2027 else if (rightseg == undefined_section)
2028 retval = rightseg;
2029 else if (retval == expr_section)
2030 ;
2031 else if (rightseg == expr_section)
2032 retval = rightseg;
2033 else if (retval == reg_section)
2034 ;
2035 else if (rightseg == reg_section)
2036 retval = rightseg;
2037 else if (rightseg == absolute_section)
2038 ;
2039 else if (retval == absolute_section)
2040 retval = rightseg;
2041 #ifdef DIFF_EXPR_OK
2042 else if (op_left == O_subtract)
2043 ;
2044 #endif
2045 else
2046 as_bad (_("operation combines symbols in different segments"));
2047 }
2048
2049 op_left = op_right;
2050 } /* While next operator is >= this rank. */
2051
2052 /* The PA port needs this information. */
2053 if (resultP->X_add_symbol)
2054 symbol_mark_used (resultP->X_add_symbol);
2055
2056 if (rank == 0 && mode == expr_evaluate)
2057 resolve_expression (resultP);
2058
2059 return resultP->X_op == O_constant ? absolute_section : retval;
2060 }
2061
2062 /* Resolve an expression without changing any symbols/sub-expressions
2063 used. */
2064
2065 int
resolve_expression(expressionS * expressionP)2066 resolve_expression (expressionS *expressionP)
2067 {
2068 /* Help out with CSE. */
2069 valueT final_val = expressionP->X_add_number;
2070 symbolS *add_symbol = expressionP->X_add_symbol;
2071 symbolS *orig_add_symbol = add_symbol;
2072 symbolS *op_symbol = expressionP->X_op_symbol;
2073 operatorT op = expressionP->X_op;
2074 valueT left, right;
2075 segT seg_left, seg_right;
2076 fragS *frag_left, *frag_right;
2077 offsetT frag_off;
2078
2079 switch (op)
2080 {
2081 default:
2082 return 0;
2083
2084 case O_constant:
2085 case O_register:
2086 left = 0;
2087 break;
2088
2089 case O_symbol:
2090 case O_symbol_rva:
2091 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2092 return 0;
2093
2094 break;
2095
2096 case O_uminus:
2097 case O_bit_not:
2098 case O_logical_not:
2099 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2100 return 0;
2101
2102 if (seg_left != absolute_section)
2103 return 0;
2104
2105 if (op == O_logical_not)
2106 left = !left;
2107 else if (op == O_uminus)
2108 left = -left;
2109 else
2110 left = ~left;
2111 op = O_constant;
2112 break;
2113
2114 case O_multiply:
2115 case O_divide:
2116 case O_modulus:
2117 case O_left_shift:
2118 case O_right_shift:
2119 case O_bit_inclusive_or:
2120 case O_bit_or_not:
2121 case O_bit_exclusive_or:
2122 case O_bit_and:
2123 case O_add:
2124 case O_subtract:
2125 case O_eq:
2126 case O_ne:
2127 case O_lt:
2128 case O_le:
2129 case O_ge:
2130 case O_gt:
2131 case O_logical_and:
2132 case O_logical_or:
2133 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2134 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2135 return 0;
2136
2137 /* Simplify addition or subtraction of a constant by folding the
2138 constant into X_add_number. */
2139 if (op == O_add)
2140 {
2141 if (seg_right == absolute_section)
2142 {
2143 final_val += right;
2144 op = O_symbol;
2145 break;
2146 }
2147 else if (seg_left == absolute_section)
2148 {
2149 final_val += left;
2150 left = right;
2151 seg_left = seg_right;
2152 add_symbol = op_symbol;
2153 orig_add_symbol = expressionP->X_op_symbol;
2154 op = O_symbol;
2155 break;
2156 }
2157 }
2158 else if (op == O_subtract)
2159 {
2160 if (seg_right == absolute_section)
2161 {
2162 final_val -= right;
2163 op = O_symbol;
2164 break;
2165 }
2166 }
2167
2168 /* Equality and non-equality tests are permitted on anything.
2169 Subtraction, and other comparison operators are permitted if
2170 both operands are in the same section.
2171 Shifts by constant zero are permitted on anything.
2172 Multiplies, bit-ors, and bit-ands with constant zero are
2173 permitted on anything.
2174 Multiplies and divides by constant one are permitted on
2175 anything.
2176 Binary operations with both operands being the same register
2177 or undefined symbol are permitted if the result doesn't depend
2178 on the input value.
2179 Otherwise, both operands must be absolute. We already handled
2180 the case of addition or subtraction of a constant above. */
2181 frag_off = 0;
2182 if (!(seg_left == absolute_section
2183 && seg_right == absolute_section)
2184 && !(op == O_eq || op == O_ne)
2185 && !((op == O_subtract
2186 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2187 && seg_left == seg_right
2188 && (finalize_syms
2189 || frag_offset_fixed_p (frag_left, frag_right, &frag_off)
2190 || (op == O_gt
2191 && frag_gtoffset_p (left, frag_left,
2192 right, frag_right, &frag_off)))
2193 && (seg_left != reg_section || left == right)
2194 && (seg_left != undefined_section || add_symbol == op_symbol)))
2195 {
2196 if ((seg_left == absolute_section && left == 0)
2197 || (seg_right == absolute_section && right == 0))
2198 {
2199 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2200 {
2201 if (!(seg_right == absolute_section && right == 0))
2202 {
2203 seg_left = seg_right;
2204 left = right;
2205 add_symbol = op_symbol;
2206 orig_add_symbol = expressionP->X_op_symbol;
2207 }
2208 op = O_symbol;
2209 break;
2210 }
2211 else if (op == O_left_shift || op == O_right_shift)
2212 {
2213 if (!(seg_left == absolute_section && left == 0))
2214 {
2215 op = O_symbol;
2216 break;
2217 }
2218 }
2219 else if (op != O_multiply
2220 && op != O_bit_or_not && op != O_bit_and)
2221 return 0;
2222 }
2223 else if (op == O_multiply
2224 && seg_left == absolute_section && left == 1)
2225 {
2226 seg_left = seg_right;
2227 left = right;
2228 add_symbol = op_symbol;
2229 orig_add_symbol = expressionP->X_op_symbol;
2230 op = O_symbol;
2231 break;
2232 }
2233 else if ((op == O_multiply || op == O_divide)
2234 && seg_right == absolute_section && right == 1)
2235 {
2236 op = O_symbol;
2237 break;
2238 }
2239 else if (!(left == right
2240 && ((seg_left == reg_section && seg_right == reg_section)
2241 || (seg_left == undefined_section
2242 && seg_right == undefined_section
2243 && add_symbol == op_symbol))))
2244 return 0;
2245 else if (op == O_bit_and || op == O_bit_inclusive_or)
2246 {
2247 op = O_symbol;
2248 break;
2249 }
2250 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2251 return 0;
2252 }
2253
2254 right += frag_off / OCTETS_PER_BYTE;
2255 switch (op)
2256 {
2257 case O_add: left += right; break;
2258 case O_subtract: left -= right; break;
2259 case O_multiply: left *= right; break;
2260 case O_divide:
2261 if (right == 0)
2262 return 0;
2263 left = (offsetT) left / (offsetT) right;
2264 break;
2265 case O_modulus:
2266 if (right == 0)
2267 return 0;
2268 left = (offsetT) left % (offsetT) right;
2269 break;
2270 case O_left_shift: left <<= right; break;
2271 case O_right_shift: left >>= right; break;
2272 case O_bit_inclusive_or: left |= right; break;
2273 case O_bit_or_not: left |= ~right; break;
2274 case O_bit_exclusive_or: left ^= right; break;
2275 case O_bit_and: left &= right; break;
2276 case O_eq:
2277 case O_ne:
2278 left = (left == right
2279 && seg_left == seg_right
2280 && (finalize_syms || frag_left == frag_right)
2281 && (seg_left != undefined_section
2282 || add_symbol == op_symbol)
2283 ? ~ (valueT) 0 : 0);
2284 if (op == O_ne)
2285 left = ~left;
2286 break;
2287 case O_lt:
2288 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2289 break;
2290 case O_le:
2291 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2292 break;
2293 case O_ge:
2294 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2295 break;
2296 case O_gt:
2297 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2298 break;
2299 case O_logical_and: left = left && right; break;
2300 case O_logical_or: left = left || right; break;
2301 default: abort ();
2302 }
2303
2304 op = O_constant;
2305 break;
2306 }
2307
2308 if (op == O_symbol)
2309 {
2310 if (seg_left == absolute_section)
2311 op = O_constant;
2312 else if (seg_left == reg_section && final_val == 0)
2313 op = O_register;
2314 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2315 final_val += left;
2316 expressionP->X_add_symbol = add_symbol;
2317 }
2318 expressionP->X_op = op;
2319
2320 if (op == O_constant || op == O_register)
2321 final_val += left;
2322 expressionP->X_add_number = final_val;
2323
2324 return 1;
2325 }
2326
2327 /* This lives here because it belongs equally in expr.c & read.c.
2328 expr.c is just a branch office read.c anyway, and putting it
2329 here lessens the crowd at read.c.
2330
2331 Assume input_line_pointer is at start of symbol name, or the
2332 start of a double quote enclosed symbol name.
2333 Advance input_line_pointer past symbol name.
2334 Turn that character into a '\0', returning its former value,
2335 which may be the closing double quote.
2336 This allows a string compare (RMS wants symbol names to be strings)
2337 of the symbol name.
2338 There will always be a char following symbol name, because all good
2339 lines end in end-of-line. */
2340
2341 char
get_symbol_name(char ** ilp_return)2342 get_symbol_name (char ** ilp_return)
2343 {
2344 char c;
2345
2346 * ilp_return = input_line_pointer;
2347 /* We accept FAKE_LABEL_CHAR in a name in case this is being called with a
2348 constructed string. */
2349 if (is_name_beginner (c = *input_line_pointer++)
2350 || (input_from_string && c == FAKE_LABEL_CHAR))
2351 {
2352 while (is_part_of_name (c = *input_line_pointer++)
2353 || (input_from_string && c == FAKE_LABEL_CHAR))
2354 ;
2355 if (is_name_ender (c))
2356 c = *input_line_pointer++;
2357 }
2358 else if (c == '"')
2359 {
2360 bfd_boolean backslash_seen;
2361
2362 * ilp_return = input_line_pointer;
2363 do
2364 {
2365 backslash_seen = c == '\\';
2366 c = * input_line_pointer ++;
2367 }
2368 while (c != 0 && (c != '"' || backslash_seen));
2369
2370 if (c == 0)
2371 as_warn (_("missing closing '\"'"));
2372 }
2373 *--input_line_pointer = 0;
2374 return c;
2375 }
2376
2377 /* Replace the NUL character pointed to by input_line_pointer
2378 with C. If C is \" then advance past it. Return the character
2379 now pointed to by input_line_pointer. */
2380
2381 char
restore_line_pointer(char c)2382 restore_line_pointer (char c)
2383 {
2384 * input_line_pointer = c;
2385 if (c == '"')
2386 c = * ++ input_line_pointer;
2387 return c;
2388 }
2389
2390 unsigned int
get_single_number(void)2391 get_single_number (void)
2392 {
2393 expressionS exp;
2394 operand (&exp, expr_normal);
2395 return exp.X_add_number;
2396 }
2397