1 /*
2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved.
5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
6 *
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9 *
10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11 * into this one around July 8 2004.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
54
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58
59 #include <vm/vm_extern.h>
60
61 static void netmsg_service_port_init(lwkt_port_t);
62 static void netmsg_service_loop(void *arg);
63 static void netisr_hashfn0(struct mbuf **mp, int hoff);
64 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
65
66 struct netmsg_port_registration {
67 TAILQ_ENTRY(netmsg_port_registration) npr_entry;
68 lwkt_port_t npr_port;
69 };
70
71 struct netisr_rollup {
72 TAILQ_ENTRY(netisr_rollup) ru_entry;
73 netisr_ru_t ru_func;
74 int ru_prio;
75 void *ru_key;
76 };
77
78 struct netmsg_rollup {
79 struct netmsg_base base;
80 netisr_ru_t func;
81 int prio;
82 void *key;
83 };
84
85 struct netmsg_barrier {
86 struct netmsg_base base;
87 volatile cpumask_t *br_cpumask;
88 volatile uint32_t br_done;
89 };
90
91 #define NETISR_BR_NOTDONE 0x1
92 #define NETISR_BR_WAITDONE 0x80000000
93
94 struct netisr_barrier {
95 struct netmsg_barrier *br_msgs[MAXCPU];
96 int br_isset;
97 };
98
99 struct netisr_data {
100 struct thread thread;
101 #ifdef INVARIANTS
102 void *netlastfunc;
103 #endif
104 TAILQ_HEAD(, netisr_rollup) netrulist;
105 };
106
107 static struct netisr_data *netisr_data[MAXCPU];
108
109 static struct netisr netisrs[NETISR_MAX];
110 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
111
112 /* Per-CPU thread to handle any protocol. */
113 struct thread *netisr_threads[MAXCPU];
114
115 lwkt_port netisr_afree_rport;
116 lwkt_port netisr_afree_free_so_rport;
117 lwkt_port netisr_adone_rport;
118 lwkt_port netisr_apanic_rport;
119 lwkt_port netisr_sync_port;
120
121 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
122
123 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
124
125 __read_frequently static int netisr_rollup_limit = 32;
126 SYSCTL_INT(_net_netisr, OID_AUTO, rollup_limit, CTLFLAG_RW,
127 &netisr_rollup_limit, 0, "Message to process before rollup");
128
129 __read_frequently int netisr_ncpus;
130 TUNABLE_INT("net.netisr.ncpus", &netisr_ncpus);
131 SYSCTL_INT(_net_netisr, OID_AUTO, ncpus, CTLFLAG_RD,
132 &netisr_ncpus, 0, "# of CPUs to handle network messages");
133
134 /*
135 * netisr_afree_rport replymsg function, only used to handle async
136 * messages which the sender has abandoned to their fate.
137 */
138 static void
netisr_autofree_reply(lwkt_port_t port,lwkt_msg_t msg)139 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
140 {
141 kfree(msg, M_LWKTMSG);
142 }
143
144 static void
netisr_autofree_free_so_reply(lwkt_port_t port,lwkt_msg_t msg)145 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
146 {
147 sofree(((netmsg_t)msg)->base.nm_so);
148 kfree(msg, M_LWKTMSG);
149 }
150
151 /*
152 * We need a custom putport function to handle the case where the
153 * message target is the current thread's message port. This case
154 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
155 * then turns around and executes a network operation synchronously.
156 *
157 * To prevent deadlocking, we must execute these self-referential messages
158 * synchronously, effectively turning the message into a glorified direct
159 * procedure call back into the protocol stack. The operation must be
160 * complete on return or we will deadlock, so panic if it isn't.
161 *
162 * However, the target function is under no obligation to immediately
163 * reply the message. It may forward it elsewhere.
164 */
165 static int
netmsg_put_port(lwkt_port_t port,lwkt_msg_t lmsg)166 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
167 {
168 netmsg_base_t nmsg = (void *)lmsg;
169
170 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
171 nmsg->nm_dispatch((netmsg_t)nmsg);
172 return(EASYNC);
173 } else {
174 return(netmsg_fwd_port_fn(port, lmsg));
175 }
176 }
177
178 /*
179 * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
180 * because they depend on the user proc context for a number of things
181 * (like creds) which we have not yet incorporated into the message structure.
182 *
183 * However, we maintain or message/port abstraction. Having a special
184 * synchronous port which runs the commands synchronously gives us the
185 * ability to serialize operations in one place later on when we start
186 * removing the BGL.
187 */
188 static int
netmsg_sync_putport(lwkt_port_t port,lwkt_msg_t lmsg)189 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
190 {
191 netmsg_base_t nmsg = (void *)lmsg;
192
193 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
194
195 lmsg->ms_target_port = port; /* required for abort */
196 nmsg->nm_dispatch((netmsg_t)nmsg);
197 return(EASYNC);
198 }
199
200 static void
netisr_init(void)201 netisr_init(void)
202 {
203 int i;
204
205 if (netisr_ncpus <= 0 || netisr_ncpus > ncpus) {
206 /* Default. */
207 netisr_ncpus = ncpus;
208 }
209 if (netisr_ncpus > NETISR_CPUMAX)
210 netisr_ncpus = NETISR_CPUMAX;
211
212 TAILQ_INIT(&netreglist);
213
214 /*
215 * Create default per-cpu threads for generic protocol handling.
216 */
217 for (i = 0; i < ncpus; ++i) {
218 struct netisr_data *nd;
219
220 nd = (void *)kmem_alloc3(kernel_map, sizeof(*nd),
221 VM_SUBSYS_GD, KM_CPU(i));
222 memset(nd, 0, sizeof(*nd));
223 TAILQ_INIT(&nd->netrulist);
224 netisr_data[i] = nd;
225
226 lwkt_create(netmsg_service_loop, NULL, &netisr_threads[i],
227 &nd->thread, TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
228 i, "netisr %d", i);
229 netmsg_service_port_init(&netisr_threads[i]->td_msgport);
230 lwkt_schedule(netisr_threads[i]);
231 }
232
233 /*
234 * The netisr_afree_rport is a special reply port which automatically
235 * frees the replied message. The netisr_adone_rport simply marks
236 * the message as being done. The netisr_apanic_rport panics if
237 * the message is replied to.
238 */
239 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
240 lwkt_initport_replyonly(&netisr_afree_free_so_rport,
241 netisr_autofree_free_so_reply);
242 lwkt_initport_replyonly_null(&netisr_adone_rport);
243 lwkt_initport_panic(&netisr_apanic_rport);
244
245 /*
246 * The netisr_syncport is a special port which executes the message
247 * synchronously and waits for it if EASYNC is returned.
248 */
249 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
250 }
251 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
252
253 /*
254 * Finish initializing the message port for a netmsg service. This also
255 * registers the port for synchronous cleanup operations such as when an
256 * ifnet is being destroyed. There is no deregistration API yet.
257 */
258 static void
netmsg_service_port_init(lwkt_port_t port)259 netmsg_service_port_init(lwkt_port_t port)
260 {
261 struct netmsg_port_registration *reg;
262
263 /*
264 * Override the putport function. Our custom function checks for
265 * self-references and executes such commands synchronously.
266 */
267 if (netmsg_fwd_port_fn == NULL)
268 netmsg_fwd_port_fn = port->mp_putport;
269 KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
270 port->mp_putport = netmsg_put_port;
271
272 /*
273 * Keep track of ports using the netmsg API so we can synchronize
274 * certain operations (such as freeing an ifnet structure) across all
275 * consumers.
276 */
277 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
278 reg->npr_port = port;
279 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
280 }
281
282 /*
283 * This function synchronizes the caller with all netmsg services. For
284 * example, if an interface is being removed we must make sure that all
285 * packets related to that interface complete processing before the structure
286 * can actually be freed. This sort of synchronization is an alternative to
287 * ref-counting the netif, removing the ref counting overhead in favor of
288 * placing additional overhead in the netif freeing sequence (where it is
289 * inconsequential).
290 */
291 void
netmsg_service_sync(void)292 netmsg_service_sync(void)
293 {
294 struct netmsg_port_registration *reg;
295 struct netmsg_base smsg;
296
297 netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
298
299 TAILQ_FOREACH(reg, &netreglist, npr_entry) {
300 lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
301 }
302 }
303
304 /*
305 * The netmsg function simply replies the message. API semantics require
306 * EASYNC to be returned if the netmsg function disposes of the message.
307 */
308 void
netmsg_sync_handler(netmsg_t msg)309 netmsg_sync_handler(netmsg_t msg)
310 {
311 lwkt_replymsg(&msg->lmsg, 0);
312 }
313
314 /*
315 * Generic netmsg service loop. Some protocols may roll their own but all
316 * must do the basic command dispatch function call done here.
317 */
318 static void
netmsg_service_loop(void * arg)319 netmsg_service_loop(void *arg)
320 {
321 netmsg_base_t msg;
322 thread_t td = curthread;
323 int limit;
324 struct netisr_data *nd = netisr_data[mycpuid];
325
326 td->td_type = TD_TYPE_NETISR;
327
328 while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
329 struct netisr_rollup *ru;
330
331 /*
332 * Run up to 512 pending netmsgs.
333 */
334 limit = netisr_rollup_limit;
335 do {
336 KASSERT(msg->nm_dispatch != NULL,
337 ("netmsg_service isr %d badmsg",
338 msg->lmsg.u.ms_result));
339 /*
340 * Don't match so_port, if the msg explicitly
341 * asks us to ignore its so_port.
342 */
343 if ((msg->lmsg.ms_flags & MSGF_IGNSOPORT) == 0 &&
344 msg->nm_so &&
345 msg->nm_so->so_port != &td->td_msgport) {
346 /*
347 * Sockets undergoing connect or disconnect
348 * ops can change ports on us. Chase the
349 * port.
350 */
351 #ifdef foo
352 /*
353 * This could be quite common for protocols
354 * which support asynchronous pru_connect,
355 * e.g. TCP, so kprintf socket port chasing
356 * could be too verbose for the console.
357 */
358 kprintf("%s: Warning, port changed so=%p\n",
359 __func__, msg->nm_so);
360 #endif
361 lwkt_forwardmsg(msg->nm_so->so_port,
362 &msg->lmsg);
363 } else {
364 /*
365 * We are on the correct port, dispatch it.
366 */
367 #ifdef INVARIANTS
368 nd->netlastfunc = msg->nm_dispatch;
369 #endif
370 msg->nm_dispatch((netmsg_t)msg);
371 }
372 if (--limit == 0)
373 break;
374 } while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
375
376 /*
377 * Run all registered rollup functions for this cpu
378 * (e.g. tcp_willblock()).
379 */
380 TAILQ_FOREACH(ru, &nd->netrulist, ru_entry)
381 ru->ru_func();
382 }
383 }
384
385 /*
386 * Forward a packet to a netisr service function.
387 *
388 * If the packet has not been assigned to a protocol thread we call
389 * the port characterization function to assign it. The caller must
390 * clear M_HASH (or not have set it in the first place) if the caller
391 * wishes the packet to be recharacterized.
392 */
393 int
netisr_queue(int num,struct mbuf * m)394 netisr_queue(int num, struct mbuf *m)
395 {
396 struct netisr *ni;
397 struct netmsg_packet *pmsg;
398 lwkt_port_t port;
399
400 KASSERT((num > 0 && num <= NELEM(netisrs)),
401 ("Bad isr %d", num));
402
403 ni = &netisrs[num];
404 if (ni->ni_handler == NULL) {
405 kprintf("%s: Unregistered isr %d\n", __func__, num);
406 m_freem(m);
407 return (EIO);
408 }
409
410 /*
411 * Figure out which protocol thread to send to. This does not
412 * have to be perfect but performance will be really good if it
413 * is correct. Major protocol inputs such as ip_input() will
414 * re-characterize the packet as necessary.
415 */
416 if ((m->m_flags & M_HASH) == 0) {
417 ni->ni_hashfn(&m, 0);
418 if (m == NULL)
419 return (EIO);
420 if ((m->m_flags & M_HASH) == 0) {
421 kprintf("%s(%d): packet hash failed\n",
422 __func__, num);
423 m_freem(m);
424 return (EIO);
425 }
426 }
427
428 /*
429 * Get the protocol port based on the packet hash, initialize
430 * the netmsg, and send it off.
431 */
432 port = netisr_hashport(m->m_pkthdr.hash);
433 pmsg = &m->m_hdr.mh_netmsg;
434 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
435 0, ni->ni_handler);
436 pmsg->nm_packet = m;
437 pmsg->base.lmsg.u.ms_result = num;
438 lwkt_sendmsg(port, &pmsg->base.lmsg);
439
440 return (0);
441 }
442
443 /*
444 * Run a netisr service function on the packet.
445 *
446 * The packet must have been correctly characterized!
447 */
448 int
netisr_handle(int num,struct mbuf * m)449 netisr_handle(int num, struct mbuf *m)
450 {
451 struct netisr *ni;
452 struct netmsg_packet *pmsg;
453 lwkt_port_t port;
454
455 /*
456 * Get the protocol port based on the packet hash
457 */
458 KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
459 port = netisr_hashport(m->m_pkthdr.hash);
460 KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
461
462 KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
463 ni = &netisrs[num];
464 if (ni->ni_handler == NULL) {
465 kprintf("%s: unregistered isr %d\n", __func__, num);
466 m_freem(m);
467 return EIO;
468 }
469
470 /*
471 * Initialize the netmsg, and run the handler directly.
472 */
473 pmsg = &m->m_hdr.mh_netmsg;
474 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
475 0, ni->ni_handler);
476 pmsg->nm_packet = m;
477 pmsg->base.lmsg.u.ms_result = num;
478 ni->ni_handler((netmsg_t)&pmsg->base);
479
480 return 0;
481 }
482
483 /*
484 * Pre-characterization of a deeper portion of the packet for the
485 * requested isr.
486 *
487 * The base of the ISR type (e.g. IP) that we want to characterize is
488 * at (hoff) relative to the beginning of the mbuf. This allows
489 * e.g. ether_characterize() to not have to adjust the m_data/m_len.
490 */
491 void
netisr_characterize(int num,struct mbuf ** mp,int hoff)492 netisr_characterize(int num, struct mbuf **mp, int hoff)
493 {
494 struct netisr *ni;
495 struct mbuf *m;
496
497 /*
498 * Validation
499 */
500 m = *mp;
501 KKASSERT(m != NULL);
502
503 if (num < 0 || num >= NETISR_MAX) {
504 if (num == NETISR_MAX) {
505 m_sethash(m, 0);
506 return;
507 }
508 panic("Bad isr %d", num);
509 }
510
511 /*
512 * Valid netisr?
513 */
514 ni = &netisrs[num];
515 if (ni->ni_handler == NULL) {
516 kprintf("%s: Unregistered isr %d\n", __func__, num);
517 m_freem(m);
518 *mp = NULL;
519 }
520
521 /*
522 * Characterize the packet
523 */
524 if ((m->m_flags & M_HASH) == 0) {
525 ni->ni_hashfn(mp, hoff);
526 m = *mp;
527 if (m && (m->m_flags & M_HASH) == 0) {
528 kprintf("%s(%d): packet hash failed\n",
529 __func__, num);
530 }
531 }
532 }
533
534 void
netisr_register(int num,netisr_fn_t handler,netisr_hashfn_t hashfn)535 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
536 {
537 struct netisr *ni;
538
539 KASSERT((num > 0 && num <= NELEM(netisrs)),
540 ("netisr_register: bad isr %d", num));
541 KKASSERT(handler != NULL);
542
543 if (hashfn == NULL)
544 hashfn = netisr_hashfn0;
545
546 ni = &netisrs[num];
547
548 ni->ni_handler = handler;
549 ni->ni_hashck = netisr_nohashck;
550 ni->ni_hashfn = hashfn;
551 netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
552 }
553
554 void
netisr_register_hashcheck(int num,netisr_hashck_t hashck)555 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
556 {
557 struct netisr *ni;
558
559 KASSERT((num > 0 && num <= NELEM(netisrs)),
560 ("netisr_register: bad isr %d", num));
561
562 ni = &netisrs[num];
563 ni->ni_hashck = hashck;
564 }
565
566 static void
netisr_register_rollup_dispatch(netmsg_t nmsg)567 netisr_register_rollup_dispatch(netmsg_t nmsg)
568 {
569 struct netmsg_rollup *nm = (struct netmsg_rollup *)nmsg;
570 int cpuid = mycpuid;
571 struct netisr_data *nd = netisr_data[cpuid];
572 struct netisr_rollup *new_ru, *ru;
573
574 new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
575 new_ru->ru_func = nm->func;
576 new_ru->ru_prio = nm->prio;
577
578 /*
579 * Higher priority "rollup" appears first
580 */
581 TAILQ_FOREACH(ru, &nd->netrulist, ru_entry) {
582 if (ru->ru_prio < new_ru->ru_prio) {
583 TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
584 goto done;
585 }
586 }
587 TAILQ_INSERT_TAIL(&nd->netrulist, new_ru, ru_entry);
588 done:
589 if (cpuid == 0)
590 nm->key = new_ru;
591 KKASSERT(nm->key != NULL);
592 new_ru->ru_key = nm->key;
593
594 netisr_forwardmsg_all(&nm->base, cpuid + 1);
595 }
596
597 struct netisr_rollup *
netisr_register_rollup(netisr_ru_t func,int prio)598 netisr_register_rollup(netisr_ru_t func, int prio)
599 {
600 struct netmsg_rollup nm;
601
602 netmsg_init(&nm.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
603 netisr_register_rollup_dispatch);
604 nm.func = func;
605 nm.prio = prio;
606 nm.key = NULL;
607 netisr_domsg_global(&nm.base);
608
609 KKASSERT(nm.key != NULL);
610 return (nm.key);
611 }
612
613 static void
netisr_unregister_rollup_dispatch(netmsg_t nmsg)614 netisr_unregister_rollup_dispatch(netmsg_t nmsg)
615 {
616 struct netmsg_rollup *nm = (struct netmsg_rollup *)nmsg;
617 int cpuid = mycpuid;
618 struct netisr_data *nd = netisr_data[cpuid];
619 struct netisr_rollup *ru;
620
621 TAILQ_FOREACH(ru, &nd->netrulist, ru_entry) {
622 if (ru->ru_key == nm->key)
623 break;
624 }
625 if (ru == NULL)
626 panic("netisr: no rullup for %p", nm->key);
627
628 TAILQ_REMOVE(&nd->netrulist, ru, ru_entry);
629 kfree(ru, M_TEMP);
630
631 netisr_forwardmsg_all(&nm->base, cpuid + 1);
632 }
633
634 void
netisr_unregister_rollup(struct netisr_rollup * key)635 netisr_unregister_rollup(struct netisr_rollup *key)
636 {
637 struct netmsg_rollup nm;
638
639 netmsg_init(&nm.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
640 netisr_unregister_rollup_dispatch);
641 nm.key = key;
642 netisr_domsg_global(&nm.base);
643 }
644
645 /*
646 * Return a default protocol control message processing thread port
647 */
648 lwkt_port_t
cpu0_ctlport(int cmd __unused,struct sockaddr * sa __unused,void * extra __unused,int * cpuid)649 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
650 void *extra __unused, int *cpuid)
651 {
652 *cpuid = 0;
653 return netisr_cpuport(*cpuid);
654 }
655
656 /*
657 * This is a default netisr packet characterization function which
658 * sets M_HASH. If a netisr is registered with a NULL hashfn function
659 * this one is assigned.
660 *
661 * This function makes no attempt to validate the packet.
662 */
663 static void
netisr_hashfn0(struct mbuf ** mp,int hoff __unused)664 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
665 {
666
667 m_sethash(*mp, 0);
668 }
669
670 /*
671 * schednetisr() is used to call the netisr handler from the appropriate
672 * netisr thread for polling and other purposes.
673 *
674 * This function may be called from a hard interrupt or IPI and must be
675 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of
676 * trying to allocate one. We must get ourselves onto the target cpu
677 * to safely check the MSGF_DONE bit on the message but since the message
678 * will be sent to that cpu anyway this does not add any extra work beyond
679 * what lwkt_sendmsg() would have already had to do to schedule the target
680 * thread.
681 */
682 static void
schednetisr_remote(void * data)683 schednetisr_remote(void *data)
684 {
685 int num = (int)(intptr_t)data;
686 struct netisr *ni = &netisrs[num];
687 lwkt_port_t port = &netisr_threads[0]->td_msgport;
688 netmsg_base_t pmsg;
689
690 pmsg = &netisrs[num].ni_netmsg;
691 if (pmsg->lmsg.ms_flags & MSGF_DONE) {
692 netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
693 pmsg->lmsg.u.ms_result = num;
694 lwkt_sendmsg(port, &pmsg->lmsg);
695 }
696 }
697
698 void
schednetisr(int num)699 schednetisr(int num)
700 {
701 KASSERT((num > 0 && num <= NELEM(netisrs)),
702 ("schednetisr: bad isr %d", num));
703 KKASSERT(netisrs[num].ni_handler != NULL);
704 if (mycpu->gd_cpuid != 0) {
705 lwkt_send_ipiq(globaldata_find(0),
706 schednetisr_remote, (void *)(intptr_t)num);
707 } else {
708 crit_enter();
709 schednetisr_remote((void *)(intptr_t)num);
710 crit_exit();
711 }
712 }
713
714 static void
netisr_barrier_dispatch(netmsg_t nmsg)715 netisr_barrier_dispatch(netmsg_t nmsg)
716 {
717 struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
718
719 ATOMIC_CPUMASK_NANDBIT(*msg->br_cpumask, mycpu->gd_cpuid);
720 if (CPUMASK_TESTZERO(*msg->br_cpumask))
721 wakeup(msg->br_cpumask);
722
723 for (;;) {
724 uint32_t done = msg->br_done;
725
726 cpu_ccfence();
727 if ((done & NETISR_BR_NOTDONE) == 0)
728 break;
729
730 tsleep_interlock(&msg->br_done, 0);
731 if (atomic_cmpset_int(&msg->br_done,
732 done, done | NETISR_BR_WAITDONE))
733 tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
734 }
735
736 lwkt_replymsg(&nmsg->lmsg, 0);
737 }
738
739 struct netisr_barrier *
netisr_barrier_create(void)740 netisr_barrier_create(void)
741 {
742 struct netisr_barrier *br;
743
744 br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
745 return br;
746 }
747
748 void
netisr_barrier_set(struct netisr_barrier * br)749 netisr_barrier_set(struct netisr_barrier *br)
750 {
751 volatile cpumask_t other_cpumask;
752 int i, cur_cpuid;
753
754 ASSERT_NETISR0;
755 KKASSERT(!br->br_isset);
756
757 other_cpumask = mycpu->gd_other_cpus;
758 CPUMASK_ANDMASK(other_cpumask, smp_active_mask);
759 cur_cpuid = mycpuid;
760
761 for (i = 0; i < ncpus; ++i) {
762 struct netmsg_barrier *msg;
763
764 if (i == cur_cpuid)
765 continue;
766
767 msg = kmalloc(sizeof(struct netmsg_barrier),
768 M_LWKTMSG, M_WAITOK);
769
770 /*
771 * Don't use priority message here; mainly to keep
772 * it ordered w/ the previous data packets sent by
773 * the caller.
774 */
775 netmsg_init(&msg->base, NULL, &netisr_afree_rport, 0,
776 netisr_barrier_dispatch);
777 msg->br_cpumask = &other_cpumask;
778 msg->br_done = NETISR_BR_NOTDONE;
779
780 KKASSERT(br->br_msgs[i] == NULL);
781 br->br_msgs[i] = msg;
782 }
783
784 for (i = 0; i < ncpus; ++i) {
785 if (i == cur_cpuid)
786 continue;
787 lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
788 }
789
790 while (CPUMASK_TESTNZERO(other_cpumask)) {
791 tsleep_interlock(&other_cpumask, 0);
792 if (CPUMASK_TESTNZERO(other_cpumask))
793 tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
794 }
795 br->br_isset = 1;
796 }
797
798 void
netisr_barrier_rem(struct netisr_barrier * br)799 netisr_barrier_rem(struct netisr_barrier *br)
800 {
801 int i, cur_cpuid;
802
803 ASSERT_NETISR0;
804 KKASSERT(br->br_isset);
805
806 cur_cpuid = mycpuid;
807 for (i = 0; i < ncpus; ++i) {
808 struct netmsg_barrier *msg = br->br_msgs[i];
809 uint32_t done;
810
811 msg = br->br_msgs[i];
812 br->br_msgs[i] = NULL;
813
814 if (i == cur_cpuid)
815 continue;
816
817 done = atomic_swap_int(&msg->br_done, 0);
818 if (done & NETISR_BR_WAITDONE)
819 wakeup(&msg->br_done);
820 }
821 br->br_isset = 0;
822 }
823
824 static void
netisr_nohashck(struct mbuf * m,const struct pktinfo * pi __unused)825 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
826 {
827 m->m_flags &= ~M_HASH;
828 }
829
830 void
netisr_hashcheck(int num,struct mbuf * m,const struct pktinfo * pi)831 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
832 {
833 struct netisr *ni;
834
835 if (num < 0 || num >= NETISR_MAX)
836 panic("Bad isr %d", num);
837
838 /*
839 * Valid netisr?
840 */
841 ni = &netisrs[num];
842 if (ni->ni_handler == NULL)
843 panic("Unregistered isr %d", num);
844
845 ni->ni_hashck(m, pi);
846 }
847