xref: /dragonfly/sys/net/netisr.c (revision bcb3e04d)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $DragonFly: src/sys/net/netisr.c,v 1.49 2008/11/01 10:29:31 sephe Exp $
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/msgport.h>
46 #include <sys/proc.h>
47 #include <sys/interrupt.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
50 #include <sys/socketvar.h>
51 #include <net/if.h>
52 #include <net/if_var.h>
53 #include <net/netisr.h>
54 #include <machine/cpufunc.h>
55 
56 #include <sys/thread2.h>
57 #include <sys/msgport2.h>
58 #include <net/netmsg2.h>
59 #include <sys/mplock2.h>
60 
61 static void netmsg_sync_func(netmsg_t msg);
62 static void netmsg_service_loop(void *arg);
63 static void cpu0_cpufn(struct mbuf **mp, int hoff);
64 
65 struct netmsg_port_registration {
66 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
67 	lwkt_port_t	npr_port;
68 };
69 
70 struct netmsg_rollup {
71 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
72 	netisr_ru_t	ru_func;
73 };
74 
75 static struct netisr netisrs[NETISR_MAX];
76 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
77 static TAILQ_HEAD(,netmsg_rollup) netrulist;
78 
79 /* Per-CPU thread to handle any protocol.  */
80 static struct thread netisr_cpu[MAXCPU];
81 lwkt_port netisr_afree_rport;
82 lwkt_port netisr_afree_free_so_rport;
83 lwkt_port netisr_adone_rport;
84 lwkt_port netisr_apanic_rport;
85 lwkt_port netisr_sync_port;
86 
87 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
88 
89 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
90 
91 /*
92  * netisr_afree_rport replymsg function, only used to handle async
93  * messages which the sender has abandoned to their fate.
94  */
95 static void
96 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
97 {
98 	kfree(msg, M_LWKTMSG);
99 }
100 
101 static void
102 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
103 {
104 	sofree(((netmsg_t)msg)->base.nm_so);
105 	kfree(msg, M_LWKTMSG);
106 }
107 
108 /*
109  * We need a custom putport function to handle the case where the
110  * message target is the current thread's message port.  This case
111  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
112  * then turns around and executes a network operation synchronously.
113  *
114  * To prevent deadlocking, we must execute these self-referential messages
115  * synchronously, effectively turning the message into a glorified direct
116  * procedure call back into the protocol stack.  The operation must be
117  * complete on return or we will deadlock, so panic if it isn't.
118  *
119  * However, the target function is under no obligation to immediately
120  * reply the message.  It may forward it elsewhere.
121  */
122 static int
123 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
124 {
125 	netmsg_base_t nmsg = (void *)lmsg;
126 
127 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
128 		nmsg->nm_dispatch((netmsg_t)nmsg);
129 		return(EASYNC);
130 	} else {
131 		return(netmsg_fwd_port_fn(port, lmsg));
132 	}
133 }
134 
135 /*
136  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
137  * because they depend on the user proc context for a number of things
138  * (like creds) which we have not yet incorporated into the message structure.
139  *
140  * However, we maintain or message/port abstraction.  Having a special
141  * synchronous port which runs the commands synchronously gives us the
142  * ability to serialize operations in one place later on when we start
143  * removing the BGL.
144  */
145 static int
146 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
147 {
148 	netmsg_base_t nmsg = (void *)lmsg;
149 
150 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
151 
152 	lmsg->ms_target_port = port;	/* required for abort */
153 	nmsg->nm_dispatch((netmsg_t)nmsg);
154 	return(EASYNC);
155 }
156 
157 static void
158 netisr_init(void)
159 {
160 	int i;
161 
162 	TAILQ_INIT(&netreglist);
163 	TAILQ_INIT(&netrulist);
164 
165 	/*
166 	 * Create default per-cpu threads for generic protocol handling.
167 	 */
168 	for (i = 0; i < ncpus; ++i) {
169 		lwkt_create(netmsg_service_loop, NULL, NULL,
170 			    &netisr_cpu[i], TDF_STOPREQ, i,
171 			    "netisr_cpu %d", i);
172 		netmsg_service_port_init(&netisr_cpu[i].td_msgport);
173 		lwkt_schedule(&netisr_cpu[i]);
174 	}
175 
176 	/*
177 	 * The netisr_afree_rport is a special reply port which automatically
178 	 * frees the replied message.  The netisr_adone_rport simply marks
179 	 * the message as being done.  The netisr_apanic_rport panics if
180 	 * the message is replied to.
181 	 */
182 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
183 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
184 				netisr_autofree_free_so_reply);
185 	lwkt_initport_replyonly_null(&netisr_adone_rport);
186 	lwkt_initport_panic(&netisr_apanic_rport);
187 
188 	/*
189 	 * The netisr_syncport is a special port which executes the message
190 	 * synchronously and waits for it if EASYNC is returned.
191 	 */
192 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
193 }
194 
195 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
196 
197 /*
198  * Finish initializing the message port for a netmsg service.  This also
199  * registers the port for synchronous cleanup operations such as when an
200  * ifnet is being destroyed.  There is no deregistration API yet.
201  */
202 void
203 netmsg_service_port_init(lwkt_port_t port)
204 {
205 	struct netmsg_port_registration *reg;
206 
207 	/*
208 	 * Override the putport function.  Our custom function checks for
209 	 * self-references and executes such commands synchronously.
210 	 */
211 	if (netmsg_fwd_port_fn == NULL)
212 		netmsg_fwd_port_fn = port->mp_putport;
213 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
214 	port->mp_putport = netmsg_put_port;
215 
216 	/*
217 	 * Keep track of ports using the netmsg API so we can synchronize
218 	 * certain operations (such as freeing an ifnet structure) across all
219 	 * consumers.
220 	 */
221 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
222 	reg->npr_port = port;
223 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
224 }
225 
226 /*
227  * This function synchronizes the caller with all netmsg services.  For
228  * example, if an interface is being removed we must make sure that all
229  * packets related to that interface complete processing before the structure
230  * can actually be freed.  This sort of synchronization is an alternative to
231  * ref-counting the netif, removing the ref counting overhead in favor of
232  * placing additional overhead in the netif freeing sequence (where it is
233  * inconsequential).
234  */
235 void
236 netmsg_service_sync(void)
237 {
238 	struct netmsg_port_registration *reg;
239 	struct netmsg_base smsg;
240 
241 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_func);
242 
243 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
244 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
245 	}
246 }
247 
248 /*
249  * The netmsg function simply replies the message.  API semantics require
250  * EASYNC to be returned if the netmsg function disposes of the message.
251  */
252 static void
253 netmsg_sync_func(netmsg_t msg)
254 {
255 	lwkt_replymsg(&msg->lmsg, 0);
256 }
257 
258 /*
259  * Generic netmsg service loop.  Some protocols may roll their own but all
260  * must do the basic command dispatch function call done here.
261  */
262 static void
263 netmsg_service_loop(void *arg)
264 {
265 	struct netmsg_rollup *ru;
266 	netmsg_base_t msg;
267 	thread_t td = curthread;;
268 	int limit;
269 
270 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
271 		/*
272 		 * Run up to 512 pending netmsgs.
273 		 */
274 		limit = 512;
275 		do {
276 			KASSERT(msg->nm_dispatch != NULL,
277 				("netmsg_service isr %d badmsg\n",
278 				msg->lmsg.u.ms_result));
279 			if (msg->nm_so &&
280 			    msg->nm_so->so_port != &td->td_msgport) {
281 				/*
282 				 * Sockets undergoing connect or disconnect
283 				 * ops can change ports on us.  Chase the
284 				 * port.
285 				 */
286 				kprintf("netmsg_service_loop: Warning, "
287 					"port changed so=%p\n", msg->nm_so);
288 				lwkt_forwardmsg(msg->nm_so->so_port,
289 						&msg->lmsg);
290 			} else {
291 				/*
292 				 * We are on the correct port, dispatch it.
293 				 */
294 				msg->nm_dispatch((netmsg_t)msg);
295 			}
296 			if (--limit == 0)
297 				break;
298 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
299 
300 		/*
301 		 * Run all registered rollup functions for this cpu
302 		 * (e.g. tcp_willblock()).
303 		 */
304 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
305 			ru->ru_func();
306 	}
307 }
308 
309 /*
310  * Forward a packet to a netisr service function.
311  *
312  * If the packet has not been assigned to a protocol thread we call
313  * the port characterization function to assign it.  The caller must
314  * clear M_HASH (or not have set it in the first place) if the caller
315  * wishes the packet to be recharacterized.
316  */
317 int
318 netisr_queue(int num, struct mbuf *m)
319 {
320 	struct netisr *ni;
321 	struct netmsg_packet *pmsg;
322 	lwkt_port_t port;
323 
324 	KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
325 		("Bad isr %d", num));
326 
327 	ni = &netisrs[num];
328 	if (ni->ni_handler == NULL) {
329 		kprintf("Unregistered isr %d\n", num);
330 		m_freem(m);
331 		return (EIO);
332 	}
333 
334 	/*
335 	 * Figure out which protocol thread to send to.  This does not
336 	 * have to be perfect but performance will be really good if it
337 	 * is correct.  Major protocol inputs such as ip_input() will
338 	 * re-characterize the packet as necessary.
339 	 */
340 	if ((m->m_flags & M_HASH) == 0) {
341 		ni->ni_cpufn(&m, 0);
342 		if (m == NULL) {
343 			m_freem(m);
344 			return (EIO);
345 		}
346 		if ((m->m_flags & M_HASH) == 0) {
347 			kprintf("netisr_queue(%d): packet hash failed\n", num);
348 			m_freem(m);
349 			return (EIO);
350 		}
351 	}
352 
353 	/*
354 	 * Get the protocol port based on the packet hash, initialize
355 	 * the netmsg, and send it off.
356 	 */
357 	port = cpu_portfn(m->m_pkthdr.hash);
358 	pmsg = &m->m_hdr.mh_netmsg;
359 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
360 		    0, ni->ni_handler);
361 	pmsg->nm_packet = m;
362 	pmsg->base.lmsg.u.ms_result = num;
363 	lwkt_sendmsg(port, &pmsg->base.lmsg);
364 
365 	return (0);
366 }
367 
368 /*
369  * Pre-characterization of a deeper portion of the packet for the
370  * requested isr.
371  *
372  * The base of the ISR type (e.g. IP) that we want to characterize is
373  * at (hoff) relative to the beginning of the mbuf.  This allows
374  * e.g. ether_input_chain() to not have to adjust the m_data/m_len.
375  */
376 void
377 netisr_characterize(int num, struct mbuf **mp, int hoff)
378 {
379 	struct netisr *ni;
380 	struct mbuf *m;
381 
382 	/*
383 	 * Validation
384 	 */
385 	m = *mp;
386 	KKASSERT(m != NULL);
387 
388 	if (num < 0 || num >= NETISR_MAX) {
389 		if (num == NETISR_MAX) {
390 			m->m_flags |= M_HASH;
391 			m->m_pkthdr.hash = 0;
392 			return;
393 		}
394 		panic("Bad isr %d", num);
395 	}
396 
397 	/*
398 	 * Valid netisr?
399 	 */
400 	ni = &netisrs[num];
401 	if (ni->ni_handler == NULL) {
402 		kprintf("Unregistered isr %d\n", num);
403 		m_freem(m);
404 		*mp = NULL;
405 	}
406 
407 	/*
408 	 * Characterize the packet
409 	 */
410 	if ((m->m_flags & M_HASH) == 0) {
411 		ni->ni_cpufn(mp, hoff);
412 		m = *mp;
413 		if (m && (m->m_flags & M_HASH) == 0)
414 			kprintf("netisr_queue(%d): packet hash failed\n", num);
415 	}
416 }
417 
418 void
419 netisr_register(int num, netisr_fn_t handler, netisr_cpufn_t cpufn)
420 {
421 	struct netisr *ni;
422 
423 	KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
424 		("netisr_register: bad isr %d", num));
425 	KKASSERT(handler != NULL);
426 
427 	if (cpufn == NULL)
428 		cpufn = cpu0_cpufn;
429 
430 	ni = &netisrs[num];
431 
432 	ni->ni_handler = handler;
433 	ni->ni_cpufn = cpufn;
434 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
435 }
436 
437 void
438 netisr_register_rollup(netisr_ru_t ru_func)
439 {
440 	struct netmsg_rollup *ru;
441 
442 	ru = kmalloc(sizeof(*ru), M_TEMP, M_WAITOK|M_ZERO);
443 	ru->ru_func = ru_func;
444 	TAILQ_INSERT_TAIL(&netrulist, ru, ru_entry);
445 }
446 
447 /*
448  * Return the message port for the general protocol message servicing
449  * thread for a particular cpu.
450  */
451 lwkt_port_t
452 cpu_portfn(int cpu)
453 {
454 	KKASSERT(cpu >= 0 && cpu < ncpus);
455 	return (&netisr_cpu[cpu].td_msgport);
456 }
457 
458 /*
459  * Return the current cpu's network protocol thread.
460  */
461 lwkt_port_t
462 cur_netport(void)
463 {
464 	return(cpu_portfn(mycpu->gd_cpuid));
465 }
466 
467 /*
468  * Return a default protocol control message processing thread port
469  */
470 lwkt_port_t
471 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
472 	     void *extra __unused)
473 {
474 	return (&netisr_cpu[0].td_msgport);
475 }
476 
477 /*
478  * This is a default netisr packet characterization function which
479  * sets M_HASH.  If a netisr is registered with a NULL cpufn function
480  * this one is assigned.
481  *
482  * This function makes no attempt to validate the packet.
483  */
484 static void
485 cpu0_cpufn(struct mbuf **mp, int hoff __unused)
486 {
487 	struct mbuf *m = *mp;
488 
489 	m->m_flags |= M_HASH;
490 	m->m_pkthdr.hash = 0;
491 }
492 
493 /*
494  * schednetisr() is used to call the netisr handler from the appropriate
495  * netisr thread for polling and other purposes.
496  *
497  * This function may be called from a hard interrupt or IPI and must be
498  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
499  * trying to allocate one.  We must get ourselves onto the target cpu
500  * to safely check the MSGF_DONE bit on the message but since the message
501  * will be sent to that cpu anyway this does not add any extra work beyond
502  * what lwkt_sendmsg() would have already had to do to schedule the target
503  * thread.
504  */
505 static void
506 schednetisr_remote(void *data)
507 {
508 	int num = (int)(intptr_t)data;
509 	struct netisr *ni = &netisrs[num];
510 	lwkt_port_t port = &netisr_cpu[0].td_msgport;
511 	netmsg_base_t pmsg;
512 
513 	pmsg = &netisrs[num].ni_netmsg;
514 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
515 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
516 		pmsg->lmsg.u.ms_result = num;
517 		lwkt_sendmsg(port, &pmsg->lmsg);
518 	}
519 }
520 
521 void
522 schednetisr(int num)
523 {
524 	KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
525 		("schednetisr: bad isr %d", num));
526 	KKASSERT(netisrs[num].ni_handler != NULL);
527 #ifdef SMP
528 	if (mycpu->gd_cpuid != 0) {
529 		lwkt_send_ipiq(globaldata_find(0),
530 			       schednetisr_remote, (void *)(intptr_t)num);
531 	} else {
532 		crit_enter();
533 		schednetisr_remote((void *)(intptr_t)num);
534 		crit_exit();
535 	}
536 #else
537 	crit_enter();
538 	schednetisr_remote((void *)(intptr_t)num);
539 	crit_exit();
540 #endif
541 }
542