xref: /dragonfly/sys/net/netisr.c (revision cae2835b)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr2.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
59 
60 static void netmsg_service_loop(void *arg);
61 static void netisr_hashfn0(struct mbuf **mp, int hoff);
62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *);
63 
64 struct netmsg_port_registration {
65 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
66 	lwkt_port_t	npr_port;
67 };
68 
69 struct netmsg_rollup {
70 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
71 	netisr_ru_t	ru_func;
72 	int		ru_prio;
73 };
74 
75 struct netmsg_barrier {
76 	struct netmsg_base	base;
77 	volatile cpumask_t	*br_cpumask;
78 	volatile uint32_t	br_done;
79 };
80 
81 #define NETISR_BR_NOTDONE	0x1
82 #define NETISR_BR_WAITDONE	0x80000000
83 
84 struct netisr_barrier {
85 	struct netmsg_barrier	*br_msgs[MAXCPU];
86 	int			br_isset;
87 };
88 
89 void *netlastfunc[MAXCPU];
90 static struct netisr netisrs[NETISR_MAX];
91 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
92 static TAILQ_HEAD(,netmsg_rollup) netrulist;
93 
94 /* Per-CPU thread to handle any protocol.  */
95 struct thread *netisr_cpu[MAXCPU];
96 lwkt_port netisr_afree_rport;
97 lwkt_port netisr_afree_free_so_rport;
98 lwkt_port netisr_adone_rport;
99 lwkt_port netisr_apanic_rport;
100 lwkt_port netisr_sync_port;
101 
102 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
103 
104 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
105 static int netisr_rollup_limit = 32;
106 SYSCTL_INT(_net_netisr, OID_AUTO, rollup_limit, CTLFLAG_RW,
107 	&netisr_rollup_limit, 0, "Message to process before rollup");
108 
109 
110 /*
111  * netisr_afree_rport replymsg function, only used to handle async
112  * messages which the sender has abandoned to their fate.
113  */
114 static void
115 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
116 {
117 	kfree(msg, M_LWKTMSG);
118 }
119 
120 static void
121 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
122 {
123 	sofree(((netmsg_t)msg)->base.nm_so);
124 	kfree(msg, M_LWKTMSG);
125 }
126 
127 /*
128  * We need a custom putport function to handle the case where the
129  * message target is the current thread's message port.  This case
130  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
131  * then turns around and executes a network operation synchronously.
132  *
133  * To prevent deadlocking, we must execute these self-referential messages
134  * synchronously, effectively turning the message into a glorified direct
135  * procedure call back into the protocol stack.  The operation must be
136  * complete on return or we will deadlock, so panic if it isn't.
137  *
138  * However, the target function is under no obligation to immediately
139  * reply the message.  It may forward it elsewhere.
140  */
141 static int
142 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
143 {
144 	netmsg_base_t nmsg = (void *)lmsg;
145 
146 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
147 		nmsg->nm_dispatch((netmsg_t)nmsg);
148 		return(EASYNC);
149 	} else {
150 		return(netmsg_fwd_port_fn(port, lmsg));
151 	}
152 }
153 
154 /*
155  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
156  * because they depend on the user proc context for a number of things
157  * (like creds) which we have not yet incorporated into the message structure.
158  *
159  * However, we maintain or message/port abstraction.  Having a special
160  * synchronous port which runs the commands synchronously gives us the
161  * ability to serialize operations in one place later on when we start
162  * removing the BGL.
163  */
164 static int
165 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
166 {
167 	netmsg_base_t nmsg = (void *)lmsg;
168 
169 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
170 
171 	lmsg->ms_target_port = port;	/* required for abort */
172 	nmsg->nm_dispatch((netmsg_t)nmsg);
173 	return(EASYNC);
174 }
175 
176 static void
177 netisr_init(void)
178 {
179 	int i;
180 
181 	TAILQ_INIT(&netreglist);
182 	TAILQ_INIT(&netrulist);
183 
184 	/*
185 	 * Create default per-cpu threads for generic protocol handling.
186 	 */
187 	for (i = 0; i < ncpus; ++i) {
188 		lwkt_create(netmsg_service_loop, NULL, &netisr_cpu[i],
189 			    NULL,
190 			    TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
191 			    i, "netisr_cpu %d", i);
192 		netmsg_service_port_init(&netisr_cpu[i]->td_msgport);
193 		lwkt_schedule(netisr_cpu[i]);
194 	}
195 
196 	/*
197 	 * The netisr_afree_rport is a special reply port which automatically
198 	 * frees the replied message.  The netisr_adone_rport simply marks
199 	 * the message as being done.  The netisr_apanic_rport panics if
200 	 * the message is replied to.
201 	 */
202 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
203 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
204 				netisr_autofree_free_so_reply);
205 	lwkt_initport_replyonly_null(&netisr_adone_rport);
206 	lwkt_initport_panic(&netisr_apanic_rport);
207 
208 	/*
209 	 * The netisr_syncport is a special port which executes the message
210 	 * synchronously and waits for it if EASYNC is returned.
211 	 */
212 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
213 }
214 
215 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
216 
217 /*
218  * Finish initializing the message port for a netmsg service.  This also
219  * registers the port for synchronous cleanup operations such as when an
220  * ifnet is being destroyed.  There is no deregistration API yet.
221  */
222 void
223 netmsg_service_port_init(lwkt_port_t port)
224 {
225 	struct netmsg_port_registration *reg;
226 
227 	/*
228 	 * Override the putport function.  Our custom function checks for
229 	 * self-references and executes such commands synchronously.
230 	 */
231 	if (netmsg_fwd_port_fn == NULL)
232 		netmsg_fwd_port_fn = port->mp_putport;
233 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
234 	port->mp_putport = netmsg_put_port;
235 
236 	/*
237 	 * Keep track of ports using the netmsg API so we can synchronize
238 	 * certain operations (such as freeing an ifnet structure) across all
239 	 * consumers.
240 	 */
241 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
242 	reg->npr_port = port;
243 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
244 }
245 
246 /*
247  * This function synchronizes the caller with all netmsg services.  For
248  * example, if an interface is being removed we must make sure that all
249  * packets related to that interface complete processing before the structure
250  * can actually be freed.  This sort of synchronization is an alternative to
251  * ref-counting the netif, removing the ref counting overhead in favor of
252  * placing additional overhead in the netif freeing sequence (where it is
253  * inconsequential).
254  */
255 void
256 netmsg_service_sync(void)
257 {
258 	struct netmsg_port_registration *reg;
259 	struct netmsg_base smsg;
260 
261 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler);
262 
263 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
264 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
265 	}
266 }
267 
268 /*
269  * The netmsg function simply replies the message.  API semantics require
270  * EASYNC to be returned if the netmsg function disposes of the message.
271  */
272 void
273 netmsg_sync_handler(netmsg_t msg)
274 {
275 	lwkt_replymsg(&msg->lmsg, 0);
276 }
277 
278 /*
279  * Generic netmsg service loop.  Some protocols may roll their own but all
280  * must do the basic command dispatch function call done here.
281  */
282 static void
283 netmsg_service_loop(void *arg)
284 {
285 	struct netmsg_rollup *ru;
286 	netmsg_base_t msg;
287 	thread_t td = curthread;
288 	int limit;
289 
290 	td->td_type = TD_TYPE_NETISR;
291 
292 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
293 		/*
294 		 * Run up to 512 pending netmsgs.
295 		 */
296 		limit = netisr_rollup_limit;
297 		do {
298 			KASSERT(msg->nm_dispatch != NULL,
299 				("netmsg_service isr %d badmsg",
300 				msg->lmsg.u.ms_result));
301 			/*
302 			 * Don't match so_port, if the msg explicitly
303 			 * asks us to ignore its so_port.
304 			 */
305 			if ((msg->lmsg.ms_flags & MSGF_IGNSOPORT) == 0 &&
306 			    msg->nm_so &&
307 			    msg->nm_so->so_port != &td->td_msgport) {
308 				/*
309 				 * Sockets undergoing connect or disconnect
310 				 * ops can change ports on us.  Chase the
311 				 * port.
312 				 */
313 #ifdef foo
314 				/*
315 				 * This could be quite common for protocols
316 				 * which support asynchronous pru_connect,
317 				 * e.g. TCP, so kprintf socket port chasing
318 				 * could be too verbose for the console.
319 				 */
320 				kprintf("%s: Warning, port changed so=%p\n",
321 					__func__, msg->nm_so);
322 #endif
323 				lwkt_forwardmsg(msg->nm_so->so_port,
324 						&msg->lmsg);
325 			} else {
326 				/*
327 				 * We are on the correct port, dispatch it.
328 				 */
329 				netlastfunc[mycpuid] = msg->nm_dispatch;
330 				msg->nm_dispatch((netmsg_t)msg);
331 			}
332 			if (--limit == 0)
333 				break;
334 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
335 
336 		/*
337 		 * Run all registered rollup functions for this cpu
338 		 * (e.g. tcp_willblock()).
339 		 */
340 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
341 			ru->ru_func();
342 	}
343 }
344 
345 /*
346  * Forward a packet to a netisr service function.
347  *
348  * If the packet has not been assigned to a protocol thread we call
349  * the port characterization function to assign it.  The caller must
350  * clear M_HASH (or not have set it in the first place) if the caller
351  * wishes the packet to be recharacterized.
352  */
353 int
354 netisr_queue(int num, struct mbuf *m)
355 {
356 	struct netisr *ni;
357 	struct netmsg_packet *pmsg;
358 	lwkt_port_t port;
359 
360 	KASSERT((num > 0 && num <= NELEM(netisrs)),
361 		("Bad isr %d", num));
362 
363 	ni = &netisrs[num];
364 	if (ni->ni_handler == NULL) {
365 		kprintf("%s: Unregistered isr %d\n", __func__, num);
366 		m_freem(m);
367 		return (EIO);
368 	}
369 
370 	/*
371 	 * Figure out which protocol thread to send to.  This does not
372 	 * have to be perfect but performance will be really good if it
373 	 * is correct.  Major protocol inputs such as ip_input() will
374 	 * re-characterize the packet as necessary.
375 	 */
376 	if ((m->m_flags & M_HASH) == 0) {
377 		ni->ni_hashfn(&m, 0);
378 		if (m == NULL)
379 			return (EIO);
380 		if ((m->m_flags & M_HASH) == 0) {
381 			kprintf("%s(%d): packet hash failed\n",
382 				__func__, num);
383 			m_freem(m);
384 			return (EIO);
385 		}
386 	}
387 
388 	/*
389 	 * Get the protocol port based on the packet hash, initialize
390 	 * the netmsg, and send it off.
391 	 */
392 	port = netisr_hashport(m->m_pkthdr.hash);
393 	pmsg = &m->m_hdr.mh_netmsg;
394 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
395 		    0, ni->ni_handler);
396 	pmsg->nm_packet = m;
397 	pmsg->base.lmsg.u.ms_result = num;
398 	lwkt_sendmsg(port, &pmsg->base.lmsg);
399 
400 	return (0);
401 }
402 
403 /*
404  * Run a netisr service function on the packet.
405  *
406  * The packet must have been correctly characterized!
407  */
408 int
409 netisr_handle(int num, struct mbuf *m)
410 {
411 	struct netisr *ni;
412 	struct netmsg_packet *pmsg;
413 	lwkt_port_t port;
414 
415 	/*
416 	 * Get the protocol port based on the packet hash
417 	 */
418 	KASSERT((m->m_flags & M_HASH), ("packet not characterized"));
419 	port = netisr_hashport(m->m_pkthdr.hash);
420 	KASSERT(&curthread->td_msgport == port, ("wrong msgport"));
421 
422 	KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num));
423 	ni = &netisrs[num];
424 	if (ni->ni_handler == NULL) {
425 		kprintf("%s: unregistered isr %d\n", __func__, num);
426 		m_freem(m);
427 		return EIO;
428 	}
429 
430 	/*
431 	 * Initialize the netmsg, and run the handler directly.
432 	 */
433 	pmsg = &m->m_hdr.mh_netmsg;
434 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
435 		    0, ni->ni_handler);
436 	pmsg->nm_packet = m;
437 	pmsg->base.lmsg.u.ms_result = num;
438 	ni->ni_handler((netmsg_t)&pmsg->base);
439 
440 	return 0;
441 }
442 
443 /*
444  * Pre-characterization of a deeper portion of the packet for the
445  * requested isr.
446  *
447  * The base of the ISR type (e.g. IP) that we want to characterize is
448  * at (hoff) relative to the beginning of the mbuf.  This allows
449  * e.g. ether_characterize() to not have to adjust the m_data/m_len.
450  */
451 void
452 netisr_characterize(int num, struct mbuf **mp, int hoff)
453 {
454 	struct netisr *ni;
455 	struct mbuf *m;
456 
457 	/*
458 	 * Validation
459 	 */
460 	m = *mp;
461 	KKASSERT(m != NULL);
462 
463 	if (num < 0 || num >= NETISR_MAX) {
464 		if (num == NETISR_MAX) {
465 			m->m_flags |= M_HASH;
466 			m->m_pkthdr.hash = 0;
467 			return;
468 		}
469 		panic("Bad isr %d", num);
470 	}
471 
472 	/*
473 	 * Valid netisr?
474 	 */
475 	ni = &netisrs[num];
476 	if (ni->ni_handler == NULL) {
477 		kprintf("%s: Unregistered isr %d\n", __func__, num);
478 		m_freem(m);
479 		*mp = NULL;
480 	}
481 
482 	/*
483 	 * Characterize the packet
484 	 */
485 	if ((m->m_flags & M_HASH) == 0) {
486 		ni->ni_hashfn(mp, hoff);
487 		m = *mp;
488 		if (m && (m->m_flags & M_HASH) == 0) {
489 			kprintf("%s(%d): packet hash failed\n",
490 				__func__, num);
491 		}
492 	}
493 }
494 
495 void
496 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn)
497 {
498 	struct netisr *ni;
499 
500 	KASSERT((num > 0 && num <= NELEM(netisrs)),
501 		("netisr_register: bad isr %d", num));
502 	KKASSERT(handler != NULL);
503 
504 	if (hashfn == NULL)
505 		hashfn = netisr_hashfn0;
506 
507 	ni = &netisrs[num];
508 
509 	ni->ni_handler = handler;
510 	ni->ni_hashck = netisr_nohashck;
511 	ni->ni_hashfn = hashfn;
512 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
513 }
514 
515 void
516 netisr_register_hashcheck(int num, netisr_hashck_t hashck)
517 {
518 	struct netisr *ni;
519 
520 	KASSERT((num > 0 && num <= NELEM(netisrs)),
521 		("netisr_register: bad isr %d", num));
522 
523 	ni = &netisrs[num];
524 	ni->ni_hashck = hashck;
525 }
526 
527 void
528 netisr_register_rollup(netisr_ru_t ru_func, int prio)
529 {
530 	struct netmsg_rollup *new_ru, *ru;
531 
532 	new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO);
533 	new_ru->ru_func = ru_func;
534 	new_ru->ru_prio = prio;
535 
536 	/*
537 	 * Higher priority "rollup" appears first
538 	 */
539 	TAILQ_FOREACH(ru, &netrulist, ru_entry) {
540 		if (ru->ru_prio < new_ru->ru_prio) {
541 			TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry);
542 			return;
543 		}
544 	}
545 	TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry);
546 }
547 
548 /*
549  * Return a default protocol control message processing thread port
550  */
551 lwkt_port_t
552 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
553     void *extra __unused, int *cpuid)
554 {
555 	*cpuid = 0;
556 	return netisr_cpuport(*cpuid);
557 }
558 
559 /*
560  * This is a default netisr packet characterization function which
561  * sets M_HASH.  If a netisr is registered with a NULL hashfn function
562  * this one is assigned.
563  *
564  * This function makes no attempt to validate the packet.
565  */
566 static void
567 netisr_hashfn0(struct mbuf **mp, int hoff __unused)
568 {
569 	struct mbuf *m = *mp;
570 
571 	m->m_flags |= M_HASH;
572 	m->m_pkthdr.hash = 0;
573 }
574 
575 /*
576  * schednetisr() is used to call the netisr handler from the appropriate
577  * netisr thread for polling and other purposes.
578  *
579  * This function may be called from a hard interrupt or IPI and must be
580  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
581  * trying to allocate one.  We must get ourselves onto the target cpu
582  * to safely check the MSGF_DONE bit on the message but since the message
583  * will be sent to that cpu anyway this does not add any extra work beyond
584  * what lwkt_sendmsg() would have already had to do to schedule the target
585  * thread.
586  */
587 static void
588 schednetisr_remote(void *data)
589 {
590 	int num = (int)(intptr_t)data;
591 	struct netisr *ni = &netisrs[num];
592 	lwkt_port_t port = &netisr_cpu[0]->td_msgport;
593 	netmsg_base_t pmsg;
594 
595 	pmsg = &netisrs[num].ni_netmsg;
596 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
597 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
598 		pmsg->lmsg.u.ms_result = num;
599 		lwkt_sendmsg(port, &pmsg->lmsg);
600 	}
601 }
602 
603 void
604 schednetisr(int num)
605 {
606 	KASSERT((num > 0 && num <= NELEM(netisrs)),
607 		("schednetisr: bad isr %d", num));
608 	KKASSERT(netisrs[num].ni_handler != NULL);
609 	if (mycpu->gd_cpuid != 0) {
610 		lwkt_send_ipiq(globaldata_find(0),
611 			       schednetisr_remote, (void *)(intptr_t)num);
612 	} else {
613 		crit_enter();
614 		schednetisr_remote((void *)(intptr_t)num);
615 		crit_exit();
616 	}
617 }
618 
619 static void
620 netisr_barrier_dispatch(netmsg_t nmsg)
621 {
622 	struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
623 
624 	ATOMIC_CPUMASK_NANDBIT(*msg->br_cpumask, mycpu->gd_cpuid);
625 	if (CPUMASK_TESTZERO(*msg->br_cpumask))
626 		wakeup(msg->br_cpumask);
627 
628 	for (;;) {
629 		uint32_t done = msg->br_done;
630 
631 		cpu_ccfence();
632 		if ((done & NETISR_BR_NOTDONE) == 0)
633 			break;
634 
635 		tsleep_interlock(&msg->br_done, 0);
636 		if (atomic_cmpset_int(&msg->br_done,
637 		    done, done | NETISR_BR_WAITDONE))
638 			tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
639 	}
640 
641 	lwkt_replymsg(&nmsg->lmsg, 0);
642 }
643 
644 struct netisr_barrier *
645 netisr_barrier_create(void)
646 {
647 	struct netisr_barrier *br;
648 
649 	br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
650 	return br;
651 }
652 
653 void
654 netisr_barrier_set(struct netisr_barrier *br)
655 {
656 	volatile cpumask_t other_cpumask;
657 	int i, cur_cpuid;
658 
659 	ASSERT_IN_NETISR(0);
660 	KKASSERT(!br->br_isset);
661 
662 	other_cpumask = mycpu->gd_other_cpus;
663 	CPUMASK_ANDMASK(other_cpumask, smp_active_mask);
664 	cur_cpuid = mycpuid;
665 
666 	for (i = 0; i < ncpus; ++i) {
667 		struct netmsg_barrier *msg;
668 
669 		if (i == cur_cpuid)
670 			continue;
671 
672 		msg = kmalloc(sizeof(struct netmsg_barrier),
673 			      M_LWKTMSG, M_WAITOK);
674 
675 		/*
676 		 * Don't use priority message here; mainly to keep
677 		 * it ordered w/ the previous data packets sent by
678 		 * the caller.
679 		 */
680 		netmsg_init(&msg->base, NULL, &netisr_afree_rport, 0,
681 			    netisr_barrier_dispatch);
682 		msg->br_cpumask = &other_cpumask;
683 		msg->br_done = NETISR_BR_NOTDONE;
684 
685 		KKASSERT(br->br_msgs[i] == NULL);
686 		br->br_msgs[i] = msg;
687 	}
688 
689 	for (i = 0; i < ncpus; ++i) {
690 		if (i == cur_cpuid)
691 			continue;
692 		lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg);
693 	}
694 
695 	while (CPUMASK_TESTNZERO(other_cpumask)) {
696 		tsleep_interlock(&other_cpumask, 0);
697 		if (CPUMASK_TESTNZERO(other_cpumask))
698 			tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
699 	}
700 	br->br_isset = 1;
701 }
702 
703 void
704 netisr_barrier_rem(struct netisr_barrier *br)
705 {
706 	int i, cur_cpuid;
707 
708 	ASSERT_IN_NETISR(0);
709 	KKASSERT(br->br_isset);
710 
711 	cur_cpuid = mycpuid;
712 	for (i = 0; i < ncpus; ++i) {
713 		struct netmsg_barrier *msg = br->br_msgs[i];
714 		uint32_t done;
715 
716 		msg = br->br_msgs[i];
717 		br->br_msgs[i] = NULL;
718 
719 		if (i == cur_cpuid)
720 			continue;
721 
722 		done = atomic_swap_int(&msg->br_done, 0);
723 		if (done & NETISR_BR_WAITDONE)
724 			wakeup(&msg->br_done);
725 	}
726 	br->br_isset = 0;
727 }
728 
729 static void
730 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused)
731 {
732 	m->m_flags &= ~M_HASH;
733 }
734 
735 void
736 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi)
737 {
738 	struct netisr *ni;
739 
740 	if (num < 0 || num >= NETISR_MAX)
741 		panic("Bad isr %d", num);
742 
743 	/*
744 	 * Valid netisr?
745 	 */
746 	ni = &netisrs[num];
747 	if (ni->ni_handler == NULL)
748 		panic("Unregistered isr %d", num);
749 
750 	ni->ni_hashck(m, pi);
751 }
752