1 /* 2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved. 3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved. 4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved. 5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved. 6 * 7 * This code is derived from software contributed to The DragonFly Project 8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon. 9 * 10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright 11 * into this one around July 8 2004. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/msgport.h> 44 #include <sys/proc.h> 45 #include <sys/interrupt.h> 46 #include <sys/socket.h> 47 #include <sys/sysctl.h> 48 #include <sys/socketvar.h> 49 #include <net/if.h> 50 #include <net/if_var.h> 51 #include <net/netisr2.h> 52 #include <machine/cpufunc.h> 53 #include <machine/smp.h> 54 55 #include <sys/thread2.h> 56 #include <sys/msgport2.h> 57 #include <net/netmsg2.h> 58 #include <sys/mplock2.h> 59 60 static void netmsg_service_loop(void *arg); 61 static void netisr_hashfn0(struct mbuf **mp, int hoff); 62 static void netisr_nohashck(struct mbuf *, const struct pktinfo *); 63 64 struct netmsg_port_registration { 65 TAILQ_ENTRY(netmsg_port_registration) npr_entry; 66 lwkt_port_t npr_port; 67 }; 68 69 struct netmsg_rollup { 70 TAILQ_ENTRY(netmsg_rollup) ru_entry; 71 netisr_ru_t ru_func; 72 int ru_prio; 73 }; 74 75 struct netmsg_barrier { 76 struct netmsg_base base; 77 volatile cpumask_t *br_cpumask; 78 volatile uint32_t br_done; 79 }; 80 81 #define NETISR_BR_NOTDONE 0x1 82 #define NETISR_BR_WAITDONE 0x80000000 83 84 struct netisr_barrier { 85 struct netmsg_barrier *br_msgs[MAXCPU]; 86 int br_isset; 87 }; 88 89 void *netlastfunc[MAXCPU]; 90 static struct netisr netisrs[NETISR_MAX]; 91 static TAILQ_HEAD(,netmsg_port_registration) netreglist; 92 static TAILQ_HEAD(,netmsg_rollup) netrulist; 93 94 /* Per-CPU thread to handle any protocol. */ 95 struct thread *netisr_cpu[MAXCPU]; 96 lwkt_port netisr_afree_rport; 97 lwkt_port netisr_afree_free_so_rport; 98 lwkt_port netisr_adone_rport; 99 lwkt_port netisr_apanic_rport; 100 lwkt_port netisr_sync_port; 101 102 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t); 103 104 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr"); 105 static int netisr_rollup_limit = 32; 106 SYSCTL_INT(_net_netisr, OID_AUTO, rollup_limit, CTLFLAG_RW, 107 &netisr_rollup_limit, 0, "Message to process before rollup"); 108 109 110 /* 111 * netisr_afree_rport replymsg function, only used to handle async 112 * messages which the sender has abandoned to their fate. 113 */ 114 static void 115 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg) 116 { 117 kfree(msg, M_LWKTMSG); 118 } 119 120 static void 121 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg) 122 { 123 sofree(((netmsg_t)msg)->base.nm_so); 124 kfree(msg, M_LWKTMSG); 125 } 126 127 /* 128 * We need a custom putport function to handle the case where the 129 * message target is the current thread's message port. This case 130 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS 131 * then turns around and executes a network operation synchronously. 132 * 133 * To prevent deadlocking, we must execute these self-referential messages 134 * synchronously, effectively turning the message into a glorified direct 135 * procedure call back into the protocol stack. The operation must be 136 * complete on return or we will deadlock, so panic if it isn't. 137 * 138 * However, the target function is under no obligation to immediately 139 * reply the message. It may forward it elsewhere. 140 */ 141 static int 142 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg) 143 { 144 netmsg_base_t nmsg = (void *)lmsg; 145 146 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) { 147 nmsg->nm_dispatch((netmsg_t)nmsg); 148 return(EASYNC); 149 } else { 150 return(netmsg_fwd_port_fn(port, lmsg)); 151 } 152 } 153 154 /* 155 * UNIX DOMAIN sockets still have to run their uipc functions synchronously, 156 * because they depend on the user proc context for a number of things 157 * (like creds) which we have not yet incorporated into the message structure. 158 * 159 * However, we maintain or message/port abstraction. Having a special 160 * synchronous port which runs the commands synchronously gives us the 161 * ability to serialize operations in one place later on when we start 162 * removing the BGL. 163 */ 164 static int 165 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg) 166 { 167 netmsg_base_t nmsg = (void *)lmsg; 168 169 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0); 170 171 lmsg->ms_target_port = port; /* required for abort */ 172 nmsg->nm_dispatch((netmsg_t)nmsg); 173 return(EASYNC); 174 } 175 176 static void 177 netisr_init(void) 178 { 179 int i; 180 181 TAILQ_INIT(&netreglist); 182 TAILQ_INIT(&netrulist); 183 184 /* 185 * Create default per-cpu threads for generic protocol handling. 186 */ 187 for (i = 0; i < ncpus; ++i) { 188 lwkt_create(netmsg_service_loop, NULL, &netisr_cpu[i], 189 NULL, 190 TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU, 191 i, "netisr_cpu %d", i); 192 netmsg_service_port_init(&netisr_cpu[i]->td_msgport); 193 lwkt_schedule(netisr_cpu[i]); 194 } 195 196 /* 197 * The netisr_afree_rport is a special reply port which automatically 198 * frees the replied message. The netisr_adone_rport simply marks 199 * the message as being done. The netisr_apanic_rport panics if 200 * the message is replied to. 201 */ 202 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply); 203 lwkt_initport_replyonly(&netisr_afree_free_so_rport, 204 netisr_autofree_free_so_reply); 205 lwkt_initport_replyonly_null(&netisr_adone_rport); 206 lwkt_initport_panic(&netisr_apanic_rport); 207 208 /* 209 * The netisr_syncport is a special port which executes the message 210 * synchronously and waits for it if EASYNC is returned. 211 */ 212 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport); 213 } 214 215 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL); 216 217 /* 218 * Finish initializing the message port for a netmsg service. This also 219 * registers the port for synchronous cleanup operations such as when an 220 * ifnet is being destroyed. There is no deregistration API yet. 221 */ 222 void 223 netmsg_service_port_init(lwkt_port_t port) 224 { 225 struct netmsg_port_registration *reg; 226 227 /* 228 * Override the putport function. Our custom function checks for 229 * self-references and executes such commands synchronously. 230 */ 231 if (netmsg_fwd_port_fn == NULL) 232 netmsg_fwd_port_fn = port->mp_putport; 233 KKASSERT(netmsg_fwd_port_fn == port->mp_putport); 234 port->mp_putport = netmsg_put_port; 235 236 /* 237 * Keep track of ports using the netmsg API so we can synchronize 238 * certain operations (such as freeing an ifnet structure) across all 239 * consumers. 240 */ 241 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO); 242 reg->npr_port = port; 243 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry); 244 } 245 246 /* 247 * This function synchronizes the caller with all netmsg services. For 248 * example, if an interface is being removed we must make sure that all 249 * packets related to that interface complete processing before the structure 250 * can actually be freed. This sort of synchronization is an alternative to 251 * ref-counting the netif, removing the ref counting overhead in favor of 252 * placing additional overhead in the netif freeing sequence (where it is 253 * inconsequential). 254 */ 255 void 256 netmsg_service_sync(void) 257 { 258 struct netmsg_port_registration *reg; 259 struct netmsg_base smsg; 260 261 netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_handler); 262 263 TAILQ_FOREACH(reg, &netreglist, npr_entry) { 264 lwkt_domsg(reg->npr_port, &smsg.lmsg, 0); 265 } 266 } 267 268 /* 269 * The netmsg function simply replies the message. API semantics require 270 * EASYNC to be returned if the netmsg function disposes of the message. 271 */ 272 void 273 netmsg_sync_handler(netmsg_t msg) 274 { 275 lwkt_replymsg(&msg->lmsg, 0); 276 } 277 278 /* 279 * Generic netmsg service loop. Some protocols may roll their own but all 280 * must do the basic command dispatch function call done here. 281 */ 282 static void 283 netmsg_service_loop(void *arg) 284 { 285 struct netmsg_rollup *ru; 286 netmsg_base_t msg; 287 thread_t td = curthread; 288 int limit; 289 290 td->td_type = TD_TYPE_NETISR; 291 292 while ((msg = lwkt_waitport(&td->td_msgport, 0))) { 293 /* 294 * Run up to 512 pending netmsgs. 295 */ 296 limit = netisr_rollup_limit; 297 do { 298 KASSERT(msg->nm_dispatch != NULL, 299 ("netmsg_service isr %d badmsg", 300 msg->lmsg.u.ms_result)); 301 /* 302 * Don't match so_port, if the msg explicitly 303 * asks us to ignore its so_port. 304 */ 305 if ((msg->lmsg.ms_flags & MSGF_IGNSOPORT) == 0 && 306 msg->nm_so && 307 msg->nm_so->so_port != &td->td_msgport) { 308 /* 309 * Sockets undergoing connect or disconnect 310 * ops can change ports on us. Chase the 311 * port. 312 */ 313 #ifdef foo 314 /* 315 * This could be quite common for protocols 316 * which support asynchronous pru_connect, 317 * e.g. TCP, so kprintf socket port chasing 318 * could be too verbose for the console. 319 */ 320 kprintf("%s: Warning, port changed so=%p\n", 321 __func__, msg->nm_so); 322 #endif 323 lwkt_forwardmsg(msg->nm_so->so_port, 324 &msg->lmsg); 325 } else { 326 /* 327 * We are on the correct port, dispatch it. 328 */ 329 netlastfunc[mycpuid] = msg->nm_dispatch; 330 msg->nm_dispatch((netmsg_t)msg); 331 } 332 if (--limit == 0) 333 break; 334 } while ((msg = lwkt_getport(&td->td_msgport)) != NULL); 335 336 /* 337 * Run all registered rollup functions for this cpu 338 * (e.g. tcp_willblock()). 339 */ 340 TAILQ_FOREACH(ru, &netrulist, ru_entry) 341 ru->ru_func(); 342 } 343 } 344 345 /* 346 * Forward a packet to a netisr service function. 347 * 348 * If the packet has not been assigned to a protocol thread we call 349 * the port characterization function to assign it. The caller must 350 * clear M_HASH (or not have set it in the first place) if the caller 351 * wishes the packet to be recharacterized. 352 */ 353 int 354 netisr_queue(int num, struct mbuf *m) 355 { 356 struct netisr *ni; 357 struct netmsg_packet *pmsg; 358 lwkt_port_t port; 359 360 KASSERT((num > 0 && num <= NELEM(netisrs)), 361 ("Bad isr %d", num)); 362 363 ni = &netisrs[num]; 364 if (ni->ni_handler == NULL) { 365 kprintf("%s: Unregistered isr %d\n", __func__, num); 366 m_freem(m); 367 return (EIO); 368 } 369 370 /* 371 * Figure out which protocol thread to send to. This does not 372 * have to be perfect but performance will be really good if it 373 * is correct. Major protocol inputs such as ip_input() will 374 * re-characterize the packet as necessary. 375 */ 376 if ((m->m_flags & M_HASH) == 0) { 377 ni->ni_hashfn(&m, 0); 378 if (m == NULL) 379 return (EIO); 380 if ((m->m_flags & M_HASH) == 0) { 381 kprintf("%s(%d): packet hash failed\n", 382 __func__, num); 383 m_freem(m); 384 return (EIO); 385 } 386 } 387 388 /* 389 * Get the protocol port based on the packet hash, initialize 390 * the netmsg, and send it off. 391 */ 392 port = netisr_hashport(m->m_pkthdr.hash); 393 pmsg = &m->m_hdr.mh_netmsg; 394 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 395 0, ni->ni_handler); 396 pmsg->nm_packet = m; 397 pmsg->base.lmsg.u.ms_result = num; 398 lwkt_sendmsg(port, &pmsg->base.lmsg); 399 400 return (0); 401 } 402 403 /* 404 * Run a netisr service function on the packet. 405 * 406 * The packet must have been correctly characterized! 407 */ 408 int 409 netisr_handle(int num, struct mbuf *m) 410 { 411 struct netisr *ni; 412 struct netmsg_packet *pmsg; 413 lwkt_port_t port; 414 415 /* 416 * Get the protocol port based on the packet hash 417 */ 418 KASSERT((m->m_flags & M_HASH), ("packet not characterized")); 419 port = netisr_hashport(m->m_pkthdr.hash); 420 KASSERT(&curthread->td_msgport == port, ("wrong msgport")); 421 422 KASSERT((num > 0 && num <= NELEM(netisrs)), ("bad isr %d", num)); 423 ni = &netisrs[num]; 424 if (ni->ni_handler == NULL) { 425 kprintf("%s: unregistered isr %d\n", __func__, num); 426 m_freem(m); 427 return EIO; 428 } 429 430 /* 431 * Initialize the netmsg, and run the handler directly. 432 */ 433 pmsg = &m->m_hdr.mh_netmsg; 434 netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport, 435 0, ni->ni_handler); 436 pmsg->nm_packet = m; 437 pmsg->base.lmsg.u.ms_result = num; 438 ni->ni_handler((netmsg_t)&pmsg->base); 439 440 return 0; 441 } 442 443 /* 444 * Pre-characterization of a deeper portion of the packet for the 445 * requested isr. 446 * 447 * The base of the ISR type (e.g. IP) that we want to characterize is 448 * at (hoff) relative to the beginning of the mbuf. This allows 449 * e.g. ether_characterize() to not have to adjust the m_data/m_len. 450 */ 451 void 452 netisr_characterize(int num, struct mbuf **mp, int hoff) 453 { 454 struct netisr *ni; 455 struct mbuf *m; 456 457 /* 458 * Validation 459 */ 460 m = *mp; 461 KKASSERT(m != NULL); 462 463 if (num < 0 || num >= NETISR_MAX) { 464 if (num == NETISR_MAX) { 465 m->m_flags |= M_HASH; 466 m->m_pkthdr.hash = 0; 467 return; 468 } 469 panic("Bad isr %d", num); 470 } 471 472 /* 473 * Valid netisr? 474 */ 475 ni = &netisrs[num]; 476 if (ni->ni_handler == NULL) { 477 kprintf("%s: Unregistered isr %d\n", __func__, num); 478 m_freem(m); 479 *mp = NULL; 480 } 481 482 /* 483 * Characterize the packet 484 */ 485 if ((m->m_flags & M_HASH) == 0) { 486 ni->ni_hashfn(mp, hoff); 487 m = *mp; 488 if (m && (m->m_flags & M_HASH) == 0) { 489 kprintf("%s(%d): packet hash failed\n", 490 __func__, num); 491 } 492 } 493 } 494 495 void 496 netisr_register(int num, netisr_fn_t handler, netisr_hashfn_t hashfn) 497 { 498 struct netisr *ni; 499 500 KASSERT((num > 0 && num <= NELEM(netisrs)), 501 ("netisr_register: bad isr %d", num)); 502 KKASSERT(handler != NULL); 503 504 if (hashfn == NULL) 505 hashfn = netisr_hashfn0; 506 507 ni = &netisrs[num]; 508 509 ni->ni_handler = handler; 510 ni->ni_hashck = netisr_nohashck; 511 ni->ni_hashfn = hashfn; 512 netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL); 513 } 514 515 void 516 netisr_register_hashcheck(int num, netisr_hashck_t hashck) 517 { 518 struct netisr *ni; 519 520 KASSERT((num > 0 && num <= NELEM(netisrs)), 521 ("netisr_register: bad isr %d", num)); 522 523 ni = &netisrs[num]; 524 ni->ni_hashck = hashck; 525 } 526 527 void 528 netisr_register_rollup(netisr_ru_t ru_func, int prio) 529 { 530 struct netmsg_rollup *new_ru, *ru; 531 532 new_ru = kmalloc(sizeof(*new_ru), M_TEMP, M_WAITOK|M_ZERO); 533 new_ru->ru_func = ru_func; 534 new_ru->ru_prio = prio; 535 536 /* 537 * Higher priority "rollup" appears first 538 */ 539 TAILQ_FOREACH(ru, &netrulist, ru_entry) { 540 if (ru->ru_prio < new_ru->ru_prio) { 541 TAILQ_INSERT_BEFORE(ru, new_ru, ru_entry); 542 return; 543 } 544 } 545 TAILQ_INSERT_TAIL(&netrulist, new_ru, ru_entry); 546 } 547 548 /* 549 * Return a default protocol control message processing thread port 550 */ 551 lwkt_port_t 552 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused, 553 void *extra __unused, int *cpuid) 554 { 555 *cpuid = 0; 556 return netisr_cpuport(*cpuid); 557 } 558 559 /* 560 * This is a default netisr packet characterization function which 561 * sets M_HASH. If a netisr is registered with a NULL hashfn function 562 * this one is assigned. 563 * 564 * This function makes no attempt to validate the packet. 565 */ 566 static void 567 netisr_hashfn0(struct mbuf **mp, int hoff __unused) 568 { 569 struct mbuf *m = *mp; 570 571 m->m_flags |= M_HASH; 572 m->m_pkthdr.hash = 0; 573 } 574 575 /* 576 * schednetisr() is used to call the netisr handler from the appropriate 577 * netisr thread for polling and other purposes. 578 * 579 * This function may be called from a hard interrupt or IPI and must be 580 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of 581 * trying to allocate one. We must get ourselves onto the target cpu 582 * to safely check the MSGF_DONE bit on the message but since the message 583 * will be sent to that cpu anyway this does not add any extra work beyond 584 * what lwkt_sendmsg() would have already had to do to schedule the target 585 * thread. 586 */ 587 static void 588 schednetisr_remote(void *data) 589 { 590 int num = (int)(intptr_t)data; 591 struct netisr *ni = &netisrs[num]; 592 lwkt_port_t port = &netisr_cpu[0]->td_msgport; 593 netmsg_base_t pmsg; 594 595 pmsg = &netisrs[num].ni_netmsg; 596 if (pmsg->lmsg.ms_flags & MSGF_DONE) { 597 netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler); 598 pmsg->lmsg.u.ms_result = num; 599 lwkt_sendmsg(port, &pmsg->lmsg); 600 } 601 } 602 603 void 604 schednetisr(int num) 605 { 606 KASSERT((num > 0 && num <= NELEM(netisrs)), 607 ("schednetisr: bad isr %d", num)); 608 KKASSERT(netisrs[num].ni_handler != NULL); 609 if (mycpu->gd_cpuid != 0) { 610 lwkt_send_ipiq(globaldata_find(0), 611 schednetisr_remote, (void *)(intptr_t)num); 612 } else { 613 crit_enter(); 614 schednetisr_remote((void *)(intptr_t)num); 615 crit_exit(); 616 } 617 } 618 619 static void 620 netisr_barrier_dispatch(netmsg_t nmsg) 621 { 622 struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg; 623 624 ATOMIC_CPUMASK_NANDBIT(*msg->br_cpumask, mycpu->gd_cpuid); 625 if (CPUMASK_TESTZERO(*msg->br_cpumask)) 626 wakeup(msg->br_cpumask); 627 628 for (;;) { 629 uint32_t done = msg->br_done; 630 631 cpu_ccfence(); 632 if ((done & NETISR_BR_NOTDONE) == 0) 633 break; 634 635 tsleep_interlock(&msg->br_done, 0); 636 if (atomic_cmpset_int(&msg->br_done, 637 done, done | NETISR_BR_WAITDONE)) 638 tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0); 639 } 640 641 lwkt_replymsg(&nmsg->lmsg, 0); 642 } 643 644 struct netisr_barrier * 645 netisr_barrier_create(void) 646 { 647 struct netisr_barrier *br; 648 649 br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO); 650 return br; 651 } 652 653 void 654 netisr_barrier_set(struct netisr_barrier *br) 655 { 656 volatile cpumask_t other_cpumask; 657 int i, cur_cpuid; 658 659 ASSERT_IN_NETISR(0); 660 KKASSERT(!br->br_isset); 661 662 other_cpumask = mycpu->gd_other_cpus; 663 CPUMASK_ANDMASK(other_cpumask, smp_active_mask); 664 cur_cpuid = mycpuid; 665 666 for (i = 0; i < ncpus; ++i) { 667 struct netmsg_barrier *msg; 668 669 if (i == cur_cpuid) 670 continue; 671 672 msg = kmalloc(sizeof(struct netmsg_barrier), 673 M_LWKTMSG, M_WAITOK); 674 675 /* 676 * Don't use priority message here; mainly to keep 677 * it ordered w/ the previous data packets sent by 678 * the caller. 679 */ 680 netmsg_init(&msg->base, NULL, &netisr_afree_rport, 0, 681 netisr_barrier_dispatch); 682 msg->br_cpumask = &other_cpumask; 683 msg->br_done = NETISR_BR_NOTDONE; 684 685 KKASSERT(br->br_msgs[i] == NULL); 686 br->br_msgs[i] = msg; 687 } 688 689 for (i = 0; i < ncpus; ++i) { 690 if (i == cur_cpuid) 691 continue; 692 lwkt_sendmsg(netisr_cpuport(i), &br->br_msgs[i]->base.lmsg); 693 } 694 695 while (CPUMASK_TESTNZERO(other_cpumask)) { 696 tsleep_interlock(&other_cpumask, 0); 697 if (CPUMASK_TESTNZERO(other_cpumask)) 698 tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0); 699 } 700 br->br_isset = 1; 701 } 702 703 void 704 netisr_barrier_rem(struct netisr_barrier *br) 705 { 706 int i, cur_cpuid; 707 708 ASSERT_IN_NETISR(0); 709 KKASSERT(br->br_isset); 710 711 cur_cpuid = mycpuid; 712 for (i = 0; i < ncpus; ++i) { 713 struct netmsg_barrier *msg = br->br_msgs[i]; 714 uint32_t done; 715 716 msg = br->br_msgs[i]; 717 br->br_msgs[i] = NULL; 718 719 if (i == cur_cpuid) 720 continue; 721 722 done = atomic_swap_int(&msg->br_done, 0); 723 if (done & NETISR_BR_WAITDONE) 724 wakeup(&msg->br_done); 725 } 726 br->br_isset = 0; 727 } 728 729 static void 730 netisr_nohashck(struct mbuf *m, const struct pktinfo *pi __unused) 731 { 732 m->m_flags &= ~M_HASH; 733 } 734 735 void 736 netisr_hashcheck(int num, struct mbuf *m, const struct pktinfo *pi) 737 { 738 struct netisr *ni; 739 740 if (num < 0 || num >= NETISR_MAX) 741 panic("Bad isr %d", num); 742 743 /* 744 * Valid netisr? 745 */ 746 ni = &netisrs[num]; 747 if (ni->ni_handler == NULL) 748 panic("Unregistered isr %d", num); 749 750 ni->ni_hashck(m, pi); 751 } 752