xref: /dragonfly/sys/net/netisr.c (revision fcf53d9b)
1 /*
2  * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
4  * Copyright (c) 2003 Jonathan Lemon.  All rights reserved.
5  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
9  *
10  * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11  * into this one around July 8 2004.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/msgport.h>
44 #include <sys/proc.h>
45 #include <sys/interrupt.h>
46 #include <sys/socket.h>
47 #include <sys/sysctl.h>
48 #include <sys/socketvar.h>
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/netisr.h>
52 #include <machine/cpufunc.h>
53 #include <machine/smp.h>
54 
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
58 #include <sys/mplock2.h>
59 
60 static void netmsg_sync_func(netmsg_t msg);
61 static void netmsg_service_loop(void *arg);
62 static void cpu0_cpufn(struct mbuf **mp, int hoff);
63 
64 struct netmsg_port_registration {
65 	TAILQ_ENTRY(netmsg_port_registration) npr_entry;
66 	lwkt_port_t	npr_port;
67 };
68 
69 struct netmsg_rollup {
70 	TAILQ_ENTRY(netmsg_rollup) ru_entry;
71 	netisr_ru_t	ru_func;
72 };
73 
74 struct netmsg_barrier {
75 	struct netmsg_base	base;
76 	volatile cpumask_t	*br_cpumask;
77 	volatile uint32_t	br_done;
78 };
79 
80 #define NETISR_BR_NOTDONE	0x1
81 #define NETISR_BR_WAITDONE	0x80000000
82 
83 struct netisr_barrier {
84 	struct netmsg_barrier	*br_msgs[MAXCPU];
85 	int			br_isset;
86 };
87 
88 static struct netisr netisrs[NETISR_MAX];
89 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
90 static TAILQ_HEAD(,netmsg_rollup) netrulist;
91 
92 /* Per-CPU thread to handle any protocol.  */
93 static struct thread netisr_cpu[MAXCPU];
94 lwkt_port netisr_afree_rport;
95 lwkt_port netisr_afree_free_so_rport;
96 lwkt_port netisr_adone_rport;
97 lwkt_port netisr_apanic_rport;
98 lwkt_port netisr_sync_port;
99 
100 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
101 
102 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
103 
104 /*
105  * netisr_afree_rport replymsg function, only used to handle async
106  * messages which the sender has abandoned to their fate.
107  */
108 static void
109 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
110 {
111 	kfree(msg, M_LWKTMSG);
112 }
113 
114 static void
115 netisr_autofree_free_so_reply(lwkt_port_t port, lwkt_msg_t msg)
116 {
117 	sofree(((netmsg_t)msg)->base.nm_so);
118 	kfree(msg, M_LWKTMSG);
119 }
120 
121 /*
122  * We need a custom putport function to handle the case where the
123  * message target is the current thread's message port.  This case
124  * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
125  * then turns around and executes a network operation synchronously.
126  *
127  * To prevent deadlocking, we must execute these self-referential messages
128  * synchronously, effectively turning the message into a glorified direct
129  * procedure call back into the protocol stack.  The operation must be
130  * complete on return or we will deadlock, so panic if it isn't.
131  *
132  * However, the target function is under no obligation to immediately
133  * reply the message.  It may forward it elsewhere.
134  */
135 static int
136 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
137 {
138 	netmsg_base_t nmsg = (void *)lmsg;
139 
140 	if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
141 		nmsg->nm_dispatch((netmsg_t)nmsg);
142 		return(EASYNC);
143 	} else {
144 		return(netmsg_fwd_port_fn(port, lmsg));
145 	}
146 }
147 
148 /*
149  * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
150  * because they depend on the user proc context for a number of things
151  * (like creds) which we have not yet incorporated into the message structure.
152  *
153  * However, we maintain or message/port abstraction.  Having a special
154  * synchronous port which runs the commands synchronously gives us the
155  * ability to serialize operations in one place later on when we start
156  * removing the BGL.
157  */
158 static int
159 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
160 {
161 	netmsg_base_t nmsg = (void *)lmsg;
162 
163 	KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
164 
165 	lmsg->ms_target_port = port;	/* required for abort */
166 	nmsg->nm_dispatch((netmsg_t)nmsg);
167 	return(EASYNC);
168 }
169 
170 static void
171 netisr_init(void)
172 {
173 	int i;
174 
175 	TAILQ_INIT(&netreglist);
176 	TAILQ_INIT(&netrulist);
177 
178 	/*
179 	 * Create default per-cpu threads for generic protocol handling.
180 	 */
181 	for (i = 0; i < ncpus; ++i) {
182 		lwkt_create(netmsg_service_loop, NULL, NULL,
183 			    &netisr_cpu[i], TDF_STOPREQ, i,
184 			    "netisr_cpu %d", i);
185 		netmsg_service_port_init(&netisr_cpu[i].td_msgport);
186 		lwkt_schedule(&netisr_cpu[i]);
187 	}
188 
189 	/*
190 	 * The netisr_afree_rport is a special reply port which automatically
191 	 * frees the replied message.  The netisr_adone_rport simply marks
192 	 * the message as being done.  The netisr_apanic_rport panics if
193 	 * the message is replied to.
194 	 */
195 	lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
196 	lwkt_initport_replyonly(&netisr_afree_free_so_rport,
197 				netisr_autofree_free_so_reply);
198 	lwkt_initport_replyonly_null(&netisr_adone_rport);
199 	lwkt_initport_panic(&netisr_apanic_rport);
200 
201 	/*
202 	 * The netisr_syncport is a special port which executes the message
203 	 * synchronously and waits for it if EASYNC is returned.
204 	 */
205 	lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
206 }
207 
208 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
209 
210 /*
211  * Finish initializing the message port for a netmsg service.  This also
212  * registers the port for synchronous cleanup operations such as when an
213  * ifnet is being destroyed.  There is no deregistration API yet.
214  */
215 void
216 netmsg_service_port_init(lwkt_port_t port)
217 {
218 	struct netmsg_port_registration *reg;
219 
220 	/*
221 	 * Override the putport function.  Our custom function checks for
222 	 * self-references and executes such commands synchronously.
223 	 */
224 	if (netmsg_fwd_port_fn == NULL)
225 		netmsg_fwd_port_fn = port->mp_putport;
226 	KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
227 	port->mp_putport = netmsg_put_port;
228 
229 	/*
230 	 * Keep track of ports using the netmsg API so we can synchronize
231 	 * certain operations (such as freeing an ifnet structure) across all
232 	 * consumers.
233 	 */
234 	reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
235 	reg->npr_port = port;
236 	TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
237 }
238 
239 /*
240  * This function synchronizes the caller with all netmsg services.  For
241  * example, if an interface is being removed we must make sure that all
242  * packets related to that interface complete processing before the structure
243  * can actually be freed.  This sort of synchronization is an alternative to
244  * ref-counting the netif, removing the ref counting overhead in favor of
245  * placing additional overhead in the netif freeing sequence (where it is
246  * inconsequential).
247  */
248 void
249 netmsg_service_sync(void)
250 {
251 	struct netmsg_port_registration *reg;
252 	struct netmsg_base smsg;
253 
254 	netmsg_init(&smsg, NULL, &curthread->td_msgport, 0, netmsg_sync_func);
255 
256 	TAILQ_FOREACH(reg, &netreglist, npr_entry) {
257 		lwkt_domsg(reg->npr_port, &smsg.lmsg, 0);
258 	}
259 }
260 
261 /*
262  * The netmsg function simply replies the message.  API semantics require
263  * EASYNC to be returned if the netmsg function disposes of the message.
264  */
265 static void
266 netmsg_sync_func(netmsg_t msg)
267 {
268 	lwkt_replymsg(&msg->lmsg, 0);
269 }
270 
271 /*
272  * Generic netmsg service loop.  Some protocols may roll their own but all
273  * must do the basic command dispatch function call done here.
274  */
275 static void
276 netmsg_service_loop(void *arg)
277 {
278 	struct netmsg_rollup *ru;
279 	netmsg_base_t msg;
280 	thread_t td = curthread;;
281 	int limit;
282 
283 	while ((msg = lwkt_waitport(&td->td_msgport, 0))) {
284 		/*
285 		 * Run up to 512 pending netmsgs.
286 		 */
287 		limit = 512;
288 		do {
289 			KASSERT(msg->nm_dispatch != NULL,
290 				("netmsg_service isr %d badmsg\n",
291 				msg->lmsg.u.ms_result));
292 			if (msg->nm_so &&
293 			    msg->nm_so->so_port != &td->td_msgport) {
294 				/*
295 				 * Sockets undergoing connect or disconnect
296 				 * ops can change ports on us.  Chase the
297 				 * port.
298 				 */
299 				kprintf("netmsg_service_loop: Warning, "
300 					"port changed so=%p\n", msg->nm_so);
301 				lwkt_forwardmsg(msg->nm_so->so_port,
302 						&msg->lmsg);
303 			} else {
304 				/*
305 				 * We are on the correct port, dispatch it.
306 				 */
307 				msg->nm_dispatch((netmsg_t)msg);
308 			}
309 			if (--limit == 0)
310 				break;
311 		} while ((msg = lwkt_getport(&td->td_msgport)) != NULL);
312 
313 		/*
314 		 * Run all registered rollup functions for this cpu
315 		 * (e.g. tcp_willblock()).
316 		 */
317 		TAILQ_FOREACH(ru, &netrulist, ru_entry)
318 			ru->ru_func();
319 	}
320 }
321 
322 /*
323  * Forward a packet to a netisr service function.
324  *
325  * If the packet has not been assigned to a protocol thread we call
326  * the port characterization function to assign it.  The caller must
327  * clear M_HASH (or not have set it in the first place) if the caller
328  * wishes the packet to be recharacterized.
329  */
330 int
331 netisr_queue(int num, struct mbuf *m)
332 {
333 	struct netisr *ni;
334 	struct netmsg_packet *pmsg;
335 	lwkt_port_t port;
336 
337 	KASSERT((num > 0 && num <= NELEM(netisrs)),
338 		("Bad isr %d", num));
339 
340 	ni = &netisrs[num];
341 	if (ni->ni_handler == NULL) {
342 		kprintf("Unregistered isr %d\n", num);
343 		m_freem(m);
344 		return (EIO);
345 	}
346 
347 	/*
348 	 * Figure out which protocol thread to send to.  This does not
349 	 * have to be perfect but performance will be really good if it
350 	 * is correct.  Major protocol inputs such as ip_input() will
351 	 * re-characterize the packet as necessary.
352 	 */
353 	if ((m->m_flags & M_HASH) == 0) {
354 		ni->ni_cpufn(&m, 0);
355 		if (m == NULL) {
356 			m_freem(m);
357 			return (EIO);
358 		}
359 		if ((m->m_flags & M_HASH) == 0) {
360 			kprintf("netisr_queue(%d): packet hash failed\n", num);
361 			m_freem(m);
362 			return (EIO);
363 		}
364 	}
365 
366 	/*
367 	 * Get the protocol port based on the packet hash, initialize
368 	 * the netmsg, and send it off.
369 	 */
370 	port = cpu_portfn(m->m_pkthdr.hash);
371 	pmsg = &m->m_hdr.mh_netmsg;
372 	netmsg_init(&pmsg->base, NULL, &netisr_apanic_rport,
373 		    0, ni->ni_handler);
374 	pmsg->nm_packet = m;
375 	pmsg->base.lmsg.u.ms_result = num;
376 	lwkt_sendmsg(port, &pmsg->base.lmsg);
377 
378 	return (0);
379 }
380 
381 /*
382  * Pre-characterization of a deeper portion of the packet for the
383  * requested isr.
384  *
385  * The base of the ISR type (e.g. IP) that we want to characterize is
386  * at (hoff) relative to the beginning of the mbuf.  This allows
387  * e.g. ether_input_chain() to not have to adjust the m_data/m_len.
388  */
389 void
390 netisr_characterize(int num, struct mbuf **mp, int hoff)
391 {
392 	struct netisr *ni;
393 	struct mbuf *m;
394 
395 	/*
396 	 * Validation
397 	 */
398 	m = *mp;
399 	KKASSERT(m != NULL);
400 
401 	if (num < 0 || num >= NETISR_MAX) {
402 		if (num == NETISR_MAX) {
403 			m->m_flags |= M_HASH;
404 			m->m_pkthdr.hash = 0;
405 			return;
406 		}
407 		panic("Bad isr %d", num);
408 	}
409 
410 	/*
411 	 * Valid netisr?
412 	 */
413 	ni = &netisrs[num];
414 	if (ni->ni_handler == NULL) {
415 		kprintf("Unregistered isr %d\n", num);
416 		m_freem(m);
417 		*mp = NULL;
418 	}
419 
420 	/*
421 	 * Characterize the packet
422 	 */
423 	if ((m->m_flags & M_HASH) == 0) {
424 		ni->ni_cpufn(mp, hoff);
425 		m = *mp;
426 		if (m && (m->m_flags & M_HASH) == 0)
427 			kprintf("netisr_queue(%d): packet hash failed\n", num);
428 	}
429 }
430 
431 void
432 netisr_register(int num, netisr_fn_t handler, netisr_cpufn_t cpufn)
433 {
434 	struct netisr *ni;
435 
436 	KASSERT((num > 0 && num <= NELEM(netisrs)),
437 		("netisr_register: bad isr %d", num));
438 	KKASSERT(handler != NULL);
439 
440 	if (cpufn == NULL)
441 		cpufn = cpu0_cpufn;
442 
443 	ni = &netisrs[num];
444 
445 	ni->ni_handler = handler;
446 	ni->ni_cpufn = cpufn;
447 	netmsg_init(&ni->ni_netmsg, NULL, &netisr_adone_rport, 0, NULL);
448 }
449 
450 void
451 netisr_register_rollup(netisr_ru_t ru_func)
452 {
453 	struct netmsg_rollup *ru;
454 
455 	ru = kmalloc(sizeof(*ru), M_TEMP, M_WAITOK|M_ZERO);
456 	ru->ru_func = ru_func;
457 	TAILQ_INSERT_TAIL(&netrulist, ru, ru_entry);
458 }
459 
460 /*
461  * Return the message port for the general protocol message servicing
462  * thread for a particular cpu.
463  */
464 lwkt_port_t
465 cpu_portfn(int cpu)
466 {
467 	KKASSERT(cpu >= 0 && cpu < ncpus);
468 	return (&netisr_cpu[cpu].td_msgport);
469 }
470 
471 /*
472  * Return the current cpu's network protocol thread.
473  */
474 lwkt_port_t
475 cur_netport(void)
476 {
477 	return(cpu_portfn(mycpu->gd_cpuid));
478 }
479 
480 /*
481  * Return a default protocol control message processing thread port
482  */
483 lwkt_port_t
484 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
485 	     void *extra __unused)
486 {
487 	return (&netisr_cpu[0].td_msgport);
488 }
489 
490 /*
491  * This is a default netisr packet characterization function which
492  * sets M_HASH.  If a netisr is registered with a NULL cpufn function
493  * this one is assigned.
494  *
495  * This function makes no attempt to validate the packet.
496  */
497 static void
498 cpu0_cpufn(struct mbuf **mp, int hoff __unused)
499 {
500 	struct mbuf *m = *mp;
501 
502 	m->m_flags |= M_HASH;
503 	m->m_pkthdr.hash = 0;
504 }
505 
506 /*
507  * schednetisr() is used to call the netisr handler from the appropriate
508  * netisr thread for polling and other purposes.
509  *
510  * This function may be called from a hard interrupt or IPI and must be
511  * MP SAFE and non-blocking.  We use a fixed per-cpu message instead of
512  * trying to allocate one.  We must get ourselves onto the target cpu
513  * to safely check the MSGF_DONE bit on the message but since the message
514  * will be sent to that cpu anyway this does not add any extra work beyond
515  * what lwkt_sendmsg() would have already had to do to schedule the target
516  * thread.
517  */
518 static void
519 schednetisr_remote(void *data)
520 {
521 	int num = (int)(intptr_t)data;
522 	struct netisr *ni = &netisrs[num];
523 	lwkt_port_t port = &netisr_cpu[0].td_msgport;
524 	netmsg_base_t pmsg;
525 
526 	pmsg = &netisrs[num].ni_netmsg;
527 	if (pmsg->lmsg.ms_flags & MSGF_DONE) {
528 		netmsg_init(pmsg, NULL, &netisr_adone_rport, 0, ni->ni_handler);
529 		pmsg->lmsg.u.ms_result = num;
530 		lwkt_sendmsg(port, &pmsg->lmsg);
531 	}
532 }
533 
534 void
535 schednetisr(int num)
536 {
537 	KASSERT((num > 0 && num <= NELEM(netisrs)),
538 		("schednetisr: bad isr %d", num));
539 	KKASSERT(netisrs[num].ni_handler != NULL);
540 #ifdef SMP
541 	if (mycpu->gd_cpuid != 0) {
542 		lwkt_send_ipiq(globaldata_find(0),
543 			       schednetisr_remote, (void *)(intptr_t)num);
544 	} else {
545 		crit_enter();
546 		schednetisr_remote((void *)(intptr_t)num);
547 		crit_exit();
548 	}
549 #else
550 	crit_enter();
551 	schednetisr_remote((void *)(intptr_t)num);
552 	crit_exit();
553 #endif
554 }
555 
556 #ifdef SMP
557 
558 static void
559 netisr_barrier_dispatch(netmsg_t nmsg)
560 {
561 	struct netmsg_barrier *msg = (struct netmsg_barrier *)nmsg;
562 
563 	atomic_clear_cpumask(msg->br_cpumask, mycpu->gd_cpumask);
564 	if (*msg->br_cpumask == 0)
565 		wakeup(msg->br_cpumask);
566 
567 	for (;;) {
568 		uint32_t done = msg->br_done;
569 
570 		cpu_ccfence();
571 		if ((done & NETISR_BR_NOTDONE) == 0)
572 			break;
573 
574 		tsleep_interlock(&msg->br_done, 0);
575 		if (atomic_cmpset_int(&msg->br_done,
576 		    done, done | NETISR_BR_WAITDONE))
577 			tsleep(&msg->br_done, PINTERLOCKED, "nbrdsp", 0);
578 	}
579 
580 	lwkt_replymsg(&nmsg->lmsg, 0);
581 }
582 
583 #endif
584 
585 struct netisr_barrier *
586 netisr_barrier_create(void)
587 {
588 	struct netisr_barrier *br;
589 
590 	br = kmalloc(sizeof(*br), M_LWKTMSG, M_WAITOK | M_ZERO);
591 	return br;
592 }
593 
594 void
595 netisr_barrier_set(struct netisr_barrier *br)
596 {
597 #ifdef SMP
598 	volatile cpumask_t other_cpumask;
599 	int i, cur_cpuid;
600 
601 	KKASSERT(&curthread->td_msgport == cpu_portfn(0));
602 	KKASSERT(!br->br_isset);
603 
604 	other_cpumask = mycpu->gd_other_cpus & smp_active_mask;
605 	cur_cpuid = mycpuid;
606 
607 	for (i = 0; i < ncpus; ++i) {
608 		struct netmsg_barrier *msg;
609 
610 		if (i == cur_cpuid)
611 			continue;
612 
613 		msg = kmalloc(sizeof(struct netmsg_barrier),
614 			      M_LWKTMSG, M_WAITOK);
615 		netmsg_init(&msg->base, NULL, &netisr_afree_rport,
616 			    MSGF_PRIORITY, netisr_barrier_dispatch);
617 		msg->br_cpumask = &other_cpumask;
618 		msg->br_done = NETISR_BR_NOTDONE;
619 
620 		KKASSERT(br->br_msgs[i] == NULL);
621 		br->br_msgs[i] = msg;
622 	}
623 
624 	for (i = 0; i < ncpus; ++i) {
625 		if (i == cur_cpuid)
626 			continue;
627 		lwkt_sendmsg(cpu_portfn(i), &br->br_msgs[i]->base.lmsg);
628 	}
629 
630 	while (other_cpumask != 0) {
631 		tsleep_interlock(&other_cpumask, 0);
632 		if (other_cpumask != 0)
633 			tsleep(&other_cpumask, PINTERLOCKED, "nbrset", 0);
634 	}
635 #endif
636 	br->br_isset = 1;
637 }
638 
639 void
640 netisr_barrier_rem(struct netisr_barrier *br)
641 {
642 #ifdef SMP
643 	int i, cur_cpuid;
644 
645 	KKASSERT(&curthread->td_msgport == cpu_portfn(0));
646 	KKASSERT(br->br_isset);
647 
648 	cur_cpuid = mycpuid;
649 	for (i = 0; i < ncpus; ++i) {
650 		struct netmsg_barrier *msg = br->br_msgs[i];
651 		uint32_t done;
652 
653 		msg = br->br_msgs[i];
654 		br->br_msgs[i] = NULL;
655 
656 		if (i == cur_cpuid)
657 			continue;
658 
659 		done = atomic_swap_int(&msg->br_done, 0);
660 		if (done & NETISR_BR_WAITDONE)
661 			wakeup(&msg->br_done);
662 	}
663 #endif
664 	br->br_isset = 0;
665 }
666