1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2019, Joyent, Inc.
25 * Copyright 2016 Toomas Soome <tsoome@me.com>
26 * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
27 * Copyright 2016 Nexenta Systems, Inc.
28 * Copyright 2017 RackTop Systems.
29 * Copyright 2024 Oxide Computer Company
30 */
31
32 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
33 /* All Rights Reserved */
34
35 /*
36 * University Copyright- Copyright (c) 1982, 1986, 1988
37 * The Regents of the University of California
38 * All Rights Reserved
39 *
40 * University Acknowledgment- Portions of this document are derived from
41 * software developed by the University of California, Berkeley, and its
42 * contributors.
43 */
44
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/errno.h>
49 #include <sys/user.h>
50 #include <sys/fstyp.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/vfs.h>
56 #include <sys/vfs_opreg.h>
57 #include <sys/fem.h>
58 #include <sys/mntent.h>
59 #include <sys/stat.h>
60 #include <sys/statvfs.h>
61 #include <sys/statfs.h>
62 #include <sys/cred.h>
63 #include <sys/vnode.h>
64 #include <sys/rwstlock.h>
65 #include <sys/dnlc.h>
66 #include <sys/file.h>
67 #include <sys/time.h>
68 #include <sys/atomic.h>
69 #include <sys/cmn_err.h>
70 #include <sys/buf.h>
71 #include <sys/swap.h>
72 #include <sys/debug.h>
73 #include <sys/vnode.h>
74 #include <sys/modctl.h>
75 #include <sys/ddi.h>
76 #include <sys/pathname.h>
77 #include <sys/bootconf.h>
78 #include <sys/dumphdr.h>
79 #include <sys/dc_ki.h>
80 #include <sys/poll.h>
81 #include <sys/sunddi.h>
82 #include <sys/sysmacros.h>
83 #include <sys/zone.h>
84 #include <sys/policy.h>
85 #include <sys/ctfs.h>
86 #include <sys/objfs.h>
87 #include <sys/console.h>
88 #include <sys/reboot.h>
89 #include <sys/attr.h>
90 #include <sys/zio.h>
91 #include <sys/spa.h>
92 #include <sys/lofi.h>
93 #include <sys/bootprops.h>
94
95 #include <vm/page.h>
96
97 #include <fs/fs_subr.h>
98 /* Private interfaces to create vopstats-related data structures */
99 extern void initialize_vopstats(vopstats_t *);
100 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
101 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
102
103 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
104 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
105 const char *, int, int);
106 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
107 static void vfs_freemnttab(struct vfs *);
108 static void vfs_freeopt(mntopt_t *);
109 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
110 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
111 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
112 static void vfs_createopttbl_extend(mntopts_t *, const char *,
113 const mntopts_t *);
114 static char **vfs_copycancelopt_extend(char **const, int);
115 static void vfs_freecancelopt(char **);
116 static void getrootfs(char **, char **);
117 static int getmacpath(dev_info_t *, void *);
118 static void vfs_mnttabvp_setup(void);
119
120 struct ipmnt {
121 struct ipmnt *mip_next;
122 dev_t mip_dev;
123 struct vfs *mip_vfsp;
124 };
125
126 static kmutex_t vfs_miplist_mutex;
127 static struct ipmnt *vfs_miplist = NULL;
128 static struct ipmnt *vfs_miplist_end = NULL;
129
130 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
131
132 /*
133 * VFS global data.
134 */
135 vnode_t *rootdir; /* pointer to root inode vnode. */
136 vnode_t *devicesdir; /* pointer to inode of devices root */
137 vnode_t *devdir; /* pointer to inode of dev root */
138
139 char *server_rootpath; /* root path for diskless clients */
140 char *server_hostname; /* hostname of diskless server */
141
142 static struct vfs root;
143 static struct vfs devices;
144 static struct vfs dev;
145 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
146 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
147 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
148 /* must be power of 2! */
149 timespec_t vfs_mnttab_ctime; /* mnttab created time */
150 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
151 char *vfs_dummyfstype = "\0";
152 struct pollhead vfs_pollhd; /* for mnttab pollers */
153 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
154 int mntfstype; /* will be set once mnt fs is mounted */
155
156 /*
157 * Table for generic options recognized in the VFS layer and acted
158 * on at this level before parsing file system specific options.
159 * The nosuid option is stronger than any of the devices and setuid
160 * options, so those are canceled when nosuid is seen.
161 *
162 * All options which are added here need to be added to the
163 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
164 */
165 /*
166 * VFS Mount options table
167 */
168 static char *ro_cancel[] = { MNTOPT_RW, NULL };
169 static char *rw_cancel[] = { MNTOPT_RO, NULL };
170 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
171 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
172 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
173 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
174 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
175 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
176 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
177 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
178 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
179 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
180 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
181
182 static const mntopt_t mntopts[] = {
183 /*
184 * option name cancel options default arg flags
185 */
186 { MNTOPT_REMOUNT, NULL, NULL,
187 MO_NODISPLAY, (void *)0 },
188 { MNTOPT_RO, ro_cancel, NULL, 0,
189 (void *)0 },
190 { MNTOPT_RW, rw_cancel, NULL, 0,
191 (void *)0 },
192 { MNTOPT_SUID, suid_cancel, NULL, 0,
193 (void *)0 },
194 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
195 (void *)0 },
196 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
197 (void *)0 },
198 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
199 (void *)0 },
200 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
201 (void *)0 },
202 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
203 (void *)0 },
204 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
205 (void *)0 },
206 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
207 (void *)0 },
208 { MNTOPT_EXEC, exec_cancel, NULL, 0,
209 (void *)0 },
210 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
211 (void *)0 },
212 };
213
214 const mntopts_t vfs_mntopts = {
215 sizeof (mntopts) / sizeof (mntopt_t),
216 (mntopt_t *)&mntopts[0]
217 };
218
219 /*
220 * File system operation dispatch functions.
221 */
222
223 int
fsop_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)224 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
225 {
226 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
227 }
228
229 int
fsop_unmount(vfs_t * vfsp,int flag,cred_t * cr)230 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
231 {
232 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
233 }
234
235 int
fsop_root(vfs_t * vfsp,vnode_t ** vpp)236 fsop_root(vfs_t *vfsp, vnode_t **vpp)
237 {
238 refstr_t *mntpt;
239 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
240 /*
241 * Make sure this root has a path. With lofs, it is possible to have
242 * a NULL mountpoint.
243 */
244 if (ret == 0 && vfsp->vfs_mntpt != NULL &&
245 (*vpp)->v_path == vn_vpath_empty) {
246 const char *path;
247
248 mntpt = vfs_getmntpoint(vfsp);
249 path = refstr_value(mntpt);
250 vn_setpath_str(*vpp, path, strlen(path));
251 refstr_rele(mntpt);
252 }
253
254 return (ret);
255 }
256
257 int
fsop_statfs(vfs_t * vfsp,statvfs64_t * sp)258 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
259 {
260 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
261 }
262
263 int
fsop_sync(vfs_t * vfsp,short flag,cred_t * cr)264 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
265 {
266 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
267 }
268
269 int
fsop_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)270 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
271 {
272 /*
273 * In order to handle system attribute fids in a manner
274 * transparent to the underlying fs, we embed the fid for
275 * the sysattr parent object in the sysattr fid and tack on
276 * some extra bytes that only the sysattr layer knows about.
277 *
278 * This guarantees that sysattr fids are larger than other fids
279 * for this vfs. If the vfs supports the sysattr view interface
280 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
281 * collision with XATTR_FIDSZ.
282 */
283 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
284 fidp->fid_len == XATTR_FIDSZ)
285 return (xattr_dir_vget(vfsp, vpp, fidp));
286
287 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
288 }
289
290 int
fsop_mountroot(vfs_t * vfsp,enum whymountroot reason)291 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
292 {
293 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
294 }
295
296 void
fsop_freefs(vfs_t * vfsp)297 fsop_freefs(vfs_t *vfsp)
298 {
299 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
300 }
301
302 int
fsop_vnstate(vfs_t * vfsp,vnode_t * vp,vntrans_t nstate)303 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
304 {
305 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
306 }
307
308 int
fsop_sync_by_kind(int fstype,short flag,cred_t * cr)309 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
310 {
311 ASSERT((fstype >= 0) && (fstype < nfstype));
312
313 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
314 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
315 else
316 return (ENOTSUP);
317 }
318
319 int
fsop_syncfs(vfs_t * vfsp,uint64_t flags,cred_t * cr)320 fsop_syncfs(vfs_t *vfsp, uint64_t flags, cred_t *cr)
321 {
322 return (*(vfsp)->vfs_op->vfs_syncfs)(vfsp, flags, cr);
323 }
324
325 /*
326 * File system initialization. vfs_setfsops() must be called from a file
327 * system's init routine.
328 */
329
330 static int
fs_copyfsops(const fs_operation_def_t * template,vfsops_t * actual,int * unused_ops)331 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
332 int *unused_ops)
333 {
334 static const fs_operation_trans_def_t vfs_ops_table[] = {
335 { VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
336 fs_nosys, fs_nosys },
337
338 { VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
339 fs_nosys, fs_nosys },
340
341 { VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
342 fs_nosys, fs_nosys },
343
344 { VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
345 fs_nosys, fs_nosys },
346
347 { VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
348 (fs_generic_func_p) fs_sync,
349 (fs_generic_func_p) fs_sync }, /* No errors allowed */
350
351 { VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
352 fs_nosys, fs_nosys },
353
354 { VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
355 fs_nosys, fs_nosys },
356
357 { VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
358 (fs_generic_func_p)(uintptr_t)fs_freevfs,
359 /* Shouldn't fail */
360 (fs_generic_func_p)(uintptr_t)fs_freevfs },
361
362 { VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
363 (fs_generic_func_p)fs_nosys, (fs_generic_func_p)fs_nosys },
364
365 /*
366 * While it is tempting to say that a file system which does not
367 * implement a VFSNAME_SYNC likely doesn't need a VFSNAME_SYNCFS
368 * by default, implementing that policy is challenging with the
369 * way the fs_build_vector logic works and we'd rather a file
370 * system say that it doesn't support this by default rather
371 * than incorrectly claim to sync something that either doesn't
372 * make sense to sync (ala sockfs) or mislead when it didn't
373 * happen.
374 */
375 { VFSNAME_SYNCFS, offsetof(vfsops_t, vfs_syncfs),
376 (fs_generic_func_p)fs_nosys_syncfs,
377 (fs_generic_func_p)fs_nosys_syncfs },
378
379 { NULL, 0, NULL, NULL }
380 };
381
382 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
383 }
384
385 void
zfs_boot_init(void)386 zfs_boot_init(void)
387 {
388 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
389 spa_boot_init();
390 }
391
392 int
vfs_setfsops(int fstype,const fs_operation_def_t * template,vfsops_t ** actual)393 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
394 {
395 int error;
396 int unused_ops;
397
398 /*
399 * Verify that fstype refers to a valid fs. Note that
400 * 0 is valid since it's used to set "stray" ops.
401 */
402 if ((fstype < 0) || (fstype >= nfstype))
403 return (EINVAL);
404
405 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
406 return (EINVAL);
407
408 /* Set up the operations vector. */
409
410 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
411
412 if (error != 0)
413 return (error);
414
415 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
416
417 if (actual != NULL)
418 *actual = &vfssw[fstype].vsw_vfsops;
419
420 #if DEBUG
421 if (unused_ops != 0)
422 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
423 "but not used", vfssw[fstype].vsw_name, unused_ops);
424 #endif
425
426 return (0);
427 }
428
429 int
vfs_makefsops(const fs_operation_def_t * template,vfsops_t ** actual)430 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
431 {
432 int error;
433 int unused_ops;
434
435 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
436
437 error = fs_copyfsops(template, *actual, &unused_ops);
438 if (error != 0) {
439 kmem_free(*actual, sizeof (vfsops_t));
440 *actual = NULL;
441 return (error);
442 }
443
444 return (0);
445 }
446
447 /*
448 * Free a vfsops structure created as a result of vfs_makefsops().
449 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
450 * vfs_freevfsops_by_type().
451 */
452 void
vfs_freevfsops(vfsops_t * vfsops)453 vfs_freevfsops(vfsops_t *vfsops)
454 {
455 kmem_free(vfsops, sizeof (vfsops_t));
456 }
457
458 /*
459 * Since the vfsops structure is part of the vfssw table and wasn't
460 * really allocated, we're not really freeing anything. We keep
461 * the name for consistency with vfs_freevfsops(). We do, however,
462 * need to take care of a little bookkeeping.
463 * NOTE: For a vfsops structure created by vfs_setfsops(), use
464 * vfs_freevfsops_by_type().
465 */
466 int
vfs_freevfsops_by_type(int fstype)467 vfs_freevfsops_by_type(int fstype)
468 {
469
470 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
471 if ((fstype <= 0) || (fstype >= nfstype))
472 return (EINVAL);
473
474 WLOCK_VFSSW();
475 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
476 WUNLOCK_VFSSW();
477 return (EINVAL);
478 }
479
480 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
481 WUNLOCK_VFSSW();
482
483 return (0);
484 }
485
486 /* Support routines used to reference vfs_op */
487
488 /* Set the operations vector for a vfs */
489 void
vfs_setops(vfs_t * vfsp,vfsops_t * vfsops)490 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
491 {
492 vfsops_t *op;
493
494 ASSERT(vfsp != NULL);
495 ASSERT(vfsops != NULL);
496
497 op = vfsp->vfs_op;
498 membar_consumer();
499 if (vfsp->vfs_femhead == NULL &&
500 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
501 return;
502 }
503 fsem_setvfsops(vfsp, vfsops);
504 }
505
506 /* Retrieve the operations vector for a vfs */
507 vfsops_t *
vfs_getops(vfs_t * vfsp)508 vfs_getops(vfs_t *vfsp)
509 {
510 vfsops_t *op;
511
512 ASSERT(vfsp != NULL);
513
514 op = vfsp->vfs_op;
515 membar_consumer();
516 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
517 return (op);
518 } else {
519 return (fsem_getvfsops(vfsp));
520 }
521 }
522
523 /*
524 * Returns non-zero (1) if the vfsops matches that of the vfs.
525 * Returns zero (0) if not.
526 */
527 int
vfs_matchops(vfs_t * vfsp,vfsops_t * vfsops)528 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
529 {
530 return (vfs_getops(vfsp) == vfsops);
531 }
532
533 /*
534 * Returns non-zero (1) if the file system has installed a non-default,
535 * non-error vfs_sync routine. Returns zero (0) otherwise.
536 */
537 int
vfs_can_sync(vfs_t * vfsp)538 vfs_can_sync(vfs_t *vfsp)
539 {
540 /* vfs_sync() routine is not the default/error function */
541 return (vfs_getops(vfsp)->vfs_sync != fs_sync);
542 }
543
544 /*
545 * Initialize a vfs structure.
546 */
547 void
vfs_init(vfs_t * vfsp,vfsops_t * op,void * data)548 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
549 {
550 /* Other initialization has been moved to vfs_alloc() */
551 vfsp->vfs_count = 0;
552 vfsp->vfs_next = vfsp;
553 vfsp->vfs_prev = vfsp;
554 vfsp->vfs_zone_next = vfsp;
555 vfsp->vfs_zone_prev = vfsp;
556 vfsp->vfs_lofi_id = 0;
557 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
558 vfsimpl_setup(vfsp);
559 vfsp->vfs_data = (data);
560 vfs_setops((vfsp), (op));
561 }
562
563 /*
564 * Allocate and initialize the vfs implementation private data
565 * structure, vfs_impl_t.
566 */
567 void
vfsimpl_setup(vfs_t * vfsp)568 vfsimpl_setup(vfs_t *vfsp)
569 {
570 int i;
571
572 if (vfsp->vfs_implp != NULL) {
573 return;
574 }
575
576 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
577 /* Note that these are #define'd in vfs.h */
578 vfsp->vfs_vskap = NULL;
579 vfsp->vfs_fstypevsp = NULL;
580
581 /* Set size of counted array, then zero the array */
582 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
583 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
584 vfsp->vfs_featureset[i] = 0;
585 }
586 }
587
588 /*
589 * Release the vfs_impl_t structure, if it exists. Some unbundled
590 * filesystems may not use the newer version of vfs and thus
591 * would not contain this implementation private data structure.
592 */
593 void
vfsimpl_teardown(vfs_t * vfsp)594 vfsimpl_teardown(vfs_t *vfsp)
595 {
596 vfs_impl_t *vip = vfsp->vfs_implp;
597
598 if (vip == NULL)
599 return;
600
601 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
602 vfsp->vfs_implp = NULL;
603 }
604
605 /*
606 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
607 * fstatvfs, and sysfs moved to common/syscall.
608 */
609
610 /*
611 * Update every mounted file system. We call the vfs_sync operation of
612 * each file system type, passing it a NULL vfsp to indicate that all
613 * mounted file systems of that type should be updated.
614 */
615 void
vfs_sync(int flag)616 vfs_sync(int flag)
617 {
618 struct vfssw *vswp;
619 RLOCK_VFSSW();
620 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
621 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
622 vfs_refvfssw(vswp);
623 RUNLOCK_VFSSW();
624 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
625 CRED());
626 vfs_unrefvfssw(vswp);
627 RLOCK_VFSSW();
628 }
629 }
630 RUNLOCK_VFSSW();
631 }
632
633 void
sync(void)634 sync(void)
635 {
636 vfs_sync(0);
637 }
638
639 /*
640 * External routines.
641 */
642
643 krwlock_t vfssw_lock; /* lock accesses to vfssw */
644
645 /*
646 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
647 * but otherwise should be accessed only via vfs_list_lock() and
648 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
649 */
650 static krwlock_t vfslist;
651
652 /*
653 * Mount devfs on /devices. This is done right after root is mounted
654 * to provide device access support for the system
655 */
656 static void
vfs_mountdevices(void)657 vfs_mountdevices(void)
658 {
659 struct vfssw *vsw;
660 struct vnode *mvp;
661 struct mounta mounta = { /* fake mounta for devfs_mount() */
662 NULL,
663 NULL,
664 MS_SYSSPACE,
665 NULL,
666 NULL,
667 0,
668 NULL,
669 0
670 };
671
672 /*
673 * _init devfs module to fill in the vfssw
674 */
675 if (modload("fs", "devfs") == -1)
676 panic("Cannot _init devfs module");
677
678 /*
679 * Hold vfs
680 */
681 RLOCK_VFSSW();
682 vsw = vfs_getvfsswbyname("devfs");
683 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
684 VFS_HOLD(&devices);
685
686 /*
687 * Locate mount point
688 */
689 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
690 panic("Cannot find /devices");
691
692 /*
693 * Perform the mount of /devices
694 */
695 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
696 panic("Cannot mount /devices");
697
698 RUNLOCK_VFSSW();
699
700 /*
701 * Set appropriate members and add to vfs list for mnttab display
702 */
703 vfs_setresource(&devices, "/devices", 0);
704 vfs_setmntpoint(&devices, "/devices", 0);
705
706 /*
707 * Hold the root of /devices so it won't go away
708 */
709 if (VFS_ROOT(&devices, &devicesdir))
710 panic("vfs_mountdevices: not devices root");
711
712 if (vfs_lock(&devices) != 0) {
713 VN_RELE(devicesdir);
714 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
715 return;
716 }
717
718 if (vn_vfswlock(mvp) != 0) {
719 vfs_unlock(&devices);
720 VN_RELE(devicesdir);
721 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
722 return;
723 }
724
725 vfs_add(mvp, &devices, 0);
726 vn_vfsunlock(mvp);
727 vfs_unlock(&devices);
728 VN_RELE(devicesdir);
729 }
730
731 /*
732 * mount the first instance of /dev to root and remain mounted
733 */
734 static void
vfs_mountdev1(void)735 vfs_mountdev1(void)
736 {
737 struct vfssw *vsw;
738 struct vnode *mvp;
739 struct mounta mounta = { /* fake mounta for sdev_mount() */
740 NULL,
741 NULL,
742 MS_SYSSPACE | MS_OVERLAY,
743 NULL,
744 NULL,
745 0,
746 NULL,
747 0
748 };
749
750 /*
751 * _init dev module to fill in the vfssw
752 */
753 if (modload("fs", "dev") == -1)
754 cmn_err(CE_PANIC, "Cannot _init dev module\n");
755
756 /*
757 * Hold vfs
758 */
759 RLOCK_VFSSW();
760 vsw = vfs_getvfsswbyname("dev");
761 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
762 VFS_HOLD(&dev);
763
764 /*
765 * Locate mount point
766 */
767 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
768 cmn_err(CE_PANIC, "Cannot find /dev\n");
769
770 /*
771 * Perform the mount of /dev
772 */
773 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
774 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
775
776 RUNLOCK_VFSSW();
777
778 /*
779 * Set appropriate members and add to vfs list for mnttab display
780 */
781 vfs_setresource(&dev, "/dev", 0);
782 vfs_setmntpoint(&dev, "/dev", 0);
783
784 /*
785 * Hold the root of /dev so it won't go away
786 */
787 if (VFS_ROOT(&dev, &devdir))
788 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
789
790 if (vfs_lock(&dev) != 0) {
791 VN_RELE(devdir);
792 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
793 return;
794 }
795
796 if (vn_vfswlock(mvp) != 0) {
797 vfs_unlock(&dev);
798 VN_RELE(devdir);
799 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
800 return;
801 }
802
803 vfs_add(mvp, &dev, 0);
804 vn_vfsunlock(mvp);
805 vfs_unlock(&dev);
806 VN_RELE(devdir);
807 }
808
809 /*
810 * Mount required filesystem. This is done right after root is mounted.
811 */
812 static void
vfs_mountfs(char * module,char * spec,char * path)813 vfs_mountfs(char *module, char *spec, char *path)
814 {
815 struct vnode *mvp;
816 struct mounta mounta;
817 vfs_t *vfsp;
818
819 bzero(&mounta, sizeof (mounta));
820 mounta.flags = MS_SYSSPACE | MS_DATA;
821 mounta.fstype = module;
822 mounta.spec = spec;
823 mounta.dir = path;
824 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
825 cmn_err(CE_WARN, "Cannot find %s", path);
826 return;
827 }
828 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
829 cmn_err(CE_WARN, "Cannot mount %s", path);
830 else
831 VFS_RELE(vfsp);
832 VN_RELE(mvp);
833 }
834
835 /*
836 * vfs_mountroot is called by main() to mount the root filesystem.
837 */
838 void
vfs_mountroot(void)839 vfs_mountroot(void)
840 {
841 struct vnode *rvp = NULL;
842 char *path;
843 size_t plen;
844 struct vfssw *vswp;
845 proc_t *p;
846
847 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
848 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
849
850 /*
851 * Alloc the vfs hash bucket array and locks
852 */
853 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
854
855 /*
856 * Call machine-dependent routine "rootconf" to choose a root
857 * file system type.
858 */
859 if (rootconf())
860 panic("vfs_mountroot: cannot mount root");
861 /*
862 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
863 * to point to it. These are used by lookuppn() so that it
864 * knows where to start from ('/' or '.').
865 */
866 vfs_setmntpoint(rootvfs, "/", 0);
867 if (VFS_ROOT(rootvfs, &rootdir))
868 panic("vfs_mountroot: no root vnode");
869
870 /*
871 * At this point, the process tree consists of p0 and possibly some
872 * direct children of p0. (i.e. there are no grandchildren)
873 *
874 * Walk through them all, setting their current directory.
875 */
876 mutex_enter(&pidlock);
877 for (p = practive; p != NULL; p = p->p_next) {
878 ASSERT(p == &p0 || p->p_parent == &p0);
879
880 PTOU(p)->u_cdir = rootdir;
881 VN_HOLD(PTOU(p)->u_cdir);
882 PTOU(p)->u_rdir = NULL;
883 }
884 mutex_exit(&pidlock);
885
886 /*
887 * Setup the global zone's rootvp, now that it exists.
888 */
889 global_zone->zone_rootvp = rootdir;
890 VN_HOLD(global_zone->zone_rootvp);
891
892 /*
893 * Notify the module code that it can begin using the
894 * root filesystem instead of the boot program's services.
895 */
896 modrootloaded = 1;
897
898 /*
899 * Special handling for a ZFS root file system.
900 */
901 zfs_boot_init();
902
903 /*
904 * Set up mnttab information for root
905 */
906 vfs_setresource(rootvfs, rootfs.bo_name, 0);
907
908 /*
909 * Notify cluster software that the root filesystem is available.
910 */
911 clboot_mountroot();
912
913 /* Now that we're all done with the root FS, set up its vopstats */
914 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
915 /* Set flag for statistics collection */
916 if (vswp->vsw_flag & VSW_STATS) {
917 initialize_vopstats(&rootvfs->vfs_vopstats);
918 rootvfs->vfs_flag |= VFS_STATS;
919 rootvfs->vfs_fstypevsp =
920 get_fstype_vopstats(rootvfs, vswp);
921 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
922 }
923 vfs_unrefvfssw(vswp);
924 }
925
926 /*
927 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
928 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
929 */
930 vfs_mountdevices();
931 vfs_mountdev1();
932
933 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
934 vfs_mountfs("proc", "/proc", "/proc");
935 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
936 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
937 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
938 vfs_mountfs("bootfs", "bootfs", "/system/boot");
939
940 if (getzoneid() == GLOBAL_ZONEID) {
941 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
942 }
943
944 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
945 /*
946 * Look up the root device via devfs so that a dv_node is
947 * created for it. The vnode is never VN_RELE()ed.
948 * We allocate more than MAXPATHLEN so that the
949 * buffer passed to i_ddi_prompath_to_devfspath() is
950 * exactly MAXPATHLEN (the function expects a buffer
951 * of that length).
952 */
953 plen = strlen("/devices");
954 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
955 (void) strcpy(path, "/devices");
956
957 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
958 != DDI_SUCCESS ||
959 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
960
961 /* NUL terminate in case "path" has garbage */
962 path[plen + MAXPATHLEN - 1] = '\0';
963 #ifdef DEBUG
964 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
965 path);
966 #endif
967 }
968 kmem_free(path, plen + MAXPATHLEN);
969 }
970
971 vfs_mnttabvp_setup();
972 }
973
974 /*
975 * Check to see if our "block device" is actually a file. If so,
976 * automatically add a lofi device, and keep track of this fact.
977 */
978 static int
lofi_add(const char * fsname,struct vfs * vfsp,mntopts_t * mntopts,struct mounta * uap)979 lofi_add(const char *fsname, struct vfs *vfsp,
980 mntopts_t *mntopts, struct mounta *uap)
981 {
982 int fromspace = (uap->flags & MS_SYSSPACE) ?
983 UIO_SYSSPACE : UIO_USERSPACE;
984 struct lofi_ioctl *li = NULL;
985 struct vnode *vp = NULL;
986 struct pathname pn = { NULL };
987 ldi_ident_t ldi_id;
988 ldi_handle_t ldi_hdl;
989 vfssw_t *vfssw;
990 int id;
991 int err = 0;
992
993 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
994 return (0);
995
996 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
997 vfs_unrefvfssw(vfssw);
998 return (0);
999 }
1000
1001 vfs_unrefvfssw(vfssw);
1002 vfssw = NULL;
1003
1004 if (pn_get(uap->spec, fromspace, &pn) != 0)
1005 return (0);
1006
1007 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1008 goto out;
1009
1010 if (vp->v_type != VREG)
1011 goto out;
1012
1013 /* OK, this is a lofi mount. */
1014
1015 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1016 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1017 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1018 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1019 err = EINVAL;
1020 goto out;
1021 }
1022
1023 ldi_id = ldi_ident_from_anon();
1024 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1025 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1026
1027 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1028 &ldi_hdl, ldi_id);
1029
1030 if (err)
1031 goto out2;
1032
1033 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1034 FREAD | FWRITE | FKIOCTL, kcred, &id);
1035
1036 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1037
1038 if (!err)
1039 vfsp->vfs_lofi_id = id;
1040
1041 out2:
1042 ldi_ident_release(ldi_id);
1043 out:
1044 if (li != NULL)
1045 kmem_free(li, sizeof (*li));
1046 if (vp != NULL)
1047 VN_RELE(vp);
1048 pn_free(&pn);
1049 return (err);
1050 }
1051
1052 static void
lofi_remove(struct vfs * vfsp)1053 lofi_remove(struct vfs *vfsp)
1054 {
1055 struct lofi_ioctl *li;
1056 ldi_ident_t ldi_id;
1057 ldi_handle_t ldi_hdl;
1058 int err;
1059
1060 if (vfsp->vfs_lofi_id == 0)
1061 return;
1062
1063 ldi_id = ldi_ident_from_anon();
1064
1065 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1066 li->li_id = vfsp->vfs_lofi_id;
1067 li->li_cleanup = B_TRUE;
1068
1069 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1070 &ldi_hdl, ldi_id);
1071
1072 if (err)
1073 goto out;
1074
1075 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1076 FREAD | FWRITE | FKIOCTL, kcred, NULL);
1077
1078 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1079
1080 if (!err)
1081 vfsp->vfs_lofi_id = 0;
1082
1083 out:
1084 ldi_ident_release(ldi_id);
1085 kmem_free(li, sizeof (*li));
1086 }
1087
1088 /*
1089 * Common mount code. Called from the system call entry point, from autofs,
1090 * nfsv4 trigger mounts, and from pxfs.
1091 *
1092 * Takes the effective file system type, mount arguments, the mount point
1093 * vnode, flags specifying whether the mount is a remount and whether it
1094 * should be entered into the vfs list, and credentials. Fills in its vfspp
1095 * parameter with the mounted file system instance's vfs.
1096 *
1097 * Note that the effective file system type is specified as a string. It may
1098 * be null, in which case it's determined from the mount arguments, and may
1099 * differ from the type specified in the mount arguments; this is a hook to
1100 * allow interposition when instantiating file system instances.
1101 *
1102 * The caller is responsible for releasing its own hold on the mount point
1103 * vp (this routine does its own hold when necessary).
1104 * Also note that for remounts, the mount point vp should be the vnode for
1105 * the root of the file system rather than the vnode that the file system
1106 * is mounted on top of.
1107 */
1108 int
domount(char * fsname,struct mounta * uap,vnode_t * vp,struct cred * credp,struct vfs ** vfspp)1109 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1110 struct vfs **vfspp)
1111 {
1112 struct vfssw *vswp;
1113 vfsops_t *vfsops;
1114 struct vfs *vfsp;
1115 struct vnode *bvp;
1116 dev_t bdev = 0;
1117 mntopts_t mnt_mntopts;
1118 int error = 0;
1119 int copyout_error = 0;
1120 int ovflags = 0;
1121 char *opts = uap->optptr;
1122 char *inargs = opts;
1123 int optlen = uap->optlen;
1124 int remount;
1125 int rdonly;
1126 int nbmand = 0;
1127 int delmip = 0;
1128 int addmip = 0;
1129 int splice = ((uap->flags & MS_NOSPLICE) == 0);
1130 int fromspace = (uap->flags & MS_SYSSPACE) ?
1131 UIO_SYSSPACE : UIO_USERSPACE;
1132 char *resource = NULL, *mountpt = NULL;
1133 refstr_t *oldresource, *oldmntpt;
1134 struct pathname pn, rpn;
1135 vsk_anchor_t *vskap;
1136 char fstname[FSTYPSZ];
1137 zone_t *zone;
1138
1139 /*
1140 * The v_flag value for the mount point vp is permanently set
1141 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1142 * for mount point locking.
1143 */
1144 mutex_enter(&vp->v_lock);
1145 vp->v_flag |= VVFSLOCK;
1146 mutex_exit(&vp->v_lock);
1147
1148 mnt_mntopts.mo_count = 0;
1149 /*
1150 * Find the ops vector to use to invoke the file system-specific mount
1151 * method. If the fsname argument is non-NULL, use it directly.
1152 * Otherwise, dig the file system type information out of the mount
1153 * arguments.
1154 *
1155 * A side effect is to hold the vfssw entry.
1156 *
1157 * Mount arguments can be specified in several ways, which are
1158 * distinguished by flag bit settings. The preferred way is to set
1159 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1160 * type supplied as a character string and the last two arguments
1161 * being a pointer to a character buffer and the size of the buffer.
1162 * On entry, the buffer holds a null terminated list of options; on
1163 * return, the string is the list of options the file system
1164 * recognized. If MS_DATA is set arguments five and six point to a
1165 * block of binary data which the file system interprets.
1166 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1167 * consistently with these conventions. To handle them, we check to
1168 * see whether the pointer to the file system name has a numeric value
1169 * less than 256. If so, we treat it as an index.
1170 */
1171 if (fsname != NULL) {
1172 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1173 return (EINVAL);
1174 }
1175 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1176 size_t n;
1177 uint_t fstype;
1178
1179 fsname = fstname;
1180
1181 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1182 RLOCK_VFSSW();
1183 if (fstype == 0 || fstype >= nfstype ||
1184 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1185 RUNLOCK_VFSSW();
1186 return (EINVAL);
1187 }
1188 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1189 RUNLOCK_VFSSW();
1190 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1191 return (EINVAL);
1192 } else {
1193 /*
1194 * Handle either kernel or user address space.
1195 */
1196 if (uap->flags & MS_SYSSPACE) {
1197 error = copystr(uap->fstype, fsname,
1198 FSTYPSZ, &n);
1199 } else {
1200 error = copyinstr(uap->fstype, fsname,
1201 FSTYPSZ, &n);
1202 }
1203 if (error) {
1204 if (error == ENAMETOOLONG)
1205 return (EINVAL);
1206 return (error);
1207 }
1208 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1209 return (EINVAL);
1210 }
1211 } else {
1212 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1213 return (EINVAL);
1214 fsname = vswp->vsw_name;
1215 }
1216 if (!VFS_INSTALLED(vswp))
1217 return (EINVAL);
1218
1219 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1220 vfs_unrefvfssw(vswp);
1221 return (error);
1222 }
1223
1224 vfsops = &vswp->vsw_vfsops;
1225
1226 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1227 /*
1228 * Fetch mount options and parse them for generic vfs options
1229 */
1230 if (uap->flags & MS_OPTIONSTR) {
1231 /*
1232 * Limit the buffer size
1233 */
1234 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1235 error = EINVAL;
1236 goto errout;
1237 }
1238 if ((uap->flags & MS_SYSSPACE) == 0) {
1239 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1240 inargs[0] = '\0';
1241 if (optlen) {
1242 error = copyinstr(opts, inargs, (size_t)optlen,
1243 NULL);
1244 if (error) {
1245 goto errout;
1246 }
1247 }
1248 }
1249 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1250 }
1251 /*
1252 * Flag bits override the options string.
1253 */
1254 if (uap->flags & MS_REMOUNT)
1255 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1256 if (uap->flags & MS_RDONLY)
1257 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1258 if (uap->flags & MS_NOSUID)
1259 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1260
1261 /*
1262 * Check if this is a remount; must be set in the option string and
1263 * the file system must support a remount option.
1264 */
1265 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1266 MNTOPT_REMOUNT, NULL)) {
1267 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1268 error = ENOTSUP;
1269 goto errout;
1270 }
1271 uap->flags |= MS_REMOUNT;
1272 }
1273
1274 /*
1275 * uap->flags and vfs_optionisset() should agree.
1276 */
1277 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1278 uap->flags |= MS_RDONLY;
1279 }
1280 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1281 uap->flags |= MS_NOSUID;
1282 }
1283 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1284 ASSERT(splice || !remount);
1285 /*
1286 * If we are splicing the fs into the namespace,
1287 * perform mount point checks.
1288 *
1289 * We want to resolve the path for the mount point to eliminate
1290 * '.' and ".." and symlinks in mount points; we can't do the
1291 * same for the resource string, since it would turn
1292 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1293 * this before grabbing vn_vfswlock(), because otherwise we
1294 * would deadlock with lookuppn().
1295 */
1296 if (splice) {
1297 ASSERT(vp->v_count > 0);
1298
1299 /*
1300 * Pick up mount point and device from appropriate space.
1301 */
1302 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1303 resource = kmem_alloc(pn.pn_pathlen + 1,
1304 KM_SLEEP);
1305 (void) strcpy(resource, pn.pn_path);
1306 pn_free(&pn);
1307 }
1308 /*
1309 * Do a lookupname prior to taking the
1310 * writelock. Mark this as completed if
1311 * successful for later cleanup and addition to
1312 * the mount in progress table.
1313 */
1314 if ((vswp->vsw_flag & VSW_MOUNTDEV) &&
1315 (uap->flags & MS_GLOBAL) == 0 &&
1316 lookupname(uap->spec, fromspace,
1317 FOLLOW, NULL, &bvp) == 0) {
1318 addmip = 1;
1319 }
1320
1321 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1322 pathname_t *pnp;
1323
1324 if (*pn.pn_path != '/') {
1325 error = EINVAL;
1326 pn_free(&pn);
1327 goto errout;
1328 }
1329 pn_alloc(&rpn);
1330 /*
1331 * Kludge to prevent autofs from deadlocking with
1332 * itself when it calls domount().
1333 *
1334 * If autofs is calling, it is because it is doing
1335 * (autofs) mounts in the process of an NFS mount. A
1336 * lookuppn() here would cause us to block waiting for
1337 * said NFS mount to complete, which can't since this
1338 * is the thread that was supposed to doing it.
1339 */
1340 if (fromspace == UIO_USERSPACE) {
1341 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1342 NULL)) == 0) {
1343 pnp = &rpn;
1344 } else {
1345 /*
1346 * The file disappeared or otherwise
1347 * became inaccessible since we opened
1348 * it; might as well fail the mount
1349 * since the mount point is no longer
1350 * accessible.
1351 */
1352 pn_free(&rpn);
1353 pn_free(&pn);
1354 goto errout;
1355 }
1356 } else {
1357 pnp = &pn;
1358 }
1359 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1360 (void) strcpy(mountpt, pnp->pn_path);
1361
1362 /*
1363 * If the addition of the zone's rootpath
1364 * would push us over a total path length
1365 * of MAXPATHLEN, we fail the mount with
1366 * ENAMETOOLONG, which is what we would have
1367 * gotten if we were trying to perform the same
1368 * mount in the global zone.
1369 *
1370 * strlen() doesn't count the trailing
1371 * '\0', but zone_rootpathlen counts both a
1372 * trailing '/' and the terminating '\0'.
1373 */
1374 if ((curproc->p_zone->zone_rootpathlen - 1 +
1375 strlen(mountpt)) > MAXPATHLEN ||
1376 (resource != NULL &&
1377 (curproc->p_zone->zone_rootpathlen - 1 +
1378 strlen(resource)) > MAXPATHLEN)) {
1379 error = ENAMETOOLONG;
1380 }
1381
1382 pn_free(&rpn);
1383 pn_free(&pn);
1384 }
1385
1386 if (error)
1387 goto errout;
1388
1389 /*
1390 * Prevent path name resolution from proceeding past
1391 * the mount point.
1392 */
1393 if (vn_vfswlock(vp) != 0) {
1394 error = EBUSY;
1395 goto errout;
1396 }
1397
1398 /*
1399 * Verify that it's legitimate to establish a mount on
1400 * the prospective mount point.
1401 */
1402 if (vn_mountedvfs(vp) != NULL) {
1403 /*
1404 * The mount point lock was obtained after some
1405 * other thread raced through and established a mount.
1406 */
1407 vn_vfsunlock(vp);
1408 error = EBUSY;
1409 goto errout;
1410 }
1411 if (vp->v_flag & VNOMOUNT) {
1412 vn_vfsunlock(vp);
1413 error = EINVAL;
1414 goto errout;
1415 }
1416 }
1417 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1418 uap->dataptr = NULL;
1419 uap->datalen = 0;
1420 }
1421
1422 /*
1423 * If this is a remount, we don't want to create a new VFS.
1424 * Instead, we pass the existing one with a remount flag.
1425 */
1426 if (remount) {
1427 /*
1428 * Confirm that the mount point is the root vnode of the
1429 * file system that is being remounted.
1430 * This can happen if the user specifies a different
1431 * mount point directory pathname in the (re)mount command.
1432 *
1433 * Code below can only be reached if splice is true, so it's
1434 * safe to do vn_vfsunlock() here.
1435 */
1436 if ((vp->v_flag & VROOT) == 0) {
1437 vn_vfsunlock(vp);
1438 error = ENOENT;
1439 goto errout;
1440 }
1441 /*
1442 * Disallow making file systems read-only unless file system
1443 * explicitly allows it in its vfssw. Ignore other flags.
1444 */
1445 if (rdonly && vn_is_readonly(vp) == 0 &&
1446 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1447 vn_vfsunlock(vp);
1448 error = EINVAL;
1449 goto errout;
1450 }
1451 /*
1452 * Disallow changing the NBMAND disposition of the file
1453 * system on remounts.
1454 */
1455 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1456 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1457 vn_vfsunlock(vp);
1458 error = EINVAL;
1459 goto errout;
1460 }
1461 vfsp = vp->v_vfsp;
1462 ovflags = vfsp->vfs_flag;
1463 vfsp->vfs_flag |= VFS_REMOUNT;
1464 vfsp->vfs_flag &= ~VFS_RDONLY;
1465 } else {
1466 vfsp = vfs_alloc(KM_SLEEP);
1467 VFS_INIT(vfsp, vfsops, NULL);
1468 }
1469
1470 VFS_HOLD(vfsp);
1471
1472 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1473 if (!remount) {
1474 if (splice)
1475 vn_vfsunlock(vp);
1476 vfs_free(vfsp);
1477 } else {
1478 vn_vfsunlock(vp);
1479 VFS_RELE(vfsp);
1480 }
1481 goto errout;
1482 }
1483
1484 /*
1485 * PRIV_SYS_MOUNT doesn't mean you can become root.
1486 */
1487 if (vfsp->vfs_lofi_id != 0) {
1488 uap->flags |= MS_NOSUID;
1489 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1490 }
1491
1492 /*
1493 * The vfs_reflock is not used anymore the code below explicitly
1494 * holds it preventing others accesing it directly.
1495 */
1496 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1497 !(vfsp->vfs_flag & VFS_REMOUNT))
1498 cmn_err(CE_WARN,
1499 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1500
1501 /*
1502 * Lock the vfs. If this is a remount we want to avoid spurious umount
1503 * failures that happen as a side-effect of fsflush() and other mount
1504 * and unmount operations that might be going on simultaneously and
1505 * may have locked the vfs currently. To not return EBUSY immediately
1506 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1507 */
1508 if (!remount) {
1509 if (error = vfs_lock(vfsp)) {
1510 lofi_remove(vfsp);
1511
1512 if (splice)
1513 vn_vfsunlock(vp);
1514 vfs_free(vfsp);
1515 goto errout;
1516 }
1517 } else {
1518 vfs_lock_wait(vfsp);
1519 }
1520
1521 /*
1522 * Add device to mount in progress table, global mounts require special
1523 * handling. It is possible that we have already done the lookupname
1524 * on a spliced, non-global fs. If so, we don't want to do it again
1525 * since we cannot do a lookupname after taking the
1526 * wlock above. This case is for a non-spliced, non-global filesystem.
1527 */
1528 if (!addmip) {
1529 if ((vswp->vsw_flag & VSW_MOUNTDEV) &&
1530 (uap->flags & MS_GLOBAL) == 0 &&
1531 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1532 addmip = 1;
1533 }
1534 }
1535
1536 if (addmip) {
1537 vnode_t *lvp = NULL;
1538
1539 error = vfs_get_lofi(vfsp, &lvp);
1540 if (error > 0) {
1541 lofi_remove(vfsp);
1542
1543 if (splice)
1544 vn_vfsunlock(vp);
1545 vfs_unlock(vfsp);
1546
1547 if (remount) {
1548 VFS_RELE(vfsp);
1549 } else {
1550 vfs_free(vfsp);
1551 }
1552
1553 goto errout;
1554 } else if (error == -1) {
1555 bdev = bvp->v_rdev;
1556 VN_RELE(bvp);
1557 } else {
1558 bdev = lvp->v_rdev;
1559 VN_RELE(lvp);
1560 VN_RELE(bvp);
1561 }
1562
1563 vfs_addmip(bdev, vfsp);
1564 addmip = 0;
1565 delmip = 1;
1566 }
1567 /*
1568 * Invalidate cached entry for the mount point.
1569 */
1570 if (splice)
1571 dnlc_purge_vp(vp);
1572
1573 /*
1574 * If have an option string but the filesystem doesn't supply a
1575 * prototype options table, create a table with the global
1576 * options and sufficient room to accept all the options in the
1577 * string. Then parse the passed in option string
1578 * accepting all the options in the string. This gives us an
1579 * option table with all the proper cancel properties for the
1580 * global options.
1581 *
1582 * Filesystems that supply a prototype options table are handled
1583 * earlier in this function.
1584 */
1585 if (uap->flags & MS_OPTIONSTR) {
1586 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1587 mntopts_t tmp_mntopts;
1588
1589 tmp_mntopts.mo_count = 0;
1590 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1591 &mnt_mntopts);
1592 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1593 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1594 vfs_freeopttbl(&tmp_mntopts);
1595 }
1596 }
1597
1598 /*
1599 * Serialize with zone state transitions.
1600 * See vfs_list_add; zone mounted into is:
1601 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1602 * not the zone doing the mount (curproc->p_zone), but if we're already
1603 * inside a NGZ, then we know what zone we are.
1604 */
1605 if (INGLOBALZONE(curproc)) {
1606 zone = zone_find_by_path(mountpt);
1607 ASSERT(zone != NULL);
1608 } else {
1609 zone = curproc->p_zone;
1610 /*
1611 * zone_find_by_path does a hold, so do one here too so that
1612 * we can do a zone_rele after mount_completed.
1613 */
1614 zone_hold(zone);
1615 }
1616 mount_in_progress(zone);
1617 /*
1618 * Instantiate (or reinstantiate) the file system. If appropriate,
1619 * splice it into the file system name space.
1620 *
1621 * We want VFS_MOUNT() to be able to override the vfs_resource
1622 * string if necessary (ie, mntfs), and also for a remount to
1623 * change the same (necessary when remounting '/' during boot).
1624 * So we set up vfs_mntpt and vfs_resource to what we think they
1625 * should be, then hand off control to VFS_MOUNT() which can
1626 * override this.
1627 *
1628 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1629 * a vfs which is on the vfs list (i.e. during a remount), we must
1630 * never set those fields to NULL. Several bits of code make
1631 * assumptions that the fields are always valid.
1632 */
1633 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1634 if (remount) {
1635 if ((oldresource = vfsp->vfs_resource) != NULL)
1636 refstr_hold(oldresource);
1637 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1638 refstr_hold(oldmntpt);
1639 }
1640 vfs_setresource(vfsp, resource, 0);
1641 vfs_setmntpoint(vfsp, mountpt, 0);
1642
1643 /*
1644 * going to mount on this vnode, so notify.
1645 */
1646 vnevent_mountedover(vp, NULL);
1647 error = VFS_MOUNT(vfsp, vp, uap, credp);
1648
1649 if (uap->flags & MS_RDONLY)
1650 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1651 if (uap->flags & MS_NOSUID)
1652 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1653 if (uap->flags & MS_GLOBAL)
1654 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1655
1656 if (error) {
1657 lofi_remove(vfsp);
1658
1659 if (remount) {
1660 /* put back pre-remount options */
1661 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1662 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1663 VFSSP_VERBATIM);
1664 if (oldmntpt)
1665 refstr_rele(oldmntpt);
1666 vfs_setresource(vfsp, refstr_value(oldresource),
1667 VFSSP_VERBATIM);
1668 if (oldresource)
1669 refstr_rele(oldresource);
1670 vfsp->vfs_flag = ovflags;
1671 vfs_unlock(vfsp);
1672 VFS_RELE(vfsp);
1673 } else {
1674 vfs_unlock(vfsp);
1675 vfs_freemnttab(vfsp);
1676 vfs_free(vfsp);
1677 }
1678 } else {
1679 /*
1680 * Set the mount time to now
1681 */
1682 vfsp->vfs_mtime = ddi_get_time();
1683 if (remount) {
1684 vfsp->vfs_flag &= ~VFS_REMOUNT;
1685 if (oldresource)
1686 refstr_rele(oldresource);
1687 if (oldmntpt)
1688 refstr_rele(oldmntpt);
1689 } else if (splice) {
1690 /*
1691 * Link vfsp into the name space at the mount
1692 * point. Vfs_add() is responsible for
1693 * holding the mount point which will be
1694 * released when vfs_remove() is called.
1695 */
1696 vfs_add(vp, vfsp, uap->flags);
1697 } else {
1698 /*
1699 * Hold the reference to file system which is
1700 * not linked into the name space.
1701 */
1702 vfsp->vfs_zone = NULL;
1703 VFS_HOLD(vfsp);
1704 vfsp->vfs_vnodecovered = NULL;
1705 }
1706 /*
1707 * Set flags for global options encountered
1708 */
1709 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1710 vfsp->vfs_flag |= VFS_RDONLY;
1711 else
1712 vfsp->vfs_flag &= ~VFS_RDONLY;
1713 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1714 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1715 } else {
1716 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1717 vfsp->vfs_flag |= VFS_NODEVICES;
1718 else
1719 vfsp->vfs_flag &= ~VFS_NODEVICES;
1720 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1721 vfsp->vfs_flag |= VFS_NOSETUID;
1722 else
1723 vfsp->vfs_flag &= ~VFS_NOSETUID;
1724 }
1725 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1726 vfsp->vfs_flag |= VFS_NBMAND;
1727 else
1728 vfsp->vfs_flag &= ~VFS_NBMAND;
1729
1730 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1731 vfsp->vfs_flag |= VFS_XATTR;
1732 else
1733 vfsp->vfs_flag &= ~VFS_XATTR;
1734
1735 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1736 vfsp->vfs_flag |= VFS_NOEXEC;
1737 else
1738 vfsp->vfs_flag &= ~VFS_NOEXEC;
1739
1740 /*
1741 * Now construct the output option string of options
1742 * we recognized.
1743 */
1744 if (uap->flags & MS_OPTIONSTR) {
1745 vfs_list_read_lock();
1746 copyout_error = vfs_buildoptionstr(
1747 &vfsp->vfs_mntopts, inargs, optlen);
1748 vfs_list_unlock();
1749 if (copyout_error == 0 &&
1750 (uap->flags & MS_SYSSPACE) == 0) {
1751 copyout_error = copyoutstr(inargs, opts,
1752 optlen, NULL);
1753 }
1754 }
1755
1756 /*
1757 * If this isn't a remount, set up the vopstats before
1758 * anyone can touch this. We only allow spliced file
1759 * systems (file systems which are in the namespace) to
1760 * have the VFS_STATS flag set.
1761 * NOTE: PxFS mounts the underlying file system with
1762 * MS_NOSPLICE set and copies those vfs_flags to its private
1763 * vfs structure. As a result, PxFS should never have
1764 * the VFS_STATS flag or else we might access the vfs
1765 * statistics-related fields prior to them being
1766 * properly initialized.
1767 */
1768 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1769 initialize_vopstats(&vfsp->vfs_vopstats);
1770 /*
1771 * We need to set vfs_vskap to NULL because there's
1772 * a chance it won't be set below. This is checked
1773 * in teardown_vopstats() so we can't have garbage.
1774 */
1775 vfsp->vfs_vskap = NULL;
1776 vfsp->vfs_flag |= VFS_STATS;
1777 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1778 }
1779
1780 if (vswp->vsw_flag & VSW_XID)
1781 vfsp->vfs_flag |= VFS_XID;
1782
1783 vfs_unlock(vfsp);
1784 }
1785 mount_completed(zone);
1786 zone_rele(zone);
1787 if (splice)
1788 vn_vfsunlock(vp);
1789
1790 if ((error == 0) && (copyout_error == 0)) {
1791 if (!remount) {
1792 /*
1793 * Don't call get_vskstat_anchor() while holding
1794 * locks since it allocates memory and calls
1795 * VFS_STATVFS(). For NFS, the latter can generate
1796 * an over-the-wire call.
1797 */
1798 vskap = get_vskstat_anchor(vfsp);
1799 /* Only take the lock if we have something to do */
1800 if (vskap != NULL) {
1801 vfs_lock_wait(vfsp);
1802 if (vfsp->vfs_flag & VFS_STATS) {
1803 vfsp->vfs_vskap = vskap;
1804 }
1805 vfs_unlock(vfsp);
1806 }
1807 }
1808 /* Return vfsp to caller. */
1809 *vfspp = vfsp;
1810 }
1811 errout:
1812 vfs_freeopttbl(&mnt_mntopts);
1813 if (resource != NULL)
1814 kmem_free(resource, strlen(resource) + 1);
1815 if (mountpt != NULL)
1816 kmem_free(mountpt, strlen(mountpt) + 1);
1817 /*
1818 * It is possible we errored prior to adding to mount in progress
1819 * table. Must free vnode we acquired with successful lookupname.
1820 */
1821 if (addmip)
1822 VN_RELE(bvp);
1823 if (delmip)
1824 vfs_delmip(vfsp);
1825 ASSERT(vswp != NULL);
1826 vfs_unrefvfssw(vswp);
1827 if (inargs != opts)
1828 kmem_free(inargs, MAX_MNTOPT_STR);
1829 if (copyout_error) {
1830 lofi_remove(vfsp);
1831 VFS_RELE(vfsp);
1832 error = copyout_error;
1833 }
1834 return (error);
1835 }
1836
1837 static void
vfs_setpath(struct vfs * vfsp,refstr_t ** refp,const char * newpath,uint32_t flag)1838 vfs_setpath(
1839 struct vfs *vfsp, /* vfs being updated */
1840 refstr_t **refp, /* Ref-count string to contain the new path */
1841 const char *newpath, /* Path to add to refp (above) */
1842 uint32_t flag) /* flag */
1843 {
1844 size_t len;
1845 refstr_t *ref;
1846 zone_t *zone = curproc->p_zone;
1847 char *sp;
1848 int have_list_lock = 0;
1849
1850 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1851
1852 /*
1853 * New path must be less than MAXPATHLEN because mntfs
1854 * will only display up to MAXPATHLEN bytes. This is currently
1855 * safe, because domount() uses pn_get(), and other callers
1856 * similarly cap the size to fewer than MAXPATHLEN bytes.
1857 */
1858
1859 ASSERT(strlen(newpath) < MAXPATHLEN);
1860
1861 /* mntfs requires consistency while vfs list lock is held */
1862
1863 if (VFS_ON_LIST(vfsp)) {
1864 have_list_lock = 1;
1865 vfs_list_lock();
1866 }
1867
1868 if (*refp != NULL)
1869 refstr_rele(*refp);
1870
1871 /*
1872 * If we are in a non-global zone then we prefix the supplied path,
1873 * newpath, with the zone's root path, with two exceptions. The first
1874 * is where we have been explicitly directed to avoid doing so; this
1875 * will be the case following a failed remount, where the path supplied
1876 * will be a saved version which must now be restored. The second
1877 * exception is where newpath is not a pathname but a descriptive name,
1878 * e.g. "procfs".
1879 */
1880 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1881 ref = refstr_alloc(newpath);
1882 goto out;
1883 }
1884
1885 /*
1886 * Truncate the trailing '/' in the zoneroot, and merge
1887 * in the zone's rootpath with the "newpath" (resource
1888 * or mountpoint) passed in.
1889 *
1890 * The size of the required buffer is thus the size of
1891 * the buffer required for the passed-in newpath
1892 * (strlen(newpath) + 1), plus the size of the buffer
1893 * required to hold zone_rootpath (zone_rootpathlen)
1894 * minus one for one of the now-superfluous NUL
1895 * terminations, minus one for the trailing '/'.
1896 *
1897 * That gives us:
1898 *
1899 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1900 *
1901 * Which is what we have below.
1902 */
1903
1904 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1905 sp = kmem_alloc(len, KM_SLEEP);
1906
1907 /*
1908 * Copy everything including the trailing slash, which
1909 * we then overwrite with the NUL character.
1910 */
1911
1912 (void) strcpy(sp, zone->zone_rootpath);
1913 sp[zone->zone_rootpathlen - 2] = '\0';
1914 (void) strcat(sp, newpath);
1915
1916 ref = refstr_alloc(sp);
1917 kmem_free(sp, len);
1918 out:
1919 *refp = ref;
1920
1921 if (have_list_lock) {
1922 vfs_mnttab_modtimeupd();
1923 vfs_list_unlock();
1924 }
1925 }
1926
1927 /*
1928 * Record a mounted resource name in a vfs structure.
1929 * If vfsp is already mounted, caller must hold the vfs lock.
1930 */
1931 void
vfs_setresource(struct vfs * vfsp,const char * resource,uint32_t flag)1932 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1933 {
1934 if (resource == NULL || resource[0] == '\0')
1935 resource = VFS_NORESOURCE;
1936 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1937 }
1938
1939 /*
1940 * Record a mount point name in a vfs structure.
1941 * If vfsp is already mounted, caller must hold the vfs lock.
1942 */
1943 void
vfs_setmntpoint(struct vfs * vfsp,const char * mntpt,uint32_t flag)1944 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1945 {
1946 if (mntpt == NULL || mntpt[0] == '\0')
1947 mntpt = VFS_NOMNTPT;
1948 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1949 }
1950
1951 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1952
1953 refstr_t *
vfs_getresource(const struct vfs * vfsp)1954 vfs_getresource(const struct vfs *vfsp)
1955 {
1956 refstr_t *resource;
1957
1958 vfs_list_read_lock();
1959 resource = vfsp->vfs_resource;
1960 refstr_hold(resource);
1961 vfs_list_unlock();
1962
1963 return (resource);
1964 }
1965
1966 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1967
1968 refstr_t *
vfs_getmntpoint(const struct vfs * vfsp)1969 vfs_getmntpoint(const struct vfs *vfsp)
1970 {
1971 refstr_t *mntpt;
1972
1973 vfs_list_read_lock();
1974 mntpt = vfsp->vfs_mntpt;
1975 refstr_hold(mntpt);
1976 vfs_list_unlock();
1977
1978 return (mntpt);
1979 }
1980
1981 /*
1982 * Create an empty options table with enough empty slots to hold all
1983 * The options in the options string passed as an argument.
1984 * Potentially prepend another options table.
1985 *
1986 * Note: caller is responsible for locking the vfs list, if needed,
1987 * to protect mops.
1988 */
1989 static void
vfs_createopttbl_extend(mntopts_t * mops,const char * opts,const mntopts_t * mtmpl)1990 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1991 const mntopts_t *mtmpl)
1992 {
1993 const char *s = opts;
1994 uint_t count;
1995
1996 if (opts == NULL || *opts == '\0') {
1997 count = 0;
1998 } else {
1999 count = 1;
2000
2001 /*
2002 * Count number of options in the string
2003 */
2004 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2005 count++;
2006 s++;
2007 }
2008 }
2009 vfs_copyopttbl_extend(mtmpl, mops, count);
2010 }
2011
2012 /*
2013 * Create an empty options table with enough empty slots to hold all
2014 * The options in the options string passed as an argument.
2015 *
2016 * This function is *not* for general use by filesystems.
2017 *
2018 * Note: caller is responsible for locking the vfs list, if needed,
2019 * to protect mops.
2020 */
2021 void
vfs_createopttbl(mntopts_t * mops,const char * opts)2022 vfs_createopttbl(mntopts_t *mops, const char *opts)
2023 {
2024 vfs_createopttbl_extend(mops, opts, NULL);
2025 }
2026
2027
2028 /*
2029 * Swap two mount options tables
2030 */
2031 static void
vfs_swapopttbl_nolock(mntopts_t * optbl1,mntopts_t * optbl2)2032 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2033 {
2034 uint_t tmpcnt;
2035 mntopt_t *tmplist;
2036
2037 tmpcnt = optbl2->mo_count;
2038 tmplist = optbl2->mo_list;
2039 optbl2->mo_count = optbl1->mo_count;
2040 optbl2->mo_list = optbl1->mo_list;
2041 optbl1->mo_count = tmpcnt;
2042 optbl1->mo_list = tmplist;
2043 }
2044
2045 static void
vfs_swapopttbl(mntopts_t * optbl1,mntopts_t * optbl2)2046 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2047 {
2048 vfs_list_lock();
2049 vfs_swapopttbl_nolock(optbl1, optbl2);
2050 vfs_mnttab_modtimeupd();
2051 vfs_list_unlock();
2052 }
2053
2054 static char **
vfs_copycancelopt_extend(char ** const moc,int extend)2055 vfs_copycancelopt_extend(char **const moc, int extend)
2056 {
2057 int i = 0;
2058 int j;
2059 char **result;
2060
2061 if (moc != NULL) {
2062 for (; moc[i] != NULL; i++)
2063 /* count number of options to cancel */;
2064 }
2065
2066 if (i + extend == 0)
2067 return (NULL);
2068
2069 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2070
2071 for (j = 0; j < i; j++) {
2072 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2073 (void) strcpy(result[j], moc[j]);
2074 }
2075 for (; j <= i + extend; j++)
2076 result[j] = NULL;
2077
2078 return (result);
2079 }
2080
2081 static void
vfs_copyopt(const mntopt_t * s,mntopt_t * d)2082 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2083 {
2084 char *sp, *dp;
2085
2086 d->mo_flags = s->mo_flags;
2087 d->mo_data = s->mo_data;
2088 sp = s->mo_name;
2089 if (sp != NULL) {
2090 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2091 (void) strcpy(dp, sp);
2092 d->mo_name = dp;
2093 } else {
2094 d->mo_name = NULL; /* should never happen */
2095 }
2096
2097 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2098
2099 sp = s->mo_arg;
2100 if (sp != NULL) {
2101 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2102 (void) strcpy(dp, sp);
2103 d->mo_arg = dp;
2104 } else {
2105 d->mo_arg = NULL;
2106 }
2107 }
2108
2109 /*
2110 * Copy a mount options table, possibly allocating some spare
2111 * slots at the end. It is permissible to copy_extend the NULL table.
2112 */
2113 static void
vfs_copyopttbl_extend(const mntopts_t * smo,mntopts_t * dmo,int extra)2114 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2115 {
2116 uint_t i, count;
2117 mntopt_t *motbl;
2118
2119 /*
2120 * Clear out any existing stuff in the options table being initialized
2121 */
2122 vfs_freeopttbl(dmo);
2123 count = (smo == NULL) ? 0 : smo->mo_count;
2124 if ((count + extra) == 0) /* nothing to do */
2125 return;
2126 dmo->mo_count = count + extra;
2127 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2128 dmo->mo_list = motbl;
2129 for (i = 0; i < count; i++) {
2130 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2131 }
2132 for (i = count; i < count + extra; i++) {
2133 motbl[i].mo_flags = MO_EMPTY;
2134 }
2135 }
2136
2137 /*
2138 * Copy a mount options table.
2139 *
2140 * This function is *not* for general use by filesystems.
2141 *
2142 * Note: caller is responsible for locking the vfs list, if needed,
2143 * to protect smo and dmo.
2144 */
2145 void
vfs_copyopttbl(const mntopts_t * smo,mntopts_t * dmo)2146 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2147 {
2148 vfs_copyopttbl_extend(smo, dmo, 0);
2149 }
2150
2151 static char **
vfs_mergecancelopts(const mntopt_t * mop1,const mntopt_t * mop2)2152 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2153 {
2154 int c1 = 0;
2155 int c2 = 0;
2156 char **result;
2157 char **sp1, **sp2, **dp;
2158
2159 /*
2160 * First we count both lists of cancel options.
2161 * If either is NULL or has no elements, we return a copy of
2162 * the other.
2163 */
2164 if (mop1->mo_cancel != NULL) {
2165 for (; mop1->mo_cancel[c1] != NULL; c1++)
2166 /* count cancel options in mop1 */;
2167 }
2168
2169 if (c1 == 0)
2170 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2171
2172 if (mop2->mo_cancel != NULL) {
2173 for (; mop2->mo_cancel[c2] != NULL; c2++)
2174 /* count cancel options in mop2 */;
2175 }
2176
2177 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2178
2179 if (c2 == 0)
2180 return (result);
2181
2182 /*
2183 * When we get here, we've got two sets of cancel options;
2184 * we need to merge the two sets. We know that the result
2185 * array has "c1+c2+1" entries and in the end we might shrink
2186 * it.
2187 * Result now has a copy of the c1 entries from mop1; we'll
2188 * now lookup all the entries of mop2 in mop1 and copy it if
2189 * it is unique.
2190 * This operation is O(n^2) but it's only called once per
2191 * filesystem per duplicate option. This is a situation
2192 * which doesn't arise with the filesystems in ON and
2193 * n is generally 1.
2194 */
2195
2196 dp = &result[c1];
2197 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2198 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2199 if (strcmp(*sp1, *sp2) == 0)
2200 break;
2201 }
2202 if (*sp1 == NULL) {
2203 /*
2204 * Option *sp2 not found in mop1, so copy it.
2205 * The calls to vfs_copycancelopt_extend()
2206 * guarantee that there's enough room.
2207 */
2208 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2209 (void) strcpy(*dp++, *sp2);
2210 }
2211 }
2212 if (dp != &result[c1+c2]) {
2213 size_t bytes = (dp - result + 1) * sizeof (char *);
2214 char **nres = kmem_alloc(bytes, KM_SLEEP);
2215
2216 bcopy(result, nres, bytes);
2217 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2218 result = nres;
2219 }
2220 return (result);
2221 }
2222
2223 /*
2224 * Merge two mount option tables (outer and inner) into one. This is very
2225 * similar to "merging" global variables and automatic variables in C.
2226 *
2227 * This isn't (and doesn't have to be) fast.
2228 *
2229 * This function is *not* for general use by filesystems.
2230 *
2231 * Note: caller is responsible for locking the vfs list, if needed,
2232 * to protect omo, imo & dmo.
2233 */
2234 void
vfs_mergeopttbl(const mntopts_t * omo,const mntopts_t * imo,mntopts_t * dmo)2235 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2236 {
2237 uint_t i, count;
2238 mntopt_t *mop, *motbl;
2239 uint_t freeidx;
2240
2241 /*
2242 * First determine how much space we need to allocate.
2243 */
2244 count = omo->mo_count;
2245 for (i = 0; i < imo->mo_count; i++) {
2246 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2247 continue;
2248 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2249 count++;
2250 }
2251 ASSERT(count >= omo->mo_count &&
2252 count <= omo->mo_count + imo->mo_count);
2253 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2254 for (i = 0; i < omo->mo_count; i++)
2255 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2256 freeidx = omo->mo_count;
2257 for (i = 0; i < imo->mo_count; i++) {
2258 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2259 continue;
2260 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2261 char **newcanp;
2262 uint_t index = mop - omo->mo_list;
2263
2264 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2265
2266 vfs_freeopt(&motbl[index]);
2267 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2268
2269 vfs_freecancelopt(motbl[index].mo_cancel);
2270 motbl[index].mo_cancel = newcanp;
2271 } else {
2272 /*
2273 * If it's a new option, just copy it over to the first
2274 * free location.
2275 */
2276 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2277 }
2278 }
2279 dmo->mo_count = count;
2280 dmo->mo_list = motbl;
2281 }
2282
2283 /*
2284 * Functions to set and clear mount options in a mount options table.
2285 */
2286
2287 /*
2288 * Clear a mount option, if it exists.
2289 *
2290 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2291 * the vfs list.
2292 */
2293 static void
vfs_clearmntopt_nolock(mntopts_t * mops,const char * opt,int update_mnttab)2294 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2295 {
2296 struct mntopt *mop;
2297 uint_t i, count;
2298
2299 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2300
2301 count = mops->mo_count;
2302 for (i = 0; i < count; i++) {
2303 mop = &mops->mo_list[i];
2304
2305 if (mop->mo_flags & MO_EMPTY)
2306 continue;
2307 if (strcmp(opt, mop->mo_name))
2308 continue;
2309 mop->mo_flags &= ~MO_SET;
2310 if (mop->mo_arg != NULL) {
2311 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2312 }
2313 mop->mo_arg = NULL;
2314 if (update_mnttab)
2315 vfs_mnttab_modtimeupd();
2316 break;
2317 }
2318 }
2319
2320 void
vfs_clearmntopt(struct vfs * vfsp,const char * opt)2321 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2322 {
2323 int gotlock = 0;
2324
2325 if (VFS_ON_LIST(vfsp)) {
2326 gotlock = 1;
2327 vfs_list_lock();
2328 }
2329 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2330 if (gotlock)
2331 vfs_list_unlock();
2332 }
2333
2334
2335 /*
2336 * Set a mount option on. If it's not found in the table, it's silently
2337 * ignored. If the option has MO_IGNORE set, it is still set unless the
2338 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2339 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2340 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2341 * MO_EMPTY set is created as the option passed in.
2342 *
2343 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2344 * the vfs list.
2345 */
2346 static void
vfs_setmntopt_nolock(mntopts_t * mops,const char * opt,const char * arg,int flags,int update_mnttab)2347 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2348 const char *arg, int flags, int update_mnttab)
2349 {
2350 mntopt_t *mop;
2351 uint_t i, count;
2352 char *sp;
2353
2354 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2355
2356 if (flags & VFS_CREATEOPT) {
2357 if (vfs_hasopt(mops, opt) != NULL) {
2358 flags &= ~VFS_CREATEOPT;
2359 }
2360 }
2361 count = mops->mo_count;
2362 for (i = 0; i < count; i++) {
2363 mop = &mops->mo_list[i];
2364
2365 if (mop->mo_flags & MO_EMPTY) {
2366 if ((flags & VFS_CREATEOPT) == 0)
2367 continue;
2368 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2369 (void) strcpy(sp, opt);
2370 mop->mo_name = sp;
2371 if (arg != NULL)
2372 mop->mo_flags = MO_HASVALUE;
2373 else
2374 mop->mo_flags = 0;
2375 } else if (strcmp(opt, mop->mo_name)) {
2376 continue;
2377 }
2378 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2379 break;
2380 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2381 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2382 (void) strcpy(sp, arg);
2383 } else {
2384 sp = NULL;
2385 }
2386 if (mop->mo_arg != NULL)
2387 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2388 mop->mo_arg = sp;
2389 if (flags & VFS_DISPLAY)
2390 mop->mo_flags &= ~MO_NODISPLAY;
2391 if (flags & VFS_NODISPLAY)
2392 mop->mo_flags |= MO_NODISPLAY;
2393 mop->mo_flags |= MO_SET;
2394 if (mop->mo_cancel != NULL) {
2395 char **cp;
2396
2397 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2398 vfs_clearmntopt_nolock(mops, *cp, 0);
2399 }
2400 if (update_mnttab)
2401 vfs_mnttab_modtimeupd();
2402 break;
2403 }
2404 }
2405
2406 void
vfs_setmntopt(struct vfs * vfsp,const char * opt,const char * arg,int flags)2407 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2408 {
2409 int gotlock = 0;
2410
2411 if (VFS_ON_LIST(vfsp)) {
2412 gotlock = 1;
2413 vfs_list_lock();
2414 }
2415 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2416 if (gotlock)
2417 vfs_list_unlock();
2418 }
2419
2420
2421 /*
2422 * Add a "tag" option to a mounted file system's options list.
2423 *
2424 * Note: caller is responsible for locking the vfs list, if needed,
2425 * to protect mops.
2426 */
2427 static mntopt_t *
vfs_addtag(mntopts_t * mops,const char * tag)2428 vfs_addtag(mntopts_t *mops, const char *tag)
2429 {
2430 uint_t count;
2431 mntopt_t *mop, *motbl;
2432
2433 count = mops->mo_count + 1;
2434 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2435 if (mops->mo_count) {
2436 size_t len = (count - 1) * sizeof (mntopt_t);
2437
2438 bcopy(mops->mo_list, motbl, len);
2439 kmem_free(mops->mo_list, len);
2440 }
2441 mops->mo_count = count;
2442 mops->mo_list = motbl;
2443 mop = &motbl[count - 1];
2444 mop->mo_flags = MO_TAG;
2445 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2446 (void) strcpy(mop->mo_name, tag);
2447 return (mop);
2448 }
2449
2450 /*
2451 * Allow users to set arbitrary "tags" in a vfs's mount options.
2452 * Broader use within the kernel is discouraged.
2453 */
2454 int
vfs_settag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2455 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2456 cred_t *cr)
2457 {
2458 vfs_t *vfsp;
2459 mntopts_t *mops;
2460 mntopt_t *mop;
2461 int found = 0;
2462 dev_t dev = makedevice(major, minor);
2463 int err = 0;
2464 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2465
2466 /*
2467 * Find the desired mounted file system
2468 */
2469 vfs_list_lock();
2470 vfsp = rootvfs;
2471 do {
2472 if (vfsp->vfs_dev == dev &&
2473 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2474 found = 1;
2475 break;
2476 }
2477 vfsp = vfsp->vfs_next;
2478 } while (vfsp != rootvfs);
2479
2480 if (!found) {
2481 err = EINVAL;
2482 goto out;
2483 }
2484 err = secpolicy_fs_config(cr, vfsp);
2485 if (err != 0)
2486 goto out;
2487
2488 mops = &vfsp->vfs_mntopts;
2489 /*
2490 * Add tag if it doesn't already exist
2491 */
2492 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2493 int len;
2494
2495 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2496 len = strlen(buf);
2497 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2498 err = ENAMETOOLONG;
2499 goto out;
2500 }
2501 mop = vfs_addtag(mops, tag);
2502 }
2503 if ((mop->mo_flags & MO_TAG) == 0) {
2504 err = EINVAL;
2505 goto out;
2506 }
2507 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2508 out:
2509 vfs_list_unlock();
2510 kmem_free(buf, MAX_MNTOPT_STR);
2511 return (err);
2512 }
2513
2514 /*
2515 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2516 * Broader use within the kernel is discouraged.
2517 */
2518 int
vfs_clrtag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2519 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2520 cred_t *cr)
2521 {
2522 vfs_t *vfsp;
2523 mntopt_t *mop;
2524 int found = 0;
2525 dev_t dev = makedevice(major, minor);
2526 int err = 0;
2527
2528 /*
2529 * Find the desired mounted file system
2530 */
2531 vfs_list_lock();
2532 vfsp = rootvfs;
2533 do {
2534 if (vfsp->vfs_dev == dev &&
2535 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2536 found = 1;
2537 break;
2538 }
2539 vfsp = vfsp->vfs_next;
2540 } while (vfsp != rootvfs);
2541
2542 if (!found) {
2543 err = EINVAL;
2544 goto out;
2545 }
2546 err = secpolicy_fs_config(cr, vfsp);
2547 if (err != 0)
2548 goto out;
2549
2550 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2551 err = EINVAL;
2552 goto out;
2553 }
2554 if ((mop->mo_flags & MO_TAG) == 0) {
2555 err = EINVAL;
2556 goto out;
2557 }
2558 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2559 out:
2560 vfs_list_unlock();
2561 return (err);
2562 }
2563
2564 /*
2565 * Function to parse an option string and fill in a mount options table.
2566 * Unknown options are silently ignored. The input option string is modified
2567 * by replacing separators with nulls. If the create flag is set, options
2568 * not found in the table are just added on the fly. The table must have
2569 * an option slot marked MO_EMPTY to add an option on the fly.
2570 *
2571 * This function is *not* for general use by filesystems.
2572 *
2573 * Note: caller is responsible for locking the vfs list, if needed,
2574 * to protect mops..
2575 */
2576 void
vfs_parsemntopts(mntopts_t * mops,char * osp,int create)2577 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2578 {
2579 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2580 int setflg = VFS_NOFORCEOPT;
2581
2582 if (osp == NULL)
2583 return;
2584 while (*s != '\0') {
2585 p = strchr(s, ','); /* find next option */
2586 if (p == NULL) {
2587 cp = NULL;
2588 p = s + strlen(s);
2589 } else {
2590 cp = p; /* save location of comma */
2591 *p++ = '\0'; /* mark end and point to next option */
2592 }
2593 nextop = p;
2594 p = strchr(s, '='); /* look for value */
2595 if (p == NULL) {
2596 valp = NULL; /* no value supplied */
2597 } else {
2598 ep = p; /* save location of equals */
2599 *p++ = '\0'; /* end option and point to value */
2600 valp = p;
2601 }
2602 /*
2603 * set option into options table
2604 */
2605 if (create)
2606 setflg |= VFS_CREATEOPT;
2607 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2608 if (cp != NULL)
2609 *cp = ','; /* restore the comma */
2610 if (valp != NULL)
2611 *ep = '='; /* restore the equals */
2612 s = nextop;
2613 }
2614 }
2615
2616 /*
2617 * Function to inquire if an option exists in a mount options table.
2618 * Returns a pointer to the option if it exists, else NULL.
2619 *
2620 * This function is *not* for general use by filesystems.
2621 *
2622 * Note: caller is responsible for locking the vfs list, if needed,
2623 * to protect mops.
2624 */
2625 struct mntopt *
vfs_hasopt(const mntopts_t * mops,const char * opt)2626 vfs_hasopt(const mntopts_t *mops, const char *opt)
2627 {
2628 struct mntopt *mop;
2629 uint_t i, count;
2630
2631 count = mops->mo_count;
2632 for (i = 0; i < count; i++) {
2633 mop = &mops->mo_list[i];
2634
2635 if (mop->mo_flags & MO_EMPTY)
2636 continue;
2637 if (strcmp(opt, mop->mo_name) == 0)
2638 return (mop);
2639 }
2640 return (NULL);
2641 }
2642
2643 /*
2644 * Function to inquire if an option is set in a mount options table.
2645 * Returns non-zero if set and fills in the arg pointer with a pointer to
2646 * the argument string or NULL if there is no argument string.
2647 */
2648 static int
vfs_optionisset_nolock(const mntopts_t * mops,const char * opt,char ** argp)2649 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2650 {
2651 struct mntopt *mop;
2652 uint_t i, count;
2653
2654 count = mops->mo_count;
2655 for (i = 0; i < count; i++) {
2656 mop = &mops->mo_list[i];
2657
2658 if (mop->mo_flags & MO_EMPTY)
2659 continue;
2660 if (strcmp(opt, mop->mo_name))
2661 continue;
2662 if ((mop->mo_flags & MO_SET) == 0)
2663 return (0);
2664 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2665 *argp = mop->mo_arg;
2666 return (1);
2667 }
2668 return (0);
2669 }
2670
2671
2672 int
vfs_optionisset(const struct vfs * vfsp,const char * opt,char ** argp)2673 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2674 {
2675 int ret;
2676
2677 vfs_list_read_lock();
2678 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2679 vfs_list_unlock();
2680 return (ret);
2681 }
2682
2683
2684 /*
2685 * Construct a comma separated string of the options set in the given
2686 * mount table, return the string in the given buffer. Return non-zero if
2687 * the buffer would overflow.
2688 *
2689 * This function is *not* for general use by filesystems.
2690 *
2691 * Note: caller is responsible for locking the vfs list, if needed,
2692 * to protect mp.
2693 */
2694 int
vfs_buildoptionstr(const mntopts_t * mp,char * buf,int len)2695 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2696 {
2697 char *cp;
2698 uint_t i;
2699
2700 buf[0] = '\0';
2701 cp = buf;
2702 for (i = 0; i < mp->mo_count; i++) {
2703 struct mntopt *mop;
2704
2705 mop = &mp->mo_list[i];
2706 if (mop->mo_flags & MO_SET) {
2707 int optlen, comma = 0;
2708
2709 if (buf[0] != '\0')
2710 comma = 1;
2711 optlen = strlen(mop->mo_name);
2712 if (strlen(buf) + comma + optlen + 1 > len)
2713 goto err;
2714 if (comma)
2715 *cp++ = ',';
2716 (void) strcpy(cp, mop->mo_name);
2717 cp += optlen;
2718 /*
2719 * Append option value if there is one
2720 */
2721 if (mop->mo_arg != NULL) {
2722 int arglen;
2723
2724 arglen = strlen(mop->mo_arg);
2725 if (strlen(buf) + arglen + 2 > len)
2726 goto err;
2727 *cp++ = '=';
2728 (void) strcpy(cp, mop->mo_arg);
2729 cp += arglen;
2730 }
2731 }
2732 }
2733 return (0);
2734 err:
2735 return (EOVERFLOW);
2736 }
2737
2738 static void
vfs_freecancelopt(char ** moc)2739 vfs_freecancelopt(char **moc)
2740 {
2741 if (moc != NULL) {
2742 int ccnt = 0;
2743 char **cp;
2744
2745 for (cp = moc; *cp != NULL; cp++) {
2746 kmem_free(*cp, strlen(*cp) + 1);
2747 ccnt++;
2748 }
2749 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2750 }
2751 }
2752
2753 static void
vfs_freeopt(mntopt_t * mop)2754 vfs_freeopt(mntopt_t *mop)
2755 {
2756 if (mop->mo_name != NULL)
2757 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2758
2759 vfs_freecancelopt(mop->mo_cancel);
2760
2761 if (mop->mo_arg != NULL)
2762 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2763 }
2764
2765 /*
2766 * Free a mount options table
2767 *
2768 * This function is *not* for general use by filesystems.
2769 *
2770 * Note: caller is responsible for locking the vfs list, if needed,
2771 * to protect mp.
2772 */
2773 void
vfs_freeopttbl(mntopts_t * mp)2774 vfs_freeopttbl(mntopts_t *mp)
2775 {
2776 uint_t i, count;
2777
2778 count = mp->mo_count;
2779 for (i = 0; i < count; i++) {
2780 vfs_freeopt(&mp->mo_list[i]);
2781 }
2782 if (count) {
2783 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2784 mp->mo_count = 0;
2785 mp->mo_list = NULL;
2786 }
2787 }
2788
2789
2790 /* ARGSUSED */
2791 static int
vfs_mntdummyread(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2792 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2793 caller_context_t *ct)
2794 {
2795 return (0);
2796 }
2797
2798 /* ARGSUSED */
2799 static int
vfs_mntdummywrite(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2800 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2801 caller_context_t *ct)
2802 {
2803 return (0);
2804 }
2805
2806 /*
2807 * The dummy vnode is currently used only by file events notification
2808 * module which is just interested in the timestamps.
2809 */
2810 /* ARGSUSED */
2811 static int
vfs_mntdummygetattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2812 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2813 caller_context_t *ct)
2814 {
2815 bzero(vap, sizeof (vattr_t));
2816 vap->va_type = VREG;
2817 vap->va_nlink = 1;
2818 vap->va_ctime = vfs_mnttab_ctime;
2819 /*
2820 * it is ok to just copy mtime as the time will be monotonically
2821 * increasing.
2822 */
2823 vap->va_mtime = vfs_mnttab_mtime;
2824 vap->va_atime = vap->va_mtime;
2825 return (0);
2826 }
2827
2828 static void
vfs_mnttabvp_setup(void)2829 vfs_mnttabvp_setup(void)
2830 {
2831 vnode_t *tvp;
2832 vnodeops_t *vfs_mntdummyvnops;
2833 const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2834 VOPNAME_READ, { .vop_read = vfs_mntdummyread },
2835 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite },
2836 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr },
2837 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
2838 NULL, NULL
2839 };
2840
2841 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2842 &vfs_mntdummyvnops) != 0) {
2843 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2844 /* Shouldn't happen, but not bad enough to panic */
2845 return;
2846 }
2847
2848 /*
2849 * A global dummy vnode is allocated to represent mntfs files.
2850 * The mntfs file (/etc/mnttab) can be monitored for file events
2851 * and receive an event when mnttab changes. Dummy VOP calls
2852 * will be made on this vnode. The file events notification module
2853 * intercepts this vnode and delivers relevant events.
2854 */
2855 tvp = vn_alloc(KM_SLEEP);
2856 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2857 vn_setops(tvp, vfs_mntdummyvnops);
2858 tvp->v_type = VREG;
2859 /*
2860 * The mnt dummy ops do not reference v_data.
2861 * No other module intercepting this vnode should either.
2862 * Just set it to point to itself.
2863 */
2864 tvp->v_data = (caddr_t)tvp;
2865 tvp->v_vfsp = rootvfs;
2866 vfs_mntdummyvp = tvp;
2867 }
2868
2869 /*
2870 * performs fake read/write ops
2871 */
2872 static void
vfs_mnttab_rwop(int rw)2873 vfs_mnttab_rwop(int rw)
2874 {
2875 struct uio uio;
2876 struct iovec iov;
2877 char buf[1];
2878
2879 if (vfs_mntdummyvp == NULL)
2880 return;
2881
2882 bzero(&uio, sizeof (uio));
2883 bzero(&iov, sizeof (iov));
2884 iov.iov_base = buf;
2885 iov.iov_len = 0;
2886 uio.uio_iov = &iov;
2887 uio.uio_iovcnt = 1;
2888 uio.uio_loffset = 0;
2889 uio.uio_segflg = UIO_SYSSPACE;
2890 uio.uio_resid = 0;
2891 if (rw) {
2892 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2893 } else {
2894 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2895 }
2896 }
2897
2898 /*
2899 * Generate a write operation.
2900 */
2901 void
vfs_mnttab_writeop(void)2902 vfs_mnttab_writeop(void)
2903 {
2904 vfs_mnttab_rwop(1);
2905 }
2906
2907 /*
2908 * Generate a read operation.
2909 */
2910 void
vfs_mnttab_readop(void)2911 vfs_mnttab_readop(void)
2912 {
2913 vfs_mnttab_rwop(0);
2914 }
2915
2916 /*
2917 * Free any mnttab information recorded in the vfs struct.
2918 * The vfs must not be on the vfs list.
2919 */
2920 static void
vfs_freemnttab(struct vfs * vfsp)2921 vfs_freemnttab(struct vfs *vfsp)
2922 {
2923 ASSERT(!VFS_ON_LIST(vfsp));
2924
2925 /*
2926 * Free device and mount point information
2927 */
2928 if (vfsp->vfs_mntpt != NULL) {
2929 refstr_rele(vfsp->vfs_mntpt);
2930 vfsp->vfs_mntpt = NULL;
2931 }
2932 if (vfsp->vfs_resource != NULL) {
2933 refstr_rele(vfsp->vfs_resource);
2934 vfsp->vfs_resource = NULL;
2935 }
2936 /*
2937 * Now free mount options information
2938 */
2939 vfs_freeopttbl(&vfsp->vfs_mntopts);
2940 }
2941
2942 /*
2943 * Return the last mnttab modification time
2944 */
2945 void
vfs_mnttab_modtime(timespec_t * ts)2946 vfs_mnttab_modtime(timespec_t *ts)
2947 {
2948 ASSERT(RW_LOCK_HELD(&vfslist));
2949 *ts = vfs_mnttab_mtime;
2950 }
2951
2952 /*
2953 * See if mnttab is changed
2954 */
2955 void
vfs_mnttab_poll(timespec_t * old,struct pollhead ** phpp)2956 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2957 {
2958 int changed;
2959
2960 *phpp = (struct pollhead *)NULL;
2961
2962 /*
2963 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2964 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2965 * to not grab the vfs list lock because tv_sec is monotonically
2966 * increasing.
2967 */
2968
2969 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2970 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2971 if (!changed) {
2972 *phpp = &vfs_pollhd;
2973 }
2974 }
2975
2976 /* Provide a unique and monotonically-increasing timestamp. */
2977 void
vfs_mono_time(timespec_t * ts)2978 vfs_mono_time(timespec_t *ts)
2979 {
2980 static volatile hrtime_t hrt; /* The saved time. */
2981 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
2982 timespec_t newts;
2983
2984 /*
2985 * Try gethrestime() first, but be prepared to fabricate a sensible
2986 * answer at the first sign of any trouble.
2987 */
2988 gethrestime(&newts);
2989 newhrt = ts2hrt(&newts);
2990 for (;;) {
2991 oldhrt = hrt;
2992 if (newhrt <= hrt)
2993 newhrt = hrt + 1;
2994 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2995 break;
2996 }
2997 hrt2ts(newhrt, ts);
2998 }
2999
3000 /*
3001 * Update the mnttab modification time and wake up any waiters for
3002 * mnttab changes
3003 */
3004 void
vfs_mnttab_modtimeupd()3005 vfs_mnttab_modtimeupd()
3006 {
3007 hrtime_t oldhrt, newhrt;
3008
3009 ASSERT(RW_WRITE_HELD(&vfslist));
3010 oldhrt = ts2hrt(&vfs_mnttab_mtime);
3011 gethrestime(&vfs_mnttab_mtime);
3012 newhrt = ts2hrt(&vfs_mnttab_mtime);
3013 if (oldhrt == (hrtime_t)0)
3014 vfs_mnttab_ctime = vfs_mnttab_mtime;
3015 /*
3016 * Attempt to provide unique mtime (like uniqtime but not).
3017 */
3018 if (newhrt == oldhrt) {
3019 newhrt++;
3020 hrt2ts(newhrt, &vfs_mnttab_mtime);
3021 }
3022 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3023 vfs_mnttab_writeop();
3024 }
3025
3026 int
dounmount(struct vfs * vfsp,int flag,cred_t * cr)3027 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3028 {
3029 vnode_t *coveredvp;
3030 int error;
3031 extern void teardown_vopstats(vfs_t *);
3032
3033 /*
3034 * Get covered vnode. This will be NULL if the vfs is not linked
3035 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3036 */
3037 coveredvp = vfsp->vfs_vnodecovered;
3038 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3039
3040 /*
3041 * Purge all dnlc entries for this vfs.
3042 */
3043 (void) dnlc_purge_vfsp(vfsp, 0);
3044
3045 /* For forcible umount, skip VFS_SYNC() since it may hang */
3046 if ((flag & MS_FORCE) == 0)
3047 (void) VFS_SYNC(vfsp, 0, cr);
3048
3049 /*
3050 * Lock the vfs to maintain fs status quo during unmount. This
3051 * has to be done after the sync because ufs_update tries to acquire
3052 * the vfs_reflock.
3053 */
3054 vfs_lock_wait(vfsp);
3055
3056 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3057 vfs_unlock(vfsp);
3058 if (coveredvp != NULL)
3059 vn_vfsunlock(coveredvp);
3060 } else if (coveredvp != NULL) {
3061 teardown_vopstats(vfsp);
3062 /*
3063 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3064 * when it frees vfsp so we do a VN_HOLD() so we can
3065 * continue to use coveredvp afterwards.
3066 */
3067 VN_HOLD(coveredvp);
3068 vfs_remove(vfsp);
3069 vn_vfsunlock(coveredvp);
3070 VN_RELE(coveredvp);
3071 } else {
3072 teardown_vopstats(vfsp);
3073 /*
3074 * Release the reference to vfs that is not linked
3075 * into the name space.
3076 */
3077 vfs_unlock(vfsp);
3078 VFS_RELE(vfsp);
3079 }
3080 return (error);
3081 }
3082
3083
3084 /*
3085 * Vfs_unmountall() is called by uadmin() to unmount all
3086 * mounted file systems (except the root file system) during shutdown.
3087 * It follows the existing locking protocol when traversing the vfs list
3088 * to sync and unmount vfses. Even though there should be no
3089 * other thread running while the system is shutting down, it is prudent
3090 * to still follow the locking protocol.
3091 */
3092 void
vfs_unmountall(void)3093 vfs_unmountall(void)
3094 {
3095 struct vfs *vfsp;
3096 struct vfs *prev_vfsp = NULL;
3097 int error;
3098
3099 /*
3100 * Toss all dnlc entries now so that the per-vfs sync
3101 * and unmount operations don't have to slog through
3102 * a bunch of uninteresting vnodes over and over again.
3103 */
3104 dnlc_purge();
3105
3106 vfs_list_lock();
3107 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3108 prev_vfsp = vfsp->vfs_prev;
3109
3110 if (vfs_lock(vfsp) != 0)
3111 continue;
3112 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3113 vfs_unlock(vfsp);
3114 if (error)
3115 continue;
3116
3117 vfs_list_unlock();
3118
3119 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3120 (void) dounmount(vfsp, 0, CRED());
3121
3122 /*
3123 * Since we dropped the vfslist lock above we must
3124 * verify that next_vfsp still exists, else start over.
3125 */
3126 vfs_list_lock();
3127 for (vfsp = rootvfs->vfs_prev;
3128 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3129 if (vfsp == prev_vfsp)
3130 break;
3131 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3132 prev_vfsp = rootvfs->vfs_prev;
3133 }
3134 vfs_list_unlock();
3135 }
3136
3137 /*
3138 * Called to add an entry to the end of the vfs mount in progress list
3139 */
3140 void
vfs_addmip(dev_t dev,struct vfs * vfsp)3141 vfs_addmip(dev_t dev, struct vfs *vfsp)
3142 {
3143 struct ipmnt *mipp;
3144
3145 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3146 mipp->mip_next = NULL;
3147 mipp->mip_dev = dev;
3148 mipp->mip_vfsp = vfsp;
3149 mutex_enter(&vfs_miplist_mutex);
3150 if (vfs_miplist_end != NULL)
3151 vfs_miplist_end->mip_next = mipp;
3152 else
3153 vfs_miplist = mipp;
3154 vfs_miplist_end = mipp;
3155 mutex_exit(&vfs_miplist_mutex);
3156 }
3157
3158 /*
3159 * Called to remove an entry from the mount in progress list
3160 * Either because the mount completed or it failed.
3161 */
3162 void
vfs_delmip(struct vfs * vfsp)3163 vfs_delmip(struct vfs *vfsp)
3164 {
3165 struct ipmnt *mipp, *mipprev;
3166
3167 mutex_enter(&vfs_miplist_mutex);
3168 mipprev = NULL;
3169 for (mipp = vfs_miplist;
3170 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3171 mipprev = mipp;
3172 }
3173 if (mipp == NULL)
3174 return; /* shouldn't happen */
3175 if (mipp == vfs_miplist_end)
3176 vfs_miplist_end = mipprev;
3177 if (mipprev == NULL)
3178 vfs_miplist = mipp->mip_next;
3179 else
3180 mipprev->mip_next = mipp->mip_next;
3181 mutex_exit(&vfs_miplist_mutex);
3182 kmem_free(mipp, sizeof (struct ipmnt));
3183 }
3184
3185 /*
3186 * vfs_add is called by a specific filesystem's mount routine to add
3187 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3188 * The vfs should already have been locked by the caller.
3189 *
3190 * coveredvp is NULL if this is the root.
3191 */
3192 void
vfs_add(vnode_t * coveredvp,struct vfs * vfsp,int mflag)3193 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3194 {
3195 int newflag;
3196
3197 ASSERT(vfs_lock_held(vfsp));
3198 VFS_HOLD(vfsp);
3199 newflag = vfsp->vfs_flag;
3200 if (mflag & MS_RDONLY)
3201 newflag |= VFS_RDONLY;
3202 else
3203 newflag &= ~VFS_RDONLY;
3204 if (mflag & MS_NOSUID)
3205 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3206 else
3207 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3208 if (mflag & MS_NOMNTTAB)
3209 newflag |= VFS_NOMNTTAB;
3210 else
3211 newflag &= ~VFS_NOMNTTAB;
3212
3213 if (coveredvp != NULL) {
3214 ASSERT(vn_vfswlock_held(coveredvp));
3215 coveredvp->v_vfsmountedhere = vfsp;
3216 VN_HOLD(coveredvp);
3217 }
3218 vfsp->vfs_vnodecovered = coveredvp;
3219 vfsp->vfs_flag = newflag;
3220
3221 vfs_list_add(vfsp);
3222 }
3223
3224 /*
3225 * Remove a vfs from the vfs list, null out the pointer from the
3226 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3227 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3228 * reference to the vfs and to the covered vnode.
3229 *
3230 * Called from dounmount after it's confirmed with the file system
3231 * that the unmount is legal.
3232 */
3233 void
vfs_remove(struct vfs * vfsp)3234 vfs_remove(struct vfs *vfsp)
3235 {
3236 vnode_t *vp;
3237
3238 ASSERT(vfs_lock_held(vfsp));
3239
3240 /*
3241 * Can't unmount root. Should never happen because fs will
3242 * be busy.
3243 */
3244 if (vfsp == rootvfs)
3245 panic("vfs_remove: unmounting root");
3246
3247 vfs_list_remove(vfsp);
3248
3249 /*
3250 * Unhook from the file system name space.
3251 */
3252 vp = vfsp->vfs_vnodecovered;
3253 ASSERT(vn_vfswlock_held(vp));
3254 vp->v_vfsmountedhere = NULL;
3255 vfsp->vfs_vnodecovered = NULL;
3256 VN_RELE(vp);
3257
3258 /*
3259 * Release lock and wakeup anybody waiting.
3260 */
3261 vfs_unlock(vfsp);
3262 VFS_RELE(vfsp);
3263 }
3264
3265 /*
3266 * Lock a filesystem to prevent access to it while mounting,
3267 * unmounting and syncing. Return EBUSY immediately if lock
3268 * can't be acquired.
3269 */
3270 int
vfs_lock(vfs_t * vfsp)3271 vfs_lock(vfs_t *vfsp)
3272 {
3273 vn_vfslocks_entry_t *vpvfsentry;
3274
3275 vpvfsentry = vn_vfslocks_getlock(vfsp);
3276 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3277 return (0);
3278
3279 vn_vfslocks_rele(vpvfsentry);
3280 return (EBUSY);
3281 }
3282
3283 int
vfs_rlock(vfs_t * vfsp)3284 vfs_rlock(vfs_t *vfsp)
3285 {
3286 vn_vfslocks_entry_t *vpvfsentry;
3287
3288 vpvfsentry = vn_vfslocks_getlock(vfsp);
3289
3290 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3291 return (0);
3292
3293 vn_vfslocks_rele(vpvfsentry);
3294 return (EBUSY);
3295 }
3296
3297 void
vfs_lock_wait(vfs_t * vfsp)3298 vfs_lock_wait(vfs_t *vfsp)
3299 {
3300 vn_vfslocks_entry_t *vpvfsentry;
3301
3302 vpvfsentry = vn_vfslocks_getlock(vfsp);
3303 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3304 }
3305
3306 void
vfs_rlock_wait(vfs_t * vfsp)3307 vfs_rlock_wait(vfs_t *vfsp)
3308 {
3309 vn_vfslocks_entry_t *vpvfsentry;
3310
3311 vpvfsentry = vn_vfslocks_getlock(vfsp);
3312 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3313 }
3314
3315 /*
3316 * Unlock a locked filesystem.
3317 */
3318 void
vfs_unlock(vfs_t * vfsp)3319 vfs_unlock(vfs_t *vfsp)
3320 {
3321 vn_vfslocks_entry_t *vpvfsentry;
3322
3323 /*
3324 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3325 * And these changes should remain for the patch changes as it is.
3326 */
3327 if (panicstr)
3328 return;
3329
3330 /*
3331 * ve_refcount needs to be dropped twice here.
3332 * 1. To release refernce after a call to vfs_locks_getlock()
3333 * 2. To release the reference from the locking routines like
3334 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3335 */
3336
3337 vpvfsentry = vn_vfslocks_getlock(vfsp);
3338 vn_vfslocks_rele(vpvfsentry);
3339
3340 rwst_exit(&vpvfsentry->ve_lock);
3341 vn_vfslocks_rele(vpvfsentry);
3342 }
3343
3344 /*
3345 * Utility routine that allows a filesystem to construct its
3346 * fsid in "the usual way" - by munging some underlying dev_t and
3347 * the filesystem type number into the 64-bit fsid. Note that
3348 * this implicitly relies on dev_t persistence to make filesystem
3349 * id's persistent.
3350 *
3351 * There's nothing to prevent an individual fs from constructing its
3352 * fsid in a different way, and indeed they should.
3353 *
3354 * Since we want fsids to be 32-bit quantities (so that they can be
3355 * exported identically by either 32-bit or 64-bit APIs, as well as
3356 * the fact that fsid's are "known" to NFS), we compress the device
3357 * number given down to 32-bits, and panic if that isn't possible.
3358 */
3359 void
vfs_make_fsid(fsid_t * fsi,dev_t dev,int val)3360 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3361 {
3362 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3363 panic("device number too big for fsid!");
3364 fsi->val[1] = val;
3365 }
3366
3367 int
vfs_lock_held(vfs_t * vfsp)3368 vfs_lock_held(vfs_t *vfsp)
3369 {
3370 int held;
3371 vn_vfslocks_entry_t *vpvfsentry;
3372
3373 /*
3374 * vfs_lock_held will mimic sema_held behaviour
3375 * if panicstr is set. And these changes should remain
3376 * for the patch changes as it is.
3377 */
3378 if (panicstr)
3379 return (1);
3380
3381 vpvfsentry = vn_vfslocks_getlock(vfsp);
3382 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3383
3384 vn_vfslocks_rele(vpvfsentry);
3385 return (held);
3386 }
3387
3388 struct _kthread *
vfs_lock_owner(vfs_t * vfsp)3389 vfs_lock_owner(vfs_t *vfsp)
3390 {
3391 struct _kthread *owner;
3392 vn_vfslocks_entry_t *vpvfsentry;
3393
3394 /*
3395 * vfs_wlock_held will mimic sema_held behaviour
3396 * if panicstr is set. And these changes should remain
3397 * for the patch changes as it is.
3398 */
3399 if (panicstr)
3400 return (NULL);
3401
3402 vpvfsentry = vn_vfslocks_getlock(vfsp);
3403 owner = rwst_owner(&vpvfsentry->ve_lock);
3404
3405 vn_vfslocks_rele(vpvfsentry);
3406 return (owner);
3407 }
3408
3409 /*
3410 * vfs list locking.
3411 *
3412 * Rather than manipulate the vfslist lock directly, we abstract into lock
3413 * and unlock routines to allow the locking implementation to be changed for
3414 * clustering.
3415 *
3416 * Whenever the vfs list is modified through its hash links, the overall list
3417 * lock must be obtained before locking the relevant hash bucket. But to see
3418 * whether a given vfs is on the list, it suffices to obtain the lock for the
3419 * hash bucket without getting the overall list lock. (See getvfs() below.)
3420 */
3421
3422 void
vfs_list_lock()3423 vfs_list_lock()
3424 {
3425 rw_enter(&vfslist, RW_WRITER);
3426 }
3427
3428 void
vfs_list_read_lock()3429 vfs_list_read_lock()
3430 {
3431 rw_enter(&vfslist, RW_READER);
3432 }
3433
3434 void
vfs_list_unlock()3435 vfs_list_unlock()
3436 {
3437 rw_exit(&vfslist);
3438 }
3439
3440 /*
3441 * Low level worker routines for adding entries to and removing entries from
3442 * the vfs list.
3443 */
3444
3445 static void
vfs_hash_add(struct vfs * vfsp,int insert_at_head)3446 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3447 {
3448 int vhno;
3449 struct vfs **hp;
3450 dev_t dev;
3451
3452 ASSERT(RW_WRITE_HELD(&vfslist));
3453
3454 dev = expldev(vfsp->vfs_fsid.val[0]);
3455 vhno = VFSHASH(getmajor(dev), getminor(dev));
3456
3457 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3458
3459 /*
3460 * Link into the hash table, inserting it at the end, so that LOFS
3461 * with the same fsid as UFS (or other) file systems will not hide the
3462 * UFS.
3463 */
3464 if (insert_at_head) {
3465 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3466 rvfs_list[vhno].rvfs_head = vfsp;
3467 } else {
3468 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3469 hp = &(*hp)->vfs_hash)
3470 continue;
3471 /*
3472 * hp now contains the address of the pointer to update
3473 * to effect the insertion.
3474 */
3475 vfsp->vfs_hash = NULL;
3476 *hp = vfsp;
3477 }
3478
3479 rvfs_list[vhno].rvfs_len++;
3480 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3481 }
3482
3483
3484 static void
vfs_hash_remove(struct vfs * vfsp)3485 vfs_hash_remove(struct vfs *vfsp)
3486 {
3487 int vhno;
3488 struct vfs *tvfsp;
3489 dev_t dev;
3490
3491 ASSERT(RW_WRITE_HELD(&vfslist));
3492
3493 dev = expldev(vfsp->vfs_fsid.val[0]);
3494 vhno = VFSHASH(getmajor(dev), getminor(dev));
3495
3496 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3497
3498 /*
3499 * Remove from hash.
3500 */
3501 if (rvfs_list[vhno].rvfs_head == vfsp) {
3502 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3503 rvfs_list[vhno].rvfs_len--;
3504 goto foundit;
3505 }
3506 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3507 tvfsp = tvfsp->vfs_hash) {
3508 if (tvfsp->vfs_hash == vfsp) {
3509 tvfsp->vfs_hash = vfsp->vfs_hash;
3510 rvfs_list[vhno].rvfs_len--;
3511 goto foundit;
3512 }
3513 }
3514 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3515
3516 foundit:
3517
3518 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3519 }
3520
3521
3522 void
vfs_list_add(struct vfs * vfsp)3523 vfs_list_add(struct vfs *vfsp)
3524 {
3525 zone_t *zone;
3526
3527 /*
3528 * Typically, the vfs_t will have been created on behalf of the file
3529 * system in vfs_init, where it will have been provided with a
3530 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3531 * by an unbundled file system. We therefore check for such an example
3532 * before stamping the vfs_t with its creation time for the benefit of
3533 * mntfs.
3534 */
3535 if (vfsp->vfs_implp == NULL)
3536 vfsimpl_setup(vfsp);
3537 vfs_mono_time(&vfsp->vfs_hrctime);
3538
3539 /*
3540 * The zone that owns the mount is the one that performed the mount.
3541 * Note that this isn't necessarily the same as the zone mounted into.
3542 * The corresponding zone_rele_ref() will be done when the vfs_t
3543 * is being free'd.
3544 */
3545 vfsp->vfs_zone = curproc->p_zone;
3546 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3547 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3548 ZONE_REF_VFS);
3549
3550 /*
3551 * Find the zone mounted into, and put this mount on its vfs list.
3552 */
3553 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3554 ASSERT(zone != NULL);
3555 /*
3556 * Special casing for the root vfs. This structure is allocated
3557 * statically and hooked onto rootvfs at link time. During the
3558 * vfs_mountroot call at system startup time, the root file system's
3559 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3560 * as argument. The code below must detect and handle this special
3561 * case. The only apparent justification for this special casing is
3562 * to ensure that the root file system appears at the head of the
3563 * list.
3564 *
3565 * XXX: I'm assuming that it's ok to do normal list locking when
3566 * adding the entry for the root file system (this used to be
3567 * done with no locks held).
3568 */
3569 vfs_list_lock();
3570 /*
3571 * Link into the vfs list proper.
3572 */
3573 if (vfsp == &root) {
3574 /*
3575 * Assert: This vfs is already on the list as its first entry.
3576 * Thus, there's nothing to do.
3577 */
3578 ASSERT(rootvfs == vfsp);
3579 /*
3580 * Add it to the head of the global zone's vfslist.
3581 */
3582 ASSERT(zone == global_zone);
3583 ASSERT(zone->zone_vfslist == NULL);
3584 zone->zone_vfslist = vfsp;
3585 } else {
3586 /*
3587 * Link to end of list using vfs_prev (as rootvfs is now a
3588 * doubly linked circular list) so list is in mount order for
3589 * mnttab use.
3590 */
3591 rootvfs->vfs_prev->vfs_next = vfsp;
3592 vfsp->vfs_prev = rootvfs->vfs_prev;
3593 rootvfs->vfs_prev = vfsp;
3594 vfsp->vfs_next = rootvfs;
3595
3596 /*
3597 * Do it again for the zone-private list (which may be NULL).
3598 */
3599 if (zone->zone_vfslist == NULL) {
3600 ASSERT(zone != global_zone);
3601 zone->zone_vfslist = vfsp;
3602 } else {
3603 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3604 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3605 zone->zone_vfslist->vfs_zone_prev = vfsp;
3606 vfsp->vfs_zone_next = zone->zone_vfslist;
3607 }
3608 }
3609
3610 /*
3611 * Link into the hash table, inserting it at the end, so that LOFS
3612 * with the same fsid as UFS (or other) file systems will not hide
3613 * the UFS.
3614 */
3615 vfs_hash_add(vfsp, 0);
3616
3617 /*
3618 * update the mnttab modification time
3619 */
3620 vfs_mnttab_modtimeupd();
3621 vfs_list_unlock();
3622 zone_rele(zone);
3623 }
3624
3625 void
vfs_list_remove(struct vfs * vfsp)3626 vfs_list_remove(struct vfs *vfsp)
3627 {
3628 zone_t *zone;
3629
3630 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3631 ASSERT(zone != NULL);
3632 /*
3633 * Callers are responsible for preventing attempts to unmount the
3634 * root.
3635 */
3636 ASSERT(vfsp != rootvfs);
3637
3638 vfs_list_lock();
3639
3640 /*
3641 * Remove from hash.
3642 */
3643 vfs_hash_remove(vfsp);
3644
3645 /*
3646 * Remove from vfs list.
3647 */
3648 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3649 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3650 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3651
3652 /*
3653 * Remove from zone-specific vfs list.
3654 */
3655 if (zone->zone_vfslist == vfsp)
3656 zone->zone_vfslist = vfsp->vfs_zone_next;
3657
3658 if (vfsp->vfs_zone_next == vfsp) {
3659 ASSERT(vfsp->vfs_zone_prev == vfsp);
3660 ASSERT(zone->zone_vfslist == vfsp);
3661 zone->zone_vfslist = NULL;
3662 }
3663
3664 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3665 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3666 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3667
3668 /*
3669 * update the mnttab modification time
3670 */
3671 vfs_mnttab_modtimeupd();
3672 vfs_list_unlock();
3673 zone_rele(zone);
3674 }
3675
3676 struct vfs *
getvfs(fsid_t * fsid)3677 getvfs(fsid_t *fsid)
3678 {
3679 struct vfs *vfsp;
3680 int val0 = fsid->val[0];
3681 int val1 = fsid->val[1];
3682 dev_t dev = expldev(val0);
3683 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3684 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3685
3686 mutex_enter(hmp);
3687 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3688 if (vfsp->vfs_fsid.val[0] == val0 &&
3689 vfsp->vfs_fsid.val[1] == val1) {
3690 VFS_HOLD(vfsp);
3691 mutex_exit(hmp);
3692 return (vfsp);
3693 }
3694 }
3695 mutex_exit(hmp);
3696 return (NULL);
3697 }
3698
3699 /*
3700 * Search the vfs mount in progress list for a specified device/vfs entry.
3701 * Returns 0 if the first entry in the list that the device matches has the
3702 * given vfs pointer as well. If the device matches but a different vfs
3703 * pointer is encountered in the list before the given vfs pointer then
3704 * a 1 is returned.
3705 */
3706
3707 int
vfs_devmounting(dev_t dev,struct vfs * vfsp)3708 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3709 {
3710 int retval = 0;
3711 struct ipmnt *mipp;
3712
3713 mutex_enter(&vfs_miplist_mutex);
3714 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3715 if (mipp->mip_dev == dev) {
3716 if (mipp->mip_vfsp != vfsp)
3717 retval = 1;
3718 break;
3719 }
3720 }
3721 mutex_exit(&vfs_miplist_mutex);
3722 return (retval);
3723 }
3724
3725 /*
3726 * Search the vfs list for a specified device. Returns 1, if entry is found
3727 * or 0 if no suitable entry is found.
3728 */
3729
3730 int
vfs_devismounted(dev_t dev)3731 vfs_devismounted(dev_t dev)
3732 {
3733 struct vfs *vfsp;
3734 int found;
3735
3736 vfs_list_read_lock();
3737 vfsp = rootvfs;
3738 found = 0;
3739 do {
3740 if (vfsp->vfs_dev == dev) {
3741 found = 1;
3742 break;
3743 }
3744 vfsp = vfsp->vfs_next;
3745 } while (vfsp != rootvfs);
3746
3747 vfs_list_unlock();
3748 return (found);
3749 }
3750
3751 /*
3752 * Search the vfs list for a specified device. Returns a pointer to it
3753 * or NULL if no suitable entry is found. The caller of this routine
3754 * is responsible for releasing the returned vfs pointer.
3755 */
3756 struct vfs *
vfs_dev2vfsp(dev_t dev)3757 vfs_dev2vfsp(dev_t dev)
3758 {
3759 struct vfs *vfsp;
3760 int found;
3761
3762 vfs_list_read_lock();
3763 vfsp = rootvfs;
3764 found = 0;
3765 do {
3766 /*
3767 * The following could be made more efficient by making
3768 * the entire loop use vfs_zone_next if the call is from
3769 * a zone. The only callers, however, ustat(2) and
3770 * umount2(2), don't seem to justify the added
3771 * complexity at present.
3772 */
3773 if (vfsp->vfs_dev == dev &&
3774 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3775 curproc->p_zone)) {
3776 VFS_HOLD(vfsp);
3777 found = 1;
3778 break;
3779 }
3780 vfsp = vfsp->vfs_next;
3781 } while (vfsp != rootvfs);
3782 vfs_list_unlock();
3783 return (found ? vfsp: NULL);
3784 }
3785
3786 /*
3787 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3788 * or NULL if no suitable entry is found. The caller of this routine
3789 * is responsible for releasing the returned vfs pointer.
3790 *
3791 * Note that if multiple mntpoints match, the last one matching is
3792 * returned in an attempt to return the "top" mount when overlay
3793 * mounts are covering the same mount point. This is accomplished by starting
3794 * at the end of the list and working our way backwards, stopping at the first
3795 * matching mount.
3796 */
3797 struct vfs *
vfs_mntpoint2vfsp(const char * mp)3798 vfs_mntpoint2vfsp(const char *mp)
3799 {
3800 struct vfs *vfsp;
3801 struct vfs *retvfsp = NULL;
3802 zone_t *zone = curproc->p_zone;
3803 struct vfs *list;
3804
3805 vfs_list_read_lock();
3806 if (getzoneid() == GLOBAL_ZONEID) {
3807 /*
3808 * The global zone may see filesystems in any zone.
3809 */
3810 vfsp = rootvfs->vfs_prev;
3811 do {
3812 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3813 retvfsp = vfsp;
3814 break;
3815 }
3816 vfsp = vfsp->vfs_prev;
3817 } while (vfsp != rootvfs->vfs_prev);
3818 } else if ((list = zone->zone_vfslist) != NULL) {
3819 const char *mntpt;
3820
3821 vfsp = list->vfs_zone_prev;
3822 do {
3823 mntpt = refstr_value(vfsp->vfs_mntpt);
3824 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3825 if (strcmp(mntpt, mp) == 0) {
3826 retvfsp = vfsp;
3827 break;
3828 }
3829 vfsp = vfsp->vfs_zone_prev;
3830 } while (vfsp != list->vfs_zone_prev);
3831 }
3832 if (retvfsp)
3833 VFS_HOLD(retvfsp);
3834 vfs_list_unlock();
3835 return (retvfsp);
3836 }
3837
3838 /*
3839 * Search the vfs list for a specified vfsops.
3840 * if vfs entry is found then return 1, else 0.
3841 */
3842 int
vfs_opsinuse(vfsops_t * ops)3843 vfs_opsinuse(vfsops_t *ops)
3844 {
3845 struct vfs *vfsp;
3846 int found;
3847
3848 vfs_list_read_lock();
3849 vfsp = rootvfs;
3850 found = 0;
3851 do {
3852 if (vfs_getops(vfsp) == ops) {
3853 found = 1;
3854 break;
3855 }
3856 vfsp = vfsp->vfs_next;
3857 } while (vfsp != rootvfs);
3858 vfs_list_unlock();
3859 return (found);
3860 }
3861
3862 /*
3863 * Allocate an entry in vfssw for a file system type
3864 */
3865 struct vfssw *
allocate_vfssw(const char * type)3866 allocate_vfssw(const char *type)
3867 {
3868 struct vfssw *vswp;
3869
3870 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3871 /*
3872 * The vfssw table uses the empty string to identify an
3873 * available entry; we cannot add any type which has
3874 * a leading NUL. The string length is limited to
3875 * the size of the st_fstype array in struct stat.
3876 */
3877 return (NULL);
3878 }
3879
3880 ASSERT(VFSSW_WRITE_LOCKED());
3881 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3882 if (!ALLOCATED_VFSSW(vswp)) {
3883 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3884 (void) strcpy(vswp->vsw_name, type);
3885 ASSERT(vswp->vsw_count == 0);
3886 vswp->vsw_count = 1;
3887 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3888 return (vswp);
3889 }
3890 return (NULL);
3891 }
3892
3893 /*
3894 * Impose additional layer of translation between vfstype names
3895 * and module names in the filesystem.
3896 */
3897 static const char *
vfs_to_modname(const char * vfstype)3898 vfs_to_modname(const char *vfstype)
3899 {
3900 if (strcmp(vfstype, "proc") == 0) {
3901 vfstype = "procfs";
3902 } else if (strcmp(vfstype, "fd") == 0) {
3903 vfstype = "fdfs";
3904 } else if (strncmp(vfstype, "nfs", 3) == 0) {
3905 vfstype = "nfs";
3906 }
3907
3908 return (vfstype);
3909 }
3910
3911 /*
3912 * Find a vfssw entry given a file system type name.
3913 * Try to autoload the filesystem if it's not found.
3914 * If it's installed, return the vfssw locked to prevent unloading.
3915 */
3916 struct vfssw *
vfs_getvfssw(const char * type)3917 vfs_getvfssw(const char *type)
3918 {
3919 struct vfssw *vswp;
3920 const char *modname;
3921
3922 RLOCK_VFSSW();
3923 vswp = vfs_getvfsswbyname(type);
3924 modname = vfs_to_modname(type);
3925
3926 if (rootdir == NULL) {
3927 /*
3928 * If we haven't yet loaded the root file system, then our
3929 * _init won't be called until later. Allocate vfssw entry,
3930 * because mod_installfs won't be called.
3931 */
3932 if (vswp == NULL) {
3933 RUNLOCK_VFSSW();
3934 WLOCK_VFSSW();
3935 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3936 if ((vswp = allocate_vfssw(type)) == NULL) {
3937 WUNLOCK_VFSSW();
3938 return (NULL);
3939 }
3940 }
3941 WUNLOCK_VFSSW();
3942 RLOCK_VFSSW();
3943 }
3944 if (!VFS_INSTALLED(vswp)) {
3945 RUNLOCK_VFSSW();
3946 (void) modloadonly("fs", modname);
3947 } else
3948 RUNLOCK_VFSSW();
3949 return (vswp);
3950 }
3951
3952 /*
3953 * Try to load the filesystem. Before calling modload(), we drop
3954 * our lock on the VFS switch table, and pick it up after the
3955 * module is loaded. However, there is a potential race: the
3956 * module could be unloaded after the call to modload() completes
3957 * but before we pick up the lock and drive on. Therefore,
3958 * we keep reloading the module until we've loaded the module
3959 * _and_ we have the lock on the VFS switch table.
3960 */
3961 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3962 RUNLOCK_VFSSW();
3963 if (modload("fs", modname) == -1)
3964 return (NULL);
3965 RLOCK_VFSSW();
3966 if (vswp == NULL)
3967 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3968 break;
3969 }
3970 RUNLOCK_VFSSW();
3971
3972 return (vswp);
3973 }
3974
3975 /*
3976 * Find a vfssw entry given a file system type name.
3977 */
3978 struct vfssw *
vfs_getvfsswbyname(const char * type)3979 vfs_getvfsswbyname(const char *type)
3980 {
3981 struct vfssw *vswp;
3982
3983 ASSERT(VFSSW_LOCKED());
3984 if (type == NULL || *type == '\0')
3985 return (NULL);
3986
3987 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3988 if (strcmp(type, vswp->vsw_name) == 0) {
3989 vfs_refvfssw(vswp);
3990 return (vswp);
3991 }
3992 }
3993
3994 return (NULL);
3995 }
3996
3997 /*
3998 * Find a vfssw entry given a set of vfsops.
3999 */
4000 struct vfssw *
vfs_getvfsswbyvfsops(vfsops_t * vfsops)4001 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4002 {
4003 struct vfssw *vswp;
4004
4005 RLOCK_VFSSW();
4006 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4007 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4008 vfs_refvfssw(vswp);
4009 RUNLOCK_VFSSW();
4010 return (vswp);
4011 }
4012 }
4013 RUNLOCK_VFSSW();
4014
4015 return (NULL);
4016 }
4017
4018 /*
4019 * Reference a vfssw entry.
4020 */
4021 void
vfs_refvfssw(struct vfssw * vswp)4022 vfs_refvfssw(struct vfssw *vswp)
4023 {
4024
4025 mutex_enter(&vswp->vsw_lock);
4026 vswp->vsw_count++;
4027 mutex_exit(&vswp->vsw_lock);
4028 }
4029
4030 /*
4031 * Unreference a vfssw entry.
4032 */
4033 void
vfs_unrefvfssw(struct vfssw * vswp)4034 vfs_unrefvfssw(struct vfssw *vswp)
4035 {
4036
4037 mutex_enter(&vswp->vsw_lock);
4038 vswp->vsw_count--;
4039 mutex_exit(&vswp->vsw_lock);
4040 }
4041
4042 static int sync_retries = 20; /* number of retries when not making progress */
4043 static int sync_triesleft; /* portion of sync_retries remaining */
4044
4045 static pgcnt_t old_pgcnt, new_pgcnt;
4046 static int new_bufcnt, old_bufcnt;
4047
4048 /*
4049 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4050 * complete. We wait by counting the number of dirty pages and buffers,
4051 * pushing them out using bio_busy() and page_busy(), and then counting again.
4052 * This routine is used during the uadmin A_SHUTDOWN code. It should only
4053 * be used after some higher-level mechanism has quiesced the system so that
4054 * new writes are not being initiated while we are waiting for completion.
4055 *
4056 * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4057 * counter used by the vfs_syncall() loop below). It is declared above so
4058 * it can be found easily in the debugger.
4059 *
4060 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
4061 * sync_retries consecutive calls to bio_busy() and page_busy() without
4062 * decreasing either the number of dirty buffers or dirty pages below the
4063 * lowest count we have seen so far, we give up and return from vfs_syncall().
4064 *
4065 * Each loop iteration ends with a call to delay() one second to allow time for
4066 * i/o completion and to permit the user time to read our progress messages.
4067 */
4068 void
vfs_syncall(void)4069 vfs_syncall(void)
4070 {
4071 if (rootdir == NULL && !modrootloaded)
4072 return; /* no filesystems have been loaded yet */
4073
4074 printf("syncing file systems...");
4075 sync();
4076
4077 sync_triesleft = sync_retries;
4078
4079 old_bufcnt = new_bufcnt = INT_MAX;
4080 old_pgcnt = new_pgcnt = ULONG_MAX;
4081
4082 while (sync_triesleft > 0) {
4083 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4084 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4085
4086 new_bufcnt = bio_busy(B_TRUE);
4087 new_pgcnt = page_busy(B_TRUE);
4088
4089 if (new_bufcnt == 0 && new_pgcnt == 0)
4090 break;
4091
4092 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4093 sync_triesleft = sync_retries;
4094 else
4095 sync_triesleft--;
4096
4097 if (new_bufcnt)
4098 printf(" [%d]", new_bufcnt);
4099 if (new_pgcnt)
4100 printf(" %lu", new_pgcnt);
4101
4102 delay(hz);
4103 }
4104
4105 if (new_bufcnt != 0 || new_pgcnt != 0)
4106 printf(" done (not all i/o completed)\n");
4107 else
4108 printf(" done\n");
4109
4110 delay(hz);
4111 }
4112
4113 /*
4114 * Map VFS flags to statvfs flags. These shouldn't really be separate
4115 * flags at all.
4116 */
4117 uint_t
vf_to_stf(uint_t vf)4118 vf_to_stf(uint_t vf)
4119 {
4120 uint_t stf = 0;
4121
4122 if (vf & VFS_RDONLY)
4123 stf |= ST_RDONLY;
4124 if (vf & VFS_NOSETUID)
4125 stf |= ST_NOSUID;
4126 if (vf & VFS_NOTRUNC)
4127 stf |= ST_NOTRUNC;
4128
4129 return (stf);
4130 }
4131
4132 /*
4133 * Entries for (illegal) fstype 0.
4134 */
4135 /* ARGSUSED */
4136 int
vfsstray_sync(struct vfs * vfsp,short arg,struct cred * cr)4137 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4138 {
4139 cmn_err(CE_PANIC, "stray vfs operation");
4140 return (0);
4141 }
4142
4143 /*
4144 * Entries for (illegal) fstype 0.
4145 */
4146 int
vfsstray(void)4147 vfsstray(void)
4148 {
4149 cmn_err(CE_PANIC, "stray vfs operation");
4150 return (0);
4151 }
4152
4153 /*
4154 * Support for dealing with forced UFS unmount and its interaction with
4155 * LOFS. Could be used by any filesystem.
4156 * See bug 1203132.
4157 */
4158 int
vfs_EIO(void)4159 vfs_EIO(void)
4160 {
4161 return (EIO);
4162 }
4163
4164 /*
4165 * We've gotta define the op for sync separately, since the compiler gets
4166 * confused if we mix and match ANSI and normal style prototypes when
4167 * a "short" argument is present and spits out a warning.
4168 */
4169 /*ARGSUSED*/
4170 int
vfs_EIO_sync(struct vfs * vfsp,short arg,struct cred * cr)4171 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4172 {
4173 return (EIO);
4174 }
4175
4176 vfs_t EIO_vfs;
4177 vfsops_t *EIO_vfsops;
4178
4179 /*
4180 * Called from startup() to initialize all loaded vfs's
4181 */
4182 void
vfsinit(void)4183 vfsinit(void)
4184 {
4185 struct vfssw *vswp;
4186 int error;
4187 extern int vopstats_enabled;
4188 extern void vopstats_startup();
4189
4190 static const fs_operation_def_t EIO_vfsops_template[] = {
4191 VFSNAME_MOUNT, { .error = vfs_EIO },
4192 VFSNAME_UNMOUNT, { .error = vfs_EIO },
4193 VFSNAME_ROOT, { .error = vfs_EIO },
4194 VFSNAME_STATVFS, { .error = vfs_EIO },
4195 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync },
4196 VFSNAME_VGET, { .error = vfs_EIO },
4197 VFSNAME_MOUNTROOT, { .error = vfs_EIO },
4198 VFSNAME_FREEVFS, { .error = vfs_EIO },
4199 VFSNAME_VNSTATE, { .error = vfs_EIO },
4200 VFSNAME_SYNCFS, { .error = vfs_EIO },
4201 NULL, NULL
4202 };
4203
4204 static const fs_operation_def_t stray_vfsops_template[] = {
4205 VFSNAME_MOUNT, { .error = vfsstray },
4206 VFSNAME_UNMOUNT, { .error = vfsstray },
4207 VFSNAME_ROOT, { .error = vfsstray },
4208 VFSNAME_STATVFS, { .error = vfsstray },
4209 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync },
4210 VFSNAME_VGET, { .error = vfsstray },
4211 VFSNAME_MOUNTROOT, { .error = vfsstray },
4212 VFSNAME_FREEVFS, { .error = vfsstray },
4213 VFSNAME_VNSTATE, { .error = vfsstray },
4214 VFSNAME_SYNCFS, { .error = vfsstray },
4215 NULL, NULL
4216 };
4217
4218 /* Create vfs cache */
4219 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4220 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4221
4222 /* Initialize the vnode cache (file systems may use it during init). */
4223 vn_create_cache();
4224
4225 /* Setup event monitor framework */
4226 fem_init();
4227
4228 /* Initialize the dummy stray file system type. */
4229 error = vfs_setfsops(0, stray_vfsops_template, NULL);
4230
4231 /* Initialize the dummy EIO file system. */
4232 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4233 if (error != 0) {
4234 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4235 /* Shouldn't happen, but not bad enough to panic */
4236 }
4237
4238 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4239
4240 /*
4241 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4242 * on this vfs can immediately notice it's invalid.
4243 */
4244 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4245
4246 /*
4247 * Call the init routines of non-loadable filesystems only.
4248 * Filesystems which are loaded as separate modules will be
4249 * initialized by the module loading code instead.
4250 */
4251
4252 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4253 RLOCK_VFSSW();
4254 if (vswp->vsw_init != NULL)
4255 (void) (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4256 RUNLOCK_VFSSW();
4257 }
4258
4259 vopstats_startup();
4260
4261 if (vopstats_enabled) {
4262 /* EIO_vfs can collect stats, but we don't retrieve them */
4263 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4264 EIO_vfs.vfs_fstypevsp = NULL;
4265 EIO_vfs.vfs_vskap = NULL;
4266 EIO_vfs.vfs_flag |= VFS_STATS;
4267 }
4268
4269 xattr_init();
4270
4271 reparse_point_init();
4272 }
4273
4274 vfs_t *
vfs_alloc(int kmflag)4275 vfs_alloc(int kmflag)
4276 {
4277 vfs_t *vfsp;
4278
4279 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4280
4281 /*
4282 * Do the simplest initialization here.
4283 * Everything else gets done in vfs_init()
4284 */
4285 bzero(vfsp, sizeof (vfs_t));
4286 return (vfsp);
4287 }
4288
4289 void
vfs_free(vfs_t * vfsp)4290 vfs_free(vfs_t *vfsp)
4291 {
4292 /*
4293 * One would be tempted to assert that "vfsp->vfs_count == 0".
4294 * The problem is that this gets called out of domount() with
4295 * a partially initialized vfs and a vfs_count of 1. This is
4296 * also called from vfs_rele() with a vfs_count of 0. We can't
4297 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4298 * returned. This is because VFS_MOUNT() fully initializes the
4299 * vfs structure and its associated data. VFS_RELE() will call
4300 * VFS_FREEVFS() which may panic the system if the data structures
4301 * aren't fully initialized from a successful VFS_MOUNT()).
4302 */
4303
4304 /* If FEM was in use, make sure everything gets cleaned up */
4305 if (vfsp->vfs_femhead) {
4306 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4307 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4308 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4309 vfsp->vfs_femhead = NULL;
4310 }
4311
4312 if (vfsp->vfs_implp)
4313 vfsimpl_teardown(vfsp);
4314 sema_destroy(&vfsp->vfs_reflock);
4315 kmem_cache_free(vfs_cache, vfsp);
4316 }
4317
4318 /*
4319 * Increments the vfs reference count by one atomically.
4320 */
4321 void
vfs_hold(vfs_t * vfsp)4322 vfs_hold(vfs_t *vfsp)
4323 {
4324 atomic_inc_32(&vfsp->vfs_count);
4325 ASSERT(vfsp->vfs_count != 0);
4326 }
4327
4328 /*
4329 * Decrements the vfs reference count by one atomically. When
4330 * vfs reference count becomes zero, it calls the file system
4331 * specific vfs_freevfs() to free up the resources.
4332 */
4333 void
vfs_rele(vfs_t * vfsp)4334 vfs_rele(vfs_t *vfsp)
4335 {
4336 ASSERT(vfsp->vfs_count != 0);
4337 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4338 VFS_FREEVFS(vfsp);
4339 lofi_remove(vfsp);
4340 if (vfsp->vfs_zone)
4341 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4342 ZONE_REF_VFS);
4343 vfs_freemnttab(vfsp);
4344 vfs_free(vfsp);
4345 }
4346 }
4347
4348 /*
4349 * Generic operations vector support.
4350 *
4351 * This is used to build operations vectors for both the vfs and vnode.
4352 * It's normally called only when a file system is loaded.
4353 *
4354 * There are many possible algorithms for this, including the following:
4355 *
4356 * (1) scan the list of known operations; for each, see if the file system
4357 * includes an entry for it, and fill it in as appropriate.
4358 *
4359 * (2) set up defaults for all known operations. scan the list of ops
4360 * supplied by the file system; for each which is both supplied and
4361 * known, fill it in.
4362 *
4363 * (3) sort the lists of known ops & supplied ops; scan the list, filling
4364 * in entries as we go.
4365 *
4366 * we choose (1) for simplicity, and because performance isn't critical here.
4367 * note that (2) could be sped up using a precomputed hash table on known ops.
4368 * (3) could be faster than either, but only if the lists were very large or
4369 * supplied in sorted order.
4370 *
4371 */
4372
4373 int
fs_build_vector(void * vector,int * unused_ops,const fs_operation_trans_def_t * translation,const fs_operation_def_t * operations)4374 fs_build_vector(void *vector, int *unused_ops,
4375 const fs_operation_trans_def_t *translation,
4376 const fs_operation_def_t *operations)
4377 {
4378 int i, num_trans, num_ops, used;
4379
4380 /*
4381 * Count the number of translations and the number of supplied
4382 * operations.
4383 */
4384
4385 {
4386 const fs_operation_trans_def_t *p;
4387
4388 for (num_trans = 0, p = translation;
4389 p->name != NULL;
4390 num_trans++, p++)
4391 ;
4392 }
4393
4394 {
4395 const fs_operation_def_t *p;
4396
4397 for (num_ops = 0, p = operations;
4398 p->name != NULL;
4399 num_ops++, p++)
4400 ;
4401 }
4402
4403 /* Walk through each operation known to our caller. There will be */
4404 /* one entry in the supplied "translation table" for each. */
4405
4406 used = 0;
4407
4408 for (i = 0; i < num_trans; i++) {
4409 int j, found;
4410 char *curname;
4411 fs_generic_func_p result;
4412 fs_generic_func_p *location;
4413
4414 curname = translation[i].name;
4415
4416 /* Look for a matching operation in the list supplied by the */
4417 /* file system. */
4418
4419 found = 0;
4420
4421 for (j = 0; j < num_ops; j++) {
4422 if (strcmp(operations[j].name, curname) == 0) {
4423 used++;
4424 found = 1;
4425 break;
4426 }
4427 }
4428
4429 /*
4430 * If the file system is using a "placeholder" for default
4431 * or error functions, grab the appropriate function out of
4432 * the translation table. If the file system didn't supply
4433 * this operation at all, use the default function.
4434 */
4435
4436 if (found) {
4437 result = operations[j].func.fs_generic;
4438 if (result == fs_default) {
4439 result = translation[i].defaultFunc;
4440 } else if (result == fs_error) {
4441 result = translation[i].errorFunc;
4442 } else if (result == NULL) {
4443 /* Null values are PROHIBITED */
4444 return (EINVAL);
4445 }
4446 } else {
4447 result = translation[i].defaultFunc;
4448 }
4449
4450 /* Now store the function into the operations vector. */
4451
4452 location = (fs_generic_func_p *)
4453 (((char *)vector) + translation[i].offset);
4454
4455 *location = result;
4456 }
4457
4458 *unused_ops = num_ops - used;
4459
4460 return (0);
4461 }
4462
4463 /* Placeholder functions, should never be called. */
4464
4465 int
fs_error(void)4466 fs_error(void)
4467 {
4468 cmn_err(CE_PANIC, "fs_error called");
4469 return (0);
4470 }
4471
4472 int
fs_default(void)4473 fs_default(void)
4474 {
4475 cmn_err(CE_PANIC, "fs_default called");
4476 return (0);
4477 }
4478
4479 #ifdef __sparc
4480
4481 /*
4482 * Part of the implementation of booting off a mirrored root
4483 * involves a change of dev_t for the root device. To
4484 * accomplish this, first remove the existing hash table
4485 * entry for the root device, convert to the new dev_t,
4486 * then re-insert in the hash table at the head of the list.
4487 */
4488 void
vfs_root_redev(vfs_t * vfsp,dev_t ndev,int fstype)4489 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4490 {
4491 vfs_list_lock();
4492
4493 vfs_hash_remove(vfsp);
4494
4495 vfsp->vfs_dev = ndev;
4496 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4497
4498 vfs_hash_add(vfsp, 1);
4499
4500 vfs_list_unlock();
4501 }
4502
4503 #else /* x86 NEWBOOT */
4504
4505 #if defined(__x86)
4506 extern int hvmboot_rootconf();
4507 #endif /* __x86 */
4508
4509 extern ib_boot_prop_t *iscsiboot_prop;
4510
4511 int
rootconf()4512 rootconf()
4513 {
4514 int error;
4515 struct vfssw *vsw;
4516 extern void pm_init();
4517 char *fstyp, *fsmod;
4518 int ret = -1;
4519
4520 getrootfs(&fstyp, &fsmod);
4521
4522 #if defined(__x86)
4523 /*
4524 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4525 * which lives in /platform/i86hvm, and hence is only available when
4526 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4527 * is not available then the modstub for this function will return 0.
4528 * If the hvm_bootstrap misc module is available it will be loaded
4529 * and hvmboot_rootconf() will be invoked.
4530 */
4531 if (error = hvmboot_rootconf())
4532 return (error);
4533 #endif /* __x86 */
4534
4535 if (error = clboot_rootconf())
4536 return (error);
4537
4538 if (modload("fs", fsmod) == -1)
4539 panic("Cannot _init %s module", fsmod);
4540
4541 RLOCK_VFSSW();
4542 vsw = vfs_getvfsswbyname(fstyp);
4543 RUNLOCK_VFSSW();
4544 if (vsw == NULL) {
4545 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4546 return (ENXIO);
4547 }
4548 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4549 VFS_HOLD(rootvfs);
4550
4551 /* always mount readonly first */
4552 rootvfs->vfs_flag |= VFS_RDONLY;
4553
4554 pm_init();
4555
4556 if (netboot && iscsiboot_prop) {
4557 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4558 " shouldn't happen in the same time");
4559 return (EINVAL);
4560 }
4561
4562 if (netboot || iscsiboot_prop) {
4563 ret = strplumb();
4564 if (ret != 0) {
4565 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4566 return (EFAULT);
4567 }
4568 }
4569
4570 if ((ret == 0) && iscsiboot_prop) {
4571 ret = modload("drv", "iscsi");
4572 /* -1 indicates fail */
4573 if (ret == -1) {
4574 cmn_err(CE_WARN, "Failed to load iscsi module");
4575 iscsi_boot_prop_free();
4576 return (EINVAL);
4577 } else {
4578 if (!i_ddi_attach_pseudo_node("iscsi")) {
4579 cmn_err(CE_WARN,
4580 "Failed to attach iscsi driver");
4581 iscsi_boot_prop_free();
4582 return (ENODEV);
4583 }
4584 }
4585 }
4586
4587 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4588 vfs_unrefvfssw(vsw);
4589 rootdev = rootvfs->vfs_dev;
4590
4591 if (error)
4592 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4593 rootfs.bo_name, fstyp);
4594 else
4595 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4596 rootfs.bo_name, fstyp);
4597 return (error);
4598 }
4599
4600 /*
4601 * XXX this is called by nfs only and should probably be removed
4602 * If booted with ASKNAME, prompt on the console for a filesystem
4603 * name and return it.
4604 */
4605 void
getfsname(char * askfor,char * name,size_t namelen)4606 getfsname(char *askfor, char *name, size_t namelen)
4607 {
4608 if (boothowto & RB_ASKNAME) {
4609 printf("%s name: ", askfor);
4610 console_gets(name, namelen);
4611 }
4612 }
4613
4614 /*
4615 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4616 * property.
4617 *
4618 * Filesystem types starting with the prefix "nfs" are diskless clients;
4619 * init the root filename name (rootfs.bo_name), too.
4620 *
4621 * If we are booting via NFS we currently have these options:
4622 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4623 * nfs2 - force NFS V2
4624 * nfs3 - force NFS V3
4625 * nfs4 - force NFS V4
4626 * Because we need to maintain backward compatibility with the naming
4627 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4628 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4629 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4630 * This is only for root filesystems, all other uses will expect
4631 * that "nfs" == NFS V2.
4632 */
4633 static void
getrootfs(char ** fstypp,char ** fsmodp)4634 getrootfs(char **fstypp, char **fsmodp)
4635 {
4636 char *propstr = NULL;
4637
4638 /*
4639 * Check fstype property; for diskless it should be one of "nfs",
4640 * "nfs2", "nfs3" or "nfs4".
4641 */
4642 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4643 DDI_PROP_DONTPASS, "fstype", &propstr)
4644 == DDI_SUCCESS) {
4645 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4646 ddi_prop_free(propstr);
4647
4648 /*
4649 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4650 * assume the type of this root filesystem is 'zfs'.
4651 */
4652 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4653 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4654 == DDI_SUCCESS) {
4655 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4656 ddi_prop_free(propstr);
4657 }
4658
4659 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4660 *fstypp = *fsmodp = rootfs.bo_fstype;
4661 return;
4662 }
4663
4664 ++netboot;
4665
4666 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4667 (void) strcpy(rootfs.bo_fstype, "nfs");
4668 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4669 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4670
4671 /*
4672 * check if path to network interface is specified in bootpath
4673 * or by a hypervisor domain configuration file.
4674 * XXPV - enable strlumb_get_netdev_path()
4675 */
4676 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4677 "xpv-nfsroot")) {
4678 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4679 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4680 DDI_PROP_DONTPASS, "bootpath", &propstr)
4681 == DDI_SUCCESS) {
4682 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4683 ddi_prop_free(propstr);
4684 } else {
4685 rootfs.bo_name[0] = '\0';
4686 }
4687 *fstypp = rootfs.bo_fstype;
4688 *fsmodp = "nfs";
4689 }
4690 #endif
4691
4692 /*
4693 * VFS feature routines
4694 */
4695
4696 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4697 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4698
4699 /* Register a feature in the vfs */
4700 void
vfs_set_feature(vfs_t * vfsp,vfs_feature_t feature)4701 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4702 {
4703 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4704 if (vfsp->vfs_implp == NULL)
4705 return;
4706
4707 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4708 }
4709
4710 void
vfs_clear_feature(vfs_t * vfsp,vfs_feature_t feature)4711 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4712 {
4713 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4714 if (vfsp->vfs_implp == NULL)
4715 return;
4716 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4717 }
4718
4719 /*
4720 * Query a vfs for a feature.
4721 * Returns 1 if feature is present, 0 if not
4722 */
4723 int
vfs_has_feature(vfs_t * vfsp,vfs_feature_t feature)4724 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4725 {
4726 int ret = 0;
4727
4728 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4729 if (vfsp->vfs_implp == NULL)
4730 return (ret);
4731
4732 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4733 ret = 1;
4734
4735 return (ret);
4736 }
4737
4738 /*
4739 * Propagate feature set from one vfs to another
4740 */
4741 void
vfs_propagate_features(vfs_t * from,vfs_t * to)4742 vfs_propagate_features(vfs_t *from, vfs_t *to)
4743 {
4744 int i;
4745
4746 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4747 return;
4748
4749 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4750 to->vfs_featureset[i] = from->vfs_featureset[i];
4751 }
4752 }
4753
4754 #define LOFINODE_PATH "/dev/lofi/%d"
4755
4756 /*
4757 * Return the vnode for the lofi node if there's a lofi mount in place.
4758 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4759 * failure.
4760 */
4761 int
vfs_get_lofi(vfs_t * vfsp,vnode_t ** vpp)4762 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4763 {
4764 char *path = NULL;
4765 int strsize;
4766 int err;
4767
4768 if (vfsp->vfs_lofi_id == 0) {
4769 *vpp = NULL;
4770 return (-1);
4771 }
4772
4773 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4774 path = kmem_alloc(strsize + 1, KM_SLEEP);
4775 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4776
4777 /*
4778 * We may be inside a zone, so we need to use the /dev path, but
4779 * it's created asynchronously, so we wait here.
4780 */
4781 for (;;) {
4782 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4783
4784 if (err != ENOENT)
4785 break;
4786
4787 if ((err = delay_sig(hz / 8)) == EINTR)
4788 break;
4789 }
4790
4791 if (err)
4792 *vpp = NULL;
4793
4794 kmem_free(path, strsize + 1);
4795 return (err);
4796 }
4797