1 /*
2 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5
6 /*
7 * Copyright (c) 2008 Atheros Communications Inc.
8 *
9 * Permission to use, copy, modify, and/or distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21 #include <sys/param.h>
22 #include <sys/types.h>
23 #include <sys/signal.h>
24 #include <sys/stream.h>
25 #include <sys/termio.h>
26 #include <sys/errno.h>
27 #include <sys/file.h>
28 #include <sys/cmn_err.h>
29 #include <sys/stropts.h>
30 #include <sys/strsubr.h>
31 #include <sys/strtty.h>
32 #include <sys/kbio.h>
33 #include <sys/cred.h>
34 #include <sys/stat.h>
35 #include <sys/consdev.h>
36 #include <sys/kmem.h>
37 #include <sys/modctl.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/pci.h>
41 #include <sys/errno.h>
42 #include <sys/mac_provider.h>
43 #include <sys/dlpi.h>
44 #include <sys/ethernet.h>
45 #include <sys/list.h>
46 #include <sys/byteorder.h>
47 #include <sys/strsun.h>
48 #include <sys/policy.h>
49 #include <inet/common.h>
50 #include <inet/nd.h>
51 #include <inet/mi.h>
52 #include <inet/wifi_ioctl.h>
53 #include <sys/mac_wifi.h>
54
55 #include "arn_core.h"
56
57 #define BITS_PER_BYTE 8
58 #define OFDM_PLCP_BITS 22
59 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
60 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
61 #define L_STF 8
62 #define L_LTF 8
63 #define L_SIG 4
64 #define HT_SIG 8
65 #define HT_STF 4
66 #define HT_LTF(_ns) (4 * (_ns))
67 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
68 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
69 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
70 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
71
72 #define OFDM_SIFS_TIME 16
73
74 static uint32_t bits_per_symbol[][2] = {
75 /* 20MHz 40MHz */
76 { 26, 54 }, /* 0: BPSK */
77 { 52, 108 }, /* 1: QPSK 1/2 */
78 { 78, 162 }, /* 2: QPSK 3/4 */
79 { 104, 216 }, /* 3: 16-QAM 1/2 */
80 { 156, 324 }, /* 4: 16-QAM 3/4 */
81 { 208, 432 }, /* 5: 64-QAM 2/3 */
82 { 234, 486 }, /* 6: 64-QAM 3/4 */
83 { 260, 540 }, /* 7: 64-QAM 5/6 */
84 { 52, 108 }, /* 8: BPSK */
85 { 104, 216 }, /* 9: QPSK 1/2 */
86 { 156, 324 }, /* 10: QPSK 3/4 */
87 { 208, 432 }, /* 11: 16-QAM 1/2 */
88 { 312, 648 }, /* 12: 16-QAM 3/4 */
89 { 416, 864 }, /* 13: 64-QAM 2/3 */
90 { 468, 972 }, /* 14: 64-QAM 3/4 */
91 { 520, 1080 }, /* 15: 64-QAM 5/6 */
92 };
93
94 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
95
96 #ifdef ARN_TX_AGGREGRATION
97 static void arn_tx_send_ht_normal(struct arn_softc *sc, struct ath_txq *txq,
98 struct ath_atx_tid *tid, list_t *bf_list);
99 static void arn_tx_complete_buf(struct arn_softc *sc, struct ath_buf *bf,
100 list_t *bf_q, int txok, int sendbar);
101 static void arn_tx_txqaddbuf(struct arn_softc *sc, struct ath_txq *txq,
102 list_t *buf_list);
103 static void arn_buf_set_rate(struct arn_softc *sc, struct ath_buf *bf);
104 static int arn_tx_num_badfrms(struct arn_softc *sc,
105 struct ath_buf *bf, int txok);
106 static void arn_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds,
107 int nbad, int txok, boolean_t update_rc);
108 #endif
109
110 static void
arn_get_beaconconfig(struct arn_softc * sc,struct ath_beacon_config * conf)111 arn_get_beaconconfig(struct arn_softc *sc, struct ath_beacon_config *conf)
112 {
113 ieee80211com_t *ic = (ieee80211com_t *)sc;
114 struct ieee80211_node *in = ic->ic_bss;
115
116 /* fill in beacon config data */
117
118 conf->beacon_interval = in->in_intval ?
119 in->in_intval : ATH_DEFAULT_BINTVAL;
120 conf->listen_interval = 100;
121 conf->dtim_count = 1;
122 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
123 }
124
125 /* Aggregation logic */
126
127 #ifdef ARN_TX_AGGREGATION
128
129 /* Check if it's okay to send out aggregates */
130 static int
arn_aggr_query(struct arn_softc * sc,struct ath_node * an,uint8_t tidno)131 arn_aggr_query(struct arn_softc *sc, struct ath_node *an, uint8_t tidno)
132 {
133 struct ath_atx_tid *tid;
134 tid = ATH_AN_2_TID(an, tidno);
135
136 if (tid->state & AGGR_ADDBA_COMPLETE ||
137 tid->state & AGGR_ADDBA_PROGRESS)
138 return (1);
139 else
140 return (0);
141 }
142
143 /*
144 * queue up a dest/ac pair for tx scheduling
145 * NB: must be called with txq lock held
146 */
147 static void
arn_tx_queue_tid(struct ath_txq * txq,struct ath_atx_tid * tid)148 arn_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
149 {
150 struct ath_atx_ac *ac = tid->ac;
151
152 /* if tid is paused, hold off */
153 if (tid->paused)
154 return;
155
156 /* add tid to ac atmost once */
157 if (tid->sched)
158 return;
159
160 tid->sched = B_TRUE;
161 list_insert_tail(&ac->tid_q, &tid->list);
162
163 /* add node ac to txq atmost once */
164 if (ac->sched)
165 return;
166
167 ac->sched = B_TRUE;
168 list_insert_tail(&txq->axq_acq, &ac->list);
169 }
170
171 /* pause a tid */
172 static void
arn_tx_pause_tid(struct arn_softc * sc,struct ath_atx_tid * tid)173 arn_tx_pause_tid(struct arn_softc *sc, struct ath_atx_tid *tid)
174 {
175 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
176
177 mutex_enter(&txq->axq_lock);
178
179 tid->paused++;
180
181 mutex_exit(&txq->axq_lock);
182 }
183
184 /* resume a tid and schedule aggregate */
185 void
arn_tx_resume_tid(struct arn_softc * sc,struct ath_atx_tid * tid)186 arn_tx_resume_tid(struct arn_softc *sc, struct ath_atx_tid *tid)
187 {
188 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
189
190 ASSERT(tid->paused > 0);
191 mutex_enter(&txq->axq_lock);
192
193 tid->paused--;
194
195 if (tid->paused > 0)
196 goto unlock;
197
198 if (list_empty(&tid->buf_q))
199 goto unlock;
200
201 /*
202 * Add this TID to scheduler and try to send out aggregates
203 */
204 arn_tx_queue_tid(txq, tid);
205 arn_txq_schedule(sc, txq);
206 unlock:
207 mutex_exit(&txq->axq_lock);
208 }
209
210 /* flush tid's software queue and send frames as non-ampdu's */
211 static void
arn_tx_flush_tid(struct arn_softc * sc,struct ath_atx_tid * tid)212 arn_tx_flush_tid(struct arn_softc *sc, struct ath_atx_tid *tid)
213 {
214 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
215 struct ath_buf *bf;
216
217 list_t list;
218 list_create(&list, sizeof (struct ath_buf),
219 offsetof(struct ath_buf, bf_node));
220
221 ASSERT(tid->paused > 0);
222 mutex_enter(&txq->axq_lock);
223
224 tid->paused--;
225
226 if (tid->paused > 0) {
227 mutex_exit(&txq->axq_lock);
228 return;
229 }
230
231 while (!list_empty(&tid->buf_q)) {
232 bf = list_head(&tid->buf_q);
233 ASSERT(!bf_isretried(bf));
234 list_remove(&tid->buf_q, bf);
235 list_insert_tail(&list, bf);
236 arn_tx_send_ht_normal(sc, txq, tid, &list);
237 }
238
239 mutex_exit(&txq->axq_lock);
240 }
241
242 /* Update block ack window */
243 static void
arn_tx_update_baw(struct arn_softc * sc,struct ath_atx_tid * tid,int seqno)244 arn_tx_update_baw(struct arn_softc *sc, struct ath_atx_tid *tid, int seqno)
245 {
246 int index, cindex;
247
248 index = ATH_BA_INDEX(tid->seq_start, seqno);
249 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
250
251 tid->tx_buf[cindex] = NULL;
252
253 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
254 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
255 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
256 }
257 }
258
259 /* Add a sub-frame to block ack window */
260 static void
arn_tx_addto_baw(struct arn_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)261 arn_tx_addto_baw(struct arn_softc *sc, struct ath_atx_tid *tid,
262 struct ath_buf *bf)
263 {
264 int index, cindex;
265
266 if (bf_isretried(bf))
267 return;
268
269 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
270 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
271
272 ASSERT(tid->tx_buf[cindex] == NULL);
273 tid->tx_buf[cindex] = bf;
274
275 if (index >= ((tid->baw_tail - tid->baw_head) &
276 (ATH_TID_MAX_BUFS - 1))) {
277 tid->baw_tail = cindex;
278 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
279 }
280 }
281
282 /*
283 * TODO: For frame(s) that are in the retry state, we will reuse the
284 * sequence number(s) without setting the retry bit. The
285 * alternative is to give up on these and BAR the receiver's window
286 * forward.
287 */
288 static void
arn_tid_drain(struct arn_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)289 arn_tid_drain(struct arn_softc *sc,
290 struct ath_txq *txq,
291 struct ath_atx_tid *tid)
292 {
293 struct ath_buf *bf;
294
295 list_t list;
296 list_create(&list, sizeof (struct ath_buf),
297 offsetof(struct ath_buf, bf_node));
298
299 for (;;) {
300 if (list_empty(&tid->buf_q))
301 break;
302
303 bf = list_head(&tid->buf_q);
304 list_remove(&tid->buf_q, bf);
305 list_insert_tail(&list, bf);
306
307 if (bf_isretried(bf))
308 arn_tx_update_baw(sc, tid, bf->bf_seqno);
309
310 mutex_enter(&txq->axq_lock);
311 arn_tx_complete_buf(sc, bf, &list, 0, 0);
312 mutex_exit(&txq->axq_lock);
313 }
314
315 tid->seq_next = tid->seq_start;
316 tid->baw_tail = tid->baw_head;
317 }
318
319 static void
arn_tx_set_retry(struct arn_softc * sc,struct ath_buf * bf)320 arn_tx_set_retry(struct arn_softc *sc, struct ath_buf *bf)
321 {
322 struct ieee80211_frame *wh;
323 wh = (struct ieee80211_frame *)bf->bf_dma.mem_va;
324
325 bf->bf_state.bf_type |= BUF_RETRY;
326 bf->bf_retries++;
327
328 *(uint16_t *)&wh->i_seq[0] |= LE_16(0x0800); /* ??? */
329 }
330
331 static struct ath_buf *
arn_clone_txbuf(struct arn_softc * sc,struct ath_buf * bf)332 arn_clone_txbuf(struct arn_softc *sc, struct ath_buf *bf)
333 {
334 struct ath_buf *tbf;
335
336 mutex_enter(&sc->sc_txbuflock);
337 ASSERT(!list_empty((&sc->sc_txbuf_list)));
338
339 tbf = list_head(&sc->sc_txbuf_list);
340 list_remove(&sc->sc_txbuf_list, tbf);
341 mutex_exit(&sc->sc_txbuflock);
342
343 ATH_TXBUF_RESET(tbf);
344
345 tbf->bf_daddr = bf->bf_daddr; /* physical addr of desc */
346 tbf->bf_dma = bf->bf_dma; /* dma area for buf */
347 *(tbf->bf_desc) = *(bf->bf_desc); /* virtual addr of desc */
348 tbf->bf_state = bf->bf_state; /* buffer state */
349
350 return (tbf);
351 }
352
353 static void
arn_tx_complete_aggr(struct arn_softc * sc,struct ath_txq * txq,struct ath_buf * bf,list_t * bf_q,int txok)354 arn_tx_complete_aggr(struct arn_softc *sc, struct ath_txq *txq,
355 struct ath_buf *bf, list_t *bf_q, int txok)
356 {
357 struct ieee80211_node *in;
358 struct ath_node *an = NULL;
359 struct ath_atx_tid *tid = NULL;
360 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
361 struct ath_desc *ds = bf_last->bf_desc;
362
363 list_t list, list_pending;
364 uint16_t seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
365 uint32_t ba[WME_BA_BMP_SIZE >> 5];
366 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
367 boolean_t rc_update = B_TRUE;
368
369 an = ATH_NODE(in); /* Be sure in != NULL */
370 tid = ATH_AN_2_TID(an, bf->bf_tidno);
371
372 isaggr = bf_isaggr(bf);
373 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
374
375 if (isaggr && txok) {
376 if (ATH_DS_TX_BA(ds)) {
377 seq_st = ATH_DS_BA_SEQ(ds);
378 memcpy(ba, ATH_DS_BA_BITMAP(ds),
379 WME_BA_BMP_SIZE >> 3);
380 } else {
381 /*
382 * AR5416 can become deaf/mute when BA
383 * issue happens. Chip needs to be reset.
384 * But AP code may have sychronization issues
385 * when perform internal reset in this routine.
386 * Only enable reset in STA mode for now.
387 */
388 if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
389 needreset = 1;
390 }
391 }
392
393 list_create(&list_pending, sizeof (struct ath_buf),
394 offsetof(struct ath_buf, bf_node));
395 list_create(&list, sizeof (struct ath_buf),
396 offsetof(struct ath_buf, bf_node));
397
398 nbad = arn_tx_num_badfrms(sc, bf, txok);
399 while (bf) {
400 txfail = txpending = 0;
401 bf_next = bf->bf_next;
402
403 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
404 /*
405 * transmit completion, subframe is
406 * acked by block ack
407 */
408 acked_cnt++;
409 } else if (!isaggr && txok) {
410 /* transmit completion */
411 acked_cnt++;
412 } else {
413 if (!(tid->state & AGGR_CLEANUP) &&
414 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
415 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
416 arn_tx_set_retry(sc, bf);
417 txpending = 1;
418 } else {
419 bf->bf_state.bf_type |= BUF_XRETRY;
420 txfail = 1;
421 sendbar = 1;
422 txfail_cnt++;
423 }
424 } else {
425 /*
426 * cleanup in progress, just fail
427 * the un-acked sub-frames
428 */
429 txfail = 1;
430 }
431 }
432
433 if (bf_next == NULL) {
434 /* INIT_LIST_HEAD */
435 list_create(&list, sizeof (struct ath_buf),
436 offsetof(struct ath_buf, bf_node));
437 } else {
438 ASSERT(!list_empty(bf_q));
439 list_remove(bf_q, bf);
440 list_insert_tail(&list, bf);
441 }
442
443 if (!txpending) {
444 /*
445 * complete the acked-ones/xretried ones; update
446 * block-ack window
447 */
448 mutex_enter(&txq->axq_lock);
449 arn_tx_update_baw(sc, tid, bf->bf_seqno);
450 mutex_exit(&txq->axq_lock);
451
452 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
453 ath_tx_rc_status(bf, ds, nbad, txok, B_TRUE);
454 rc_update = B_FALSE;
455 } else {
456 ath_tx_rc_status(bf, ds, nbad, txok, B_FALSE);
457 }
458
459 ath_tx_complete_buf(sc, bf, list, !txfail, sendbar);
460 } else {
461 /* retry the un-acked ones */
462 if (bf->bf_next == NULL &&
463 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
464 struct ath_buf *tbf;
465
466 tbf = arn_clone_txbuf(sc, bf_last);
467 ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_desc);
468 list_insert_tail(&list, tbf);
469 } else {
470 /*
471 * Clear descriptor status words for
472 * software retry
473 */
474 ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_desc);
475 }
476
477 /*
478 * Put this buffer to the temporary pending
479 * queue to retain ordering
480 */
481 list_splice_tail_init(&list, &list_pending);
482 /*
483 * Insert src list after dst list.
484 * Empty src list thereafter
485 */
486 list_move_tail(&list_pending, &list);
487 /* should re-initialize list here??? */
488 }
489
490 bf = bf_next;
491 }
492
493 if (tid->state & AGGR_CLEANUP) {
494 if (tid->baw_head == tid->baw_tail) {
495 tid->state &= ~AGGR_ADDBA_COMPLETE;
496 tid->addba_exchangeattempts = 0;
497 tid->state &= ~AGGR_CLEANUP;
498
499 /* send buffered frames as singles */
500 arn_tx_flush_tid(sc, tid);
501 }
502 return;
503 }
504
505 /*
506 * prepend un-acked frames to the beginning of
507 * the pending frame queue
508 */
509
510 if (!list_empty(&list_pending)) {
511 mutex_enter(&txq->axq_lock);
512 list_move_tail(&list_pending, &tid->buf_q);
513 arn_tx_queue_tid(txq, tid);
514 mutex_exit(&txq->axq_lock);
515 }
516 }
517
518 static uint32_t
arn_lookup_rate(struct arn_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)519 arn_lookup_rate(struct arn_softc *sc, struct ath_buf *bf,
520 struct ath_atx_tid *tid)
521 {
522 struct ath_rate_table *rate_table = sc->sc_currates;
523 struct ath9k_tx_rate *rates;
524 struct ath_tx_info_priv *tx_info_priv;
525 uint32_t max_4ms_framelen, frmlen;
526 uint16_t aggr_limit, legacy = 0, maxampdu;
527 int i;
528
529 /* ??? */
530 rates = (struct ath9k_tx_rate *)bf->rates;
531 tx_info_priv = (struct ath_tx_info_priv *)&bf->tx_info_priv;
532
533 /*
534 * Find the lowest frame length among the rate series that will have a
535 * 4ms transmit duration.
536 * TODO - TXOP limit needs to be considered.
537 */
538 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
539
540 for (i = 0; i < 4; i++) {
541 if (rates[i].count) {
542 if (!WLAN_RC_PHY_HT
543 (rate_table->info[rates[i].idx].phy)) {
544 legacy = 1;
545 break;
546 }
547
548 frmlen =
549 rate_table->info[rates[i].idx].max_4ms_framelen;
550 max_4ms_framelen = min(max_4ms_framelen, frmlen);
551 }
552 }
553
554 /*
555 * limit aggregate size by the minimum rate if rate selected is
556 * not a probe rate, if rate selected is a probe rate then
557 * avoid aggregation of this packet.
558 */
559 if (legacy)
560 return (0);
561
562 aggr_limit = min(max_4ms_framelen, (uint32_t)ATH_AMPDU_LIMIT_DEFAULT);
563
564 /*
565 * h/w can accept aggregates upto 16 bit lengths (65535).
566 * The IE, however can hold upto 65536, which shows up here
567 * as zero. Ignore 65536 since we are constrained by hw.
568 */
569 maxampdu = tid->an->maxampdu;
570 if (maxampdu)
571 aggr_limit = min(aggr_limit, maxampdu);
572
573 return (aggr_limit);
574 }
575
576 /*
577 * Returns the number of delimiters to be added to
578 * meet the minimum required mpdudensity.
579 * caller should make sure that the rate is HT rate .
580 */
581 static int
arn_compute_num_delims(struct arn_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,uint16_t frmlen)582 arn_compute_num_delims(struct arn_softc *sc, struct ath_atx_tid *tid,
583 struct ath_buf *bf, uint16_t frmlen)
584 {
585 struct ath_rate_table *rt = sc->sc_currates;
586 struct ath9k_tx_rate *rates = (struct ath9k_tx_rate *)bf->rates;
587 uint32_t nsymbits, nsymbols, mpdudensity;
588 uint16_t minlen;
589 uint8_t rc, flags, rix;
590 int width, half_gi, ndelim, mindelim;
591
592 /* Select standard number of delimiters based on frame length alone */
593 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
594
595 /*
596 * If encryption enabled, hardware requires some more padding between
597 * subframes.
598 * TODO - this could be improved to be dependent on the rate.
599 * The hardware can keep up at lower rates, but not higher rates
600 */
601 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
602 ndelim += ATH_AGGR_ENCRYPTDELIM;
603
604 /*
605 * Convert desired mpdu density from microeconds to bytes based
606 * on highest rate in rate series (i.e. first rate) to determine
607 * required minimum length for subframe. Take into account
608 * whether high rate is 20 or 40Mhz and half or full GI.
609 */
610 mpdudensity = tid->an->mpdudensity;
611
612 /*
613 * If there is no mpdu density restriction, no further calculation
614 * is needed.
615 */
616 if (mpdudensity == 0)
617 return (ndelim);
618
619 rix = rates[0].idx;
620 flags = rates[0].flags;
621 rc = rt->info[rix].ratecode;
622 width = (flags & ATH9K_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
623 half_gi = (flags & ATH9K_TX_RC_SHORT_GI) ? 1 : 0;
624
625 if (half_gi)
626 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
627 else
628 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
629
630 if (nsymbols == 0)
631 nsymbols = 1;
632
633 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
634 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
635
636 if (frmlen < minlen) {
637 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
638 ndelim = max(mindelim, ndelim);
639 }
640
641 return (ndelim);
642 }
643
644 static enum ATH_AGGR_STATUS
arn_tx_form_aggr(struct arn_softc * sc,struct ath_atx_tid * tid,list_t * bf_q)645 arn_tx_form_aggr(struct arn_softc *sc, struct ath_atx_tid *tid,
646 list_t *bf_q)
647 {
648 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
649 struct ath_buf *bf, *bf_first, *bf_prev = NULL;
650 int rl = 0, nframes = 0, ndelim, prev_al = 0;
651 uint16_t aggr_limit = 0, al = 0, bpad = 0,
652 al_delta, h_baw = tid->baw_size / 2;
653 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
654
655 bf_first = list_head(&tid->buf_q);
656
657 do {
658 bf = list_head(&tid->buf_q);
659
660 /* do not step over block-ack window */
661 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
662 status = ATH_AGGR_BAW_CLOSED;
663 break;
664 }
665
666 if (!rl) {
667 aggr_limit = arn_lookup_rate(sc, bf, tid);
668 rl = 1;
669 }
670
671 /* do not exceed aggregation limit */
672 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
673
674 if (nframes &&
675 (aggr_limit < (al + bpad + al_delta + prev_al))) {
676 status = ATH_AGGR_LIMITED;
677 break;
678 }
679
680 /* do not exceed subframe limit */
681 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
682 status = ATH_AGGR_LIMITED;
683 break;
684 }
685 nframes++;
686
687 /* add padding for previous frame to aggregation length */
688 al += bpad + al_delta;
689
690 /*
691 * Get the delimiters needed to meet the MPDU
692 * density for this node.
693 */
694 ndelim =
695 arn_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
696 bpad = PADBYTES(al_delta) + (ndelim << 2);
697
698 bf->bf_next = NULL;
699 bf->bf_desc->ds_link = 0;
700
701 /* link buffers of this frame to the aggregate */
702 arn_tx_addto_baw(sc, tid, bf);
703 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
704 list_remove(&tid->buf_q, bf);
705 list_insert_tail(bf_q, bf);
706 if (bf_prev) {
707 bf_prev->bf_next = bf;
708 bf_prev->bf_desc->ds_link = bf->bf_daddr;
709 }
710 bf_prev = bf;
711 } while (!list_empty(&tid->buf_q));
712
713 bf_first->bf_al = al;
714 bf_first->bf_nframes = nframes;
715
716 return (status);
717 #undef PADBYTES
718 }
719
720 static void
arn_tx_sched_aggr(struct arn_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)721 arn_tx_sched_aggr(struct arn_softc *sc, struct ath_txq *txq,
722 struct ath_atx_tid *tid)
723 {
724 struct ath_buf *bf;
725 enum ATH_AGGR_STATUS status;
726 list_t bf_q;
727
728 do {
729 if (list_empty(&tid->buf_q))
730 return;
731
732 /* INIT_LIST_HEAD */
733 list_create(&bf_q, sizeof (struct ath_buf),
734 offsetof(struct ath_buf, bf_node));
735
736 status = arn_tx_form_aggr(sc, tid, &bf_q);
737
738 /*
739 * no frames picked up to be aggregated;
740 * block-ack window is not open.
741 */
742 if (list_empty(&bf_q))
743 break;
744
745 bf = list_head(&bf_q);
746 bf->bf_lastbf = list_object(&bf_q, bf->bf_node.list_prev);
747
748 /* if only one frame, send as non-aggregate */
749 if (bf->bf_nframes == 1) {
750 bf->bf_state.bf_type &= ~BUF_AGGR;
751 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
752 ath_buf_set_rate(sc, bf);
753 arn_tx_txqaddbuf(sc, txq, &bf_q);
754 continue;
755 }
756
757 /* setup first desc of aggregate */
758 bf->bf_state.bf_type |= BUF_AGGR;
759 ath_buf_set_rate(sc, bf);
760 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
761
762 /* anchor last desc of aggregate */
763 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
764
765 txq->axq_aggr_depth++;
766 arn_tx_txqaddbuf(sc, txq, &bf_q);
767
768 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
769 status != ATH_AGGR_BAW_CLOSED);
770 }
771
772 int
arn_tx_aggr_start(struct arn_softc * sc,struct ieee80211_node * in,uint16_t tid,uint16_t * ssn)773 arn_tx_aggr_start(struct arn_softc *sc, struct ieee80211_node *in,
774 uint16_t tid, uint16_t *ssn)
775 {
776 struct ath_atx_tid *txtid;
777 struct ath_node *an;
778
779 an = ATH_NODE(in);
780
781 if (sc->sc_flags & SC_OP_TXAGGR) {
782 txtid = ATH_AN_2_TID(an, tid);
783 txtid->state |= AGGR_ADDBA_PROGRESS;
784 arn_tx_pause_tid(sc, txtid);
785 *ssn = txtid->seq_start;
786 }
787
788 return (0);
789 }
790
791 int
arn_tx_aggr_stop(struct arn_softc * sc,struct ieee80211_node * in,uint16_t tid)792 arn_tx_aggr_stop(struct arn_softc *sc, struct ieee80211_node *in, uint16_t tid)
793 {
794 struct ath_node *an = ATH_NODE(in);
795 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
796 struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
797 struct ath_buf *bf;
798
799 list_t list;
800 list_create(&list, sizeof (struct ath_buf),
801 offsetof(struct ath_buf, bf_node));
802
803 if (txtid->state & AGGR_CLEANUP)
804 return (0);
805
806 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
807 txtid->addba_exchangeattempts = 0;
808 return (0);
809 }
810
811 arn_tx_pause_tid(sc, txtid);
812
813 /* drop all software retried frames and mark this TID */
814 mutex_enter(&txq->axq_lock);
815 while (!list_empty(&txtid->buf_q)) {
816 /* list_first_entry */
817 bf = list_head(&txtid->buf_q);
818 if (!bf_isretried(bf)) {
819 /*
820 * NB: it's based on the assumption that
821 * software retried frame will always stay
822 * at the head of software queue.
823 */
824 break;
825 }
826 list_remove(&txtid->buf_q, bf);
827 list_insert_tail(&list, bf);
828 arn_tx_update_baw(sc, txtid, bf->bf_seqno);
829 // ath_tx_complete_buf(sc, bf, &list, 0, 0); /* to do */
830 }
831 mutex_exit(&txq->axq_lock);
832
833 if (txtid->baw_head != txtid->baw_tail) {
834 txtid->state |= AGGR_CLEANUP;
835 } else {
836 txtid->state &= ~AGGR_ADDBA_COMPLETE;
837 txtid->addba_exchangeattempts = 0;
838 arn_tx_flush_tid(sc, txtid);
839 }
840
841 return (0);
842 }
843
844 void
arn_tx_aggr_resume(struct arn_softc * sc,struct ieee80211_node * in,uint16_t tid)845 arn_tx_aggr_resume(struct arn_softc *sc,
846 struct ieee80211_node *in,
847 uint16_t tid)
848 {
849 struct ath_atx_tid *txtid;
850 struct ath_node *an;
851
852 an = ATH_NODE(in);
853
854 if (sc->sc_flags & SC_OP_TXAGGR) {
855 txtid = ATH_AN_2_TID(an, tid);
856 txtid->baw_size = (0x8) << sc->sc_ht_conf.ampdu_factor;
857 txtid->state |= AGGR_ADDBA_COMPLETE;
858 txtid->state &= ~AGGR_ADDBA_PROGRESS;
859 arn_tx_resume_tid(sc, txtid);
860 }
861 }
862
863 boolean_t
arn_tx_aggr_check(struct arn_softc * sc,struct ath_node * an,uint8_t tidno)864 arn_tx_aggr_check(struct arn_softc *sc, struct ath_node *an, uint8_t tidno)
865 {
866 struct ath_atx_tid *txtid;
867
868 if (!(sc->sc_flags & SC_OP_TXAGGR))
869 return (B_FALSE);
870
871 txtid = ATH_AN_2_TID(an, tidno);
872
873 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
874 if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
875 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
876 txtid->addba_exchangeattempts++;
877 return (B_TRUE);
878 }
879 }
880
881 return (B_FALSE);
882 }
883
884 /* Queue Management */
885
886 static void
arn_txq_drain_pending_buffers(struct arn_softc * sc,struct ath_txq * txq)887 arn_txq_drain_pending_buffers(struct arn_softc *sc, struct ath_txq *txq)
888 {
889 struct ath_atx_ac *ac, *ac_tmp;
890 struct ath_atx_tid *tid, *tid_tmp;
891
892 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq) {
893 list_remove(&txq->axq_acq, ac);
894 ac->sched = B_FALSE;
895 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q) {
896 list_remove(&ac->tid_q, tid);
897 tid->sched = B_FALSE;
898 arn_tid_drain(sc, txq, tid);
899 }
900 }
901 }
902
903 int
arn_tx_get_qnum(struct arn_softc * sc,int qtype,int haltype)904 arn_tx_get_qnum(struct arn_softc *sc, int qtype, int haltype)
905 {
906 int qnum;
907
908 switch (qtype) {
909 case ATH9K_TX_QUEUE_DATA:
910 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
911 ARN_DBG((ARN_DBG_FATAL, "arn: arn_tx_get_qnum(): "
912 "HAL AC %u out of range, max %zu!\n",
913 haltype, ARRAY_SIZE(sc->sc_haltype2q)));
914 return (-1);
915 }
916 qnum = sc->sc_haltype2q[haltype];
917 break;
918 case ATH9K_TX_QUEUE_BEACON:
919 qnum = sc->sc_beaconq;
920 break;
921 case ATH9K_TX_QUEUE_CAB:
922 qnum = sc->sc_cabq->axq_qnum;
923 break;
924 default:
925 qnum = -1;
926 }
927 return (qnum);
928 }
929
930 struct ath_txq *
arn_test_get_txq(struct arn_softc * sc,struct ieee80211_node * in,struct ieee80211_frame * wh,uint8_t type)931 arn_test_get_txq(struct arn_softc *sc, struct ieee80211_node *in,
932 struct ieee80211_frame *wh, uint8_t type)
933 {
934 struct ieee80211_qosframe *qwh = NULL;
935 struct ath_txq *txq = NULL;
936 int tid = -1;
937 int qos_ac;
938 int qnum;
939
940 if (in->in_flags & IEEE80211_NODE_QOS) {
941
942 if ((type & IEEE80211_FC0_TYPE_MASK) ==
943 IEEE80211_FC0_TYPE_DATA) {
944
945 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
946 qwh = (struct ieee80211_qosframe *)wh;
947
948 tid = qwh->i_qos[0] & IEEE80211_QOS_TID;
949 switch (tid) {
950 case 1:
951 case 2:
952 qos_ac = WME_AC_BK;
953 case 0:
954 case 3:
955 qos_ac = WME_AC_BE;
956 case 4:
957 case 5:
958 qos_ac = WME_AC_VI;
959 case 6:
960 case 7:
961 qos_ac = WME_AC_VO;
962 }
963 }
964 } else {
965 qos_ac = WME_AC_VO;
966 }
967 } else if ((type & IEEE80211_FC0_TYPE_MASK) ==
968 IEEE80211_FC0_TYPE_MGT) {
969 qos_ac = WME_AC_VO;
970 } else if ((type & IEEE80211_FC0_TYPE_MASK) ==
971 IEEE80211_FC0_TYPE_CTL) {
972 qos_ac = WME_AC_VO;
973 } else {
974 qos_ac = WME_AC_BK;
975 }
976 qnum = arn_get_hal_qnum(qos_ac, sc);
977 txq = &sc->sc_txq[qnum];
978
979 mutex_enter(&txq->axq_lock);
980
981 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
982 ARN_DBG((ARN_DBG_XMIT,
983 "TX queue: %d is full, depth: %d\n",
984 qnum, txq->axq_depth));
985 /* stop th queue */
986 sc->sc_resched_needed = B_TRUE;
987 txq->stopped = 1;
988 mutex_exit(&txq->axq_lock);
989 return (NULL);
990 }
991
992 mutex_exit(&txq->axq_lock);
993
994 return (txq);
995 }
996
997 /* Called only when tx aggregation is enabled and HT is supported */
998 static void
assign_aggr_tid_seqno(struct arn_softc * sc,struct ath_buf * bf,struct ieee80211_frame * wh)999 assign_aggr_tid_seqno(struct arn_softc *sc,
1000 struct ath_buf *bf,
1001 struct ieee80211_frame *wh)
1002 {
1003 struct ath_node *an;
1004 struct ath_atx_tid *tid;
1005 struct ieee80211_node *in;
1006 struct ieee80211_qosframe *qwh = NULL;
1007 ieee80211com_t *ic = (ieee80211com_t *)sc;
1008
1009 in = ieee80211_find_txnode(ic, wh->i_addr1);
1010 if (in == NULL) {
1011 arn_problem("assign_aggr_tid_seqno():"
1012 "failed to find tx node\n");
1013 return;
1014 }
1015 an = ATH_NODE(in);
1016
1017 /* Get tidno */
1018 if (in->in_flags & IEEE80211_NODE_QOS) {
1019 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1020 qwh = (struct ieee80211_qosframe *)wh;
1021 bf->bf_tidno = qwh->i_qos[0] & IEEE80211_QOS_TID;
1022 }
1023 }
1024
1025 /* Get seqno */
1026 /*
1027 * For HT capable stations, we save tidno for later use.
1028 * We also override seqno set by upper layer with the one
1029 * in tx aggregation state.
1030 *
1031 * If fragmentation is on, the sequence number is
1032 * not overridden, since it has been
1033 * incremented by the fragmentation routine.
1034 *
1035 * FIXME: check if the fragmentation threshold exceeds
1036 * IEEE80211 max.
1037 */
1038 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1039
1040 *(uint16_t *)&wh->i_seq[0] =
1041 LE_16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1042 bf->bf_seqno = tid->seq_next;
1043 /* LINTED E_CONSTANT_CONDITION */
1044 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1045
1046 /* release node */
1047 ieee80211_free_node(in);
1048 }
1049
1050 /* Compute the number of bad frames */
1051 /* ARGSUSED */
1052 static int
arn_tx_num_badfrms(struct arn_softc * sc,struct ath_buf * bf,int txok)1053 arn_tx_num_badfrms(struct arn_softc *sc, struct ath_buf *bf, int txok)
1054 {
1055 struct ath_buf *bf_last = bf->bf_lastbf;
1056 struct ath_desc *ds = bf_last->bf_desc;
1057 uint16_t seq_st = 0;
1058 uint32_t ba[WME_BA_BMP_SIZE >> 5];
1059 int ba_index;
1060 int nbad = 0;
1061 int isaggr = 0;
1062
1063 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
1064 return (0);
1065
1066 isaggr = bf_isaggr(bf);
1067 if (isaggr) {
1068 seq_st = ATH_DS_BA_SEQ(ds);
1069 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
1070 }
1071
1072 while (bf) {
1073 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
1074 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
1075 nbad++;
1076
1077 bf = bf->bf_next;
1078 }
1079
1080 return (nbad);
1081 }
1082
1083 static void
arn_tx_send_ht_normal(struct arn_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,list_t * list)1084 arn_tx_send_ht_normal(struct arn_softc *sc,
1085 struct ath_txq *txq,
1086 struct ath_atx_tid *tid,
1087 list_t *list)
1088 {
1089 struct ath_buf *bf;
1090
1091 bf = list_head(list);
1092 bf->bf_state.bf_type &= ~BUF_AMPDU;
1093
1094 /* update starting sequence number for subsequent ADDBA request */
1095 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
1096
1097 bf->bf_nframes = 1;
1098 bf->bf_lastbf = bf;
1099 ath_buf_set_rate(sc, bf);
1100 arn_tx_txqaddbuf(sc, txq, list);
1101 }
1102
1103 /*
1104 * Insert a chain of ath_buf (descriptors) on a txq and
1105 * assume the descriptors are already chained together by caller.
1106 */
1107 static void
arn_tx_txqaddbuf(struct arn_softc * sc,struct ath_txq * txq,list_t * list)1108 arn_tx_txqaddbuf(struct arn_softc *sc,
1109 struct ath_txq *txq,
1110 list_t *list)
1111 {
1112 struct ath_buf *bf;
1113
1114 /*
1115 * Insert the frame on the outbound list and
1116 * pass it on to the hardware.
1117 */
1118
1119 if (list_empty(list))
1120 return;
1121
1122 bf = list_head(list);
1123
1124 list_splice_tail_init(list, &txq->axq_q);
1125
1126 txq->axq_depth++;
1127 txq->axq_totalqueued++;
1128 txq->axq_linkbuf = list_object(list, txq->axq_q.prev);
1129
1130 ARN_DBG((ARN_DBG_QUEUE,
1131 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth));
1132
1133 if (txq->axq_link == NULL) {
1134 ath9k_hw_puttxbuf(sc->sc_ah, txq->axq_qnum, bf->bf_daddr);
1135 ARN_DBG((ARN_DBG_XMIT,
1136 "TXDP[%u] = %llx (%p)\n",
1137 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc));
1138 } else {
1139 *txq->axq_link = bf->bf_daddr;
1140 ARN_DBG((ARN_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
1141 txq->axq_qnum, txq->axq_link,
1142 ito64(bf->bf_daddr), bf->bf_desc));
1143 }
1144 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
1145 ath9k_hw_txstart(sc->sc_ah, txq->axq_qnum);
1146 }
1147 #endif /* ARN_TX_AGGREGATION */
1148
1149 static struct ath_buf *
arn_tx_get_buffer(struct arn_softc * sc)1150 arn_tx_get_buffer(struct arn_softc *sc)
1151 {
1152 struct ath_buf *bf = NULL;
1153
1154 mutex_enter(&sc->sc_txbuflock);
1155 bf = list_head(&sc->sc_txbuf_list);
1156 /* Check if a tx buffer is available */
1157 if (bf != NULL)
1158 list_remove(&sc->sc_txbuf_list, bf);
1159 if (list_empty(&sc->sc_txbuf_list)) {
1160 ARN_DBG((ARN_DBG_XMIT, "arn: arn_tx(): "
1161 "stop queue\n"));
1162 sc->sc_stats.ast_tx_qstop++;
1163 }
1164 mutex_exit(&sc->sc_txbuflock);
1165
1166 return (bf);
1167 }
1168
1169 static uint32_t
setup_tx_flags(struct arn_softc * sc,struct ieee80211_frame * wh,uint32_t pktlen)1170 setup_tx_flags(struct arn_softc *sc,
1171 struct ieee80211_frame *wh,
1172 uint32_t pktlen)
1173 {
1174 int flags = 0;
1175 ieee80211com_t *ic = (ieee80211com_t *)sc;
1176
1177 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
1178 flags |= ATH9K_TXDESC_INTREQ;
1179
1180 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1181 flags |= ATH9K_TXDESC_NOACK; /* no ack on broad/multicast */
1182 sc->sc_stats.ast_tx_noack++;
1183 }
1184 if (pktlen > ic->ic_rtsthreshold) {
1185 flags |= ATH9K_TXDESC_RTSENA; /* RTS based on frame length */
1186 sc->sc_stats.ast_tx_rts++;
1187 }
1188
1189 return (flags);
1190 }
1191
1192 static void
ath_tx_setup_buffer(struct arn_softc * sc,struct ath_buf * bf,struct ieee80211_node * in,struct ieee80211_frame * wh,uint32_t pktlen,uint32_t keytype)1193 ath_tx_setup_buffer(struct arn_softc *sc, struct ath_buf *bf,
1194 struct ieee80211_node *in, struct ieee80211_frame *wh,
1195 uint32_t pktlen, uint32_t keytype)
1196 {
1197 ieee80211com_t *ic = (ieee80211com_t *)sc;
1198 int i;
1199
1200 /* Buf reset */
1201 ATH_TXBUF_RESET(bf);
1202 for (i = 0; i < 4; i++) {
1203 bf->rates[i].idx = -1;
1204 bf->rates[i].flags = 0;
1205 bf->rates[i].count = 1;
1206 }
1207
1208 bf->bf_in = in;
1209 /* LINTED E_ASSIGN_NARROW_CONV */
1210 bf->bf_frmlen = pktlen;
1211
1212 /* Frame type */
1213 IEEE80211_IS_DATA(wh) ?
1214 (bf->bf_state.bf_type |= BUF_DATA) :
1215 (bf->bf_state.bf_type &= ~BUF_DATA);
1216 IEEE80211_IS_BACK_REQ(wh) ?
1217 (bf->bf_state.bf_type |= BUF_BAR) :
1218 (bf->bf_state.bf_type &= ~BUF_BAR);
1219 IEEE80211_IS_PSPOLL(wh) ?
1220 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1221 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
1222 /*
1223 * The 802.11 layer marks whether or not we should
1224 * use short preamble based on the current mode and
1225 * negotiated parameters.
1226 */
1227 ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1228 (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) ?
1229 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1230 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
1231
1232 bf->bf_flags = setup_tx_flags(sc, wh, pktlen);
1233
1234 /* Crypto */
1235 bf->bf_keytype = keytype;
1236
1237 /* Assign seqno, tidno for tx aggrefation */
1238
1239 #ifdef ARN_TX_AGGREGATION
1240 if (ieee80211_is_data_qos(wh) && (sc->sc_flags & SC_OP_TXAGGR))
1241 assign_aggr_tid_seqno(sc, bf, wh);
1242 #endif /* ARN_TX_AGGREGATION */
1243
1244 }
1245
1246 /*
1247 * ath_pkt_dur - compute packet duration (NB: not NAV)
1248 *
1249 * rix - rate index
1250 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1251 * width - 0 for 20 MHz, 1 for 40 MHz
1252 * half_gi - to use 4us v/s 3.6 us for symbol time
1253 */
1254 static uint32_t
ath_pkt_duration(struct arn_softc * sc,uint8_t rix,struct ath_buf * bf,int width,int half_gi,boolean_t shortPreamble)1255 ath_pkt_duration(struct arn_softc *sc, uint8_t rix, struct ath_buf *bf,
1256 int width, int half_gi, boolean_t shortPreamble)
1257 {
1258 struct ath_rate_table *rate_table = sc->sc_currates;
1259 uint32_t nbits, nsymbits, duration, nsymbols;
1260 uint8_t rc;
1261 int streams, pktlen;
1262
1263 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
1264 rc = rate_table->info[rix].ratecode;
1265
1266 /* for legacy rates, use old function to compute packet duration */
1267 if (!IS_HT_RATE(rc))
1268 return (ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
1269 rix, shortPreamble));
1270
1271 /* find number of symbols: PLCP + data */
1272 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1273 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1274 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1275
1276 if (!half_gi)
1277 duration = SYMBOL_TIME(nsymbols);
1278 else
1279 duration = SYMBOL_TIME_HALFGI(nsymbols);
1280
1281 /* addup duration for legacy/ht training and signal fields */
1282 streams = HT_RC_2_STREAMS(rc);
1283 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1284
1285 return (duration);
1286 }
1287
1288 /* Rate module function to set rate related fields in tx descriptor */
1289 static void
ath_buf_set_rate(struct arn_softc * sc,struct ath_buf * bf,struct ieee80211_frame * wh)1290 ath_buf_set_rate(struct arn_softc *sc,
1291 struct ath_buf *bf,
1292 struct ieee80211_frame *wh)
1293 {
1294 struct ath_hal *ah = sc->sc_ah;
1295 struct ath_rate_table *rt;
1296 struct ath_desc *ds = bf->bf_desc;
1297 struct ath_desc *lastds = bf->bf_desc; /* temp workground */
1298 struct ath9k_11n_rate_series series[4];
1299 struct ath9k_tx_rate *rates;
1300 int i, flags, rtsctsena = 0;
1301 uint32_t ctsduration = 0;
1302 uint8_t rix = 0, cix, ctsrate = 0;
1303
1304 (void) memset(series, 0, sizeof (struct ath9k_11n_rate_series) * 4);
1305
1306 rates = bf->rates;
1307
1308 if (IEEE80211_HAS_MOREFRAGS(wh) ||
1309 wh->i_seq[0] & IEEE80211_SEQ_FRAG_MASK) {
1310 rates[1].count = rates[2].count = rates[3].count = 0;
1311 rates[1].idx = rates[2].idx = rates[3].idx = 0;
1312 rates[0].count = ATH_TXMAXTRY;
1313 }
1314
1315 /* get the cix for the lowest valid rix */
1316 rt = sc->sc_currates;
1317 for (i = 3; i >= 0; i--) {
1318 if (rates[i].count && (rates[i].idx >= 0)) {
1319 rix = rates[i].idx;
1320 break;
1321 }
1322 }
1323
1324 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
1325 cix = rt->info[rix].ctrl_rate;
1326
1327 /*
1328 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
1329 * just CTS. Note that this is only done for OFDM/HT unicast frames.
1330 */
1331 if (sc->sc_protmode != PROT_M_NONE &&
1332 !(bf->bf_flags & ATH9K_TXDESC_NOACK) &&
1333 (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
1334 WLAN_RC_PHY_HT(rt->info[rix].phy))) {
1335 if (sc->sc_protmode == PROT_M_RTSCTS)
1336 flags = ATH9K_TXDESC_RTSENA;
1337 else if (sc->sc_protmode == PROT_M_CTSONLY)
1338 flags = ATH9K_TXDESC_CTSENA;
1339
1340 cix = rt->info[sc->sc_protrix].ctrl_rate;
1341 rtsctsena = 1;
1342 }
1343
1344 /*
1345 * For 11n, the default behavior is to enable RTS for hw retried frames.
1346 * We enable the global flag here and let rate series flags determine
1347 * which rates will actually use RTS.
1348 */
1349 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
1350 /* 802.11g protection not needed, use our default behavior */
1351 if (!rtsctsena)
1352 flags = ATH9K_TXDESC_RTSENA;
1353 }
1354
1355 /* Set protection if aggregate protection on */
1356 if (sc->sc_config.ath_aggr_prot &&
1357 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
1358 flags = ATH9K_TXDESC_RTSENA;
1359 cix = rt->info[sc->sc_protrix].ctrl_rate;
1360 rtsctsena = 1;
1361 }
1362
1363 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1364 if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
1365 flags &= ~(ATH9K_TXDESC_RTSENA);
1366
1367 /*
1368 * CTS transmit rate is derived from the transmit rate by looking in the
1369 * h/w rate table. We must also factor in whether or not a short
1370 * preamble is to be used. NB: cix is set above where RTS/CTS is enabled
1371 */
1372 ctsrate = rt->info[cix].ratecode |
1373 (bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
1374
1375 for (i = 0; i < 4; i++) {
1376 if (!rates[i].count || (rates[i].idx < 0))
1377 continue;
1378
1379 rix = rates[i].idx;
1380
1381 series[i].Rate = rt->info[rix].ratecode |
1382 (bf_isshpreamble(bf) ?
1383 rt->info[rix].short_preamble : 0);
1384
1385 series[i].Tries = rates[i].count;
1386
1387 series[i].RateFlags =
1388 ((rates[i].flags & ATH9K_TX_RC_USE_RTS_CTS) ?
1389 ATH9K_RATESERIES_RTS_CTS : 0) |
1390 ((rates[i].flags & ATH9K_TX_RC_40_MHZ_WIDTH) ?
1391 ATH9K_RATESERIES_2040 : 0) |
1392 ((rates[i].flags & ATH9K_TX_RC_SHORT_GI) ?
1393 ATH9K_RATESERIES_HALFGI : 0);
1394
1395 series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
1396 (rates[i].flags & ATH9K_TX_RC_40_MHZ_WIDTH) != 0,
1397 (rates[i].flags & ATH9K_TX_RC_SHORT_GI),
1398 bf_isshpreamble(bf));
1399
1400 series[i].ChSel = sc->sc_tx_chainmask;
1401
1402 if (rtsctsena)
1403 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1404
1405 ARN_DBG((ARN_DBG_RATE,
1406 "series[%d]--flags & ATH9K_TX_RC_USE_RTS_CTS = %08x"
1407 "--flags & ATH9K_TX_RC_40_MHZ_WIDTH = %08x"
1408 "--flags & ATH9K_TX_RC_SHORT_GI = %08x\n",
1409 rates[i].flags & ATH9K_TX_RC_USE_RTS_CTS,
1410 rates[i].flags & ATH9K_TX_RC_40_MHZ_WIDTH,
1411 rates[i].flags & ATH9K_TX_RC_SHORT_GI));
1412
1413 ARN_DBG((ARN_DBG_RATE,
1414 "series[%d]:"
1415 "dot11rate:%d"
1416 "index:%d"
1417 "retry count:%d\n",
1418 i,
1419 (rt->info[rates[i].idx].ratekbps)/1000,
1420 rates[i].idx,
1421 rates[i].count));
1422 }
1423
1424 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1425 ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
1426 ctsrate, ctsduration,
1427 series, 4, flags);
1428
1429 if (sc->sc_config.ath_aggr_prot && flags)
1430 ath9k_hw_set11n_burstduration(ah, ds, 8192);
1431 }
1432
1433 static void
ath_tx_complete(struct arn_softc * sc,struct ath_buf * bf,struct ath_xmit_status * tx_status)1434 ath_tx_complete(struct arn_softc *sc, struct ath_buf *bf,
1435 struct ath_xmit_status *tx_status)
1436 {
1437 boolean_t is_data = bf_isdata(bf);
1438
1439 ARN_DBG((ARN_DBG_XMIT, "TX complete\n"));
1440
1441 if (tx_status->flags & ATH_TX_BAR)
1442 tx_status->flags &= ~ATH_TX_BAR;
1443
1444 bf->rates[0].count = tx_status->retries + 1;
1445
1446 arn_tx_status(sc, bf, is_data);
1447 }
1448
1449 /* To complete a chain of buffers associated a frame */
1450 static void
ath_tx_complete_buf(struct arn_softc * sc,struct ath_buf * bf,int txok,int sendbar)1451 ath_tx_complete_buf(struct arn_softc *sc, struct ath_buf *bf,
1452 int txok, int sendbar)
1453 {
1454 struct ath_xmit_status tx_status;
1455
1456 /*
1457 * Set retry information.
1458 * NB: Don't use the information in the descriptor, because the frame
1459 * could be software retried.
1460 */
1461 tx_status.retries = bf->bf_retries;
1462 tx_status.flags = 0;
1463
1464 if (sendbar)
1465 tx_status.flags = ATH_TX_BAR;
1466
1467 if (!txok) {
1468 tx_status.flags |= ATH_TX_ERROR;
1469
1470 if (bf_isxretried(bf))
1471 tx_status.flags |= ATH_TX_XRETRY;
1472 }
1473
1474 /* complete this frame */
1475 ath_tx_complete(sc, bf, &tx_status);
1476
1477 /*
1478 * Return the list of ath_buf of this mpdu to free queue
1479 */
1480 }
1481
1482 static void
arn_tx_stopdma(struct arn_softc * sc,struct ath_txq * txq)1483 arn_tx_stopdma(struct arn_softc *sc, struct ath_txq *txq)
1484 {
1485 struct ath_hal *ah = sc->sc_ah;
1486
1487 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1488
1489 ARN_DBG((ARN_DBG_XMIT, "arn: arn_drain_txdataq(): "
1490 "tx queue [%u] %x, link %p\n",
1491 txq->axq_qnum,
1492 ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link));
1493
1494 }
1495
1496 /* Drain only the data queues */
1497 /* ARGSUSED */
1498 static void
arn_drain_txdataq(struct arn_softc * sc,boolean_t retry_tx)1499 arn_drain_txdataq(struct arn_softc *sc, boolean_t retry_tx)
1500 {
1501 struct ath_hal *ah = sc->sc_ah;
1502 int i, status, npend = 0;
1503
1504 if (!(sc->sc_flags & SC_OP_INVALID)) {
1505 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1506 if (ARN_TXQ_SETUP(sc, i)) {
1507 arn_tx_stopdma(sc, &sc->sc_txq[i]);
1508 /*
1509 * The TxDMA may not really be stopped.
1510 * Double check the hal tx pending count
1511 */
1512 npend += ath9k_hw_numtxpending(ah,
1513 sc->sc_txq[i].axq_qnum);
1514 }
1515 }
1516 }
1517
1518 if (npend) {
1519 /* TxDMA not stopped, reset the hal */
1520 ARN_DBG((ARN_DBG_XMIT, "arn: arn_drain_txdataq(): "
1521 "Unable to stop TxDMA. Reset HAL!\n"));
1522
1523 if (!ath9k_hw_reset(ah,
1524 sc->sc_ah->ah_curchan,
1525 sc->tx_chan_width,
1526 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1527 sc->sc_ht_extprotspacing, B_TRUE, &status)) {
1528 ARN_DBG((ARN_DBG_FATAL, "arn: arn_drain_txdataq(): "
1529 "unable to reset hardware; hal status %u\n",
1530 status));
1531 }
1532 }
1533
1534 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1535 if (ARN_TXQ_SETUP(sc, i))
1536 arn_tx_draintxq(sc, &sc->sc_txq[i]);
1537 }
1538 }
1539
1540 /* Setup a h/w transmit queue */
1541 struct ath_txq *
arn_txq_setup(struct arn_softc * sc,int qtype,int subtype)1542 arn_txq_setup(struct arn_softc *sc, int qtype, int subtype)
1543 {
1544 struct ath_hal *ah = sc->sc_ah;
1545 struct ath9k_tx_queue_info qi;
1546 int qnum;
1547
1548 (void) memset(&qi, 0, sizeof (qi));
1549 qi.tqi_subtype = subtype;
1550 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1551 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1552 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1553 qi.tqi_physCompBuf = 0;
1554
1555 /*
1556 * Enable interrupts only for EOL and DESC conditions.
1557 * We mark tx descriptors to receive a DESC interrupt
1558 * when a tx queue gets deep; otherwise waiting for the
1559 * EOL to reap descriptors. Note that this is done to
1560 * reduce interrupt load and this only defers reaping
1561 * descriptors, never transmitting frames. Aside from
1562 * reducing interrupts this also permits more concurrency.
1563 * The only potential downside is if the tx queue backs
1564 * up in which case the top half of the kernel may backup
1565 * due to a lack of tx descriptors.
1566 *
1567 * The UAPSD queue is an exception, since we take a desc-
1568 * based intr on the EOSP frames.
1569 */
1570 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1571 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1572 else
1573 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1574 TXQ_FLAG_TXDESCINT_ENABLE;
1575 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1576 if (qnum == -1) {
1577 /*
1578 * NB: don't print a message, this happens
1579 * normally on parts with too few tx queues
1580 */
1581 return (NULL);
1582 }
1583 if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
1584 ARN_DBG((ARN_DBG_FATAL, "arn: arn_txq_setup(): "
1585 "hal qnum %u out of range, max %u!\n",
1586 qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq)));
1587 (void) ath9k_hw_releasetxqueue(ah, qnum);
1588 return (NULL);
1589 }
1590 if (!ARN_TXQ_SETUP(sc, qnum)) {
1591 struct ath_txq *txq = &sc->sc_txq[qnum];
1592
1593 txq->axq_qnum = qnum;
1594 txq->axq_intrcnt = 0; /* legacy */
1595 txq->axq_link = NULL;
1596
1597 list_create(&txq->axq_list, sizeof (struct ath_buf),
1598 offsetof(struct ath_buf, bf_node));
1599 list_create(&txq->axq_acq, sizeof (struct ath_buf),
1600 offsetof(struct ath_buf, bf_node));
1601 mutex_init(&txq->axq_lock, NULL, MUTEX_DRIVER, NULL);
1602
1603 txq->axq_depth = 0;
1604 txq->axq_aggr_depth = 0;
1605 txq->axq_totalqueued = 0;
1606 txq->axq_linkbuf = NULL;
1607 sc->sc_txqsetup |= 1<<qnum;
1608 }
1609 return (&sc->sc_txq[qnum]);
1610 }
1611
1612 /* Reclaim resources for a setup queue */
1613
1614 void
arn_tx_cleanupq(struct arn_softc * sc,struct ath_txq * txq)1615 arn_tx_cleanupq(struct arn_softc *sc, struct ath_txq *txq)
1616 {
1617 (void) ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1618 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
1619 }
1620
1621 /*
1622 * Setup a hardware data transmit queue for the specified
1623 * access control. The hal may not support all requested
1624 * queues in which case it will return a reference to a
1625 * previously setup queue. We record the mapping from ac's
1626 * to h/w queues for use by arn_tx_start and also track
1627 * the set of h/w queues being used to optimize work in the
1628 * transmit interrupt handler and related routines.
1629 */
1630
1631 int
arn_tx_setup(struct arn_softc * sc,int haltype)1632 arn_tx_setup(struct arn_softc *sc, int haltype)
1633 {
1634 struct ath_txq *txq;
1635
1636 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
1637 ARN_DBG((ARN_DBG_FATAL, "arn: arn_tx_setup(): "
1638 "HAL AC %u out of range, max %zu!\n",
1639 haltype, ARRAY_SIZE(sc->sc_haltype2q)));
1640 return (0);
1641 }
1642 txq = arn_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
1643 if (txq != NULL) {
1644 sc->sc_haltype2q[haltype] = txq->axq_qnum;
1645 return (1);
1646 } else
1647 return (0);
1648 }
1649
1650 void
arn_tx_draintxq(struct arn_softc * sc,struct ath_txq * txq)1651 arn_tx_draintxq(struct arn_softc *sc, struct ath_txq *txq)
1652 {
1653 struct ath_buf *bf;
1654
1655 /*
1656 * This assumes output has been stopped.
1657 */
1658 for (;;) {
1659 mutex_enter(&txq->axq_lock);
1660 bf = list_head(&txq->axq_list);
1661 if (bf == NULL) {
1662 txq->axq_link = NULL;
1663 mutex_exit(&txq->axq_lock);
1664 break;
1665 }
1666 list_remove(&txq->axq_list, bf);
1667 mutex_exit(&txq->axq_lock);
1668 bf->bf_in = NULL;
1669 mutex_enter(&sc->sc_txbuflock);
1670 list_insert_tail(&sc->sc_txbuf_list, bf);
1671 mutex_exit(&sc->sc_txbuflock);
1672 }
1673 }
1674
1675 /* Drain the transmit queues and reclaim resources */
1676
1677 void
arn_draintxq(struct arn_softc * sc,boolean_t retry_tx)1678 arn_draintxq(struct arn_softc *sc, boolean_t retry_tx)
1679 {
1680 /*
1681 * stop beacon queue. The beacon will be freed when
1682 * we go to INIT state
1683 */
1684 if (!(sc->sc_flags & SC_OP_INVALID)) {
1685 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_beaconq);
1686 ARN_DBG((ARN_DBG_XMIT, "arn: arn_draintxq(): "
1687 "beacon queue %x\n",
1688 ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_beaconq)));
1689 }
1690
1691 arn_drain_txdataq(sc, retry_tx);
1692 }
1693
1694 uint32_t
arn_txq_depth(struct arn_softc * sc,int qnum)1695 arn_txq_depth(struct arn_softc *sc, int qnum)
1696 {
1697 return (sc->sc_txq[qnum].axq_depth);
1698 }
1699
1700 uint32_t
arn_txq_aggr_depth(struct arn_softc * sc,int qnum)1701 arn_txq_aggr_depth(struct arn_softc *sc, int qnum)
1702 {
1703 return (sc->sc_txq[qnum].axq_aggr_depth);
1704 }
1705
1706 /* Update parameters for a transmit queue */
1707 int
arn_txq_update(struct arn_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1708 arn_txq_update(struct arn_softc *sc, int qnum,
1709 struct ath9k_tx_queue_info *qinfo)
1710 {
1711 struct ath_hal *ah = sc->sc_ah;
1712 int error = 0;
1713 struct ath9k_tx_queue_info qi;
1714
1715 if (qnum == sc->sc_beaconq) {
1716 /*
1717 * XXX: for beacon queue, we just save the parameter.
1718 * It will be picked up by arn_beaconq_config() when
1719 * it's necessary.
1720 */
1721 sc->sc_beacon_qi = *qinfo;
1722 return (0);
1723 }
1724
1725 ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
1726
1727 (void) ath9k_hw_get_txq_props(ah, qnum, &qi);
1728 qi.tqi_aifs = qinfo->tqi_aifs;
1729 qi.tqi_cwmin = qinfo->tqi_cwmin;
1730 qi.tqi_cwmax = qinfo->tqi_cwmax;
1731 qi.tqi_burstTime = qinfo->tqi_burstTime;
1732 qi.tqi_readyTime = qinfo->tqi_readyTime;
1733
1734 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1735 ARN_DBG((ARN_DBG_FATAL,
1736 "Unable to update hardware queue %u!\n", qnum));
1737 error = -EIO;
1738 } else {
1739 (void) ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
1740 }
1741
1742 return (error);
1743 }
1744
1745 int
ath_cabq_update(struct arn_softc * sc)1746 ath_cabq_update(struct arn_softc *sc)
1747 {
1748 struct ath9k_tx_queue_info qi;
1749 int qnum = sc->sc_cabq->axq_qnum;
1750 struct ath_beacon_config conf;
1751
1752 (void) ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1753 /*
1754 * Ensure the readytime % is within the bounds.
1755 */
1756 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1757 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1758 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1759 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1760
1761 arn_get_beaconconfig(sc, &conf);
1762 qi.tqi_readyTime =
1763 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
1764 (void) arn_txq_update(sc, qnum, &qi);
1765
1766 return (0);
1767 }
1768
1769 static uint32_t
arn_tx_get_keytype(const struct ieee80211_cipher * cip)1770 arn_tx_get_keytype(const struct ieee80211_cipher *cip)
1771 {
1772 uint32_t index;
1773 static const uint8_t ciphermap[] = {
1774 ATH9K_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1775 ATH9K_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1776 ATH9K_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1777 ATH9K_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1778 ATH9K_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1779 ATH9K_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1780 };
1781
1782 ASSERT(cip->ic_cipher < ARRAY_SIZE(ciphermap));
1783 index = cip->ic_cipher;
1784
1785 if (ciphermap[index] == ATH9K_CIPHER_WEP)
1786 return (ATH9K_KEY_TYPE_WEP);
1787 else if (ciphermap[index] == ATH9K_CIPHER_TKIP)
1788 return (ATH9K_KEY_TYPE_TKIP);
1789 else if (ciphermap[index] == ATH9K_CIPHER_AES_CCM)
1790 return (ATH9K_KEY_TYPE_AES);
1791
1792 return (ATH9K_KEY_TYPE_CLEAR);
1793
1794 }
1795
1796 /* Display buffer */
1797 void
arn_dump_line(unsigned char * p,uint32_t len,boolean_t isaddress,uint32_t group)1798 arn_dump_line(unsigned char *p, uint32_t len, boolean_t isaddress,
1799 uint32_t group)
1800 {
1801 char *pnumeric = "0123456789ABCDEF";
1802 char hex[((2 + 1) * 16) + 1];
1803 char *phex = hex;
1804 char ascii[16 + 1];
1805 char *pascii = ascii;
1806 uint32_t grouped = 0;
1807
1808 if (isaddress) {
1809 arn_problem("arn: %08x: ", p);
1810 } else {
1811 arn_problem("arn: ");
1812 }
1813
1814 while (len) {
1815 *phex++ = pnumeric[((uint8_t)*p) / 16];
1816 *phex++ = pnumeric[((uint8_t)*p) % 16];
1817 if (++grouped >= group) {
1818 *phex++ = ' ';
1819 grouped = 0;
1820 }
1821
1822 *pascii++ = (*p >= 32 && *p < 128) ? *p : '.';
1823
1824 ++p;
1825 --len;
1826 }
1827
1828 *phex = '\0';
1829 *pascii = '\0';
1830
1831 arn_problem("%-*s|%-*s|\n", (2 * 16) +
1832 (16 / group), hex, 16, ascii);
1833 }
1834
1835 void
arn_dump_pkg(unsigned char * p,uint32_t len,boolean_t isaddress,uint32_t group)1836 arn_dump_pkg(unsigned char *p, uint32_t len, boolean_t isaddress,
1837 uint32_t group)
1838 {
1839 uint32_t perline;
1840 while (len) {
1841 perline = (len < 16) ? len : 16;
1842 arn_dump_line(p, perline, isaddress, group);
1843 len -= perline;
1844 p += perline;
1845 }
1846 }
1847
1848 /*
1849 * The input parameter mp has following assumption:
1850 * For data packets, GLDv3 mac_wifi plugin allocates and fills the
1851 * ieee80211 header. For management packets, net80211 allocates and
1852 * fills the ieee80211 header. In both cases, enough spaces in the
1853 * header are left for encryption option.
1854 */
1855 static int32_t
arn_tx_start(struct arn_softc * sc,struct ieee80211_node * in,struct ath_buf * bf,mblk_t * mp)1856 arn_tx_start(struct arn_softc *sc, struct ieee80211_node *in,
1857 struct ath_buf *bf, mblk_t *mp)
1858 {
1859 ieee80211com_t *ic = (ieee80211com_t *)sc;
1860 struct ieee80211_frame *wh = (struct ieee80211_frame *)mp->b_rptr;
1861 struct ath_hal *ah = sc->sc_ah;
1862 struct ath_node *an;
1863 struct ath_desc *ds;
1864 struct ath_txq *txq;
1865 struct ath_rate_table *rt;
1866 enum ath9k_pkt_type atype;
1867 boolean_t shortPreamble, is_padding = B_FALSE;
1868 uint32_t subtype, keytype = ATH9K_KEY_TYPE_CLEAR;
1869 int32_t keyix, iswep, hdrlen, pktlen, mblen, mbslen;
1870 caddr_t dest;
1871
1872 /*
1873 * CRC are added by H/W, not encaped by driver,
1874 * but we must count it in pkt length.
1875 */
1876 pktlen = IEEE80211_CRC_LEN;
1877 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1878 keyix = ATH9K_TXKEYIX_INVALID;
1879 hdrlen = ieee80211_hdrspace(ic, mp->b_rptr);
1880 if (hdrlen == 28)
1881 is_padding = B_TRUE;
1882
1883 if (iswep != 0) {
1884 const struct ieee80211_cipher *cip;
1885 struct ieee80211_key *k;
1886
1887 /*
1888 * Construct the 802.11 header+trailer for an encrypted
1889 * frame. The only reason this can fail is because of an
1890 * unknown or unsupported cipher/key type.
1891 */
1892 k = ieee80211_crypto_encap(ic, mp);
1893 if (k == NULL) {
1894 ARN_DBG((ARN_DBG_XMIT, "arn: arn_tx_start "
1895 "crypto_encap failed\n"));
1896 /*
1897 * This can happen when the key is yanked after the
1898 * frame was queued. Just discard the frame; the
1899 * 802.11 layer counts failures and provides
1900 * debugging/diagnostics.
1901 */
1902 return (EIO);
1903 }
1904 cip = k->wk_cipher;
1905
1906 keytype = arn_tx_get_keytype(cip);
1907
1908 /*
1909 * Adjust the packet + header lengths for the crypto
1910 * additions and calculate the h/w key index. When
1911 * a s/w mic is done the frame will have had any mic
1912 * added to it prior to entry so m0->m_pkthdr.len above will
1913 * account for it. Otherwise we need to add it to the
1914 * packet length.
1915 */
1916 hdrlen += cip->ic_header;
1917 pktlen += cip->ic_trailer;
1918 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
1919 pktlen += cip->ic_miclen;
1920
1921 keyix = k->wk_keyix;
1922
1923 /* packet header may have moved, reset our local pointer */
1924 wh = (struct ieee80211_frame *)mp->b_rptr;
1925 }
1926
1927 dest = bf->bf_dma.mem_va;
1928 for (; mp != NULL; mp = mp->b_cont) {
1929 mblen = MBLKL(mp);
1930 bcopy(mp->b_rptr, dest, mblen);
1931 dest += mblen;
1932 }
1933 mbslen = (uintptr_t)dest - (uintptr_t)bf->bf_dma.mem_va;
1934 pktlen += mbslen;
1935 if (is_padding && (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1936 IEEE80211_FC0_TYPE_DATA)
1937 pktlen -= 2; /* real pkg len */
1938
1939 /* buf setup */
1940 ath_tx_setup_buffer(sc, bf, in, wh, pktlen, keytype);
1941
1942 /* setup descriptors */
1943 ds = bf->bf_desc;
1944 rt = sc->sc_currates;
1945 ASSERT(rt != NULL);
1946
1947 arn_get_rate(sc, bf, wh);
1948 an = (struct ath_node *)(in);
1949
1950 /*
1951 * Calculate Atheros packet type from IEEE80211 packet header
1952 * and setup for rate calculations.
1953 */
1954 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1955 case IEEE80211_FC0_TYPE_MGT:
1956 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1957 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1958 atype = ATH9K_PKT_TYPE_BEACON;
1959 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1960 atype = ATH9K_PKT_TYPE_PROBE_RESP;
1961 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1962 atype = ATH9K_PKT_TYPE_ATIM;
1963 else
1964 atype = ATH9K_PKT_TYPE_NORMAL;
1965
1966 /* force all ctl frames to highest queue */
1967 txq = &sc->sc_txq[arn_get_hal_qnum(WME_AC_VO, sc)];
1968 break;
1969 case IEEE80211_FC0_TYPE_CTL:
1970 atype = ATH9K_PKT_TYPE_PSPOLL;
1971 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1972
1973 /* force all ctl frames to highest queue */
1974 txq = &sc->sc_txq[arn_get_hal_qnum(WME_AC_VO, sc)];
1975 break;
1976 case IEEE80211_FC0_TYPE_DATA:
1977 // arn_dump_pkg((unsigned char *)bf->bf_dma.mem_va,
1978 // pktlen, 1, 1);
1979 atype = ATH9K_PKT_TYPE_NORMAL;
1980
1981 /* Always use background queue */
1982 txq = &sc->sc_txq[arn_get_hal_qnum(WME_AC_BE, sc)];
1983 break;
1984 default:
1985 /* Unknown 802.11 frame */
1986 sc->sc_stats.ast_tx_invalid++;
1987 return (1);
1988 }
1989
1990 /* setup descriptor */
1991 ds->ds_link = 0;
1992 ds->ds_data = bf->bf_dma.cookie.dmac_address;
1993
1994 /*
1995 * Formulate first tx descriptor with tx controls.
1996 */
1997 ath9k_hw_set11n_txdesc(ah, ds,
1998 (pktlen), /* packet length */
1999 atype, /* Atheros packet type */
2000 MAX_RATE_POWER /* MAX_RATE_POWER */,
2001 keyix /* ATH9K_TXKEYIX_INVALID */,
2002 keytype /* ATH9K_KEY_TYPE_CLEAR */,
2003 bf->bf_flags /* flags */);
2004
2005 /* LINTED E_BAD_PTR_CAST_ALIGN */
2006 ARN_DBG((ARN_DBG_XMIT, "arn: arn_tx_start(): to %s totlen=%d "
2007 "an->an_tx_rate1sp=%d tx_rate2sp=%d tx_rate3sp=%d "
2008 "qnum=%d sht=%d dur = %d\n",
2009 ieee80211_macaddr_sprintf(wh->i_addr1), mbslen, an->an_tx_rate1sp,
2010 an->an_tx_rate2sp, an->an_tx_rate3sp,
2011 txq->axq_qnum, shortPreamble, *(uint16_t *)wh->i_dur));
2012
2013 (void) ath9k_hw_filltxdesc(ah, ds,
2014 mbslen, /* segment length */
2015 B_TRUE, /* first segment */
2016 B_TRUE, /* last segment */
2017 ds); /* first descriptor */
2018
2019 /* set rate related fields in tx descriptor */
2020 ath_buf_set_rate(sc, bf, wh);
2021
2022 ARN_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV);
2023
2024 mutex_enter(&txq->axq_lock);
2025 list_insert_tail(&txq->axq_list, bf);
2026 if (txq->axq_link == NULL) {
2027 (void) ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2028 } else {
2029 *txq->axq_link = bf->bf_daddr;
2030 }
2031 txq->axq_link = &ds->ds_link;
2032 mutex_exit(&txq->axq_lock);
2033
2034 // arn_dump_pkg((unsigned char *)bf->bf_dma.mem_va, pktlen, 1, 1);
2035
2036 (void) ath9k_hw_txstart(ah, txq->axq_qnum);
2037
2038 ic->ic_stats.is_tx_frags++;
2039 ic->ic_stats.is_tx_bytes += pktlen;
2040
2041 return (0);
2042 }
2043
2044 /*
2045 * Transmit a management frame.
2046 * Note that management frames come directly from the 802.11 layer
2047 * and do not honor the send queue flow control.
2048 */
2049 /* Upon failure caller should free mp */
2050 int
arn_tx(ieee80211com_t * ic,mblk_t * mp,uint8_t type)2051 arn_tx(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2052 {
2053 struct arn_softc *sc = (struct arn_softc *)ic;
2054 struct ath_hal *ah = sc->sc_ah;
2055 struct ieee80211_node *in = NULL;
2056 struct ath_buf *bf = NULL;
2057 struct ieee80211_frame *wh;
2058 int error = 0;
2059
2060 ASSERT(mp->b_next == NULL);
2061 /* should check later */
2062 if (sc->sc_flags & SC_OP_INVALID) {
2063 if ((type & IEEE80211_FC0_TYPE_MASK) !=
2064 IEEE80211_FC0_TYPE_DATA) {
2065 freemsg(mp);
2066 }
2067 return (ENXIO);
2068 }
2069
2070 /* Grab a TX buffer */
2071 bf = arn_tx_get_buffer(sc);
2072 if (bf == NULL) {
2073 ARN_DBG((ARN_DBG_XMIT, "arn: arn_tx(): discard, "
2074 "no xmit buf\n"));
2075 ic->ic_stats.is_tx_nobuf++;
2076 if ((type & IEEE80211_FC0_TYPE_MASK) ==
2077 IEEE80211_FC0_TYPE_DATA) {
2078 sc->sc_stats.ast_tx_nobuf++;
2079 mutex_enter(&sc->sc_resched_lock);
2080 sc->sc_resched_needed = B_TRUE;
2081 mutex_exit(&sc->sc_resched_lock);
2082 } else {
2083 sc->sc_stats.ast_tx_nobufmgt++;
2084 freemsg(mp);
2085 }
2086 return (ENOMEM);
2087 }
2088
2089 wh = (struct ieee80211_frame *)mp->b_rptr;
2090
2091 /* Locate node */
2092 in = ieee80211_find_txnode(ic, wh->i_addr1);
2093 if (in == NULL) {
2094 error = EIO;
2095 goto bad;
2096 }
2097
2098 in->in_inact = 0;
2099 switch (type & IEEE80211_FC0_TYPE_MASK) {
2100 case IEEE80211_FC0_TYPE_DATA:
2101 (void) ieee80211_encap(ic, mp, in);
2102 break;
2103 default:
2104 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2105 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2106 /* fill time stamp */
2107 uint64_t tsf;
2108 uint32_t *tstamp;
2109
2110 tsf = ath9k_hw_gettsf64(ah);
2111 /* adjust 100us delay to xmit */
2112 tsf += 100;
2113 /* LINTED E_BAD_PTR_CAST_ALIGN */
2114 tstamp = (uint32_t *)&wh[1];
2115 tstamp[0] = LE_32(tsf & 0xffffffff);
2116 tstamp[1] = LE_32(tsf >> 32);
2117 }
2118 sc->sc_stats.ast_tx_mgmt++;
2119 break;
2120 }
2121
2122 error = arn_tx_start(sc, in, bf, mp);
2123
2124 if (error != 0) {
2125 bad:
2126 ic->ic_stats.is_tx_failed++;
2127 if (bf != NULL) {
2128 mutex_enter(&sc->sc_txbuflock);
2129 list_insert_tail(&sc->sc_txbuf_list, bf);
2130 mutex_exit(&sc->sc_txbuflock);
2131 }
2132 }
2133 if (in != NULL)
2134 ieee80211_free_node(in);
2135 if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
2136 error == 0) {
2137 freemsg(mp);
2138 }
2139
2140 return (error);
2141 }
2142
2143 static void
arn_printtxbuf(struct ath_buf * bf,int done)2144 arn_printtxbuf(struct ath_buf *bf, int done)
2145 {
2146 struct ath_desc *ds = bf->bf_desc;
2147 const struct ath_tx_status *ts = &ds->ds_txstat;
2148
2149 ARN_DBG((ARN_DBG_XMIT, "arn: T(%p %p) %08x %08x %08x %08x %08x"
2150 " %08x %08x %08x %c\n",
2151 ds, bf->bf_daddr,
2152 ds->ds_link, ds->ds_data,
2153 ds->ds_ctl0, ds->ds_ctl1,
2154 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2155 !done ? ' ' : (ts->ts_status == 0) ? '*' : '!'));
2156 }
2157
2158 /* ARGSUSED */
2159 static void
ath_tx_rc_status(struct ath_buf * bf,struct ath_desc * ds,int nbad,int txok,boolean_t update_rc)2160 ath_tx_rc_status(struct ath_buf *bf,
2161 struct ath_desc *ds,
2162 int nbad,
2163 int txok,
2164 boolean_t update_rc)
2165 {
2166 struct ath_tx_info_priv *tx_info_priv =
2167 (struct ath_tx_info_priv *)&bf->tx_info_priv;
2168
2169 tx_info_priv->update_rc = B_FALSE;
2170
2171 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
2172 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
2173 if (bf_isdata(bf)) {
2174 (void) memcpy(&tx_info_priv->tx, &ds->ds_txstat,
2175 sizeof (tx_info_priv->tx));
2176 tx_info_priv->n_frames = bf->bf_nframes;
2177 tx_info_priv->n_bad_frames = nbad;
2178 tx_info_priv->update_rc = B_TRUE;
2179 }
2180 }
2181 }
2182
2183 /* Process completed xmit descriptors from the specified queue */
2184 static int
arn_tx_processq(struct arn_softc * sc,struct ath_txq * txq)2185 arn_tx_processq(struct arn_softc *sc, struct ath_txq *txq)
2186 {
2187 ieee80211com_t *ic = (ieee80211com_t *)sc;
2188 struct ath_hal *ah = sc->sc_ah;
2189 struct ath_buf *bf;
2190 struct ath_desc *ds;
2191 struct ieee80211_node *in;
2192 struct ath_tx_status *ts;
2193 struct ath_node *an;
2194 int32_t sr, lr, nacked = 0;
2195 int txok, nbad = 0;
2196 int status;
2197
2198 for (;;) {
2199 mutex_enter(&txq->axq_lock);
2200 bf = list_head(&txq->axq_list);
2201 if (bf == NULL) {
2202 txq->axq_link = NULL;
2203 /* txq->axq_linkbuf = NULL; */
2204 mutex_exit(&txq->axq_lock);
2205 break;
2206 }
2207 ds = bf->bf_desc; /* last decriptor */
2208 ts = &ds->ds_txstat;
2209 status = ath9k_hw_txprocdesc(ah, ds);
2210
2211 #ifdef DEBUG
2212 arn_printtxbuf(bf, status == 0);
2213 #endif
2214
2215 if (status == EINPROGRESS) {
2216 mutex_exit(&txq->axq_lock);
2217 break;
2218 }
2219 list_remove(&txq->axq_list, bf);
2220 mutex_exit(&txq->axq_lock);
2221 in = bf->bf_in;
2222 if (in != NULL) {
2223 an = ATH_NODE(in);
2224 /* Successful transmition */
2225 if (ts->ts_status == 0) {
2226 an->an_tx_ok++;
2227 an->an_tx_antenna = ts->ts_antenna;
2228 sc->sc_stats.ast_tx_rssidelta =
2229 ts->ts_rssi - sc->sc_stats.ast_tx_rssi;
2230 sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
2231 } else {
2232 an->an_tx_err++;
2233 if (ts->ts_status & ATH9K_TXERR_XRETRY) {
2234 sc->sc_stats.ast_tx_xretries++;
2235 }
2236 if (ts->ts_status & ATH9K_TXERR_FIFO) {
2237 sc->sc_stats.ast_tx_fifoerr++;
2238 }
2239 if (ts->ts_status & ATH9K_TXERR_FILT) {
2240 sc->sc_stats.ast_tx_filtered++;
2241 }
2242 an->an_tx_antenna = 0; /* invalidate */
2243 }
2244 sr = ts->ts_shortretry;
2245 lr = ts->ts_longretry;
2246 sc->sc_stats.ast_tx_shortretry += sr;
2247 sc->sc_stats.ast_tx_longretry += lr;
2248 /*
2249 * Hand the descriptor to the rate control algorithm.
2250 */
2251 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2252 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
2253 /*
2254 * If frame was ack'd update the last rx time
2255 * used to workaround phantom bmiss interrupts.
2256 */
2257 if (ts->ts_status == 0) {
2258 nacked++;
2259 an->an_tx_ok++;
2260 } else {
2261 an->an_tx_err++;
2262 }
2263 an->an_tx_retr += sr + lr;
2264 }
2265 }
2266
2267 txok = (ds->ds_txstat.ts_status == 0);
2268 if (!bf_isampdu(bf)) {
2269 /*
2270 * This frame is sent out as a single frame.
2271 * Use hardware retry status for this frame.
2272 */
2273 bf->bf_retries = ds->ds_txstat.ts_longretry;
2274 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
2275 bf->bf_state.bf_type |= BUF_XRETRY;
2276 nbad = 0;
2277 }
2278 ath_tx_rc_status(bf, ds, nbad, B_TRUE, txok);
2279
2280 ath_tx_complete_buf(sc, bf, txok, 0);
2281
2282 // arn_dump_pkg((unsigned char *)bf->bf_dma.mem_va,
2283 // bf->bf_frmlen, 1, 1);
2284
2285 bf->bf_in = NULL;
2286 mutex_enter(&sc->sc_txbuflock);
2287 list_insert_tail(&sc->sc_txbuf_list, bf);
2288 mutex_exit(&sc->sc_txbuflock);
2289
2290 /*
2291 * Reschedule stalled outbound packets
2292 */
2293 mutex_enter(&sc->sc_resched_lock);
2294 if (sc->sc_resched_needed) {
2295 sc->sc_resched_needed = B_FALSE;
2296 mac_tx_update(ic->ic_mach);
2297 }
2298 mutex_exit(&sc->sc_resched_lock);
2299 }
2300
2301 return (nacked);
2302 }
2303
2304 static void
arn_tx_handler(struct arn_softc * sc)2305 arn_tx_handler(struct arn_softc *sc)
2306 {
2307 int i;
2308 int nacked = 0;
2309 uint32_t qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2310 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2311
2312 /*
2313 * Process each active queue.
2314 */
2315 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2316 if (ARN_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) {
2317 nacked += arn_tx_processq(sc, &sc->sc_txq[i]);
2318 }
2319 }
2320
2321 if (nacked)
2322 sc->sc_lastrx = ath9k_hw_gettsf64(sc->sc_ah);
2323 }
2324
2325 /* Deferred processing of transmit interrupt */
2326
2327 void
arn_tx_int_proc(void * arg)2328 arn_tx_int_proc(void *arg)
2329 {
2330 struct arn_softc *sc = arg;
2331 arn_tx_handler(sc);
2332 }
2333
2334 /* Node init & cleanup functions */
2335
2336 #ifdef ARN_TX_AGGREGATION
2337 void
arn_tx_node_init(struct arn_softc * sc,struct ath_node * an)2338 arn_tx_node_init(struct arn_softc *sc, struct ath_node *an)
2339 {
2340 struct ath_atx_tid *tid;
2341 struct ath_atx_ac *ac;
2342 int tidno, acno;
2343
2344 for (tidno = 0, tid = &an->tid[tidno]; tidno < WME_NUM_TID;
2345 tidno++, tid++) {
2346 tid->an = an;
2347 tid->tidno = tidno;
2348 tid->seq_start = tid->seq_next = 0;
2349 tid->baw_size = WME_MAX_BA;
2350 tid->baw_head = tid->baw_tail = 0;
2351 tid->sched = B_FALSE;
2352 tid->paused = B_FALSE;
2353 tid->state &= ~AGGR_CLEANUP;
2354 list_create(&tid->buf_q, sizeof (struct ath_buf),
2355 offsetof(struct ath_buf, bf_node));
2356 acno = TID_TO_WME_AC(tidno);
2357 tid->ac = &an->ac[acno];
2358 tid->state &= ~AGGR_ADDBA_COMPLETE;
2359 tid->state &= ~AGGR_ADDBA_PROGRESS;
2360 tid->addba_exchangeattempts = 0;
2361 }
2362
2363 for (acno = 0, ac = &an->ac[acno]; acno < WME_NUM_AC; acno++, ac++) {
2364 ac->sched = B_FALSE;
2365 list_create(&ac->tid_q, sizeof (struct ath_atx_tid),
2366 offsetof(struct ath_atx_tid, list));
2367
2368 switch (acno) {
2369 case WME_AC_BE:
2370 ac->qnum = arn_tx_get_qnum(sc,
2371 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2372 break;
2373 case WME_AC_BK:
2374 ac->qnum = arn_tx_get_qnum(sc,
2375 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2376 break;
2377 case WME_AC_VI:
2378 ac->qnum = arn_tx_get_qnum(sc,
2379 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2380 break;
2381 case WME_AC_VO:
2382 ac->qnum = arn_tx_get_qnum(sc,
2383 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2384 break;
2385 }
2386 }
2387 }
2388
2389 void
arn_tx_node_cleanup(struct arn_softc * sc,struct ieee80211_node * in)2390 arn_tx_node_cleanup(struct arn_softc *sc, struct ieee80211_node *in)
2391 {
2392 int i;
2393 struct ath_atx_ac *ac, *ac_tmp;
2394 struct ath_atx_tid *tid, *tid_tmp;
2395 struct ath_txq *txq;
2396 struct ath_node *an = ATH_NODE(in);
2397
2398 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2399 if (ARN_TXQ_SETUP(sc, i)) {
2400 txq = &sc->sc_txq[i];
2401
2402 mutex_enter(&txq->axq_lock);
2403
2404 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq) {
2405 tid = list_head(&ac->tid_q);
2406 if (tid && tid->an != an)
2407 continue;
2408 list_remove(&txq->axq_acq, ac);
2409 ac->sched = B_FALSE;
2410
2411 list_for_each_entry_safe(tid, tid_tmp,
2412 &ac->tid_q) {
2413 list_remove(&ac->tid_q, tid);
2414 bf = list_head(&tid->buf_q);
2415 while (bf != NULL) {
2416 if (bf->bf_in == in)
2417 bf->bf_in = NULL;
2418 }
2419 bf = list_next(&txq->axq_list, bf);
2420 tid->sched = B_FALSE;
2421 arn_tid_drain(sc, txq, tid);
2422 tid->state &= ~AGGR_ADDBA_COMPLETE;
2423 tid->addba_exchangeattempts = 0;
2424 tid->state &= ~AGGR_CLEANUP;
2425 }
2426 }
2427
2428 mutex_exit(&txq->axq_lock);
2429 }
2430 }
2431 }
2432 #endif /* ARN_TX_AGGREGATION */
2433