1.. SPDX-License-Identifier: GPL-2.0
2
3===============================
4Kernel level exception handling
5===============================
6
7Commentary by Joerg Pommnitz <joerg@raleigh.ibm.com>
8
9When a process runs in kernel mode, it often has to access user
10mode memory whose address has been passed by an untrusted program.
11To protect itself the kernel has to verify this address.
12
13In older versions of Linux this was done with the
14int verify_area(int type, const void * addr, unsigned long size)
15function (which has since been replaced by access_ok()).
16
17This function verified that the memory area starting at address
18'addr' and of size 'size' was accessible for the operation specified
19in type (read or write). To do this, verify_read had to look up the
20virtual memory area (vma) that contained the address addr. In the
21normal case (correctly working program), this test was successful.
22It only failed for a few buggy programs. In some kernel profiling
23tests, this normally unneeded verification used up a considerable
24amount of time.
25
26To overcome this situation, Linus decided to let the virtual memory
27hardware present in every Linux-capable CPU handle this test.
28
29How does this work?
30
31Whenever the kernel tries to access an address that is currently not
32accessible, the CPU generates a page fault exception and calls the
33page fault handler::
34
35  void exc_page_fault(struct pt_regs *regs, unsigned long error_code)
36
37in arch/x86/mm/fault.c. The parameters on the stack are set up by
38the low level assembly glue in arch/x86/entry/entry_32.S. The parameter
39regs is a pointer to the saved registers on the stack, error_code
40contains a reason code for the exception.
41
42exc_page_fault() first obtains the inaccessible address from the CPU
43control register CR2. If the address is within the virtual address
44space of the process, the fault probably occurred, because the page
45was not swapped in, write protected or something similar. However,
46we are interested in the other case: the address is not valid, there
47is no vma that contains this address. In this case, the kernel jumps
48to the bad_area label.
49
50There it uses the address of the instruction that caused the exception
51(i.e. regs->eip) to find an address where the execution can continue
52(fixup). If this search is successful, the fault handler modifies the
53return address (again regs->eip) and returns. The execution will
54continue at the address in fixup.
55
56Where does fixup point to?
57
58Since we jump to the contents of fixup, fixup obviously points
59to executable code. This code is hidden inside the user access macros.
60I have picked the get_user() macro defined in arch/x86/include/asm/uaccess.h
61as an example. The definition is somewhat hard to follow, so let's peek at
62the code generated by the preprocessor and the compiler. I selected
63the get_user() call in drivers/char/sysrq.c for a detailed examination.
64
65The original code in sysrq.c line 587::
66
67        get_user(c, buf);
68
69The preprocessor output (edited to become somewhat readable)::
70
71  (
72    {
73      long __gu_err = - 14 , __gu_val = 0;
74      const __typeof__(*( (  buf ) )) *__gu_addr = ((buf));
75      if (((((0 + current_set[0])->tss.segment) == 0x18 )  ||
76        (((sizeof(*(buf))) <= 0xC0000000UL) &&
77        ((unsigned long)(__gu_addr ) <= 0xC0000000UL - (sizeof(*(buf)))))))
78        do {
79          __gu_err  = 0;
80          switch ((sizeof(*(buf)))) {
81            case 1:
82              __asm__ __volatile__(
83                "1:      mov" "b" " %2,%" "b" "1\n"
84                "2:\n"
85                ".section .fixup,\"ax\"\n"
86                "3:      movl %3,%0\n"
87                "        xor" "b" " %" "b" "1,%" "b" "1\n"
88                "        jmp 2b\n"
89                ".section __ex_table,\"a\"\n"
90                "        .align 4\n"
91                "        .long 1b,3b\n"
92                ".text"        : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)
93                              (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  )) ;
94                break;
95            case 2:
96              __asm__ __volatile__(
97                "1:      mov" "w" " %2,%" "w" "1\n"
98                "2:\n"
99                ".section .fixup,\"ax\"\n"
100                "3:      movl %3,%0\n"
101                "        xor" "w" " %" "w" "1,%" "w" "1\n"
102                "        jmp 2b\n"
103                ".section __ex_table,\"a\"\n"
104                "        .align 4\n"
105                "        .long 1b,3b\n"
106                ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
107                              (   __gu_addr   )) ), "i"(- 14 ), "0"(  __gu_err  ));
108                break;
109            case 4:
110              __asm__ __volatile__(
111                "1:      mov" "l" " %2,%" "" "1\n"
112                "2:\n"
113                ".section .fixup,\"ax\"\n"
114                "3:      movl %3,%0\n"
115                "        xor" "l" " %" "" "1,%" "" "1\n"
116                "        jmp 2b\n"
117                ".section __ex_table,\"a\"\n"
118                "        .align 4\n"        "        .long 1b,3b\n"
119                ".text"        : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct *)
120                              (   __gu_addr   )) ), "i"(- 14 ), "0"(__gu_err));
121                break;
122            default:
123              (__gu_val) = __get_user_bad();
124          }
125        } while (0) ;
126      ((c)) = (__typeof__(*((buf))))__gu_val;
127      __gu_err;
128    }
129  );
130
131WOW! Black GCC/assembly magic. This is impossible to follow, so let's
132see what code gcc generates::
133
134 >         xorl %edx,%edx
135 >         movl current_set,%eax
136 >         cmpl $24,788(%eax)
137 >         je .L1424
138 >         cmpl $-1073741825,64(%esp)
139 >         ja .L1423
140 > .L1424:
141 >         movl %edx,%eax
142 >         movl 64(%esp),%ebx
143 > #APP
144 > 1:      movb (%ebx),%dl                /* this is the actual user access */
145 > 2:
146 > .section .fixup,"ax"
147 > 3:      movl $-14,%eax
148 >         xorb %dl,%dl
149 >         jmp 2b
150 > .section __ex_table,"a"
151 >         .align 4
152 >         .long 1b,3b
153 > .text
154 > #NO_APP
155 > .L1423:
156 >         movzbl %dl,%esi
157
158The optimizer does a good job and gives us something we can actually
159understand. Can we? The actual user access is quite obvious. Thanks
160to the unified address space we can just access the address in user
161memory. But what does the .section stuff do?????
162
163To understand this we have to look at the final kernel::
164
165 > objdump --section-headers vmlinux
166 >
167 > vmlinux:     file format elf32-i386
168 >
169 > Sections:
170 > Idx Name          Size      VMA       LMA       File off  Algn
171 >   0 .text         00098f40  c0100000  c0100000  00001000  2**4
172 >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
173 >   1 .fixup        000016bc  c0198f40  c0198f40  00099f40  2**0
174 >                   CONTENTS, ALLOC, LOAD, READONLY, CODE
175 >   2 .rodata       0000f127  c019a5fc  c019a5fc  0009b5fc  2**2
176 >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
177 >   3 __ex_table    000015c0  c01a9724  c01a9724  000aa724  2**2
178 >                   CONTENTS, ALLOC, LOAD, READONLY, DATA
179 >   4 .data         0000ea58  c01abcf0  c01abcf0  000abcf0  2**4
180 >                   CONTENTS, ALLOC, LOAD, DATA
181 >   5 .bss          00018e21  c01ba748  c01ba748  000ba748  2**2
182 >                   ALLOC
183 >   6 .comment      00000ec4  00000000  00000000  000ba748  2**0
184 >                   CONTENTS, READONLY
185 >   7 .note         00001068  00000ec4  00000ec4  000bb60c  2**0
186 >                   CONTENTS, READONLY
187
188There are obviously 2 non standard ELF sections in the generated object
189file. But first we want to find out what happened to our code in the
190final kernel executable::
191
192 > objdump --disassemble --section=.text vmlinux
193 >
194 > c017e785 <do_con_write+c1> xorl   %edx,%edx
195 > c017e787 <do_con_write+c3> movl   0xc01c7bec,%eax
196 > c017e78c <do_con_write+c8> cmpl   $0x18,0x314(%eax)
197 > c017e793 <do_con_write+cf> je     c017e79f <do_con_write+db>
198 > c017e795 <do_con_write+d1> cmpl   $0xbfffffff,0x40(%esp,1)
199 > c017e79d <do_con_write+d9> ja     c017e7a7 <do_con_write+e3>
200 > c017e79f <do_con_write+db> movl   %edx,%eax
201 > c017e7a1 <do_con_write+dd> movl   0x40(%esp,1),%ebx
202 > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
203 > c017e7a7 <do_con_write+e3> movzbl %dl,%esi
204
205The whole user memory access is reduced to 10 x86 machine instructions.
206The instructions bracketed in the .section directives are no longer
207in the normal execution path. They are located in a different section
208of the executable file::
209
210 > objdump --disassemble --section=.fixup vmlinux
211 >
212 > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
213 > c0199ffa <.fixup+10ba> xorb   %dl,%dl
214 > c0199ffc <.fixup+10bc> jmp    c017e7a7 <do_con_write+e3>
215
216And finally::
217
218 > objdump --full-contents --section=__ex_table vmlinux
219 >
220 >  c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0  ................
221 >  c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0  ................
222 >  c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0  ................
223
224or in human readable byte order::
225
226 >  c01aa7c4 c017c093 c0199fe0 c017c097 c017c099  ................
227 >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
228                               ^^^^^^^^^^^^^^^^^
229                               this is the interesting part!
230 >  c01aa7e4 c0180a08 c019a001 c0180a0a c019a004  ................
231
232What happened? The assembly directives::
233
234  .section .fixup,"ax"
235  .section __ex_table,"a"
236
237told the assembler to move the following code to the specified
238sections in the ELF object file. So the instructions::
239
240  3:      movl $-14,%eax
241          xorb %dl,%dl
242          jmp 2b
243
244ended up in the .fixup section of the object file and the addresses::
245
246        .long 1b,3b
247
248ended up in the __ex_table section of the object file. 1b and 3b
249are local labels. The local label 1b (1b stands for next label 1
250backward) is the address of the instruction that might fault, i.e.
251in our case the address of the label 1 is c017e7a5:
252the original assembly code: > 1:      movb (%ebx),%dl
253and linked in vmlinux     : > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
254
255The local label 3 (backwards again) is the address of the code to handle
256the fault, in our case the actual value is c0199ff5:
257the original assembly code: > 3:      movl $-14,%eax
258and linked in vmlinux     : > c0199ff5 <.fixup+10b5> movl   $0xfffffff2,%eax
259
260If the fixup was able to handle the exception, control flow may be returned
261to the instruction after the one that triggered the fault, ie. local label 2b.
262
263The assembly code::
264
265 > .section __ex_table,"a"
266 >         .align 4
267 >         .long 1b,3b
268
269becomes the value pair::
270
271 >  c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5  ................
272                               ^this is ^this is
273                               1b       3b
274
275c017e7a5,c0199ff5 in the exception table of the kernel.
276
277So, what actually happens if a fault from kernel mode with no suitable
278vma occurs?
279
280#. access to invalid address::
281
282    > c017e7a5 <do_con_write+e1> movb   (%ebx),%dl
283#. MMU generates exception
284#. CPU calls exc_page_fault()
285#. exc_page_fault() calls do_user_addr_fault()
286#. do_user_addr_fault() calls kernelmode_fixup_or_oops()
287#. kernelmode_fixup_or_oops() calls fixup_exception() (regs->eip == c017e7a5);
288#. fixup_exception() calls search_exception_tables()
289#. search_exception_tables() looks up the address c017e7a5 in the
290   exception table (i.e. the contents of the ELF section __ex_table)
291   and returns the address of the associated fault handle code c0199ff5.
292#. fixup_exception() modifies its own return address to point to the fault
293   handle code and returns.
294#. execution continues in the fault handling code.
295#. a) EAX becomes -EFAULT (== -14)
296   b) DL  becomes zero (the value we "read" from user space)
297   c) execution continues at local label 2 (address of the
298      instruction immediately after the faulting user access).
299
300   The steps a to c above in a certain way emulate the faulting instruction.
301
302That's it, mostly. If you look at our example, you might ask why
303we set EAX to -EFAULT in the exception handler code. Well, the
304get_user() macro actually returns a value: 0, if the user access was
305successful, -EFAULT on failure. Our original code did not test this
306return value, however the inline assembly code in get_user() tries to
307return -EFAULT. GCC selected EAX to return this value.
308
309NOTE:
310Due to the way that the exception table is built and needs to be ordered,
311only use exceptions for code in the .text section.  Any other section
312will cause the exception table to not be sorted correctly, and the
313exceptions will fail.
314
315Things changed when 64-bit support was added to x86 Linux. Rather than
316double the size of the exception table by expanding the two entries
317from 32-bits to 64 bits, a clever trick was used to store addresses
318as relative offsets from the table itself. The assembly code changed
319from::
320
321    .long 1b,3b
322  to:
323          .long (from) - .
324          .long (to) - .
325
326and the C-code that uses these values converts back to absolute addresses
327like this::
328
329	ex_insn_addr(const struct exception_table_entry *x)
330	{
331		return (unsigned long)&x->insn + x->insn;
332	}
333
334In v4.6 the exception table entry was expanded with a new field "handler".
335This is also 32-bits wide and contains a third relative function
336pointer which points to one of:
337
3381) ``int ex_handler_default(const struct exception_table_entry *fixup)``
339     This is legacy case that just jumps to the fixup code
340
3412) ``int ex_handler_fault(const struct exception_table_entry *fixup)``
342     This case provides the fault number of the trap that occurred at
343     entry->insn. It is used to distinguish page faults from machine
344     check.
345
346More functions can easily be added.
347
348CONFIG_BUILDTIME_TABLE_SORT allows the __ex_table section to be sorted post
349link of the kernel image, via a host utility scripts/sorttable. It will set the
350symbol main_extable_sort_needed to 0, avoiding sorting the __ex_table section
351at boot time. With the exception table sorted, at runtime when an exception
352occurs we can quickly lookup the __ex_table entry via binary search.
353
354This is not just a boot time optimization, some architectures require this
355table to be sorted in order to handle exceptions relatively early in the boot
356process. For example, i386 makes use of this form of exception handling before
357paging support is even enabled!
358