1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 2000, 2001 Kanoj Sarcar
7 * Copyright (C) 2000, 2001 Ralf Baechle
8 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10 */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq_work.h>
17 #include <linux/profile.h>
18 #include <linux/seq_file.h>
19 #include <linux/smp.h>
20 #include <linux/threads.h>
21 #include <linux/export.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/time.h>
24 #include <linux/tracepoint.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27
28 #include <asm/cpu.h>
29 #include <asm/idle.h>
30 #include <asm/loongson.h>
31 #include <asm/mmu_context.h>
32 #include <asm/numa.h>
33 #include <asm/paravirt.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/time.h>
37
38 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
39 EXPORT_SYMBOL(__cpu_number_map);
40
41 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
42 EXPORT_SYMBOL(__cpu_logical_map);
43
44 /* Representing the threads (siblings) of each logical CPU */
45 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
46 EXPORT_SYMBOL(cpu_sibling_map);
47
48 /* Representing the core map of multi-core chips of each logical CPU */
49 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
50 EXPORT_SYMBOL(cpu_core_map);
51
52 static DECLARE_COMPLETION(cpu_starting);
53 static DECLARE_COMPLETION(cpu_running);
54
55 /*
56 * A logcal cpu mask containing only one VPE per core to
57 * reduce the number of IPIs on large MT systems.
58 */
59 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_foreign_map);
61
62 /* representing cpus for which sibling maps can be computed */
63 static cpumask_t cpu_sibling_setup_map;
64
65 /* representing cpus for which core maps can be computed */
66 static cpumask_t cpu_core_setup_map;
67
68 struct secondary_data cpuboot_data;
69 static DEFINE_PER_CPU(int, cpu_state);
70
71 static const char *ipi_types[NR_IPI] __tracepoint_string = {
72 [IPI_RESCHEDULE] = "Rescheduling interrupts",
73 [IPI_CALL_FUNCTION] = "Function call interrupts",
74 [IPI_IRQ_WORK] = "IRQ work interrupts",
75 [IPI_CLEAR_VECTOR] = "Clear vector interrupts",
76 };
77
show_ipi_list(struct seq_file * p,int prec)78 void show_ipi_list(struct seq_file *p, int prec)
79 {
80 unsigned int cpu, i;
81
82 for (i = 0; i < NR_IPI; i++) {
83 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
84 for_each_online_cpu(cpu)
85 seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
86 seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]);
87 }
88 }
89
set_cpu_core_map(int cpu)90 static inline void set_cpu_core_map(int cpu)
91 {
92 int i;
93
94 cpumask_set_cpu(cpu, &cpu_core_setup_map);
95
96 for_each_cpu(i, &cpu_core_setup_map) {
97 if (cpu_data[cpu].package == cpu_data[i].package) {
98 cpumask_set_cpu(i, &cpu_core_map[cpu]);
99 cpumask_set_cpu(cpu, &cpu_core_map[i]);
100 }
101 }
102 }
103
set_cpu_sibling_map(int cpu)104 static inline void set_cpu_sibling_map(int cpu)
105 {
106 int i;
107
108 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
109
110 for_each_cpu(i, &cpu_sibling_setup_map) {
111 if (cpus_are_siblings(cpu, i)) {
112 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
113 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
114 }
115 }
116 }
117
clear_cpu_sibling_map(int cpu)118 static inline void clear_cpu_sibling_map(int cpu)
119 {
120 int i;
121
122 for_each_cpu(i, &cpu_sibling_setup_map) {
123 if (cpus_are_siblings(cpu, i)) {
124 cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
125 cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
126 }
127 }
128
129 cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
130 }
131
132 /*
133 * Calculate a new cpu_foreign_map mask whenever a
134 * new cpu appears or disappears.
135 */
calculate_cpu_foreign_map(void)136 void calculate_cpu_foreign_map(void)
137 {
138 int i, k, core_present;
139 cpumask_t temp_foreign_map;
140
141 /* Re-calculate the mask */
142 cpumask_clear(&temp_foreign_map);
143 for_each_online_cpu(i) {
144 core_present = 0;
145 for_each_cpu(k, &temp_foreign_map)
146 if (cpus_are_siblings(i, k))
147 core_present = 1;
148 if (!core_present)
149 cpumask_set_cpu(i, &temp_foreign_map);
150 }
151
152 for_each_online_cpu(i)
153 cpumask_andnot(&cpu_foreign_map[i],
154 &temp_foreign_map, &cpu_sibling_map[i]);
155 }
156
157 /* Send mailbox buffer via Mail_Send */
csr_mail_send(uint64_t data,int cpu,int mailbox)158 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
159 {
160 uint64_t val;
161
162 /* Send high 32 bits */
163 val = IOCSR_MBUF_SEND_BLOCKING;
164 val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
165 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
166 val |= (data & IOCSR_MBUF_SEND_H32_MASK);
167 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
168
169 /* Send low 32 bits */
170 val = IOCSR_MBUF_SEND_BLOCKING;
171 val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
172 val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
173 val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
174 iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
175 };
176
ipi_read_clear(int cpu)177 static u32 ipi_read_clear(int cpu)
178 {
179 u32 action;
180
181 /* Load the ipi register to figure out what we're supposed to do */
182 action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
183 /* Clear the ipi register to clear the interrupt */
184 iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
185 wbflush();
186
187 return action;
188 }
189
ipi_write_action(int cpu,u32 action)190 static void ipi_write_action(int cpu, u32 action)
191 {
192 uint32_t val;
193
194 val = IOCSR_IPI_SEND_BLOCKING | action;
195 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
196 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
197 }
198
loongson_send_ipi_single(int cpu,unsigned int action)199 static void loongson_send_ipi_single(int cpu, unsigned int action)
200 {
201 ipi_write_action(cpu_logical_map(cpu), (u32)action);
202 }
203
loongson_send_ipi_mask(const struct cpumask * mask,unsigned int action)204 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
205 {
206 unsigned int i;
207
208 for_each_cpu(i, mask)
209 ipi_write_action(cpu_logical_map(i), (u32)action);
210 }
211
212 /*
213 * This function sends a 'reschedule' IPI to another CPU.
214 * it goes straight through and wastes no time serializing
215 * anything. Worst case is that we lose a reschedule ...
216 */
arch_smp_send_reschedule(int cpu)217 void arch_smp_send_reschedule(int cpu)
218 {
219 mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE);
220 }
221 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
222
223 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)224 void arch_irq_work_raise(void)
225 {
226 mp_ops.send_ipi_single(smp_processor_id(), ACTION_IRQ_WORK);
227 }
228 #endif
229
loongson_ipi_interrupt(int irq,void * dev)230 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
231 {
232 unsigned int action;
233 unsigned int cpu = smp_processor_id();
234
235 action = ipi_read_clear(cpu_logical_map(cpu));
236
237 if (action & SMP_RESCHEDULE) {
238 scheduler_ipi();
239 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
240 }
241
242 if (action & SMP_CALL_FUNCTION) {
243 generic_smp_call_function_interrupt();
244 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
245 }
246
247 if (action & SMP_IRQ_WORK) {
248 irq_work_run();
249 per_cpu(irq_stat, cpu).ipi_irqs[IPI_IRQ_WORK]++;
250 }
251
252 if (action & SMP_CLEAR_VECTOR) {
253 complete_irq_moving();
254 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CLEAR_VECTOR]++;
255 }
256
257 return IRQ_HANDLED;
258 }
259
loongson_init_ipi(void)260 static void loongson_init_ipi(void)
261 {
262 int r, ipi_irq;
263
264 ipi_irq = get_percpu_irq(INT_IPI);
265 if (ipi_irq < 0)
266 panic("IPI IRQ mapping failed\n");
267
268 irq_set_percpu_devid(ipi_irq);
269 r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat);
270 if (r < 0)
271 panic("IPI IRQ request failed\n");
272 }
273
274 struct smp_ops mp_ops = {
275 .init_ipi = loongson_init_ipi,
276 .send_ipi_single = loongson_send_ipi_single,
277 .send_ipi_mask = loongson_send_ipi_mask,
278 };
279
fdt_smp_setup(void)280 static void __init fdt_smp_setup(void)
281 {
282 #ifdef CONFIG_OF
283 unsigned int cpu, cpuid;
284 struct device_node *node = NULL;
285
286 for_each_of_cpu_node(node) {
287 if (!of_device_is_available(node))
288 continue;
289
290 cpuid = of_get_cpu_hwid(node, 0);
291 if (cpuid >= nr_cpu_ids)
292 continue;
293
294 if (cpuid == loongson_sysconf.boot_cpu_id)
295 cpu = 0;
296 else
297 cpu = find_first_zero_bit(cpumask_bits(cpu_present_mask), NR_CPUS);
298
299 num_processors++;
300 set_cpu_possible(cpu, true);
301 set_cpu_present(cpu, true);
302 __cpu_number_map[cpuid] = cpu;
303 __cpu_logical_map[cpu] = cpuid;
304
305 early_numa_add_cpu(cpuid, 0);
306 set_cpuid_to_node(cpuid, 0);
307 }
308
309 loongson_sysconf.nr_cpus = num_processors;
310 set_bit(0, loongson_sysconf.cores_io_master);
311 #endif
312 }
313
loongson_smp_setup(void)314 void __init loongson_smp_setup(void)
315 {
316 fdt_smp_setup();
317
318 if (loongson_sysconf.cores_per_package == 0)
319 loongson_sysconf.cores_per_package = num_processors;
320
321 cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
322 cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
323
324 pv_ipi_init();
325 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
326 pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
327 }
328
loongson_prepare_cpus(unsigned int max_cpus)329 void __init loongson_prepare_cpus(unsigned int max_cpus)
330 {
331 int i = 0;
332
333 parse_acpi_topology();
334 cpu_data[0].global_id = cpu_logical_map(0);
335
336 for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
337 set_cpu_present(i, true);
338 csr_mail_send(0, __cpu_logical_map[i], 0);
339 }
340
341 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
342 }
343
344 /*
345 * Setup the PC, SP, and TP of a secondary processor and start it running!
346 */
loongson_boot_secondary(int cpu,struct task_struct * idle)347 void loongson_boot_secondary(int cpu, struct task_struct *idle)
348 {
349 unsigned long entry;
350
351 pr_info("Booting CPU#%d...\n", cpu);
352
353 entry = __pa_symbol((unsigned long)&smpboot_entry);
354 cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
355 cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
356
357 csr_mail_send(entry, cpu_logical_map(cpu), 0);
358
359 loongson_send_ipi_single(cpu, ACTION_BOOT_CPU);
360 }
361
362 /*
363 * SMP init and finish on secondary CPUs
364 */
loongson_init_secondary(void)365 void loongson_init_secondary(void)
366 {
367 unsigned int cpu = smp_processor_id();
368 unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
369 ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0;
370
371 change_csr_ecfg(ECFG0_IM, imask);
372
373 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
374
375 #ifdef CONFIG_NUMA
376 numa_add_cpu(cpu);
377 #endif
378 per_cpu(cpu_state, cpu) = CPU_ONLINE;
379 cpu_data[cpu].package =
380 cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
381 cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
382 cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
383 cpu_data[cpu].global_id = cpu_logical_map(cpu);
384 }
385
loongson_smp_finish(void)386 void loongson_smp_finish(void)
387 {
388 local_irq_enable();
389 iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
390 pr_info("CPU#%d finished\n", smp_processor_id());
391 }
392
393 #ifdef CONFIG_HOTPLUG_CPU
394
loongson_cpu_disable(void)395 int loongson_cpu_disable(void)
396 {
397 unsigned long flags;
398 unsigned int cpu = smp_processor_id();
399
400 if (io_master(cpu))
401 return -EBUSY;
402
403 #ifdef CONFIG_NUMA
404 numa_remove_cpu(cpu);
405 #endif
406 set_cpu_online(cpu, false);
407 clear_cpu_sibling_map(cpu);
408 calculate_cpu_foreign_map();
409 local_irq_save(flags);
410 irq_migrate_all_off_this_cpu();
411 clear_csr_ecfg(ECFG0_IM);
412 local_irq_restore(flags);
413 local_flush_tlb_all();
414
415 return 0;
416 }
417
loongson_cpu_die(unsigned int cpu)418 void loongson_cpu_die(unsigned int cpu)
419 {
420 while (per_cpu(cpu_state, cpu) != CPU_DEAD)
421 cpu_relax();
422
423 mb();
424 }
425
arch_cpu_idle_dead(void)426 void __noreturn arch_cpu_idle_dead(void)
427 {
428 register uint64_t addr;
429 register void (*init_fn)(void);
430
431 idle_task_exit();
432 local_irq_enable();
433 set_csr_ecfg(ECFGF_IPI);
434 __this_cpu_write(cpu_state, CPU_DEAD);
435
436 __smp_mb();
437 do {
438 __asm__ __volatile__("idle 0\n\t");
439 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
440 } while (addr == 0);
441
442 local_irq_disable();
443 init_fn = (void *)TO_CACHE(addr);
444 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
445
446 init_fn();
447 BUG();
448 }
449
450 #endif
451
452 /*
453 * Power management
454 */
455 #ifdef CONFIG_PM
456
loongson_ipi_suspend(void)457 static int loongson_ipi_suspend(void)
458 {
459 return 0;
460 }
461
loongson_ipi_resume(void)462 static void loongson_ipi_resume(void)
463 {
464 iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
465 }
466
467 static struct syscore_ops loongson_ipi_syscore_ops = {
468 .resume = loongson_ipi_resume,
469 .suspend = loongson_ipi_suspend,
470 };
471
472 /*
473 * Enable boot cpu ipi before enabling nonboot cpus
474 * during syscore_resume.
475 */
ipi_pm_init(void)476 static int __init ipi_pm_init(void)
477 {
478 register_syscore_ops(&loongson_ipi_syscore_ops);
479 return 0;
480 }
481
482 core_initcall(ipi_pm_init);
483 #endif
484
485 /* Preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)486 void __init smp_prepare_boot_cpu(void)
487 {
488 unsigned int cpu, node, rr_node;
489
490 set_cpu_possible(0, true);
491 set_cpu_online(0, true);
492 set_my_cpu_offset(per_cpu_offset(0));
493 numa_add_cpu(0);
494
495 rr_node = first_node(node_online_map);
496 for_each_possible_cpu(cpu) {
497 node = early_cpu_to_node(cpu);
498
499 /*
500 * The mapping between present cpus and nodes has been
501 * built during MADT and SRAT parsing.
502 *
503 * If possible cpus = present cpus here, early_cpu_to_node
504 * will return valid node.
505 *
506 * If possible cpus > present cpus here (e.g. some possible
507 * cpus will be added by cpu-hotplug later), for possible but
508 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
509 * and we just map them to online nodes in round-robin way.
510 * Once hotplugged, new correct mapping will be built for them.
511 */
512 if (node != NUMA_NO_NODE)
513 set_cpu_numa_node(cpu, node);
514 else {
515 set_cpu_numa_node(cpu, rr_node);
516 rr_node = next_node_in(rr_node, node_online_map);
517 }
518 }
519
520 pv_spinlock_init();
521 }
522
523 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)524 void __init smp_prepare_cpus(unsigned int max_cpus)
525 {
526 init_new_context(current, &init_mm);
527 current_thread_info()->cpu = 0;
528 loongson_prepare_cpus(max_cpus);
529 set_cpu_sibling_map(0);
530 set_cpu_core_map(0);
531 calculate_cpu_foreign_map();
532 #ifndef CONFIG_HOTPLUG_CPU
533 init_cpu_present(cpu_possible_mask);
534 #endif
535 }
536
__cpu_up(unsigned int cpu,struct task_struct * tidle)537 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
538 {
539 loongson_boot_secondary(cpu, tidle);
540
541 /* Wait for CPU to start and be ready to sync counters */
542 if (!wait_for_completion_timeout(&cpu_starting,
543 msecs_to_jiffies(5000))) {
544 pr_crit("CPU%u: failed to start\n", cpu);
545 return -EIO;
546 }
547
548 /* Wait for CPU to finish startup & mark itself online before return */
549 wait_for_completion(&cpu_running);
550
551 return 0;
552 }
553
554 /*
555 * First C code run on the secondary CPUs after being started up by
556 * the master.
557 */
start_secondary(void)558 asmlinkage void start_secondary(void)
559 {
560 unsigned int cpu;
561
562 sync_counter();
563 cpu = raw_smp_processor_id();
564 set_my_cpu_offset(per_cpu_offset(cpu));
565
566 cpu_probe();
567 constant_clockevent_init();
568 loongson_init_secondary();
569
570 set_cpu_sibling_map(cpu);
571 set_cpu_core_map(cpu);
572
573 notify_cpu_starting(cpu);
574
575 /* Notify boot CPU that we're starting */
576 complete(&cpu_starting);
577
578 /* The CPU is running, now mark it online */
579 set_cpu_online(cpu, true);
580
581 calculate_cpu_foreign_map();
582
583 /*
584 * Notify boot CPU that we're up & online and it can safely return
585 * from __cpu_up()
586 */
587 complete(&cpu_running);
588
589 /*
590 * irq will be enabled in loongson_smp_finish(), enabling it too
591 * early is dangerous.
592 */
593 WARN_ON_ONCE(!irqs_disabled());
594 loongson_smp_finish();
595
596 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
597 }
598
smp_cpus_done(unsigned int max_cpus)599 void __init smp_cpus_done(unsigned int max_cpus)
600 {
601 }
602
stop_this_cpu(void * dummy)603 static void stop_this_cpu(void *dummy)
604 {
605 set_cpu_online(smp_processor_id(), false);
606 calculate_cpu_foreign_map();
607 local_irq_disable();
608 while (true);
609 }
610
smp_send_stop(void)611 void smp_send_stop(void)
612 {
613 smp_call_function(stop_this_cpu, NULL, 0);
614 }
615
616 #ifdef CONFIG_PROFILING
setup_profiling_timer(unsigned int multiplier)617 int setup_profiling_timer(unsigned int multiplier)
618 {
619 return 0;
620 }
621 #endif
622
flush_tlb_all_ipi(void * info)623 static void flush_tlb_all_ipi(void *info)
624 {
625 local_flush_tlb_all();
626 }
627
flush_tlb_all(void)628 void flush_tlb_all(void)
629 {
630 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
631 }
632
flush_tlb_mm_ipi(void * mm)633 static void flush_tlb_mm_ipi(void *mm)
634 {
635 local_flush_tlb_mm((struct mm_struct *)mm);
636 }
637
flush_tlb_mm(struct mm_struct * mm)638 void flush_tlb_mm(struct mm_struct *mm)
639 {
640 if (atomic_read(&mm->mm_users) == 0)
641 return; /* happens as a result of exit_mmap() */
642
643 preempt_disable();
644
645 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
646 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
647 } else {
648 unsigned int cpu;
649
650 for_each_online_cpu(cpu) {
651 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
652 cpu_context(cpu, mm) = 0;
653 }
654 local_flush_tlb_mm(mm);
655 }
656
657 preempt_enable();
658 }
659
660 struct flush_tlb_data {
661 struct vm_area_struct *vma;
662 unsigned long addr1;
663 unsigned long addr2;
664 };
665
flush_tlb_range_ipi(void * info)666 static void flush_tlb_range_ipi(void *info)
667 {
668 struct flush_tlb_data *fd = info;
669
670 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
671 }
672
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)673 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
674 {
675 struct mm_struct *mm = vma->vm_mm;
676
677 preempt_disable();
678 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
679 struct flush_tlb_data fd = {
680 .vma = vma,
681 .addr1 = start,
682 .addr2 = end,
683 };
684
685 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
686 } else {
687 unsigned int cpu;
688
689 for_each_online_cpu(cpu) {
690 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
691 cpu_context(cpu, mm) = 0;
692 }
693 local_flush_tlb_range(vma, start, end);
694 }
695 preempt_enable();
696 }
697
flush_tlb_kernel_range_ipi(void * info)698 static void flush_tlb_kernel_range_ipi(void *info)
699 {
700 struct flush_tlb_data *fd = info;
701
702 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
703 }
704
flush_tlb_kernel_range(unsigned long start,unsigned long end)705 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
706 {
707 struct flush_tlb_data fd = {
708 .addr1 = start,
709 .addr2 = end,
710 };
711
712 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
713 }
714
flush_tlb_page_ipi(void * info)715 static void flush_tlb_page_ipi(void *info)
716 {
717 struct flush_tlb_data *fd = info;
718
719 local_flush_tlb_page(fd->vma, fd->addr1);
720 }
721
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)722 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
723 {
724 preempt_disable();
725 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
726 struct flush_tlb_data fd = {
727 .vma = vma,
728 .addr1 = page,
729 };
730
731 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
732 } else {
733 unsigned int cpu;
734
735 for_each_online_cpu(cpu) {
736 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
737 cpu_context(cpu, vma->vm_mm) = 0;
738 }
739 local_flush_tlb_page(vma, page);
740 }
741 preempt_enable();
742 }
743 EXPORT_SYMBOL(flush_tlb_page);
744
flush_tlb_one_ipi(void * info)745 static void flush_tlb_one_ipi(void *info)
746 {
747 unsigned long vaddr = (unsigned long) info;
748
749 local_flush_tlb_one(vaddr);
750 }
751
flush_tlb_one(unsigned long vaddr)752 void flush_tlb_one(unsigned long vaddr)
753 {
754 on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
755 }
756 EXPORT_SYMBOL(flush_tlb_one);
757