xref: /linux/arch/loongarch/kernel/smp.c (revision 30cec747)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/acpi.h>
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq_work.h>
17 #include <linux/profile.h>
18 #include <linux/seq_file.h>
19 #include <linux/smp.h>
20 #include <linux/threads.h>
21 #include <linux/export.h>
22 #include <linux/syscore_ops.h>
23 #include <linux/time.h>
24 #include <linux/tracepoint.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 
28 #include <asm/cpu.h>
29 #include <asm/idle.h>
30 #include <asm/loongson.h>
31 #include <asm/mmu_context.h>
32 #include <asm/numa.h>
33 #include <asm/paravirt.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/time.h>
37 
38 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
39 EXPORT_SYMBOL(__cpu_number_map);
40 
41 int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
42 EXPORT_SYMBOL(__cpu_logical_map);
43 
44 /* Representing the threads (siblings) of each logical CPU */
45 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
46 EXPORT_SYMBOL(cpu_sibling_map);
47 
48 /* Representing the core map of multi-core chips of each logical CPU */
49 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
50 EXPORT_SYMBOL(cpu_core_map);
51 
52 static DECLARE_COMPLETION(cpu_starting);
53 static DECLARE_COMPLETION(cpu_running);
54 
55 /*
56  * A logcal cpu mask containing only one VPE per core to
57  * reduce the number of IPIs on large MT systems.
58  */
59 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
60 EXPORT_SYMBOL(cpu_foreign_map);
61 
62 /* representing cpus for which sibling maps can be computed */
63 static cpumask_t cpu_sibling_setup_map;
64 
65 /* representing cpus for which core maps can be computed */
66 static cpumask_t cpu_core_setup_map;
67 
68 struct secondary_data cpuboot_data;
69 static DEFINE_PER_CPU(int, cpu_state);
70 
71 static const char *ipi_types[NR_IPI] __tracepoint_string = {
72 	[IPI_RESCHEDULE] = "Rescheduling interrupts",
73 	[IPI_CALL_FUNCTION] = "Function call interrupts",
74 	[IPI_IRQ_WORK] = "IRQ work interrupts",
75 	[IPI_CLEAR_VECTOR] = "Clear vector interrupts",
76 };
77 
show_ipi_list(struct seq_file * p,int prec)78 void show_ipi_list(struct seq_file *p, int prec)
79 {
80 	unsigned int cpu, i;
81 
82 	for (i = 0; i < NR_IPI; i++) {
83 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
84 		for_each_online_cpu(cpu)
85 			seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
86 		seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
87 	}
88 }
89 
set_cpu_core_map(int cpu)90 static inline void set_cpu_core_map(int cpu)
91 {
92 	int i;
93 
94 	cpumask_set_cpu(cpu, &cpu_core_setup_map);
95 
96 	for_each_cpu(i, &cpu_core_setup_map) {
97 		if (cpu_data[cpu].package == cpu_data[i].package) {
98 			cpumask_set_cpu(i, &cpu_core_map[cpu]);
99 			cpumask_set_cpu(cpu, &cpu_core_map[i]);
100 		}
101 	}
102 }
103 
set_cpu_sibling_map(int cpu)104 static inline void set_cpu_sibling_map(int cpu)
105 {
106 	int i;
107 
108 	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
109 
110 	for_each_cpu(i, &cpu_sibling_setup_map) {
111 		if (cpus_are_siblings(cpu, i)) {
112 			cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
113 			cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
114 		}
115 	}
116 }
117 
clear_cpu_sibling_map(int cpu)118 static inline void clear_cpu_sibling_map(int cpu)
119 {
120 	int i;
121 
122 	for_each_cpu(i, &cpu_sibling_setup_map) {
123 		if (cpus_are_siblings(cpu, i)) {
124 			cpumask_clear_cpu(i, &cpu_sibling_map[cpu]);
125 			cpumask_clear_cpu(cpu, &cpu_sibling_map[i]);
126 		}
127 	}
128 
129 	cpumask_clear_cpu(cpu, &cpu_sibling_setup_map);
130 }
131 
132 /*
133  * Calculate a new cpu_foreign_map mask whenever a
134  * new cpu appears or disappears.
135  */
calculate_cpu_foreign_map(void)136 void calculate_cpu_foreign_map(void)
137 {
138 	int i, k, core_present;
139 	cpumask_t temp_foreign_map;
140 
141 	/* Re-calculate the mask */
142 	cpumask_clear(&temp_foreign_map);
143 	for_each_online_cpu(i) {
144 		core_present = 0;
145 		for_each_cpu(k, &temp_foreign_map)
146 			if (cpus_are_siblings(i, k))
147 				core_present = 1;
148 		if (!core_present)
149 			cpumask_set_cpu(i, &temp_foreign_map);
150 	}
151 
152 	for_each_online_cpu(i)
153 		cpumask_andnot(&cpu_foreign_map[i],
154 			       &temp_foreign_map, &cpu_sibling_map[i]);
155 }
156 
157 /* Send mailbox buffer via Mail_Send */
csr_mail_send(uint64_t data,int cpu,int mailbox)158 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
159 {
160 	uint64_t val;
161 
162 	/* Send high 32 bits */
163 	val = IOCSR_MBUF_SEND_BLOCKING;
164 	val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
165 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
166 	val |= (data & IOCSR_MBUF_SEND_H32_MASK);
167 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
168 
169 	/* Send low 32 bits */
170 	val = IOCSR_MBUF_SEND_BLOCKING;
171 	val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
172 	val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
173 	val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
174 	iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
175 };
176 
ipi_read_clear(int cpu)177 static u32 ipi_read_clear(int cpu)
178 {
179 	u32 action;
180 
181 	/* Load the ipi register to figure out what we're supposed to do */
182 	action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
183 	/* Clear the ipi register to clear the interrupt */
184 	iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
185 	wbflush();
186 
187 	return action;
188 }
189 
ipi_write_action(int cpu,u32 action)190 static void ipi_write_action(int cpu, u32 action)
191 {
192 	uint32_t val;
193 
194 	val = IOCSR_IPI_SEND_BLOCKING | action;
195 	val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
196 	iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
197 }
198 
loongson_send_ipi_single(int cpu,unsigned int action)199 static void loongson_send_ipi_single(int cpu, unsigned int action)
200 {
201 	ipi_write_action(cpu_logical_map(cpu), (u32)action);
202 }
203 
loongson_send_ipi_mask(const struct cpumask * mask,unsigned int action)204 static void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
205 {
206 	unsigned int i;
207 
208 	for_each_cpu(i, mask)
209 		ipi_write_action(cpu_logical_map(i), (u32)action);
210 }
211 
212 /*
213  * This function sends a 'reschedule' IPI to another CPU.
214  * it goes straight through and wastes no time serializing
215  * anything. Worst case is that we lose a reschedule ...
216  */
arch_smp_send_reschedule(int cpu)217 void arch_smp_send_reschedule(int cpu)
218 {
219 	mp_ops.send_ipi_single(cpu, ACTION_RESCHEDULE);
220 }
221 EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
222 
223 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)224 void arch_irq_work_raise(void)
225 {
226 	mp_ops.send_ipi_single(smp_processor_id(), ACTION_IRQ_WORK);
227 }
228 #endif
229 
loongson_ipi_interrupt(int irq,void * dev)230 static irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
231 {
232 	unsigned int action;
233 	unsigned int cpu = smp_processor_id();
234 
235 	action = ipi_read_clear(cpu_logical_map(cpu));
236 
237 	if (action & SMP_RESCHEDULE) {
238 		scheduler_ipi();
239 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
240 	}
241 
242 	if (action & SMP_CALL_FUNCTION) {
243 		generic_smp_call_function_interrupt();
244 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
245 	}
246 
247 	if (action & SMP_IRQ_WORK) {
248 		irq_work_run();
249 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_IRQ_WORK]++;
250 	}
251 
252 	if (action & SMP_CLEAR_VECTOR) {
253 		complete_irq_moving();
254 		per_cpu(irq_stat, cpu).ipi_irqs[IPI_CLEAR_VECTOR]++;
255 	}
256 
257 	return IRQ_HANDLED;
258 }
259 
loongson_init_ipi(void)260 static void loongson_init_ipi(void)
261 {
262 	int r, ipi_irq;
263 
264 	ipi_irq = get_percpu_irq(INT_IPI);
265 	if (ipi_irq < 0)
266 		panic("IPI IRQ mapping failed\n");
267 
268 	irq_set_percpu_devid(ipi_irq);
269 	r = request_percpu_irq(ipi_irq, loongson_ipi_interrupt, "IPI", &irq_stat);
270 	if (r < 0)
271 		panic("IPI IRQ request failed\n");
272 }
273 
274 struct smp_ops mp_ops = {
275 	.init_ipi		= loongson_init_ipi,
276 	.send_ipi_single	= loongson_send_ipi_single,
277 	.send_ipi_mask		= loongson_send_ipi_mask,
278 };
279 
fdt_smp_setup(void)280 static void __init fdt_smp_setup(void)
281 {
282 #ifdef CONFIG_OF
283 	unsigned int cpu, cpuid;
284 	struct device_node *node = NULL;
285 
286 	for_each_of_cpu_node(node) {
287 		if (!of_device_is_available(node))
288 			continue;
289 
290 		cpuid = of_get_cpu_hwid(node, 0);
291 		if (cpuid >= nr_cpu_ids)
292 			continue;
293 
294 		if (cpuid == loongson_sysconf.boot_cpu_id)
295 			cpu = 0;
296 		else
297 			cpu = find_first_zero_bit(cpumask_bits(cpu_present_mask), NR_CPUS);
298 
299 		num_processors++;
300 		set_cpu_possible(cpu, true);
301 		set_cpu_present(cpu, true);
302 		__cpu_number_map[cpuid] = cpu;
303 		__cpu_logical_map[cpu] = cpuid;
304 
305 		early_numa_add_cpu(cpuid, 0);
306 		set_cpuid_to_node(cpuid, 0);
307 	}
308 
309 	loongson_sysconf.nr_cpus = num_processors;
310 	set_bit(0, loongson_sysconf.cores_io_master);
311 #endif
312 }
313 
loongson_smp_setup(void)314 void __init loongson_smp_setup(void)
315 {
316 	fdt_smp_setup();
317 
318 	if (loongson_sysconf.cores_per_package == 0)
319 		loongson_sysconf.cores_per_package = num_processors;
320 
321 	cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
322 	cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
323 
324 	pv_ipi_init();
325 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
326 	pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
327 }
328 
loongson_prepare_cpus(unsigned int max_cpus)329 void __init loongson_prepare_cpus(unsigned int max_cpus)
330 {
331 	int i = 0;
332 
333 	parse_acpi_topology();
334 	cpu_data[0].global_id = cpu_logical_map(0);
335 
336 	for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
337 		set_cpu_present(i, true);
338 		csr_mail_send(0, __cpu_logical_map[i], 0);
339 	}
340 
341 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
342 }
343 
344 /*
345  * Setup the PC, SP, and TP of a secondary processor and start it running!
346  */
loongson_boot_secondary(int cpu,struct task_struct * idle)347 void loongson_boot_secondary(int cpu, struct task_struct *idle)
348 {
349 	unsigned long entry;
350 
351 	pr_info("Booting CPU#%d...\n", cpu);
352 
353 	entry = __pa_symbol((unsigned long)&smpboot_entry);
354 	cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
355 	cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
356 
357 	csr_mail_send(entry, cpu_logical_map(cpu), 0);
358 
359 	loongson_send_ipi_single(cpu, ACTION_BOOT_CPU);
360 }
361 
362 /*
363  * SMP init and finish on secondary CPUs
364  */
loongson_init_secondary(void)365 void loongson_init_secondary(void)
366 {
367 	unsigned int cpu = smp_processor_id();
368 	unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
369 			     ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER | ECFGF_SIP0;
370 
371 	change_csr_ecfg(ECFG0_IM, imask);
372 
373 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
374 
375 #ifdef CONFIG_NUMA
376 	numa_add_cpu(cpu);
377 #endif
378 	per_cpu(cpu_state, cpu) = CPU_ONLINE;
379 	cpu_data[cpu].package =
380 		     cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
381 	cpu_data[cpu].core = pptt_enabled ? cpu_data[cpu].core :
382 		     cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
383 	cpu_data[cpu].global_id = cpu_logical_map(cpu);
384 }
385 
loongson_smp_finish(void)386 void loongson_smp_finish(void)
387 {
388 	local_irq_enable();
389 	iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
390 	pr_info("CPU#%d finished\n", smp_processor_id());
391 }
392 
393 #ifdef CONFIG_HOTPLUG_CPU
394 
loongson_cpu_disable(void)395 int loongson_cpu_disable(void)
396 {
397 	unsigned long flags;
398 	unsigned int cpu = smp_processor_id();
399 
400 	if (io_master(cpu))
401 		return -EBUSY;
402 
403 #ifdef CONFIG_NUMA
404 	numa_remove_cpu(cpu);
405 #endif
406 	set_cpu_online(cpu, false);
407 	clear_cpu_sibling_map(cpu);
408 	calculate_cpu_foreign_map();
409 	local_irq_save(flags);
410 	irq_migrate_all_off_this_cpu();
411 	clear_csr_ecfg(ECFG0_IM);
412 	local_irq_restore(flags);
413 	local_flush_tlb_all();
414 
415 	return 0;
416 }
417 
loongson_cpu_die(unsigned int cpu)418 void loongson_cpu_die(unsigned int cpu)
419 {
420 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
421 		cpu_relax();
422 
423 	mb();
424 }
425 
arch_cpu_idle_dead(void)426 void __noreturn arch_cpu_idle_dead(void)
427 {
428 	register uint64_t addr;
429 	register void (*init_fn)(void);
430 
431 	idle_task_exit();
432 	local_irq_enable();
433 	set_csr_ecfg(ECFGF_IPI);
434 	__this_cpu_write(cpu_state, CPU_DEAD);
435 
436 	__smp_mb();
437 	do {
438 		__asm__ __volatile__("idle 0\n\t");
439 		addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
440 	} while (addr == 0);
441 
442 	local_irq_disable();
443 	init_fn = (void *)TO_CACHE(addr);
444 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
445 
446 	init_fn();
447 	BUG();
448 }
449 
450 #endif
451 
452 /*
453  * Power management
454  */
455 #ifdef CONFIG_PM
456 
loongson_ipi_suspend(void)457 static int loongson_ipi_suspend(void)
458 {
459 	return 0;
460 }
461 
loongson_ipi_resume(void)462 static void loongson_ipi_resume(void)
463 {
464 	iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
465 }
466 
467 static struct syscore_ops loongson_ipi_syscore_ops = {
468 	.resume         = loongson_ipi_resume,
469 	.suspend        = loongson_ipi_suspend,
470 };
471 
472 /*
473  * Enable boot cpu ipi before enabling nonboot cpus
474  * during syscore_resume.
475  */
ipi_pm_init(void)476 static int __init ipi_pm_init(void)
477 {
478 	register_syscore_ops(&loongson_ipi_syscore_ops);
479 	return 0;
480 }
481 
482 core_initcall(ipi_pm_init);
483 #endif
484 
485 /* Preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)486 void __init smp_prepare_boot_cpu(void)
487 {
488 	unsigned int cpu, node, rr_node;
489 
490 	set_cpu_possible(0, true);
491 	set_cpu_online(0, true);
492 	set_my_cpu_offset(per_cpu_offset(0));
493 	numa_add_cpu(0);
494 
495 	rr_node = first_node(node_online_map);
496 	for_each_possible_cpu(cpu) {
497 		node = early_cpu_to_node(cpu);
498 
499 		/*
500 		 * The mapping between present cpus and nodes has been
501 		 * built during MADT and SRAT parsing.
502 		 *
503 		 * If possible cpus = present cpus here, early_cpu_to_node
504 		 * will return valid node.
505 		 *
506 		 * If possible cpus > present cpus here (e.g. some possible
507 		 * cpus will be added by cpu-hotplug later), for possible but
508 		 * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
509 		 * and we just map them to online nodes in round-robin way.
510 		 * Once hotplugged, new correct mapping will be built for them.
511 		 */
512 		if (node != NUMA_NO_NODE)
513 			set_cpu_numa_node(cpu, node);
514 		else {
515 			set_cpu_numa_node(cpu, rr_node);
516 			rr_node = next_node_in(rr_node, node_online_map);
517 		}
518 	}
519 
520 	pv_spinlock_init();
521 }
522 
523 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)524 void __init smp_prepare_cpus(unsigned int max_cpus)
525 {
526 	init_new_context(current, &init_mm);
527 	current_thread_info()->cpu = 0;
528 	loongson_prepare_cpus(max_cpus);
529 	set_cpu_sibling_map(0);
530 	set_cpu_core_map(0);
531 	calculate_cpu_foreign_map();
532 #ifndef CONFIG_HOTPLUG_CPU
533 	init_cpu_present(cpu_possible_mask);
534 #endif
535 }
536 
__cpu_up(unsigned int cpu,struct task_struct * tidle)537 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
538 {
539 	loongson_boot_secondary(cpu, tidle);
540 
541 	/* Wait for CPU to start and be ready to sync counters */
542 	if (!wait_for_completion_timeout(&cpu_starting,
543 					 msecs_to_jiffies(5000))) {
544 		pr_crit("CPU%u: failed to start\n", cpu);
545 		return -EIO;
546 	}
547 
548 	/* Wait for CPU to finish startup & mark itself online before return */
549 	wait_for_completion(&cpu_running);
550 
551 	return 0;
552 }
553 
554 /*
555  * First C code run on the secondary CPUs after being started up by
556  * the master.
557  */
start_secondary(void)558 asmlinkage void start_secondary(void)
559 {
560 	unsigned int cpu;
561 
562 	sync_counter();
563 	cpu = raw_smp_processor_id();
564 	set_my_cpu_offset(per_cpu_offset(cpu));
565 
566 	cpu_probe();
567 	constant_clockevent_init();
568 	loongson_init_secondary();
569 
570 	set_cpu_sibling_map(cpu);
571 	set_cpu_core_map(cpu);
572 
573 	notify_cpu_starting(cpu);
574 
575 	/* Notify boot CPU that we're starting */
576 	complete(&cpu_starting);
577 
578 	/* The CPU is running, now mark it online */
579 	set_cpu_online(cpu, true);
580 
581 	calculate_cpu_foreign_map();
582 
583 	/*
584 	 * Notify boot CPU that we're up & online and it can safely return
585 	 * from __cpu_up()
586 	 */
587 	complete(&cpu_running);
588 
589 	/*
590 	 * irq will be enabled in loongson_smp_finish(), enabling it too
591 	 * early is dangerous.
592 	 */
593 	WARN_ON_ONCE(!irqs_disabled());
594 	loongson_smp_finish();
595 
596 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
597 }
598 
smp_cpus_done(unsigned int max_cpus)599 void __init smp_cpus_done(unsigned int max_cpus)
600 {
601 }
602 
stop_this_cpu(void * dummy)603 static void stop_this_cpu(void *dummy)
604 {
605 	set_cpu_online(smp_processor_id(), false);
606 	calculate_cpu_foreign_map();
607 	local_irq_disable();
608 	while (true);
609 }
610 
smp_send_stop(void)611 void smp_send_stop(void)
612 {
613 	smp_call_function(stop_this_cpu, NULL, 0);
614 }
615 
616 #ifdef CONFIG_PROFILING
setup_profiling_timer(unsigned int multiplier)617 int setup_profiling_timer(unsigned int multiplier)
618 {
619 	return 0;
620 }
621 #endif
622 
flush_tlb_all_ipi(void * info)623 static void flush_tlb_all_ipi(void *info)
624 {
625 	local_flush_tlb_all();
626 }
627 
flush_tlb_all(void)628 void flush_tlb_all(void)
629 {
630 	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
631 }
632 
flush_tlb_mm_ipi(void * mm)633 static void flush_tlb_mm_ipi(void *mm)
634 {
635 	local_flush_tlb_mm((struct mm_struct *)mm);
636 }
637 
flush_tlb_mm(struct mm_struct * mm)638 void flush_tlb_mm(struct mm_struct *mm)
639 {
640 	if (atomic_read(&mm->mm_users) == 0)
641 		return;		/* happens as a result of exit_mmap() */
642 
643 	preempt_disable();
644 
645 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
646 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
647 	} else {
648 		unsigned int cpu;
649 
650 		for_each_online_cpu(cpu) {
651 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
652 				cpu_context(cpu, mm) = 0;
653 		}
654 		local_flush_tlb_mm(mm);
655 	}
656 
657 	preempt_enable();
658 }
659 
660 struct flush_tlb_data {
661 	struct vm_area_struct *vma;
662 	unsigned long addr1;
663 	unsigned long addr2;
664 };
665 
flush_tlb_range_ipi(void * info)666 static void flush_tlb_range_ipi(void *info)
667 {
668 	struct flush_tlb_data *fd = info;
669 
670 	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
671 }
672 
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)673 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
674 {
675 	struct mm_struct *mm = vma->vm_mm;
676 
677 	preempt_disable();
678 	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
679 		struct flush_tlb_data fd = {
680 			.vma = vma,
681 			.addr1 = start,
682 			.addr2 = end,
683 		};
684 
685 		on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
686 	} else {
687 		unsigned int cpu;
688 
689 		for_each_online_cpu(cpu) {
690 			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
691 				cpu_context(cpu, mm) = 0;
692 		}
693 		local_flush_tlb_range(vma, start, end);
694 	}
695 	preempt_enable();
696 }
697 
flush_tlb_kernel_range_ipi(void * info)698 static void flush_tlb_kernel_range_ipi(void *info)
699 {
700 	struct flush_tlb_data *fd = info;
701 
702 	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
703 }
704 
flush_tlb_kernel_range(unsigned long start,unsigned long end)705 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
706 {
707 	struct flush_tlb_data fd = {
708 		.addr1 = start,
709 		.addr2 = end,
710 	};
711 
712 	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
713 }
714 
flush_tlb_page_ipi(void * info)715 static void flush_tlb_page_ipi(void *info)
716 {
717 	struct flush_tlb_data *fd = info;
718 
719 	local_flush_tlb_page(fd->vma, fd->addr1);
720 }
721 
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)722 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
723 {
724 	preempt_disable();
725 	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
726 		struct flush_tlb_data fd = {
727 			.vma = vma,
728 			.addr1 = page,
729 		};
730 
731 		on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
732 	} else {
733 		unsigned int cpu;
734 
735 		for_each_online_cpu(cpu) {
736 			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
737 				cpu_context(cpu, vma->vm_mm) = 0;
738 		}
739 		local_flush_tlb_page(vma, page);
740 	}
741 	preempt_enable();
742 }
743 EXPORT_SYMBOL(flush_tlb_page);
744 
flush_tlb_one_ipi(void * info)745 static void flush_tlb_one_ipi(void *info)
746 {
747 	unsigned long vaddr = (unsigned long) info;
748 
749 	local_flush_tlb_one(vaddr);
750 }
751 
flush_tlb_one(unsigned long vaddr)752 void flush_tlb_one(unsigned long vaddr)
753 {
754 	on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
755 }
756 EXPORT_SYMBOL(flush_tlb_one);
757