1/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */ 2// 3// This file is dual-licensed, meaning that you can use it under your 4// choice of either of the following two licenses: 5// 6// Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. 7// 8// Licensed under the Apache License 2.0 (the "License"). You can obtain 9// a copy in the file LICENSE in the source distribution or at 10// https://www.openssl.org/source/license.html 11// 12// or 13// 14// Copyright (c) 2023, Christoph Müllner <christoph.muellner@vrull.eu> 15// Copyright (c) 2023, Phoebe Chen <phoebe.chen@sifive.com> 16// Copyright 2024 Google LLC 17// All rights reserved. 18// 19// Redistribution and use in source and binary forms, with or without 20// modification, are permitted provided that the following conditions 21// are met: 22// 1. Redistributions of source code must retain the above copyright 23// notice, this list of conditions and the following disclaimer. 24// 2. Redistributions in binary form must reproduce the above copyright 25// notice, this list of conditions and the following disclaimer in the 26// documentation and/or other materials provided with the distribution. 27// 28// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 40// The generated code of this file depends on the following RISC-V extensions: 41// - RV64I 42// - RISC-V Vector ('V') with VLEN >= 128 43// - RISC-V Vector SHA-2 Secure Hash extension ('Zvknha' or 'Zvknhb') 44// - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb') 45 46#include <linux/cfi_types.h> 47 48.text 49.option arch, +zvknha, +zvkb 50 51#define STATEP a0 52#define DATA a1 53#define NUM_BLOCKS a2 54 55#define STATEP_C a3 56 57#define MASK v0 58#define INDICES v1 59#define W0 v2 60#define W1 v3 61#define W2 v4 62#define W3 v5 63#define VTMP v6 64#define FEBA v7 65#define HGDC v8 66#define K0 v10 67#define K1 v11 68#define K2 v12 69#define K3 v13 70#define K4 v14 71#define K5 v15 72#define K6 v16 73#define K7 v17 74#define K8 v18 75#define K9 v19 76#define K10 v20 77#define K11 v21 78#define K12 v22 79#define K13 v23 80#define K14 v24 81#define K15 v25 82#define PREV_FEBA v26 83#define PREV_HGDC v27 84 85// Do 4 rounds of SHA-256. w0 contains the current 4 message schedule words. 86// 87// If not all the message schedule words have been computed yet, then this also 88// computes 4 more message schedule words. w1-w3 contain the next 3 groups of 4 89// message schedule words; this macro computes the group after w3 and writes it 90// to w0. This means that the next (w0, w1, w2, w3) is the current (w1, w2, w3, 91// w0), so the caller must cycle through the registers accordingly. 92.macro sha256_4rounds last, k, w0, w1, w2, w3 93 vadd.vv VTMP, \k, \w0 94 vsha2cl.vv HGDC, FEBA, VTMP 95 vsha2ch.vv FEBA, HGDC, VTMP 96.if !\last 97 vmerge.vvm VTMP, \w2, \w1, MASK 98 vsha2ms.vv \w0, VTMP, \w3 99.endif 100.endm 101 102.macro sha256_16rounds last, k0, k1, k2, k3 103 sha256_4rounds \last, \k0, W0, W1, W2, W3 104 sha256_4rounds \last, \k1, W1, W2, W3, W0 105 sha256_4rounds \last, \k2, W2, W3, W0, W1 106 sha256_4rounds \last, \k3, W3, W0, W1, W2 107.endm 108 109// void sha256_transform_zvknha_or_zvknhb_zvkb(u32 state[8], const u8 *data, 110// int num_blocks); 111SYM_TYPED_FUNC_START(sha256_transform_zvknha_or_zvknhb_zvkb) 112 113 // Load the round constants into K0-K15. 114 vsetivli zero, 4, e32, m1, ta, ma 115 la t0, K256 116 vle32.v K0, (t0) 117 addi t0, t0, 16 118 vle32.v K1, (t0) 119 addi t0, t0, 16 120 vle32.v K2, (t0) 121 addi t0, t0, 16 122 vle32.v K3, (t0) 123 addi t0, t0, 16 124 vle32.v K4, (t0) 125 addi t0, t0, 16 126 vle32.v K5, (t0) 127 addi t0, t0, 16 128 vle32.v K6, (t0) 129 addi t0, t0, 16 130 vle32.v K7, (t0) 131 addi t0, t0, 16 132 vle32.v K8, (t0) 133 addi t0, t0, 16 134 vle32.v K9, (t0) 135 addi t0, t0, 16 136 vle32.v K10, (t0) 137 addi t0, t0, 16 138 vle32.v K11, (t0) 139 addi t0, t0, 16 140 vle32.v K12, (t0) 141 addi t0, t0, 16 142 vle32.v K13, (t0) 143 addi t0, t0, 16 144 vle32.v K14, (t0) 145 addi t0, t0, 16 146 vle32.v K15, (t0) 147 148 // Setup mask for the vmerge to replace the first word (idx==0) in 149 // message scheduling. There are 4 words, so an 8-bit mask suffices. 150 vsetivli zero, 1, e8, m1, ta, ma 151 vmv.v.i MASK, 0x01 152 153 // Load the state. The state is stored as {a,b,c,d,e,f,g,h}, but we 154 // need {f,e,b,a},{h,g,d,c}. The dst vtype is e32m1 and the index vtype 155 // is e8mf4. We use index-load with the i8 indices {20, 16, 4, 0}, 156 // loaded using the 32-bit little endian value 0x00041014. 157 li t0, 0x00041014 158 vsetivli zero, 1, e32, m1, ta, ma 159 vmv.v.x INDICES, t0 160 addi STATEP_C, STATEP, 8 161 vsetivli zero, 4, e32, m1, ta, ma 162 vluxei8.v FEBA, (STATEP), INDICES 163 vluxei8.v HGDC, (STATEP_C), INDICES 164 165.Lnext_block: 166 addi NUM_BLOCKS, NUM_BLOCKS, -1 167 168 // Save the previous state, as it's needed later. 169 vmv.v.v PREV_FEBA, FEBA 170 vmv.v.v PREV_HGDC, HGDC 171 172 // Load the next 512-bit message block and endian-swap each 32-bit word. 173 vle32.v W0, (DATA) 174 vrev8.v W0, W0 175 addi DATA, DATA, 16 176 vle32.v W1, (DATA) 177 vrev8.v W1, W1 178 addi DATA, DATA, 16 179 vle32.v W2, (DATA) 180 vrev8.v W2, W2 181 addi DATA, DATA, 16 182 vle32.v W3, (DATA) 183 vrev8.v W3, W3 184 addi DATA, DATA, 16 185 186 // Do the 64 rounds of SHA-256. 187 sha256_16rounds 0, K0, K1, K2, K3 188 sha256_16rounds 0, K4, K5, K6, K7 189 sha256_16rounds 0, K8, K9, K10, K11 190 sha256_16rounds 1, K12, K13, K14, K15 191 192 // Add the previous state. 193 vadd.vv FEBA, FEBA, PREV_FEBA 194 vadd.vv HGDC, HGDC, PREV_HGDC 195 196 // Repeat if more blocks remain. 197 bnez NUM_BLOCKS, .Lnext_block 198 199 // Store the new state and return. 200 vsuxei8.v FEBA, (STATEP), INDICES 201 vsuxei8.v HGDC, (STATEP_C), INDICES 202 ret 203SYM_FUNC_END(sha256_transform_zvknha_or_zvknhb_zvkb) 204 205.section ".rodata" 206.p2align 2 207.type K256, @object 208K256: 209 .word 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5 210 .word 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5 211 .word 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3 212 .word 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174 213 .word 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc 214 .word 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da 215 .word 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7 216 .word 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967 217 .word 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13 218 .word 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85 219 .word 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3 220 .word 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070 221 .word 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5 222 .word 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3 223 .word 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208 224 .word 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 225.size K256, . - K256 226