1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-sff.c - helper library for PCI IDE BMDMA
4 *
5 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2006 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/module.h>
19 #include <linux/libata.h>
20 #include <linux/highmem.h>
21 #include <trace/events/libata.h>
22 #include "libata.h"
23
24 static struct workqueue_struct *ata_sff_wq;
25
26 const struct ata_port_operations ata_sff_port_ops = {
27 .inherits = &ata_base_port_ops,
28
29 .qc_issue = ata_sff_qc_issue,
30 .qc_fill_rtf = ata_sff_qc_fill_rtf,
31
32 .freeze = ata_sff_freeze,
33 .thaw = ata_sff_thaw,
34 .prereset = ata_sff_prereset,
35 .softreset = ata_sff_softreset,
36 .hardreset = sata_sff_hardreset,
37 .postreset = ata_sff_postreset,
38 .error_handler = ata_sff_error_handler,
39
40 .sff_dev_select = ata_sff_dev_select,
41 .sff_check_status = ata_sff_check_status,
42 .sff_tf_load = ata_sff_tf_load,
43 .sff_tf_read = ata_sff_tf_read,
44 .sff_exec_command = ata_sff_exec_command,
45 .sff_data_xfer = ata_sff_data_xfer,
46 .sff_drain_fifo = ata_sff_drain_fifo,
47
48 .lost_interrupt = ata_sff_lost_interrupt,
49 };
50 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
51
52 /**
53 * ata_sff_check_status - Read device status reg & clear interrupt
54 * @ap: port where the device is
55 *
56 * Reads ATA taskfile status register for currently-selected device
57 * and return its value. This also clears pending interrupts
58 * from this device
59 *
60 * LOCKING:
61 * Inherited from caller.
62 */
ata_sff_check_status(struct ata_port * ap)63 u8 ata_sff_check_status(struct ata_port *ap)
64 {
65 return ioread8(ap->ioaddr.status_addr);
66 }
67 EXPORT_SYMBOL_GPL(ata_sff_check_status);
68
69 /**
70 * ata_sff_altstatus - Read device alternate status reg
71 * @ap: port where the device is
72 * @status: pointer to a status value
73 *
74 * Reads ATA alternate status register for currently-selected device
75 * and return its value.
76 *
77 * RETURN:
78 * true if the register exists, false if not.
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
ata_sff_altstatus(struct ata_port * ap,u8 * status)83 static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
84 {
85 u8 tmp;
86
87 if (ap->ops->sff_check_altstatus) {
88 tmp = ap->ops->sff_check_altstatus(ap);
89 goto read;
90 }
91 if (ap->ioaddr.altstatus_addr) {
92 tmp = ioread8(ap->ioaddr.altstatus_addr);
93 goto read;
94 }
95 return false;
96
97 read:
98 if (status)
99 *status = tmp;
100 return true;
101 }
102
103 /**
104 * ata_sff_irq_status - Check if the device is busy
105 * @ap: port where the device is
106 *
107 * Determine if the port is currently busy. Uses altstatus
108 * if available in order to avoid clearing shared IRQ status
109 * when finding an IRQ source. Non ctl capable devices don't
110 * share interrupt lines fortunately for us.
111 *
112 * LOCKING:
113 * Inherited from caller.
114 */
ata_sff_irq_status(struct ata_port * ap)115 static u8 ata_sff_irq_status(struct ata_port *ap)
116 {
117 u8 status;
118
119 /* Not us: We are busy */
120 if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
121 return status;
122 /* Clear INTRQ latch */
123 status = ap->ops->sff_check_status(ap);
124 return status;
125 }
126
127 /**
128 * ata_sff_sync - Flush writes
129 * @ap: Port to wait for.
130 *
131 * CAUTION:
132 * If we have an mmio device with no ctl and no altstatus
133 * method this will fail. No such devices are known to exist.
134 *
135 * LOCKING:
136 * Inherited from caller.
137 */
138
ata_sff_sync(struct ata_port * ap)139 static void ata_sff_sync(struct ata_port *ap)
140 {
141 ata_sff_altstatus(ap, NULL);
142 }
143
144 /**
145 * ata_sff_pause - Flush writes and wait 400nS
146 * @ap: Port to pause for.
147 *
148 * CAUTION:
149 * If we have an mmio device with no ctl and no altstatus
150 * method this will fail. No such devices are known to exist.
151 *
152 * LOCKING:
153 * Inherited from caller.
154 */
155
ata_sff_pause(struct ata_port * ap)156 void ata_sff_pause(struct ata_port *ap)
157 {
158 ata_sff_sync(ap);
159 ndelay(400);
160 }
161 EXPORT_SYMBOL_GPL(ata_sff_pause);
162
163 /**
164 * ata_sff_dma_pause - Pause before commencing DMA
165 * @ap: Port to pause for.
166 *
167 * Perform I/O fencing and ensure sufficient cycle delays occur
168 * for the HDMA1:0 transition
169 */
170
ata_sff_dma_pause(struct ata_port * ap)171 void ata_sff_dma_pause(struct ata_port *ap)
172 {
173 /*
174 * An altstatus read will cause the needed delay without
175 * messing up the IRQ status
176 */
177 if (ata_sff_altstatus(ap, NULL))
178 return;
179 /* There are no DMA controllers without ctl. BUG here to ensure
180 we never violate the HDMA1:0 transition timing and risk
181 corruption. */
182 BUG();
183 }
184 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
185
ata_sff_check_ready(struct ata_link * link)186 static int ata_sff_check_ready(struct ata_link *link)
187 {
188 u8 status = link->ap->ops->sff_check_status(link->ap);
189
190 return ata_check_ready(status);
191 }
192
193 /**
194 * ata_sff_wait_ready - sleep until BSY clears, or timeout
195 * @link: SFF link to wait ready status for
196 * @deadline: deadline jiffies for the operation
197 *
198 * Sleep until ATA Status register bit BSY clears, or timeout
199 * occurs.
200 *
201 * LOCKING:
202 * Kernel thread context (may sleep).
203 *
204 * RETURNS:
205 * 0 on success, -errno otherwise.
206 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)207 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
208 {
209 return ata_wait_ready(link, deadline, ata_sff_check_ready);
210 }
211 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
212
213 /**
214 * ata_sff_set_devctl - Write device control reg
215 * @ap: port where the device is
216 * @ctl: value to write
217 *
218 * Writes ATA device control register.
219 *
220 * RETURN:
221 * true if the register exists, false if not.
222 *
223 * LOCKING:
224 * Inherited from caller.
225 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)226 static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
227 {
228 if (ap->ops->sff_set_devctl) {
229 ap->ops->sff_set_devctl(ap, ctl);
230 return true;
231 }
232 if (ap->ioaddr.ctl_addr) {
233 iowrite8(ctl, ap->ioaddr.ctl_addr);
234 return true;
235 }
236
237 return false;
238 }
239
240 /**
241 * ata_sff_dev_select - Select device 0/1 on ATA bus
242 * @ap: ATA channel to manipulate
243 * @device: ATA device (numbered from zero) to select
244 *
245 * Use the method defined in the ATA specification to
246 * make either device 0, or device 1, active on the
247 * ATA channel. Works with both PIO and MMIO.
248 *
249 * May be used as the dev_select() entry in ata_port_operations.
250 *
251 * LOCKING:
252 * caller.
253 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)254 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
255 {
256 u8 tmp;
257
258 if (device == 0)
259 tmp = ATA_DEVICE_OBS;
260 else
261 tmp = ATA_DEVICE_OBS | ATA_DEV1;
262
263 iowrite8(tmp, ap->ioaddr.device_addr);
264 ata_sff_pause(ap); /* needed; also flushes, for mmio */
265 }
266 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
267
268 /**
269 * ata_dev_select - Select device 0/1 on ATA bus
270 * @ap: ATA channel to manipulate
271 * @device: ATA device (numbered from zero) to select
272 * @wait: non-zero to wait for Status register BSY bit to clear
273 * @can_sleep: non-zero if context allows sleeping
274 *
275 * Use the method defined in the ATA specification to
276 * make either device 0, or device 1, active on the
277 * ATA channel.
278 *
279 * This is a high-level version of ata_sff_dev_select(), which
280 * additionally provides the services of inserting the proper
281 * pauses and status polling, where needed.
282 *
283 * LOCKING:
284 * caller.
285 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)286 static void ata_dev_select(struct ata_port *ap, unsigned int device,
287 unsigned int wait, unsigned int can_sleep)
288 {
289 if (wait)
290 ata_wait_idle(ap);
291
292 ap->ops->sff_dev_select(ap, device);
293
294 if (wait) {
295 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
296 ata_msleep(ap, 150);
297 ata_wait_idle(ap);
298 }
299 }
300
301 /**
302 * ata_sff_irq_on - Enable interrupts on a port.
303 * @ap: Port on which interrupts are enabled.
304 *
305 * Enable interrupts on a legacy IDE device using MMIO or PIO,
306 * wait for idle, clear any pending interrupts.
307 *
308 * Note: may NOT be used as the sff_irq_on() entry in
309 * ata_port_operations.
310 *
311 * LOCKING:
312 * Inherited from caller.
313 */
ata_sff_irq_on(struct ata_port * ap)314 void ata_sff_irq_on(struct ata_port *ap)
315 {
316 if (ap->ops->sff_irq_on) {
317 ap->ops->sff_irq_on(ap);
318 return;
319 }
320
321 ap->ctl &= ~ATA_NIEN;
322 ap->last_ctl = ap->ctl;
323
324 ata_sff_set_devctl(ap, ap->ctl);
325 ata_wait_idle(ap);
326
327 if (ap->ops->sff_irq_clear)
328 ap->ops->sff_irq_clear(ap);
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
331
332 /**
333 * ata_sff_tf_load - send taskfile registers to host controller
334 * @ap: Port to which output is sent
335 * @tf: ATA taskfile register set
336 *
337 * Outputs ATA taskfile to standard ATA host controller.
338 *
339 * LOCKING:
340 * Inherited from caller.
341 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)342 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
343 {
344 struct ata_ioports *ioaddr = &ap->ioaddr;
345 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
346
347 if (tf->ctl != ap->last_ctl) {
348 if (ioaddr->ctl_addr)
349 iowrite8(tf->ctl, ioaddr->ctl_addr);
350 ap->last_ctl = tf->ctl;
351 ata_wait_idle(ap);
352 }
353
354 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
355 WARN_ON_ONCE(!ioaddr->ctl_addr);
356 iowrite8(tf->hob_feature, ioaddr->feature_addr);
357 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
358 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
359 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
360 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
361 }
362
363 if (is_addr) {
364 iowrite8(tf->feature, ioaddr->feature_addr);
365 iowrite8(tf->nsect, ioaddr->nsect_addr);
366 iowrite8(tf->lbal, ioaddr->lbal_addr);
367 iowrite8(tf->lbam, ioaddr->lbam_addr);
368 iowrite8(tf->lbah, ioaddr->lbah_addr);
369 }
370
371 if (tf->flags & ATA_TFLAG_DEVICE)
372 iowrite8(tf->device, ioaddr->device_addr);
373
374 ata_wait_idle(ap);
375 }
376 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
377
378 /**
379 * ata_sff_tf_read - input device's ATA taskfile shadow registers
380 * @ap: Port from which input is read
381 * @tf: ATA taskfile register set for storing input
382 *
383 * Reads ATA taskfile registers for currently-selected device
384 * into @tf. Assumes the device has a fully SFF compliant task file
385 * layout and behaviour. If you device does not (eg has a different
386 * status method) then you will need to provide a replacement tf_read
387 *
388 * LOCKING:
389 * Inherited from caller.
390 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)391 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
392 {
393 struct ata_ioports *ioaddr = &ap->ioaddr;
394
395 tf->status = ata_sff_check_status(ap);
396 tf->error = ioread8(ioaddr->error_addr);
397 tf->nsect = ioread8(ioaddr->nsect_addr);
398 tf->lbal = ioread8(ioaddr->lbal_addr);
399 tf->lbam = ioread8(ioaddr->lbam_addr);
400 tf->lbah = ioread8(ioaddr->lbah_addr);
401 tf->device = ioread8(ioaddr->device_addr);
402
403 if (tf->flags & ATA_TFLAG_LBA48) {
404 if (likely(ioaddr->ctl_addr)) {
405 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
406 tf->hob_feature = ioread8(ioaddr->error_addr);
407 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
408 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
409 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
410 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
411 iowrite8(tf->ctl, ioaddr->ctl_addr);
412 ap->last_ctl = tf->ctl;
413 } else
414 WARN_ON_ONCE(1);
415 }
416 }
417 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
418
419 /**
420 * ata_sff_exec_command - issue ATA command to host controller
421 * @ap: port to which command is being issued
422 * @tf: ATA taskfile register set
423 *
424 * Issues ATA command, with proper synchronization with interrupt
425 * handler / other threads.
426 *
427 * LOCKING:
428 * spin_lock_irqsave(host lock)
429 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)430 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
431 {
432 iowrite8(tf->command, ap->ioaddr.command_addr);
433 ata_sff_pause(ap);
434 }
435 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
436
437 /**
438 * ata_tf_to_host - issue ATA taskfile to host controller
439 * @ap: port to which command is being issued
440 * @tf: ATA taskfile register set
441 * @tag: tag of the associated command
442 *
443 * Issues ATA taskfile register set to ATA host controller,
444 * with proper synchronization with interrupt handler and
445 * other threads.
446 *
447 * LOCKING:
448 * spin_lock_irqsave(host lock)
449 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf,unsigned int tag)450 static inline void ata_tf_to_host(struct ata_port *ap,
451 const struct ata_taskfile *tf,
452 unsigned int tag)
453 {
454 trace_ata_tf_load(ap, tf);
455 ap->ops->sff_tf_load(ap, tf);
456 trace_ata_exec_command(ap, tf, tag);
457 ap->ops->sff_exec_command(ap, tf);
458 }
459
460 /**
461 * ata_sff_data_xfer - Transfer data by PIO
462 * @qc: queued command
463 * @buf: data buffer
464 * @buflen: buffer length
465 * @rw: read/write
466 *
467 * Transfer data from/to the device data register by PIO.
468 *
469 * LOCKING:
470 * Inherited from caller.
471 *
472 * RETURNS:
473 * Bytes consumed.
474 */
ata_sff_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)475 unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
476 unsigned int buflen, int rw)
477 {
478 struct ata_port *ap = qc->dev->link->ap;
479 void __iomem *data_addr = ap->ioaddr.data_addr;
480 unsigned int words = buflen >> 1;
481
482 /* Transfer multiple of 2 bytes */
483 if (rw == READ)
484 ioread16_rep(data_addr, buf, words);
485 else
486 iowrite16_rep(data_addr, buf, words);
487
488 /* Transfer trailing byte, if any. */
489 if (unlikely(buflen & 0x01)) {
490 unsigned char pad[2] = { };
491
492 /* Point buf to the tail of buffer */
493 buf += buflen - 1;
494
495 /*
496 * Use io*16_rep() accessors here as well to avoid pointlessly
497 * swapping bytes to and from on the big endian machines...
498 */
499 if (rw == READ) {
500 ioread16_rep(data_addr, pad, 1);
501 *buf = pad[0];
502 } else {
503 pad[0] = *buf;
504 iowrite16_rep(data_addr, pad, 1);
505 }
506 words++;
507 }
508
509 return words << 1;
510 }
511 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
512
513 /**
514 * ata_sff_data_xfer32 - Transfer data by PIO
515 * @qc: queued command
516 * @buf: data buffer
517 * @buflen: buffer length
518 * @rw: read/write
519 *
520 * Transfer data from/to the device data register by PIO using 32bit
521 * I/O operations.
522 *
523 * LOCKING:
524 * Inherited from caller.
525 *
526 * RETURNS:
527 * Bytes consumed.
528 */
529
ata_sff_data_xfer32(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)530 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
531 unsigned int buflen, int rw)
532 {
533 struct ata_device *dev = qc->dev;
534 struct ata_port *ap = dev->link->ap;
535 void __iomem *data_addr = ap->ioaddr.data_addr;
536 unsigned int words = buflen >> 2;
537 int slop = buflen & 3;
538
539 if (!(ap->pflags & ATA_PFLAG_PIO32))
540 return ata_sff_data_xfer(qc, buf, buflen, rw);
541
542 /* Transfer multiple of 4 bytes */
543 if (rw == READ)
544 ioread32_rep(data_addr, buf, words);
545 else
546 iowrite32_rep(data_addr, buf, words);
547
548 /* Transfer trailing bytes, if any */
549 if (unlikely(slop)) {
550 unsigned char pad[4] = { };
551
552 /* Point buf to the tail of buffer */
553 buf += buflen - slop;
554
555 /*
556 * Use io*_rep() accessors here as well to avoid pointlessly
557 * swapping bytes to and from on the big endian machines...
558 */
559 if (rw == READ) {
560 if (slop < 3)
561 ioread16_rep(data_addr, pad, 1);
562 else
563 ioread32_rep(data_addr, pad, 1);
564 memcpy(buf, pad, slop);
565 } else {
566 memcpy(pad, buf, slop);
567 if (slop < 3)
568 iowrite16_rep(data_addr, pad, 1);
569 else
570 iowrite32_rep(data_addr, pad, 1);
571 }
572 }
573 return (buflen + 1) & ~1;
574 }
575 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
576
ata_pio_xfer(struct ata_queued_cmd * qc,struct page * page,unsigned int offset,size_t xfer_size)577 static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
578 unsigned int offset, size_t xfer_size)
579 {
580 bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
581 unsigned char *buf;
582
583 buf = kmap_atomic(page);
584 qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
585 kunmap_atomic(buf);
586
587 if (!do_write && !PageSlab(page))
588 flush_dcache_page(page);
589 }
590
591 /**
592 * ata_pio_sector - Transfer a sector of data.
593 * @qc: Command on going
594 *
595 * Transfer qc->sect_size bytes of data from/to the ATA device.
596 *
597 * LOCKING:
598 * Inherited from caller.
599 */
ata_pio_sector(struct ata_queued_cmd * qc)600 static void ata_pio_sector(struct ata_queued_cmd *qc)
601 {
602 struct ata_port *ap = qc->ap;
603 struct page *page;
604 unsigned int offset;
605
606 if (!qc->cursg) {
607 qc->curbytes = qc->nbytes;
608 return;
609 }
610 if (qc->curbytes == qc->nbytes - qc->sect_size)
611 ap->hsm_task_state = HSM_ST_LAST;
612
613 page = sg_page(qc->cursg);
614 offset = qc->cursg->offset + qc->cursg_ofs;
615
616 /* get the current page and offset */
617 page = nth_page(page, (offset >> PAGE_SHIFT));
618 offset %= PAGE_SIZE;
619
620 trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
621
622 /*
623 * Split the transfer when it splits a page boundary. Note that the
624 * split still has to be dword aligned like all ATA data transfers.
625 */
626 WARN_ON_ONCE(offset % 4);
627 if (offset + qc->sect_size > PAGE_SIZE) {
628 unsigned int split_len = PAGE_SIZE - offset;
629
630 ata_pio_xfer(qc, page, offset, split_len);
631 ata_pio_xfer(qc, nth_page(page, 1), 0,
632 qc->sect_size - split_len);
633 } else {
634 ata_pio_xfer(qc, page, offset, qc->sect_size);
635 }
636
637 qc->curbytes += qc->sect_size;
638 qc->cursg_ofs += qc->sect_size;
639
640 if (qc->cursg_ofs == qc->cursg->length) {
641 qc->cursg = sg_next(qc->cursg);
642 if (!qc->cursg)
643 ap->hsm_task_state = HSM_ST_LAST;
644 qc->cursg_ofs = 0;
645 }
646 }
647
648 /**
649 * ata_pio_sectors - Transfer one or many sectors.
650 * @qc: Command on going
651 *
652 * Transfer one or many sectors of data from/to the
653 * ATA device for the DRQ request.
654 *
655 * LOCKING:
656 * Inherited from caller.
657 */
ata_pio_sectors(struct ata_queued_cmd * qc)658 static void ata_pio_sectors(struct ata_queued_cmd *qc)
659 {
660 if (is_multi_taskfile(&qc->tf)) {
661 /* READ/WRITE MULTIPLE */
662 unsigned int nsect;
663
664 WARN_ON_ONCE(qc->dev->multi_count == 0);
665
666 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
667 qc->dev->multi_count);
668 while (nsect--)
669 ata_pio_sector(qc);
670 } else
671 ata_pio_sector(qc);
672
673 ata_sff_sync(qc->ap); /* flush */
674 }
675
676 /**
677 * atapi_send_cdb - Write CDB bytes to hardware
678 * @ap: Port to which ATAPI device is attached.
679 * @qc: Taskfile currently active
680 *
681 * When device has indicated its readiness to accept
682 * a CDB, this function is called. Send the CDB.
683 *
684 * LOCKING:
685 * caller.
686 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)687 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
688 {
689 /* send SCSI cdb */
690 trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
691 WARN_ON_ONCE(qc->dev->cdb_len < 12);
692
693 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
694 ata_sff_sync(ap);
695 /* FIXME: If the CDB is for DMA do we need to do the transition delay
696 or is bmdma_start guaranteed to do it ? */
697 switch (qc->tf.protocol) {
698 case ATAPI_PROT_PIO:
699 ap->hsm_task_state = HSM_ST;
700 break;
701 case ATAPI_PROT_NODATA:
702 ap->hsm_task_state = HSM_ST_LAST;
703 break;
704 #ifdef CONFIG_ATA_BMDMA
705 case ATAPI_PROT_DMA:
706 ap->hsm_task_state = HSM_ST_LAST;
707 /* initiate bmdma */
708 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
709 ap->ops->bmdma_start(qc);
710 break;
711 #endif /* CONFIG_ATA_BMDMA */
712 default:
713 BUG();
714 }
715 }
716
717 /**
718 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
719 * @qc: Command on going
720 * @bytes: number of bytes
721 *
722 * Transfer data from/to the ATAPI device.
723 *
724 * LOCKING:
725 * Inherited from caller.
726 *
727 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)728 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
729 {
730 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
731 struct ata_port *ap = qc->ap;
732 struct ata_device *dev = qc->dev;
733 struct ata_eh_info *ehi = &dev->link->eh_info;
734 struct scatterlist *sg;
735 struct page *page;
736 unsigned char *buf;
737 unsigned int offset, count, consumed;
738
739 next_sg:
740 sg = qc->cursg;
741 if (unlikely(!sg)) {
742 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
743 "buf=%u cur=%u bytes=%u",
744 qc->nbytes, qc->curbytes, bytes);
745 return -1;
746 }
747
748 page = sg_page(sg);
749 offset = sg->offset + qc->cursg_ofs;
750
751 /* get the current page and offset */
752 page = nth_page(page, (offset >> PAGE_SHIFT));
753 offset %= PAGE_SIZE;
754
755 /* don't overrun current sg */
756 count = min(sg->length - qc->cursg_ofs, bytes);
757
758 /* don't cross page boundaries */
759 count = min(count, (unsigned int)PAGE_SIZE - offset);
760
761 trace_atapi_pio_transfer_data(qc, offset, count);
762
763 /* do the actual data transfer */
764 buf = kmap_atomic(page);
765 consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
766 kunmap_atomic(buf);
767
768 bytes -= min(bytes, consumed);
769 qc->curbytes += count;
770 qc->cursg_ofs += count;
771
772 if (qc->cursg_ofs == sg->length) {
773 qc->cursg = sg_next(qc->cursg);
774 qc->cursg_ofs = 0;
775 }
776
777 /*
778 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
779 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
780 * check correctly as it doesn't know if it is the last request being
781 * made. Somebody should implement a proper sanity check.
782 */
783 if (bytes)
784 goto next_sg;
785 return 0;
786 }
787
788 /**
789 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
790 * @qc: Command on going
791 *
792 * Transfer Transfer data from/to the ATAPI device.
793 *
794 * LOCKING:
795 * Inherited from caller.
796 */
atapi_pio_bytes(struct ata_queued_cmd * qc)797 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
798 {
799 struct ata_port *ap = qc->ap;
800 struct ata_device *dev = qc->dev;
801 struct ata_eh_info *ehi = &dev->link->eh_info;
802 unsigned int ireason, bc_lo, bc_hi, bytes;
803 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
804
805 /* Abuse qc->result_tf for temp storage of intermediate TF
806 * here to save some kernel stack usage.
807 * For normal completion, qc->result_tf is not relevant. For
808 * error, qc->result_tf is later overwritten by ata_qc_complete().
809 * So, the correctness of qc->result_tf is not affected.
810 */
811 ap->ops->sff_tf_read(ap, &qc->result_tf);
812 ireason = qc->result_tf.nsect;
813 bc_lo = qc->result_tf.lbam;
814 bc_hi = qc->result_tf.lbah;
815 bytes = (bc_hi << 8) | bc_lo;
816
817 /* shall be cleared to zero, indicating xfer of data */
818 if (unlikely(ireason & ATAPI_COD))
819 goto atapi_check;
820
821 /* make sure transfer direction matches expected */
822 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
823 if (unlikely(do_write != i_write))
824 goto atapi_check;
825
826 if (unlikely(!bytes))
827 goto atapi_check;
828
829 if (unlikely(__atapi_pio_bytes(qc, bytes)))
830 goto err_out;
831 ata_sff_sync(ap); /* flush */
832
833 return;
834
835 atapi_check:
836 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
837 ireason, bytes);
838 err_out:
839 qc->err_mask |= AC_ERR_HSM;
840 ap->hsm_task_state = HSM_ST_ERR;
841 }
842
843 /**
844 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
845 * @ap: the target ata_port
846 * @qc: qc on going
847 *
848 * RETURNS:
849 * 1 if ok in workqueue, 0 otherwise.
850 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)851 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
852 struct ata_queued_cmd *qc)
853 {
854 if (qc->tf.flags & ATA_TFLAG_POLLING)
855 return 1;
856
857 if (ap->hsm_task_state == HSM_ST_FIRST) {
858 if (qc->tf.protocol == ATA_PROT_PIO &&
859 (qc->tf.flags & ATA_TFLAG_WRITE))
860 return 1;
861
862 if (ata_is_atapi(qc->tf.protocol) &&
863 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
864 return 1;
865 }
866
867 return 0;
868 }
869
870 /**
871 * ata_hsm_qc_complete - finish a qc running on standard HSM
872 * @qc: Command to complete
873 * @in_wq: 1 if called from workqueue, 0 otherwise
874 *
875 * Finish @qc which is running on standard HSM.
876 *
877 * LOCKING:
878 * If @in_wq is zero, spin_lock_irqsave(host lock).
879 * Otherwise, none on entry and grabs host lock.
880 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)881 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
882 {
883 struct ata_port *ap = qc->ap;
884
885 if (in_wq) {
886 /* EH might have kicked in while host lock is released. */
887 qc = ata_qc_from_tag(ap, qc->tag);
888 if (qc) {
889 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
890 ata_sff_irq_on(ap);
891 ata_qc_complete(qc);
892 } else
893 ata_port_freeze(ap);
894 }
895 } else {
896 if (likely(!(qc->err_mask & AC_ERR_HSM)))
897 ata_qc_complete(qc);
898 else
899 ata_port_freeze(ap);
900 }
901 }
902
903 /**
904 * ata_sff_hsm_move - move the HSM to the next state.
905 * @ap: the target ata_port
906 * @qc: qc on going
907 * @status: current device status
908 * @in_wq: 1 if called from workqueue, 0 otherwise
909 *
910 * RETURNS:
911 * 1 when poll next status needed, 0 otherwise.
912 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)913 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
914 u8 status, int in_wq)
915 {
916 struct ata_link *link = qc->dev->link;
917 struct ata_eh_info *ehi = &link->eh_info;
918 int poll_next;
919
920 lockdep_assert_held(ap->lock);
921
922 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
923
924 /* Make sure ata_sff_qc_issue() does not throw things
925 * like DMA polling into the workqueue. Notice that
926 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
927 */
928 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
929
930 fsm_start:
931 trace_ata_sff_hsm_state(qc, status);
932
933 switch (ap->hsm_task_state) {
934 case HSM_ST_FIRST:
935 /* Send first data block or PACKET CDB */
936
937 /* If polling, we will stay in the work queue after
938 * sending the data. Otherwise, interrupt handler
939 * takes over after sending the data.
940 */
941 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
942
943 /* check device status */
944 if (unlikely((status & ATA_DRQ) == 0)) {
945 /* handle BSY=0, DRQ=0 as error */
946 if (likely(status & (ATA_ERR | ATA_DF)))
947 /* device stops HSM for abort/error */
948 qc->err_mask |= AC_ERR_DEV;
949 else {
950 /* HSM violation. Let EH handle this */
951 ata_ehi_push_desc(ehi,
952 "ST_FIRST: !(DRQ|ERR|DF)");
953 qc->err_mask |= AC_ERR_HSM;
954 }
955
956 ap->hsm_task_state = HSM_ST_ERR;
957 goto fsm_start;
958 }
959
960 /* Device should not ask for data transfer (DRQ=1)
961 * when it finds something wrong.
962 * We ignore DRQ here and stop the HSM by
963 * changing hsm_task_state to HSM_ST_ERR and
964 * let the EH abort the command or reset the device.
965 */
966 if (unlikely(status & (ATA_ERR | ATA_DF))) {
967 /* Some ATAPI tape drives forget to clear the ERR bit
968 * when doing the next command (mostly request sense).
969 * We ignore ERR here to workaround and proceed sending
970 * the CDB.
971 */
972 if (!(qc->dev->quirks & ATA_QUIRK_STUCK_ERR)) {
973 ata_ehi_push_desc(ehi, "ST_FIRST: "
974 "DRQ=1 with device error, "
975 "dev_stat 0x%X", status);
976 qc->err_mask |= AC_ERR_HSM;
977 ap->hsm_task_state = HSM_ST_ERR;
978 goto fsm_start;
979 }
980 }
981
982 if (qc->tf.protocol == ATA_PROT_PIO) {
983 /* PIO data out protocol.
984 * send first data block.
985 */
986
987 /* ata_pio_sectors() might change the state
988 * to HSM_ST_LAST. so, the state is changed here
989 * before ata_pio_sectors().
990 */
991 ap->hsm_task_state = HSM_ST;
992 ata_pio_sectors(qc);
993 } else
994 /* send CDB */
995 atapi_send_cdb(ap, qc);
996
997 /* if polling, ata_sff_pio_task() handles the rest.
998 * otherwise, interrupt handler takes over from here.
999 */
1000 break;
1001
1002 case HSM_ST:
1003 /* complete command or read/write the data register */
1004 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1005 /* ATAPI PIO protocol */
1006 if ((status & ATA_DRQ) == 0) {
1007 /* No more data to transfer or device error.
1008 * Device error will be tagged in HSM_ST_LAST.
1009 */
1010 ap->hsm_task_state = HSM_ST_LAST;
1011 goto fsm_start;
1012 }
1013
1014 /* Device should not ask for data transfer (DRQ=1)
1015 * when it finds something wrong.
1016 * We ignore DRQ here and stop the HSM by
1017 * changing hsm_task_state to HSM_ST_ERR and
1018 * let the EH abort the command or reset the device.
1019 */
1020 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1021 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1022 "DRQ=1 with device error, "
1023 "dev_stat 0x%X", status);
1024 qc->err_mask |= AC_ERR_HSM;
1025 ap->hsm_task_state = HSM_ST_ERR;
1026 goto fsm_start;
1027 }
1028
1029 atapi_pio_bytes(qc);
1030
1031 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1032 /* bad ireason reported by device */
1033 goto fsm_start;
1034
1035 } else {
1036 /* ATA PIO protocol */
1037 if (unlikely((status & ATA_DRQ) == 0)) {
1038 /* handle BSY=0, DRQ=0 as error */
1039 if (likely(status & (ATA_ERR | ATA_DF))) {
1040 /* device stops HSM for abort/error */
1041 qc->err_mask |= AC_ERR_DEV;
1042
1043 /* If diagnostic failed and this is
1044 * IDENTIFY, it's likely a phantom
1045 * device. Mark hint.
1046 */
1047 if (qc->dev->quirks &
1048 ATA_QUIRK_DIAGNOSTIC)
1049 qc->err_mask |=
1050 AC_ERR_NODEV_HINT;
1051 } else {
1052 /* HSM violation. Let EH handle this.
1053 * Phantom devices also trigger this
1054 * condition. Mark hint.
1055 */
1056 ata_ehi_push_desc(ehi, "ST-ATA: "
1057 "DRQ=0 without device error, "
1058 "dev_stat 0x%X", status);
1059 qc->err_mask |= AC_ERR_HSM |
1060 AC_ERR_NODEV_HINT;
1061 }
1062
1063 ap->hsm_task_state = HSM_ST_ERR;
1064 goto fsm_start;
1065 }
1066
1067 /* For PIO reads, some devices may ask for
1068 * data transfer (DRQ=1) alone with ERR=1.
1069 * We respect DRQ here and transfer one
1070 * block of junk data before changing the
1071 * hsm_task_state to HSM_ST_ERR.
1072 *
1073 * For PIO writes, ERR=1 DRQ=1 doesn't make
1074 * sense since the data block has been
1075 * transferred to the device.
1076 */
1077 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1078 /* data might be corrputed */
1079 qc->err_mask |= AC_ERR_DEV;
1080
1081 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1082 ata_pio_sectors(qc);
1083 status = ata_wait_idle(ap);
1084 }
1085
1086 if (status & (ATA_BUSY | ATA_DRQ)) {
1087 ata_ehi_push_desc(ehi, "ST-ATA: "
1088 "BUSY|DRQ persists on ERR|DF, "
1089 "dev_stat 0x%X", status);
1090 qc->err_mask |= AC_ERR_HSM;
1091 }
1092
1093 /* There are oddball controllers with
1094 * status register stuck at 0x7f and
1095 * lbal/m/h at zero which makes it
1096 * pass all other presence detection
1097 * mechanisms we have. Set NODEV_HINT
1098 * for it. Kernel bz#7241.
1099 */
1100 if (status == 0x7f)
1101 qc->err_mask |= AC_ERR_NODEV_HINT;
1102
1103 /* ata_pio_sectors() might change the
1104 * state to HSM_ST_LAST. so, the state
1105 * is changed after ata_pio_sectors().
1106 */
1107 ap->hsm_task_state = HSM_ST_ERR;
1108 goto fsm_start;
1109 }
1110
1111 ata_pio_sectors(qc);
1112
1113 if (ap->hsm_task_state == HSM_ST_LAST &&
1114 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1115 /* all data read */
1116 status = ata_wait_idle(ap);
1117 goto fsm_start;
1118 }
1119 }
1120
1121 poll_next = 1;
1122 break;
1123
1124 case HSM_ST_LAST:
1125 if (unlikely(!ata_ok(status))) {
1126 qc->err_mask |= __ac_err_mask(status);
1127 ap->hsm_task_state = HSM_ST_ERR;
1128 goto fsm_start;
1129 }
1130
1131 /* no more data to transfer */
1132 trace_ata_sff_hsm_command_complete(qc, status);
1133
1134 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1135
1136 ap->hsm_task_state = HSM_ST_IDLE;
1137
1138 /* complete taskfile transaction */
1139 ata_hsm_qc_complete(qc, in_wq);
1140
1141 poll_next = 0;
1142 break;
1143
1144 case HSM_ST_ERR:
1145 ap->hsm_task_state = HSM_ST_IDLE;
1146
1147 /* complete taskfile transaction */
1148 ata_hsm_qc_complete(qc, in_wq);
1149
1150 poll_next = 0;
1151 break;
1152 default:
1153 poll_next = 0;
1154 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1155 ap->print_id, ap->hsm_task_state);
1156 }
1157
1158 return poll_next;
1159 }
1160 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1161
ata_sff_queue_work(struct work_struct * work)1162 void ata_sff_queue_work(struct work_struct *work)
1163 {
1164 queue_work(ata_sff_wq, work);
1165 }
1166 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1167
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1168 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1169 {
1170 queue_delayed_work(ata_sff_wq, dwork, delay);
1171 }
1172 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1173
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1174 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1175 {
1176 struct ata_port *ap = link->ap;
1177
1178 WARN_ON((ap->sff_pio_task_link != NULL) &&
1179 (ap->sff_pio_task_link != link));
1180 ap->sff_pio_task_link = link;
1181
1182 /* may fail if ata_sff_flush_pio_task() in progress */
1183 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1184 }
1185 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1186
ata_sff_flush_pio_task(struct ata_port * ap)1187 void ata_sff_flush_pio_task(struct ata_port *ap)
1188 {
1189 trace_ata_sff_flush_pio_task(ap);
1190
1191 cancel_delayed_work_sync(&ap->sff_pio_task);
1192
1193 /*
1194 * We wanna reset the HSM state to IDLE. If we do so without
1195 * grabbing the port lock, critical sections protected by it which
1196 * expect the HSM state to stay stable may get surprised. For
1197 * example, we may set IDLE in between the time
1198 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1199 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1200 */
1201 spin_lock_irq(ap->lock);
1202 ap->hsm_task_state = HSM_ST_IDLE;
1203 spin_unlock_irq(ap->lock);
1204
1205 ap->sff_pio_task_link = NULL;
1206 }
1207
ata_sff_pio_task(struct work_struct * work)1208 static void ata_sff_pio_task(struct work_struct *work)
1209 {
1210 struct ata_port *ap =
1211 container_of(work, struct ata_port, sff_pio_task.work);
1212 struct ata_link *link = ap->sff_pio_task_link;
1213 struct ata_queued_cmd *qc;
1214 u8 status;
1215 int poll_next;
1216
1217 spin_lock_irq(ap->lock);
1218
1219 BUG_ON(ap->sff_pio_task_link == NULL);
1220 /* qc can be NULL if timeout occurred */
1221 qc = ata_qc_from_tag(ap, link->active_tag);
1222 if (!qc) {
1223 ap->sff_pio_task_link = NULL;
1224 goto out_unlock;
1225 }
1226
1227 fsm_start:
1228 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1229
1230 /*
1231 * This is purely heuristic. This is a fast path.
1232 * Sometimes when we enter, BSY will be cleared in
1233 * a chk-status or two. If not, the drive is probably seeking
1234 * or something. Snooze for a couple msecs, then
1235 * chk-status again. If still busy, queue delayed work.
1236 */
1237 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1238 if (status & ATA_BUSY) {
1239 spin_unlock_irq(ap->lock);
1240 ata_msleep(ap, 2);
1241 spin_lock_irq(ap->lock);
1242
1243 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1244 if (status & ATA_BUSY) {
1245 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1246 goto out_unlock;
1247 }
1248 }
1249
1250 /*
1251 * hsm_move() may trigger another command to be processed.
1252 * clean the link beforehand.
1253 */
1254 ap->sff_pio_task_link = NULL;
1255 /* move the HSM */
1256 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1257
1258 /* another command or interrupt handler
1259 * may be running at this point.
1260 */
1261 if (poll_next)
1262 goto fsm_start;
1263 out_unlock:
1264 spin_unlock_irq(ap->lock);
1265 }
1266
1267 /**
1268 * ata_sff_qc_issue - issue taskfile to a SFF controller
1269 * @qc: command to issue to device
1270 *
1271 * This function issues a PIO or NODATA command to a SFF
1272 * controller.
1273 *
1274 * LOCKING:
1275 * spin_lock_irqsave(host lock)
1276 *
1277 * RETURNS:
1278 * Zero on success, AC_ERR_* mask on failure
1279 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1280 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1281 {
1282 struct ata_port *ap = qc->ap;
1283 struct ata_link *link = qc->dev->link;
1284
1285 /* Use polling pio if the LLD doesn't handle
1286 * interrupt driven pio and atapi CDB interrupt.
1287 */
1288 if (ap->flags & ATA_FLAG_PIO_POLLING)
1289 qc->tf.flags |= ATA_TFLAG_POLLING;
1290
1291 /* select the device */
1292 ata_dev_select(ap, qc->dev->devno, 1, 0);
1293
1294 /* start the command */
1295 switch (qc->tf.protocol) {
1296 case ATA_PROT_NODATA:
1297 if (qc->tf.flags & ATA_TFLAG_POLLING)
1298 ata_qc_set_polling(qc);
1299
1300 ata_tf_to_host(ap, &qc->tf, qc->tag);
1301 ap->hsm_task_state = HSM_ST_LAST;
1302
1303 if (qc->tf.flags & ATA_TFLAG_POLLING)
1304 ata_sff_queue_pio_task(link, 0);
1305
1306 break;
1307
1308 case ATA_PROT_PIO:
1309 if (qc->tf.flags & ATA_TFLAG_POLLING)
1310 ata_qc_set_polling(qc);
1311
1312 ata_tf_to_host(ap, &qc->tf, qc->tag);
1313
1314 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1315 /* PIO data out protocol */
1316 ap->hsm_task_state = HSM_ST_FIRST;
1317 ata_sff_queue_pio_task(link, 0);
1318
1319 /* always send first data block using the
1320 * ata_sff_pio_task() codepath.
1321 */
1322 } else {
1323 /* PIO data in protocol */
1324 ap->hsm_task_state = HSM_ST;
1325
1326 if (qc->tf.flags & ATA_TFLAG_POLLING)
1327 ata_sff_queue_pio_task(link, 0);
1328
1329 /* if polling, ata_sff_pio_task() handles the
1330 * rest. otherwise, interrupt handler takes
1331 * over from here.
1332 */
1333 }
1334
1335 break;
1336
1337 case ATAPI_PROT_PIO:
1338 case ATAPI_PROT_NODATA:
1339 if (qc->tf.flags & ATA_TFLAG_POLLING)
1340 ata_qc_set_polling(qc);
1341
1342 ata_tf_to_host(ap, &qc->tf, qc->tag);
1343
1344 ap->hsm_task_state = HSM_ST_FIRST;
1345
1346 /* send cdb by polling if no cdb interrupt */
1347 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1348 (qc->tf.flags & ATA_TFLAG_POLLING))
1349 ata_sff_queue_pio_task(link, 0);
1350 break;
1351
1352 default:
1353 return AC_ERR_SYSTEM;
1354 }
1355
1356 return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1359
1360 /**
1361 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1362 * @qc: qc to fill result TF for
1363 *
1364 * @qc is finished and result TF needs to be filled. Fill it
1365 * using ->sff_tf_read.
1366 *
1367 * LOCKING:
1368 * spin_lock_irqsave(host lock)
1369 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1370 void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1371 {
1372 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1373 }
1374 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1375
ata_sff_idle_irq(struct ata_port * ap)1376 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1377 {
1378 ap->stats.idle_irq++;
1379
1380 #ifdef ATA_IRQ_TRAP
1381 if ((ap->stats.idle_irq % 1000) == 0) {
1382 ap->ops->sff_check_status(ap);
1383 if (ap->ops->sff_irq_clear)
1384 ap->ops->sff_irq_clear(ap);
1385 ata_port_warn(ap, "irq trap\n");
1386 return 1;
1387 }
1388 #endif
1389 return 0; /* irq not handled */
1390 }
1391
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1392 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1393 struct ata_queued_cmd *qc,
1394 bool hsmv_on_idle)
1395 {
1396 u8 status;
1397
1398 trace_ata_sff_port_intr(qc, hsmv_on_idle);
1399
1400 /* Check whether we are expecting interrupt in this state */
1401 switch (ap->hsm_task_state) {
1402 case HSM_ST_FIRST:
1403 /* Some pre-ATAPI-4 devices assert INTRQ
1404 * at this state when ready to receive CDB.
1405 */
1406
1407 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1408 * The flag was turned on only for atapi devices. No
1409 * need to check ata_is_atapi(qc->tf.protocol) again.
1410 */
1411 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1412 return ata_sff_idle_irq(ap);
1413 break;
1414 case HSM_ST_IDLE:
1415 return ata_sff_idle_irq(ap);
1416 default:
1417 break;
1418 }
1419
1420 /* check main status, clearing INTRQ if needed */
1421 status = ata_sff_irq_status(ap);
1422 if (status & ATA_BUSY) {
1423 if (hsmv_on_idle) {
1424 /* BMDMA engine is already stopped, we're screwed */
1425 qc->err_mask |= AC_ERR_HSM;
1426 ap->hsm_task_state = HSM_ST_ERR;
1427 } else
1428 return ata_sff_idle_irq(ap);
1429 }
1430
1431 /* clear irq events */
1432 if (ap->ops->sff_irq_clear)
1433 ap->ops->sff_irq_clear(ap);
1434
1435 ata_sff_hsm_move(ap, qc, status, 0);
1436
1437 return 1; /* irq handled */
1438 }
1439
1440 /**
1441 * ata_sff_port_intr - Handle SFF port interrupt
1442 * @ap: Port on which interrupt arrived (possibly...)
1443 * @qc: Taskfile currently active in engine
1444 *
1445 * Handle port interrupt for given queued command.
1446 *
1447 * LOCKING:
1448 * spin_lock_irqsave(host lock)
1449 *
1450 * RETURNS:
1451 * One if interrupt was handled, zero if not (shared irq).
1452 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1453 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1454 {
1455 return __ata_sff_port_intr(ap, qc, false);
1456 }
1457 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1458
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1459 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1460 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1461 {
1462 struct ata_host *host = dev_instance;
1463 bool retried = false;
1464 unsigned int i;
1465 unsigned int handled, idle, polling;
1466 unsigned long flags;
1467
1468 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1469 spin_lock_irqsave(&host->lock, flags);
1470
1471 retry:
1472 handled = idle = polling = 0;
1473 for (i = 0; i < host->n_ports; i++) {
1474 struct ata_port *ap = host->ports[i];
1475 struct ata_queued_cmd *qc;
1476
1477 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1478 if (qc) {
1479 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1480 handled |= port_intr(ap, qc);
1481 else
1482 polling |= 1 << i;
1483 } else
1484 idle |= 1 << i;
1485 }
1486
1487 /*
1488 * If no port was expecting IRQ but the controller is actually
1489 * asserting IRQ line, nobody cared will ensue. Check IRQ
1490 * pending status if available and clear spurious IRQ.
1491 */
1492 if (!handled && !retried) {
1493 bool retry = false;
1494
1495 for (i = 0; i < host->n_ports; i++) {
1496 struct ata_port *ap = host->ports[i];
1497
1498 if (polling & (1 << i))
1499 continue;
1500
1501 if (!ap->ops->sff_irq_check ||
1502 !ap->ops->sff_irq_check(ap))
1503 continue;
1504
1505 if (idle & (1 << i)) {
1506 ap->ops->sff_check_status(ap);
1507 if (ap->ops->sff_irq_clear)
1508 ap->ops->sff_irq_clear(ap);
1509 } else {
1510 /* clear INTRQ and check if BUSY cleared */
1511 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1512 retry |= true;
1513 /*
1514 * With command in flight, we can't do
1515 * sff_irq_clear() w/o racing with completion.
1516 */
1517 }
1518 }
1519
1520 if (retry) {
1521 retried = true;
1522 goto retry;
1523 }
1524 }
1525
1526 spin_unlock_irqrestore(&host->lock, flags);
1527
1528 return IRQ_RETVAL(handled);
1529 }
1530
1531 /**
1532 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1533 * @irq: irq line (unused)
1534 * @dev_instance: pointer to our ata_host information structure
1535 *
1536 * Default interrupt handler for PCI IDE devices. Calls
1537 * ata_sff_port_intr() for each port that is not disabled.
1538 *
1539 * LOCKING:
1540 * Obtains host lock during operation.
1541 *
1542 * RETURNS:
1543 * IRQ_NONE or IRQ_HANDLED.
1544 */
ata_sff_interrupt(int irq,void * dev_instance)1545 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1546 {
1547 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1548 }
1549 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1550
1551 /**
1552 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1553 * @ap: port that appears to have timed out
1554 *
1555 * Called from the libata error handlers when the core code suspects
1556 * an interrupt has been lost. If it has complete anything we can and
1557 * then return. Interface must support altstatus for this faster
1558 * recovery to occur.
1559 *
1560 * Locking:
1561 * Caller holds host lock
1562 */
1563
ata_sff_lost_interrupt(struct ata_port * ap)1564 void ata_sff_lost_interrupt(struct ata_port *ap)
1565 {
1566 u8 status = 0;
1567 struct ata_queued_cmd *qc;
1568
1569 /* Only one outstanding command per SFF channel */
1570 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1571 /* We cannot lose an interrupt on a non-existent or polled command */
1572 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1573 return;
1574 /* See if the controller thinks it is still busy - if so the command
1575 isn't a lost IRQ but is still in progress */
1576 if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1577 return;
1578 if (status & ATA_BUSY)
1579 return;
1580
1581 /* There was a command running, we are no longer busy and we have
1582 no interrupt. */
1583 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
1584 /* Run the host interrupt logic as if the interrupt had not been
1585 lost */
1586 ata_sff_port_intr(ap, qc);
1587 }
1588 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1589
1590 /**
1591 * ata_sff_freeze - Freeze SFF controller port
1592 * @ap: port to freeze
1593 *
1594 * Freeze SFF controller port.
1595 *
1596 * LOCKING:
1597 * Inherited from caller.
1598 */
ata_sff_freeze(struct ata_port * ap)1599 void ata_sff_freeze(struct ata_port *ap)
1600 {
1601 ap->ctl |= ATA_NIEN;
1602 ap->last_ctl = ap->ctl;
1603
1604 ata_sff_set_devctl(ap, ap->ctl);
1605
1606 /* Under certain circumstances, some controllers raise IRQ on
1607 * ATA_NIEN manipulation. Also, many controllers fail to mask
1608 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1609 */
1610 ap->ops->sff_check_status(ap);
1611
1612 if (ap->ops->sff_irq_clear)
1613 ap->ops->sff_irq_clear(ap);
1614 }
1615 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1616
1617 /**
1618 * ata_sff_thaw - Thaw SFF controller port
1619 * @ap: port to thaw
1620 *
1621 * Thaw SFF controller port.
1622 *
1623 * LOCKING:
1624 * Inherited from caller.
1625 */
ata_sff_thaw(struct ata_port * ap)1626 void ata_sff_thaw(struct ata_port *ap)
1627 {
1628 /* clear & re-enable interrupts */
1629 ap->ops->sff_check_status(ap);
1630 if (ap->ops->sff_irq_clear)
1631 ap->ops->sff_irq_clear(ap);
1632 ata_sff_irq_on(ap);
1633 }
1634 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1635
1636 /**
1637 * ata_sff_prereset - prepare SFF link for reset
1638 * @link: SFF link to be reset
1639 * @deadline: deadline jiffies for the operation
1640 *
1641 * SFF link @link is about to be reset. Initialize it. It first
1642 * calls ata_std_prereset() and wait for !BSY if the port is
1643 * being softreset.
1644 *
1645 * LOCKING:
1646 * Kernel thread context (may sleep)
1647 *
1648 * RETURNS:
1649 * Always 0.
1650 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1651 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1652 {
1653 struct ata_eh_context *ehc = &link->eh_context;
1654 int rc;
1655
1656 /* The standard prereset is best-effort and always returns 0 */
1657 ata_std_prereset(link, deadline);
1658
1659 /* if we're about to do hardreset, nothing more to do */
1660 if (ehc->i.action & ATA_EH_HARDRESET)
1661 return 0;
1662
1663 /* wait for !BSY if we don't know that no device is attached */
1664 if (!ata_link_offline(link)) {
1665 rc = ata_sff_wait_ready(link, deadline);
1666 if (rc && rc != -ENODEV) {
1667 ata_link_warn(link,
1668 "device not ready (errno=%d), forcing hardreset\n",
1669 rc);
1670 ehc->i.action |= ATA_EH_HARDRESET;
1671 }
1672 }
1673
1674 return 0;
1675 }
1676 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1677
1678 /**
1679 * ata_devchk - PATA device presence detection
1680 * @ap: ATA channel to examine
1681 * @device: Device to examine (starting at zero)
1682 *
1683 * This technique was originally described in
1684 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1685 * later found its way into the ATA/ATAPI spec.
1686 *
1687 * Write a pattern to the ATA shadow registers,
1688 * and if a device is present, it will respond by
1689 * correctly storing and echoing back the
1690 * ATA shadow register contents.
1691 *
1692 * RETURN:
1693 * true if device is present, false if not.
1694 *
1695 * LOCKING:
1696 * caller.
1697 */
ata_devchk(struct ata_port * ap,unsigned int device)1698 static bool ata_devchk(struct ata_port *ap, unsigned int device)
1699 {
1700 struct ata_ioports *ioaddr = &ap->ioaddr;
1701 u8 nsect, lbal;
1702
1703 ap->ops->sff_dev_select(ap, device);
1704
1705 iowrite8(0x55, ioaddr->nsect_addr);
1706 iowrite8(0xaa, ioaddr->lbal_addr);
1707
1708 iowrite8(0xaa, ioaddr->nsect_addr);
1709 iowrite8(0x55, ioaddr->lbal_addr);
1710
1711 iowrite8(0x55, ioaddr->nsect_addr);
1712 iowrite8(0xaa, ioaddr->lbal_addr);
1713
1714 nsect = ioread8(ioaddr->nsect_addr);
1715 lbal = ioread8(ioaddr->lbal_addr);
1716
1717 if ((nsect == 0x55) && (lbal == 0xaa))
1718 return true; /* we found a device */
1719
1720 return false; /* nothing found */
1721 }
1722
1723 /**
1724 * ata_sff_dev_classify - Parse returned ATA device signature
1725 * @dev: ATA device to classify (starting at zero)
1726 * @present: device seems present
1727 * @r_err: Value of error register on completion
1728 *
1729 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1730 * an ATA/ATAPI-defined set of values is placed in the ATA
1731 * shadow registers, indicating the results of device detection
1732 * and diagnostics.
1733 *
1734 * Select the ATA device, and read the values from the ATA shadow
1735 * registers. Then parse according to the Error register value,
1736 * and the spec-defined values examined by ata_dev_classify().
1737 *
1738 * LOCKING:
1739 * caller.
1740 *
1741 * RETURNS:
1742 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1743 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1744 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1745 u8 *r_err)
1746 {
1747 struct ata_port *ap = dev->link->ap;
1748 struct ata_taskfile tf;
1749 unsigned int class;
1750 u8 err;
1751
1752 ap->ops->sff_dev_select(ap, dev->devno);
1753
1754 memset(&tf, 0, sizeof(tf));
1755
1756 ap->ops->sff_tf_read(ap, &tf);
1757 err = tf.error;
1758 if (r_err)
1759 *r_err = err;
1760
1761 /* see if device passed diags: continue and warn later */
1762 if (err == 0)
1763 /* diagnostic fail : do nothing _YET_ */
1764 dev->quirks |= ATA_QUIRK_DIAGNOSTIC;
1765 else if (err == 1)
1766 /* do nothing */ ;
1767 else if ((dev->devno == 0) && (err == 0x81))
1768 /* do nothing */ ;
1769 else
1770 return ATA_DEV_NONE;
1771
1772 /* determine if device is ATA or ATAPI */
1773 class = ata_port_classify(ap, &tf);
1774 switch (class) {
1775 case ATA_DEV_UNKNOWN:
1776 /*
1777 * If the device failed diagnostic, it's likely to
1778 * have reported incorrect device signature too.
1779 * Assume ATA device if the device seems present but
1780 * device signature is invalid with diagnostic
1781 * failure.
1782 */
1783 if (present && (dev->quirks & ATA_QUIRK_DIAGNOSTIC))
1784 class = ATA_DEV_ATA;
1785 else
1786 class = ATA_DEV_NONE;
1787 break;
1788 case ATA_DEV_ATA:
1789 if (ap->ops->sff_check_status(ap) == 0)
1790 class = ATA_DEV_NONE;
1791 break;
1792 }
1793 return class;
1794 }
1795 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1796
1797 /**
1798 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1799 * @link: SFF link which is just reset
1800 * @devmask: mask of present devices
1801 * @deadline: deadline jiffies for the operation
1802 *
1803 * Wait devices attached to SFF @link to become ready after
1804 * reset. It contains preceding 150ms wait to avoid accessing TF
1805 * status register too early.
1806 *
1807 * LOCKING:
1808 * Kernel thread context (may sleep).
1809 *
1810 * RETURNS:
1811 * 0 on success, -ENODEV if some or all of devices in @devmask
1812 * don't seem to exist. -errno on other errors.
1813 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1814 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1815 unsigned long deadline)
1816 {
1817 struct ata_port *ap = link->ap;
1818 struct ata_ioports *ioaddr = &ap->ioaddr;
1819 unsigned int dev0 = devmask & (1 << 0);
1820 unsigned int dev1 = devmask & (1 << 1);
1821 int rc, ret = 0;
1822
1823 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1824
1825 /* always check readiness of the master device */
1826 rc = ata_sff_wait_ready(link, deadline);
1827 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1828 * and TF status is 0xff, bail out on it too.
1829 */
1830 if (rc)
1831 return rc;
1832
1833 /* if device 1 was found in ata_devchk, wait for register
1834 * access briefly, then wait for BSY to clear.
1835 */
1836 if (dev1) {
1837 int i;
1838
1839 ap->ops->sff_dev_select(ap, 1);
1840
1841 /* Wait for register access. Some ATAPI devices fail
1842 * to set nsect/lbal after reset, so don't waste too
1843 * much time on it. We're gonna wait for !BSY anyway.
1844 */
1845 for (i = 0; i < 2; i++) {
1846 u8 nsect, lbal;
1847
1848 nsect = ioread8(ioaddr->nsect_addr);
1849 lbal = ioread8(ioaddr->lbal_addr);
1850 if ((nsect == 1) && (lbal == 1))
1851 break;
1852 ata_msleep(ap, 50); /* give drive a breather */
1853 }
1854
1855 rc = ata_sff_wait_ready(link, deadline);
1856 if (rc) {
1857 if (rc != -ENODEV)
1858 return rc;
1859 ret = rc;
1860 }
1861 }
1862
1863 /* is all this really necessary? */
1864 ap->ops->sff_dev_select(ap, 0);
1865 if (dev1)
1866 ap->ops->sff_dev_select(ap, 1);
1867 if (dev0)
1868 ap->ops->sff_dev_select(ap, 0);
1869
1870 return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1873
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)1874 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1875 unsigned long deadline)
1876 {
1877 struct ata_ioports *ioaddr = &ap->ioaddr;
1878
1879 if (ap->ioaddr.ctl_addr) {
1880 /* software reset. causes dev0 to be selected */
1881 iowrite8(ap->ctl, ioaddr->ctl_addr);
1882 udelay(20); /* FIXME: flush */
1883 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1884 udelay(20); /* FIXME: flush */
1885 iowrite8(ap->ctl, ioaddr->ctl_addr);
1886 ap->last_ctl = ap->ctl;
1887 }
1888
1889 /* wait the port to become ready */
1890 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1891 }
1892
1893 /**
1894 * ata_sff_softreset - reset host port via ATA SRST
1895 * @link: ATA link to reset
1896 * @classes: resulting classes of attached devices
1897 * @deadline: deadline jiffies for the operation
1898 *
1899 * Reset host port using ATA SRST.
1900 *
1901 * LOCKING:
1902 * Kernel thread context (may sleep)
1903 *
1904 * RETURNS:
1905 * 0 on success, -errno otherwise.
1906 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)1907 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1908 unsigned long deadline)
1909 {
1910 struct ata_port *ap = link->ap;
1911 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1912 unsigned int devmask = 0;
1913 int rc;
1914 u8 err;
1915
1916 /* determine if device 0/1 are present */
1917 if (ata_devchk(ap, 0))
1918 devmask |= (1 << 0);
1919 if (slave_possible && ata_devchk(ap, 1))
1920 devmask |= (1 << 1);
1921
1922 /* select device 0 again */
1923 ap->ops->sff_dev_select(ap, 0);
1924
1925 /* issue bus reset */
1926 rc = ata_bus_softreset(ap, devmask, deadline);
1927 /* if link is occupied, -ENODEV too is an error */
1928 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1929 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1930 return rc;
1931 }
1932
1933 /* determine by signature whether we have ATA or ATAPI devices */
1934 classes[0] = ata_sff_dev_classify(&link->device[0],
1935 devmask & (1 << 0), &err);
1936 if (slave_possible && err != 0x81)
1937 classes[1] = ata_sff_dev_classify(&link->device[1],
1938 devmask & (1 << 1), &err);
1939
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(ata_sff_softreset);
1943
1944 /**
1945 * sata_sff_hardreset - reset host port via SATA phy reset
1946 * @link: link to reset
1947 * @class: resulting class of attached device
1948 * @deadline: deadline jiffies for the operation
1949 *
1950 * SATA phy-reset host port using DET bits of SControl register,
1951 * wait for !BSY and classify the attached device.
1952 *
1953 * LOCKING:
1954 * Kernel thread context (may sleep)
1955 *
1956 * RETURNS:
1957 * 0 on success, -errno otherwise.
1958 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)1959 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1960 unsigned long deadline)
1961 {
1962 struct ata_eh_context *ehc = &link->eh_context;
1963 const unsigned int *timing = sata_ehc_deb_timing(ehc);
1964 bool online;
1965 int rc;
1966
1967 rc = sata_link_hardreset(link, timing, deadline, &online,
1968 ata_sff_check_ready);
1969 if (online)
1970 *class = ata_sff_dev_classify(link->device, 1, NULL);
1971
1972 return rc;
1973 }
1974 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1975
1976 /**
1977 * ata_sff_postreset - SFF postreset callback
1978 * @link: the target SFF ata_link
1979 * @classes: classes of attached devices
1980 *
1981 * This function is invoked after a successful reset. It first
1982 * calls ata_std_postreset() and performs SFF specific postreset
1983 * processing.
1984 *
1985 * LOCKING:
1986 * Kernel thread context (may sleep)
1987 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)1988 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1989 {
1990 struct ata_port *ap = link->ap;
1991
1992 ata_std_postreset(link, classes);
1993
1994 /* is double-select really necessary? */
1995 if (classes[0] != ATA_DEV_NONE)
1996 ap->ops->sff_dev_select(ap, 1);
1997 if (classes[1] != ATA_DEV_NONE)
1998 ap->ops->sff_dev_select(ap, 0);
1999
2000 /* bail out if no device is present */
2001 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
2002 return;
2003
2004 /* set up device control */
2005 if (ata_sff_set_devctl(ap, ap->ctl))
2006 ap->last_ctl = ap->ctl;
2007 }
2008 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2009
2010 /**
2011 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2012 * @qc: command
2013 *
2014 * Drain the FIFO and device of any stuck data following a command
2015 * failing to complete. In some cases this is necessary before a
2016 * reset will recover the device.
2017 *
2018 */
2019
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2020 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2021 {
2022 int count;
2023 struct ata_port *ap;
2024
2025 /* We only need to flush incoming data when a command was running */
2026 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2027 return;
2028
2029 ap = qc->ap;
2030 /* Drain up to 64K of data before we give up this recovery method */
2031 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2032 && count < 65536; count += 2)
2033 ioread16(ap->ioaddr.data_addr);
2034
2035 if (count)
2036 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2037
2038 }
2039 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2040
2041 /**
2042 * ata_sff_error_handler - Stock error handler for SFF controller
2043 * @ap: port to handle error for
2044 *
2045 * Stock error handler for SFF controller. It can handle both
2046 * PATA and SATA controllers. Many controllers should be able to
2047 * use this EH as-is or with some added handling before and
2048 * after.
2049 *
2050 * LOCKING:
2051 * Kernel thread context (may sleep)
2052 */
ata_sff_error_handler(struct ata_port * ap)2053 void ata_sff_error_handler(struct ata_port *ap)
2054 {
2055 ata_reset_fn_t softreset = ap->ops->softreset;
2056 ata_reset_fn_t hardreset = ap->ops->hardreset;
2057 struct ata_queued_cmd *qc;
2058 unsigned long flags;
2059
2060 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2061 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2062 qc = NULL;
2063
2064 spin_lock_irqsave(ap->lock, flags);
2065
2066 /*
2067 * We *MUST* do FIFO draining before we issue a reset as
2068 * several devices helpfully clear their internal state and
2069 * will lock solid if we touch the data port post reset. Pass
2070 * qc in case anyone wants to do different PIO/DMA recovery or
2071 * has per command fixups
2072 */
2073 if (ap->ops->sff_drain_fifo)
2074 ap->ops->sff_drain_fifo(qc);
2075
2076 spin_unlock_irqrestore(ap->lock, flags);
2077
2078 /* ignore built-in hardresets if SCR access is not available */
2079 if ((hardreset == sata_std_hardreset ||
2080 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2081 hardreset = NULL;
2082
2083 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2084 ap->ops->postreset);
2085 }
2086 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2087
2088 /**
2089 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2090 * @ioaddr: IO address structure to be initialized
2091 *
2092 * Utility function which initializes data_addr, error_addr,
2093 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2094 * device_addr, status_addr, and command_addr to standard offsets
2095 * relative to cmd_addr.
2096 *
2097 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2098 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2099 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2100 {
2101 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2102 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2103 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2104 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2105 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2106 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2107 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2108 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2109 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2110 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2111 }
2112 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2113
2114 #ifdef CONFIG_PCI
2115
ata_resources_present(struct pci_dev * pdev,int port)2116 static bool ata_resources_present(struct pci_dev *pdev, int port)
2117 {
2118 int i;
2119
2120 /* Check the PCI resources for this channel are enabled */
2121 port *= 2;
2122 for (i = 0; i < 2; i++) {
2123 if (pci_resource_start(pdev, port + i) == 0 ||
2124 pci_resource_len(pdev, port + i) == 0)
2125 return false;
2126 }
2127 return true;
2128 }
2129
2130 /**
2131 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2132 * @host: target ATA host
2133 *
2134 * Acquire native PCI ATA resources for @host and initialize the
2135 * first two ports of @host accordingly. Ports marked dummy are
2136 * skipped and allocation failure makes the port dummy.
2137 *
2138 * Note that native PCI resources are valid even for legacy hosts
2139 * as we fix up pdev resources array early in boot, so this
2140 * function can be used for both native and legacy SFF hosts.
2141 *
2142 * LOCKING:
2143 * Inherited from calling layer (may sleep).
2144 *
2145 * RETURNS:
2146 * 0 if at least one port is initialized, -ENODEV if no port is
2147 * available.
2148 */
ata_pci_sff_init_host(struct ata_host * host)2149 int ata_pci_sff_init_host(struct ata_host *host)
2150 {
2151 struct device *gdev = host->dev;
2152 struct pci_dev *pdev = to_pci_dev(gdev);
2153 unsigned int mask = 0;
2154 int i, rc;
2155
2156 /* request, iomap BARs and init port addresses accordingly */
2157 for (i = 0; i < 2; i++) {
2158 struct ata_port *ap = host->ports[i];
2159 int base = i * 2;
2160 void __iomem * const *iomap;
2161
2162 if (ata_port_is_dummy(ap))
2163 continue;
2164
2165 /* Discard disabled ports. Some controllers show
2166 * their unused channels this way. Disabled ports are
2167 * made dummy.
2168 */
2169 if (!ata_resources_present(pdev, i)) {
2170 ap->ops = &ata_dummy_port_ops;
2171 continue;
2172 }
2173
2174 rc = pcim_iomap_regions(pdev, 0x3 << base,
2175 dev_driver_string(gdev));
2176 if (rc) {
2177 dev_warn(gdev,
2178 "failed to request/iomap BARs for port %d (errno=%d)\n",
2179 i, rc);
2180 if (rc == -EBUSY)
2181 pcim_pin_device(pdev);
2182 ap->ops = &ata_dummy_port_ops;
2183 continue;
2184 }
2185 host->iomap = iomap = pcim_iomap_table(pdev);
2186
2187 ap->ioaddr.cmd_addr = iomap[base];
2188 ap->ioaddr.altstatus_addr =
2189 ap->ioaddr.ctl_addr = (void __iomem *)
2190 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2191 ata_sff_std_ports(&ap->ioaddr);
2192
2193 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2194 (unsigned long long)pci_resource_start(pdev, base),
2195 (unsigned long long)pci_resource_start(pdev, base + 1));
2196
2197 mask |= 1 << i;
2198 }
2199
2200 if (!mask) {
2201 dev_err(gdev, "no available native port\n");
2202 return -ENODEV;
2203 }
2204
2205 return 0;
2206 }
2207 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2208
2209 /**
2210 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2211 * @pdev: target PCI device
2212 * @ppi: array of port_info, must be enough for two ports
2213 * @r_host: out argument for the initialized ATA host
2214 *
2215 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2216 * all PCI resources and initialize it accordingly in one go.
2217 *
2218 * LOCKING:
2219 * Inherited from calling layer (may sleep).
2220 *
2221 * RETURNS:
2222 * 0 on success, -errno otherwise.
2223 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2224 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2225 const struct ata_port_info * const *ppi,
2226 struct ata_host **r_host)
2227 {
2228 struct ata_host *host;
2229 int rc;
2230
2231 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2232 return -ENOMEM;
2233
2234 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2235 if (!host) {
2236 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2237 rc = -ENOMEM;
2238 goto err_out;
2239 }
2240
2241 rc = ata_pci_sff_init_host(host);
2242 if (rc)
2243 goto err_out;
2244
2245 devres_remove_group(&pdev->dev, NULL);
2246 *r_host = host;
2247 return 0;
2248
2249 err_out:
2250 devres_release_group(&pdev->dev, NULL);
2251 return rc;
2252 }
2253 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2254
2255 /**
2256 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2257 * @host: target SFF ATA host
2258 * @irq_handler: irq_handler used when requesting IRQ(s)
2259 * @sht: scsi_host_template to use when registering the host
2260 *
2261 * This is the counterpart of ata_host_activate() for SFF ATA
2262 * hosts. This separate helper is necessary because SFF hosts
2263 * use two separate interrupts in legacy mode.
2264 *
2265 * LOCKING:
2266 * Inherited from calling layer (may sleep).
2267 *
2268 * RETURNS:
2269 * 0 on success, -errno otherwise.
2270 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,const struct scsi_host_template * sht)2271 int ata_pci_sff_activate_host(struct ata_host *host,
2272 irq_handler_t irq_handler,
2273 const struct scsi_host_template *sht)
2274 {
2275 struct device *dev = host->dev;
2276 struct pci_dev *pdev = to_pci_dev(dev);
2277 const char *drv_name = dev_driver_string(host->dev);
2278 int legacy_mode = 0, rc;
2279
2280 rc = ata_host_start(host);
2281 if (rc)
2282 return rc;
2283
2284 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2285 u8 tmp8, mask = 0;
2286
2287 /*
2288 * ATA spec says we should use legacy mode when one
2289 * port is in legacy mode, but disabled ports on some
2290 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2291 * on which the secondary port is not wired, so
2292 * ignore ports that are marked as 'dummy' during
2293 * this check
2294 */
2295 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2296 if (!ata_port_is_dummy(host->ports[0]))
2297 mask |= (1 << 0);
2298 if (!ata_port_is_dummy(host->ports[1]))
2299 mask |= (1 << 2);
2300 if ((tmp8 & mask) != mask)
2301 legacy_mode = 1;
2302 }
2303
2304 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2305 return -ENOMEM;
2306
2307 if (!legacy_mode && pdev->irq) {
2308 int i;
2309
2310 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2311 IRQF_SHARED, drv_name, host);
2312 if (rc)
2313 goto out;
2314
2315 for (i = 0; i < 2; i++) {
2316 if (ata_port_is_dummy(host->ports[i]))
2317 continue;
2318 ata_port_desc_misc(host->ports[i], pdev->irq);
2319 }
2320 } else if (legacy_mode) {
2321 if (!ata_port_is_dummy(host->ports[0])) {
2322 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2323 irq_handler, IRQF_SHARED,
2324 drv_name, host);
2325 if (rc)
2326 goto out;
2327
2328 ata_port_desc_misc(host->ports[0],
2329 ATA_PRIMARY_IRQ(pdev));
2330 }
2331
2332 if (!ata_port_is_dummy(host->ports[1])) {
2333 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2334 irq_handler, IRQF_SHARED,
2335 drv_name, host);
2336 if (rc)
2337 goto out;
2338
2339 ata_port_desc_misc(host->ports[1],
2340 ATA_SECONDARY_IRQ(pdev));
2341 }
2342 }
2343
2344 rc = ata_host_register(host, sht);
2345 out:
2346 if (rc == 0)
2347 devres_remove_group(dev, NULL);
2348 else
2349 devres_release_group(dev, NULL);
2350
2351 return rc;
2352 }
2353 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2354
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2355 static const struct ata_port_info *ata_sff_find_valid_pi(
2356 const struct ata_port_info * const *ppi)
2357 {
2358 int i;
2359
2360 /* look up the first valid port_info */
2361 for (i = 0; i < 2 && ppi[i]; i++)
2362 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2363 return ppi[i];
2364
2365 return NULL;
2366 }
2367
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2368 static int ata_pci_init_one(struct pci_dev *pdev,
2369 const struct ata_port_info * const *ppi,
2370 const struct scsi_host_template *sht, void *host_priv,
2371 int hflags, bool bmdma)
2372 {
2373 struct device *dev = &pdev->dev;
2374 const struct ata_port_info *pi;
2375 struct ata_host *host = NULL;
2376 int rc;
2377
2378 pi = ata_sff_find_valid_pi(ppi);
2379 if (!pi) {
2380 dev_err(&pdev->dev, "no valid port_info specified\n");
2381 return -EINVAL;
2382 }
2383
2384 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2385 return -ENOMEM;
2386
2387 rc = pcim_enable_device(pdev);
2388 if (rc)
2389 goto out;
2390
2391 #ifdef CONFIG_ATA_BMDMA
2392 if (bmdma)
2393 /* prepare and activate BMDMA host */
2394 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2395 else
2396 #endif
2397 /* prepare and activate SFF host */
2398 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2399 if (rc)
2400 goto out;
2401 host->private_data = host_priv;
2402 host->flags |= hflags;
2403
2404 #ifdef CONFIG_ATA_BMDMA
2405 if (bmdma) {
2406 pci_set_master(pdev);
2407 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2408 } else
2409 #endif
2410 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2411 out:
2412 if (rc == 0)
2413 devres_remove_group(&pdev->dev, NULL);
2414 else
2415 devres_release_group(&pdev->dev, NULL);
2416
2417 return rc;
2418 }
2419
2420 /**
2421 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2422 * @pdev: Controller to be initialized
2423 * @ppi: array of port_info, must be enough for two ports
2424 * @sht: scsi_host_template to use when registering the host
2425 * @host_priv: host private_data
2426 * @hflag: host flags
2427 *
2428 * This is a helper function which can be called from a driver's
2429 * xxx_init_one() probe function if the hardware uses traditional
2430 * IDE taskfile registers and is PIO only.
2431 *
2432 * ASSUMPTION:
2433 * Nobody makes a single channel controller that appears solely as
2434 * the secondary legacy port on PCI.
2435 *
2436 * LOCKING:
2437 * Inherited from PCI layer (may sleep).
2438 *
2439 * RETURNS:
2440 * Zero on success, negative on errno-based value on error.
2441 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflag)2442 int ata_pci_sff_init_one(struct pci_dev *pdev,
2443 const struct ata_port_info * const *ppi,
2444 const struct scsi_host_template *sht, void *host_priv, int hflag)
2445 {
2446 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2447 }
2448 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2449
2450 #endif /* CONFIG_PCI */
2451
2452 /*
2453 * BMDMA support
2454 */
2455
2456 #ifdef CONFIG_ATA_BMDMA
2457
2458 const struct ata_port_operations ata_bmdma_port_ops = {
2459 .inherits = &ata_sff_port_ops,
2460
2461 .error_handler = ata_bmdma_error_handler,
2462 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2463
2464 .qc_prep = ata_bmdma_qc_prep,
2465 .qc_issue = ata_bmdma_qc_issue,
2466
2467 .sff_irq_clear = ata_bmdma_irq_clear,
2468 .bmdma_setup = ata_bmdma_setup,
2469 .bmdma_start = ata_bmdma_start,
2470 .bmdma_stop = ata_bmdma_stop,
2471 .bmdma_status = ata_bmdma_status,
2472
2473 .port_start = ata_bmdma_port_start,
2474 };
2475 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2476
2477 const struct ata_port_operations ata_bmdma32_port_ops = {
2478 .inherits = &ata_bmdma_port_ops,
2479
2480 .sff_data_xfer = ata_sff_data_xfer32,
2481 .port_start = ata_bmdma_port_start32,
2482 };
2483 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2484
2485 /**
2486 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2487 * @qc: Metadata associated with taskfile to be transferred
2488 *
2489 * Fill PCI IDE PRD (scatter-gather) table with segments
2490 * associated with the current disk command.
2491 *
2492 * LOCKING:
2493 * spin_lock_irqsave(host lock)
2494 *
2495 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2496 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2497 {
2498 struct ata_port *ap = qc->ap;
2499 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2500 struct scatterlist *sg;
2501 unsigned int si, pi;
2502
2503 pi = 0;
2504 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2505 u32 addr, offset;
2506 u32 sg_len, len;
2507
2508 /* determine if physical DMA addr spans 64K boundary.
2509 * Note h/w doesn't support 64-bit, so we unconditionally
2510 * truncate dma_addr_t to u32.
2511 */
2512 addr = (u32) sg_dma_address(sg);
2513 sg_len = sg_dma_len(sg);
2514
2515 while (sg_len) {
2516 offset = addr & 0xffff;
2517 len = sg_len;
2518 if ((offset + sg_len) > 0x10000)
2519 len = 0x10000 - offset;
2520
2521 prd[pi].addr = cpu_to_le32(addr);
2522 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2523
2524 pi++;
2525 sg_len -= len;
2526 addr += len;
2527 }
2528 }
2529
2530 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2531 }
2532
2533 /**
2534 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2535 * @qc: Metadata associated with taskfile to be transferred
2536 *
2537 * Fill PCI IDE PRD (scatter-gather) table with segments
2538 * associated with the current disk command. Perform the fill
2539 * so that we avoid writing any length 64K records for
2540 * controllers that don't follow the spec.
2541 *
2542 * LOCKING:
2543 * spin_lock_irqsave(host lock)
2544 *
2545 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2546 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2547 {
2548 struct ata_port *ap = qc->ap;
2549 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2550 struct scatterlist *sg;
2551 unsigned int si, pi;
2552
2553 pi = 0;
2554 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2555 u32 addr, offset;
2556 u32 sg_len, len, blen;
2557
2558 /* determine if physical DMA addr spans 64K boundary.
2559 * Note h/w doesn't support 64-bit, so we unconditionally
2560 * truncate dma_addr_t to u32.
2561 */
2562 addr = (u32) sg_dma_address(sg);
2563 sg_len = sg_dma_len(sg);
2564
2565 while (sg_len) {
2566 offset = addr & 0xffff;
2567 len = sg_len;
2568 if ((offset + sg_len) > 0x10000)
2569 len = 0x10000 - offset;
2570
2571 blen = len & 0xffff;
2572 prd[pi].addr = cpu_to_le32(addr);
2573 if (blen == 0) {
2574 /* Some PATA chipsets like the CS5530 can't
2575 cope with 0x0000 meaning 64K as the spec
2576 says */
2577 prd[pi].flags_len = cpu_to_le32(0x8000);
2578 blen = 0x8000;
2579 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2580 }
2581 prd[pi].flags_len = cpu_to_le32(blen);
2582
2583 pi++;
2584 sg_len -= len;
2585 addr += len;
2586 }
2587 }
2588
2589 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2590 }
2591
2592 /**
2593 * ata_bmdma_qc_prep - Prepare taskfile for submission
2594 * @qc: Metadata associated with taskfile to be prepared
2595 *
2596 * Prepare ATA taskfile for submission.
2597 *
2598 * LOCKING:
2599 * spin_lock_irqsave(host lock)
2600 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2601 enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2602 {
2603 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2604 return AC_ERR_OK;
2605
2606 ata_bmdma_fill_sg(qc);
2607
2608 return AC_ERR_OK;
2609 }
2610 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2611
2612 /**
2613 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2614 * @qc: Metadata associated with taskfile to be prepared
2615 *
2616 * Prepare ATA taskfile for submission.
2617 *
2618 * LOCKING:
2619 * spin_lock_irqsave(host lock)
2620 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2621 enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2622 {
2623 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2624 return AC_ERR_OK;
2625
2626 ata_bmdma_fill_sg_dumb(qc);
2627
2628 return AC_ERR_OK;
2629 }
2630 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2631
2632 /**
2633 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2634 * @qc: command to issue to device
2635 *
2636 * This function issues a PIO, NODATA or DMA command to a
2637 * SFF/BMDMA controller. PIO and NODATA are handled by
2638 * ata_sff_qc_issue().
2639 *
2640 * LOCKING:
2641 * spin_lock_irqsave(host lock)
2642 *
2643 * RETURNS:
2644 * Zero on success, AC_ERR_* mask on failure
2645 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2646 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2647 {
2648 struct ata_port *ap = qc->ap;
2649 struct ata_link *link = qc->dev->link;
2650
2651 /* defer PIO handling to sff_qc_issue */
2652 if (!ata_is_dma(qc->tf.protocol))
2653 return ata_sff_qc_issue(qc);
2654
2655 /* select the device */
2656 ata_dev_select(ap, qc->dev->devno, 1, 0);
2657
2658 /* start the command */
2659 switch (qc->tf.protocol) {
2660 case ATA_PROT_DMA:
2661 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2662
2663 trace_ata_tf_load(ap, &qc->tf);
2664 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2665 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2666 ap->ops->bmdma_setup(qc); /* set up bmdma */
2667 trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2668 ap->ops->bmdma_start(qc); /* initiate bmdma */
2669 ap->hsm_task_state = HSM_ST_LAST;
2670 break;
2671
2672 case ATAPI_PROT_DMA:
2673 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2674
2675 trace_ata_tf_load(ap, &qc->tf);
2676 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2677 trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2678 ap->ops->bmdma_setup(qc); /* set up bmdma */
2679 ap->hsm_task_state = HSM_ST_FIRST;
2680
2681 /* send cdb by polling if no cdb interrupt */
2682 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2683 ata_sff_queue_pio_task(link, 0);
2684 break;
2685
2686 default:
2687 WARN_ON(1);
2688 return AC_ERR_SYSTEM;
2689 }
2690
2691 return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2694
2695 /**
2696 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2697 * @ap: Port on which interrupt arrived (possibly...)
2698 * @qc: Taskfile currently active in engine
2699 *
2700 * Handle port interrupt for given queued command.
2701 *
2702 * LOCKING:
2703 * spin_lock_irqsave(host lock)
2704 *
2705 * RETURNS:
2706 * One if interrupt was handled, zero if not (shared irq).
2707 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2708 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2709 {
2710 struct ata_eh_info *ehi = &ap->link.eh_info;
2711 u8 host_stat = 0;
2712 bool bmdma_stopped = false;
2713 unsigned int handled;
2714
2715 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2716 /* check status of DMA engine */
2717 host_stat = ap->ops->bmdma_status(ap);
2718 trace_ata_bmdma_status(ap, host_stat);
2719
2720 /* if it's not our irq... */
2721 if (!(host_stat & ATA_DMA_INTR))
2722 return ata_sff_idle_irq(ap);
2723
2724 /* before we do anything else, clear DMA-Start bit */
2725 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2726 ap->ops->bmdma_stop(qc);
2727 bmdma_stopped = true;
2728
2729 if (unlikely(host_stat & ATA_DMA_ERR)) {
2730 /* error when transferring data to/from memory */
2731 qc->err_mask |= AC_ERR_HOST_BUS;
2732 ap->hsm_task_state = HSM_ST_ERR;
2733 }
2734 }
2735
2736 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2737
2738 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2739 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2740
2741 return handled;
2742 }
2743 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2744
2745 /**
2746 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2747 * @irq: irq line (unused)
2748 * @dev_instance: pointer to our ata_host information structure
2749 *
2750 * Default interrupt handler for PCI IDE devices. Calls
2751 * ata_bmdma_port_intr() for each port that is not disabled.
2752 *
2753 * LOCKING:
2754 * Obtains host lock during operation.
2755 *
2756 * RETURNS:
2757 * IRQ_NONE or IRQ_HANDLED.
2758 */
ata_bmdma_interrupt(int irq,void * dev_instance)2759 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2760 {
2761 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2762 }
2763 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2764
2765 /**
2766 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2767 * @ap: port to handle error for
2768 *
2769 * Stock error handler for BMDMA controller. It can handle both
2770 * PATA and SATA controllers. Most BMDMA controllers should be
2771 * able to use this EH as-is or with some added handling before
2772 * and after.
2773 *
2774 * LOCKING:
2775 * Kernel thread context (may sleep)
2776 */
ata_bmdma_error_handler(struct ata_port * ap)2777 void ata_bmdma_error_handler(struct ata_port *ap)
2778 {
2779 struct ata_queued_cmd *qc;
2780 unsigned long flags;
2781 bool thaw = false;
2782
2783 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2784 if (qc && !(qc->flags & ATA_QCFLAG_EH))
2785 qc = NULL;
2786
2787 /* reset PIO HSM and stop DMA engine */
2788 spin_lock_irqsave(ap->lock, flags);
2789
2790 if (qc && ata_is_dma(qc->tf.protocol)) {
2791 u8 host_stat;
2792
2793 host_stat = ap->ops->bmdma_status(ap);
2794 trace_ata_bmdma_status(ap, host_stat);
2795
2796 /* BMDMA controllers indicate host bus error by
2797 * setting DMA_ERR bit and timing out. As it wasn't
2798 * really a timeout event, adjust error mask and
2799 * cancel frozen state.
2800 */
2801 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2802 qc->err_mask = AC_ERR_HOST_BUS;
2803 thaw = true;
2804 }
2805
2806 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2807 ap->ops->bmdma_stop(qc);
2808
2809 /* if we're gonna thaw, make sure IRQ is clear */
2810 if (thaw) {
2811 ap->ops->sff_check_status(ap);
2812 if (ap->ops->sff_irq_clear)
2813 ap->ops->sff_irq_clear(ap);
2814 }
2815 }
2816
2817 spin_unlock_irqrestore(ap->lock, flags);
2818
2819 if (thaw)
2820 ata_eh_thaw_port(ap);
2821
2822 ata_sff_error_handler(ap);
2823 }
2824 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2825
2826 /**
2827 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2828 * @qc: internal command to clean up
2829 *
2830 * LOCKING:
2831 * Kernel thread context (may sleep)
2832 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2833 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2834 {
2835 struct ata_port *ap = qc->ap;
2836 unsigned long flags;
2837
2838 if (ata_is_dma(qc->tf.protocol)) {
2839 spin_lock_irqsave(ap->lock, flags);
2840 trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2841 ap->ops->bmdma_stop(qc);
2842 spin_unlock_irqrestore(ap->lock, flags);
2843 }
2844 }
2845 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2846
2847 /**
2848 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2849 * @ap: Port associated with this ATA transaction.
2850 *
2851 * Clear interrupt and error flags in DMA status register.
2852 *
2853 * May be used as the irq_clear() entry in ata_port_operations.
2854 *
2855 * LOCKING:
2856 * spin_lock_irqsave(host lock)
2857 */
ata_bmdma_irq_clear(struct ata_port * ap)2858 void ata_bmdma_irq_clear(struct ata_port *ap)
2859 {
2860 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2861
2862 if (!mmio)
2863 return;
2864
2865 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2866 }
2867 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2868
2869 /**
2870 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2871 * @qc: Info associated with this ATA transaction.
2872 *
2873 * LOCKING:
2874 * spin_lock_irqsave(host lock)
2875 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2876 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2877 {
2878 struct ata_port *ap = qc->ap;
2879 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2880 u8 dmactl;
2881
2882 /* load PRD table addr. */
2883 mb(); /* make sure PRD table writes are visible to controller */
2884 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2885
2886 /* specify data direction, triple-check start bit is clear */
2887 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2888 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2889 if (!rw)
2890 dmactl |= ATA_DMA_WR;
2891 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2892
2893 /* issue r/w command */
2894 ap->ops->sff_exec_command(ap, &qc->tf);
2895 }
2896 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2897
2898 /**
2899 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2900 * @qc: Info associated with this ATA transaction.
2901 *
2902 * LOCKING:
2903 * spin_lock_irqsave(host lock)
2904 */
ata_bmdma_start(struct ata_queued_cmd * qc)2905 void ata_bmdma_start(struct ata_queued_cmd *qc)
2906 {
2907 struct ata_port *ap = qc->ap;
2908 u8 dmactl;
2909
2910 /* start host DMA transaction */
2911 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2912 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2913
2914 /* Strictly, one may wish to issue an ioread8() here, to
2915 * flush the mmio write. However, control also passes
2916 * to the hardware at this point, and it will interrupt
2917 * us when we are to resume control. So, in effect,
2918 * we don't care when the mmio write flushes.
2919 * Further, a read of the DMA status register _immediately_
2920 * following the write may not be what certain flaky hardware
2921 * is expected, so I think it is best to not add a readb()
2922 * without first all the MMIO ATA cards/mobos.
2923 * Or maybe I'm just being paranoid.
2924 *
2925 * FIXME: The posting of this write means I/O starts are
2926 * unnecessarily delayed for MMIO
2927 */
2928 }
2929 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2930
2931 /**
2932 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2933 * @qc: Command we are ending DMA for
2934 *
2935 * Clears the ATA_DMA_START flag in the dma control register
2936 *
2937 * May be used as the bmdma_stop() entry in ata_port_operations.
2938 *
2939 * LOCKING:
2940 * spin_lock_irqsave(host lock)
2941 */
ata_bmdma_stop(struct ata_queued_cmd * qc)2942 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2943 {
2944 struct ata_port *ap = qc->ap;
2945 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2946
2947 /* clear start/stop bit */
2948 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2949 mmio + ATA_DMA_CMD);
2950
2951 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2952 ata_sff_dma_pause(ap);
2953 }
2954 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2955
2956 /**
2957 * ata_bmdma_status - Read PCI IDE BMDMA status
2958 * @ap: Port associated with this ATA transaction.
2959 *
2960 * Read and return BMDMA status register.
2961 *
2962 * May be used as the bmdma_status() entry in ata_port_operations.
2963 *
2964 * LOCKING:
2965 * spin_lock_irqsave(host lock)
2966 */
ata_bmdma_status(struct ata_port * ap)2967 u8 ata_bmdma_status(struct ata_port *ap)
2968 {
2969 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2970 }
2971 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2972
2973
2974 /**
2975 * ata_bmdma_port_start - Set port up for bmdma.
2976 * @ap: Port to initialize
2977 *
2978 * Called just after data structures for each port are
2979 * initialized. Allocates space for PRD table.
2980 *
2981 * May be used as the port_start() entry in ata_port_operations.
2982 *
2983 * LOCKING:
2984 * Inherited from caller.
2985 */
ata_bmdma_port_start(struct ata_port * ap)2986 int ata_bmdma_port_start(struct ata_port *ap)
2987 {
2988 if (ap->mwdma_mask || ap->udma_mask) {
2989 ap->bmdma_prd =
2990 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2991 &ap->bmdma_prd_dma, GFP_KERNEL);
2992 if (!ap->bmdma_prd)
2993 return -ENOMEM;
2994 }
2995
2996 return 0;
2997 }
2998 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
2999
3000 /**
3001 * ata_bmdma_port_start32 - Set port up for dma.
3002 * @ap: Port to initialize
3003 *
3004 * Called just after data structures for each port are
3005 * initialized. Enables 32bit PIO and allocates space for PRD
3006 * table.
3007 *
3008 * May be used as the port_start() entry in ata_port_operations for
3009 * devices that are capable of 32bit PIO.
3010 *
3011 * LOCKING:
3012 * Inherited from caller.
3013 */
ata_bmdma_port_start32(struct ata_port * ap)3014 int ata_bmdma_port_start32(struct ata_port *ap)
3015 {
3016 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3017 return ata_bmdma_port_start(ap);
3018 }
3019 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3020
3021 #ifdef CONFIG_PCI
3022
3023 /**
3024 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3025 * @pdev: PCI device
3026 *
3027 * Some PCI ATA devices report simplex mode but in fact can be told to
3028 * enter non simplex mode. This implements the necessary logic to
3029 * perform the task on such devices. Calling it on other devices will
3030 * have -undefined- behaviour.
3031 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3032 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3033 {
3034 #ifdef CONFIG_HAS_IOPORT
3035 unsigned long bmdma = pci_resource_start(pdev, 4);
3036 u8 simplex;
3037
3038 if (bmdma == 0)
3039 return -ENOENT;
3040
3041 simplex = inb(bmdma + 0x02);
3042 outb(simplex & 0x60, bmdma + 0x02);
3043 simplex = inb(bmdma + 0x02);
3044 if (simplex & 0x80)
3045 return -EOPNOTSUPP;
3046 return 0;
3047 #else
3048 return -ENOENT;
3049 #endif /* CONFIG_HAS_IOPORT */
3050 }
3051 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3052
ata_bmdma_nodma(struct ata_host * host,const char * reason)3053 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3054 {
3055 int i;
3056
3057 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3058
3059 for (i = 0; i < 2; i++) {
3060 host->ports[i]->mwdma_mask = 0;
3061 host->ports[i]->udma_mask = 0;
3062 }
3063 }
3064
3065 /**
3066 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3067 * @host: target ATA host
3068 *
3069 * Acquire PCI BMDMA resources and initialize @host accordingly.
3070 *
3071 * LOCKING:
3072 * Inherited from calling layer (may sleep).
3073 */
ata_pci_bmdma_init(struct ata_host * host)3074 void ata_pci_bmdma_init(struct ata_host *host)
3075 {
3076 struct device *gdev = host->dev;
3077 struct pci_dev *pdev = to_pci_dev(gdev);
3078 int i, rc;
3079
3080 /* No BAR4 allocation: No DMA */
3081 if (pci_resource_start(pdev, 4) == 0) {
3082 ata_bmdma_nodma(host, "BAR4 is zero");
3083 return;
3084 }
3085
3086 /*
3087 * Some controllers require BMDMA region to be initialized
3088 * even if DMA is not in use to clear IRQ status via
3089 * ->sff_irq_clear method. Try to initialize bmdma_addr
3090 * regardless of dma masks.
3091 */
3092 rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3093 if (rc)
3094 ata_bmdma_nodma(host, "failed to set dma mask");
3095
3096 /* request and iomap DMA region */
3097 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3098 if (rc) {
3099 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3100 return;
3101 }
3102 host->iomap = pcim_iomap_table(pdev);
3103
3104 for (i = 0; i < 2; i++) {
3105 struct ata_port *ap = host->ports[i];
3106 void __iomem *bmdma = host->iomap[4] + 8 * i;
3107
3108 if (ata_port_is_dummy(ap))
3109 continue;
3110
3111 ap->ioaddr.bmdma_addr = bmdma;
3112 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3113 (ioread8(bmdma + 2) & 0x80))
3114 host->flags |= ATA_HOST_SIMPLEX;
3115
3116 ata_port_desc(ap, "bmdma 0x%llx",
3117 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3118 }
3119 }
3120 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3121
3122 /**
3123 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3124 * @pdev: target PCI device
3125 * @ppi: array of port_info, must be enough for two ports
3126 * @r_host: out argument for the initialized ATA host
3127 *
3128 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3129 * resources and initialize it accordingly in one go.
3130 *
3131 * LOCKING:
3132 * Inherited from calling layer (may sleep).
3133 *
3134 * RETURNS:
3135 * 0 on success, -errno otherwise.
3136 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3137 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3138 const struct ata_port_info * const * ppi,
3139 struct ata_host **r_host)
3140 {
3141 int rc;
3142
3143 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3144 if (rc)
3145 return rc;
3146
3147 ata_pci_bmdma_init(*r_host);
3148 return 0;
3149 }
3150 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3151
3152 /**
3153 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3154 * @pdev: Controller to be initialized
3155 * @ppi: array of port_info, must be enough for two ports
3156 * @sht: scsi_host_template to use when registering the host
3157 * @host_priv: host private_data
3158 * @hflags: host flags
3159 *
3160 * This function is similar to ata_pci_sff_init_one() but also
3161 * takes care of BMDMA initialization.
3162 *
3163 * LOCKING:
3164 * Inherited from PCI layer (may sleep).
3165 *
3166 * RETURNS:
3167 * Zero on success, negative on errno-based value on error.
3168 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,const struct scsi_host_template * sht,void * host_priv,int hflags)3169 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3170 const struct ata_port_info * const * ppi,
3171 const struct scsi_host_template *sht, void *host_priv,
3172 int hflags)
3173 {
3174 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3175 }
3176 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3177
3178 #endif /* CONFIG_PCI */
3179 #endif /* CONFIG_ATA_BMDMA */
3180
3181 /**
3182 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3183 * @ap: Port to initialize
3184 *
3185 * Called on port allocation to initialize SFF/BMDMA specific
3186 * fields.
3187 *
3188 * LOCKING:
3189 * None.
3190 */
ata_sff_port_init(struct ata_port * ap)3191 void ata_sff_port_init(struct ata_port *ap)
3192 {
3193 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3194 ap->ctl = ATA_DEVCTL_OBS;
3195 ap->last_ctl = 0xFF;
3196 }
3197
ata_sff_init(void)3198 int __init ata_sff_init(void)
3199 {
3200 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3201 if (!ata_sff_wq)
3202 return -ENOMEM;
3203
3204 return 0;
3205 }
3206
ata_sff_exit(void)3207 void ata_sff_exit(void)
3208 {
3209 destroy_workqueue(ata_sff_wq);
3210 }
3211