1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(const struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static const struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 636 struct rbd_image_header *header); 637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 638 u64 snap_id); 639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 640 u8 *order, u64 *snap_size); 641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 642 643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 645 646 /* 647 * Return true if nothing else is pending. 648 */ 649 static bool pending_result_dec(struct pending_result *pending, int *result) 650 { 651 rbd_assert(pending->num_pending > 0); 652 653 if (*result && !pending->result) 654 pending->result = *result; 655 if (--pending->num_pending) 656 return false; 657 658 *result = pending->result; 659 return true; 660 } 661 662 static int rbd_open(struct gendisk *disk, blk_mode_t mode) 663 { 664 struct rbd_device *rbd_dev = disk->private_data; 665 bool removing = false; 666 667 spin_lock_irq(&rbd_dev->lock); 668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 669 removing = true; 670 else 671 rbd_dev->open_count++; 672 spin_unlock_irq(&rbd_dev->lock); 673 if (removing) 674 return -ENOENT; 675 676 (void) get_device(&rbd_dev->dev); 677 678 return 0; 679 } 680 681 static void rbd_release(struct gendisk *disk) 682 { 683 struct rbd_device *rbd_dev = disk->private_data; 684 unsigned long open_count_before; 685 686 spin_lock_irq(&rbd_dev->lock); 687 open_count_before = rbd_dev->open_count--; 688 spin_unlock_irq(&rbd_dev->lock); 689 rbd_assert(open_count_before > 0); 690 691 put_device(&rbd_dev->dev); 692 } 693 694 static const struct block_device_operations rbd_bd_ops = { 695 .owner = THIS_MODULE, 696 .open = rbd_open, 697 .release = rbd_release, 698 }; 699 700 /* 701 * Initialize an rbd client instance. Success or not, this function 702 * consumes ceph_opts. Caller holds client_mutex. 703 */ 704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 705 { 706 struct rbd_client *rbdc; 707 int ret = -ENOMEM; 708 709 dout("%s:\n", __func__); 710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 711 if (!rbdc) 712 goto out_opt; 713 714 kref_init(&rbdc->kref); 715 INIT_LIST_HEAD(&rbdc->node); 716 717 rbdc->client = ceph_create_client(ceph_opts, rbdc); 718 if (IS_ERR(rbdc->client)) 719 goto out_rbdc; 720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 721 722 ret = ceph_open_session(rbdc->client); 723 if (ret < 0) 724 goto out_client; 725 726 spin_lock(&rbd_client_list_lock); 727 list_add_tail(&rbdc->node, &rbd_client_list); 728 spin_unlock(&rbd_client_list_lock); 729 730 dout("%s: rbdc %p\n", __func__, rbdc); 731 732 return rbdc; 733 out_client: 734 ceph_destroy_client(rbdc->client); 735 out_rbdc: 736 kfree(rbdc); 737 out_opt: 738 if (ceph_opts) 739 ceph_destroy_options(ceph_opts); 740 dout("%s: error %d\n", __func__, ret); 741 742 return ERR_PTR(ret); 743 } 744 745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 746 { 747 kref_get(&rbdc->kref); 748 749 return rbdc; 750 } 751 752 /* 753 * Find a ceph client with specific addr and configuration. If 754 * found, bump its reference count. 755 */ 756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 757 { 758 struct rbd_client *rbdc = NULL, *iter; 759 760 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 761 return NULL; 762 763 spin_lock(&rbd_client_list_lock); 764 list_for_each_entry(iter, &rbd_client_list, node) { 765 if (!ceph_compare_options(ceph_opts, iter->client)) { 766 __rbd_get_client(iter); 767 768 rbdc = iter; 769 break; 770 } 771 } 772 spin_unlock(&rbd_client_list_lock); 773 774 return rbdc; 775 } 776 777 /* 778 * (Per device) rbd map options 779 */ 780 enum { 781 Opt_queue_depth, 782 Opt_alloc_size, 783 Opt_lock_timeout, 784 /* int args above */ 785 Opt_pool_ns, 786 Opt_compression_hint, 787 /* string args above */ 788 Opt_read_only, 789 Opt_read_write, 790 Opt_lock_on_read, 791 Opt_exclusive, 792 Opt_notrim, 793 }; 794 795 enum { 796 Opt_compression_hint_none, 797 Opt_compression_hint_compressible, 798 Opt_compression_hint_incompressible, 799 }; 800 801 static const struct constant_table rbd_param_compression_hint[] = { 802 {"none", Opt_compression_hint_none}, 803 {"compressible", Opt_compression_hint_compressible}, 804 {"incompressible", Opt_compression_hint_incompressible}, 805 {} 806 }; 807 808 static const struct fs_parameter_spec rbd_parameters[] = { 809 fsparam_u32 ("alloc_size", Opt_alloc_size), 810 fsparam_enum ("compression_hint", Opt_compression_hint, 811 rbd_param_compression_hint), 812 fsparam_flag ("exclusive", Opt_exclusive), 813 fsparam_flag ("lock_on_read", Opt_lock_on_read), 814 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 815 fsparam_flag ("notrim", Opt_notrim), 816 fsparam_string ("_pool_ns", Opt_pool_ns), 817 fsparam_u32 ("queue_depth", Opt_queue_depth), 818 fsparam_flag ("read_only", Opt_read_only), 819 fsparam_flag ("read_write", Opt_read_write), 820 fsparam_flag ("ro", Opt_read_only), 821 fsparam_flag ("rw", Opt_read_write), 822 {} 823 }; 824 825 struct rbd_options { 826 int queue_depth; 827 int alloc_size; 828 unsigned long lock_timeout; 829 bool read_only; 830 bool lock_on_read; 831 bool exclusive; 832 bool trim; 833 834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 835 }; 836 837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ 838 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 839 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 840 #define RBD_READ_ONLY_DEFAULT false 841 #define RBD_LOCK_ON_READ_DEFAULT false 842 #define RBD_EXCLUSIVE_DEFAULT false 843 #define RBD_TRIM_DEFAULT true 844 845 struct rbd_parse_opts_ctx { 846 struct rbd_spec *spec; 847 struct ceph_options *copts; 848 struct rbd_options *opts; 849 }; 850 851 static char* obj_op_name(enum obj_operation_type op_type) 852 { 853 switch (op_type) { 854 case OBJ_OP_READ: 855 return "read"; 856 case OBJ_OP_WRITE: 857 return "write"; 858 case OBJ_OP_DISCARD: 859 return "discard"; 860 case OBJ_OP_ZEROOUT: 861 return "zeroout"; 862 default: 863 return "???"; 864 } 865 } 866 867 /* 868 * Destroy ceph client 869 * 870 * Caller must hold rbd_client_list_lock. 871 */ 872 static void rbd_client_release(struct kref *kref) 873 { 874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 875 876 dout("%s: rbdc %p\n", __func__, rbdc); 877 spin_lock(&rbd_client_list_lock); 878 list_del(&rbdc->node); 879 spin_unlock(&rbd_client_list_lock); 880 881 ceph_destroy_client(rbdc->client); 882 kfree(rbdc); 883 } 884 885 /* 886 * Drop reference to ceph client node. If it's not referenced anymore, release 887 * it. 888 */ 889 static void rbd_put_client(struct rbd_client *rbdc) 890 { 891 if (rbdc) 892 kref_put(&rbdc->kref, rbd_client_release); 893 } 894 895 /* 896 * Get a ceph client with specific addr and configuration, if one does 897 * not exist create it. Either way, ceph_opts is consumed by this 898 * function. 899 */ 900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 901 { 902 struct rbd_client *rbdc; 903 int ret; 904 905 mutex_lock(&client_mutex); 906 rbdc = rbd_client_find(ceph_opts); 907 if (rbdc) { 908 ceph_destroy_options(ceph_opts); 909 910 /* 911 * Using an existing client. Make sure ->pg_pools is up to 912 * date before we look up the pool id in do_rbd_add(). 913 */ 914 ret = ceph_wait_for_latest_osdmap(rbdc->client, 915 rbdc->client->options->mount_timeout); 916 if (ret) { 917 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 918 rbd_put_client(rbdc); 919 rbdc = ERR_PTR(ret); 920 } 921 } else { 922 rbdc = rbd_client_create(ceph_opts); 923 } 924 mutex_unlock(&client_mutex); 925 926 return rbdc; 927 } 928 929 static bool rbd_image_format_valid(u32 image_format) 930 { 931 return image_format == 1 || image_format == 2; 932 } 933 934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 935 { 936 size_t size; 937 u32 snap_count; 938 939 /* The header has to start with the magic rbd header text */ 940 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 941 return false; 942 943 /* The bio layer requires at least sector-sized I/O */ 944 945 if (ondisk->options.order < SECTOR_SHIFT) 946 return false; 947 948 /* If we use u64 in a few spots we may be able to loosen this */ 949 950 if (ondisk->options.order > 8 * sizeof (int) - 1) 951 return false; 952 953 /* 954 * The size of a snapshot header has to fit in a size_t, and 955 * that limits the number of snapshots. 956 */ 957 snap_count = le32_to_cpu(ondisk->snap_count); 958 size = SIZE_MAX - sizeof (struct ceph_snap_context); 959 if (snap_count > size / sizeof (__le64)) 960 return false; 961 962 /* 963 * Not only that, but the size of the entire the snapshot 964 * header must also be representable in a size_t. 965 */ 966 size -= snap_count * sizeof (__le64); 967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 968 return false; 969 970 return true; 971 } 972 973 /* 974 * returns the size of an object in the image 975 */ 976 static u32 rbd_obj_bytes(struct rbd_image_header *header) 977 { 978 return 1U << header->obj_order; 979 } 980 981 static void rbd_init_layout(struct rbd_device *rbd_dev) 982 { 983 if (rbd_dev->header.stripe_unit == 0 || 984 rbd_dev->header.stripe_count == 0) { 985 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 986 rbd_dev->header.stripe_count = 1; 987 } 988 989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 991 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 995 } 996 997 static void rbd_image_header_cleanup(struct rbd_image_header *header) 998 { 999 kfree(header->object_prefix); 1000 ceph_put_snap_context(header->snapc); 1001 kfree(header->snap_sizes); 1002 kfree(header->snap_names); 1003 1004 memset(header, 0, sizeof(*header)); 1005 } 1006 1007 /* 1008 * Fill an rbd image header with information from the given format 1 1009 * on-disk header. 1010 */ 1011 static int rbd_header_from_disk(struct rbd_image_header *header, 1012 struct rbd_image_header_ondisk *ondisk, 1013 bool first_time) 1014 { 1015 struct ceph_snap_context *snapc; 1016 char *object_prefix = NULL; 1017 char *snap_names = NULL; 1018 u64 *snap_sizes = NULL; 1019 u32 snap_count; 1020 int ret = -ENOMEM; 1021 u32 i; 1022 1023 /* Allocate this now to avoid having to handle failure below */ 1024 1025 if (first_time) { 1026 object_prefix = kstrndup(ondisk->object_prefix, 1027 sizeof(ondisk->object_prefix), 1028 GFP_KERNEL); 1029 if (!object_prefix) 1030 return -ENOMEM; 1031 } 1032 1033 /* Allocate the snapshot context and fill it in */ 1034 1035 snap_count = le32_to_cpu(ondisk->snap_count); 1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1037 if (!snapc) 1038 goto out_err; 1039 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1040 if (snap_count) { 1041 struct rbd_image_snap_ondisk *snaps; 1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1043 1044 /* We'll keep a copy of the snapshot names... */ 1045 1046 if (snap_names_len > (u64)SIZE_MAX) 1047 goto out_2big; 1048 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1049 if (!snap_names) 1050 goto out_err; 1051 1052 /* ...as well as the array of their sizes. */ 1053 snap_sizes = kmalloc_array(snap_count, 1054 sizeof(*header->snap_sizes), 1055 GFP_KERNEL); 1056 if (!snap_sizes) 1057 goto out_err; 1058 1059 /* 1060 * Copy the names, and fill in each snapshot's id 1061 * and size. 1062 * 1063 * Note that rbd_dev_v1_header_info() guarantees the 1064 * ondisk buffer we're working with has 1065 * snap_names_len bytes beyond the end of the 1066 * snapshot id array, this memcpy() is safe. 1067 */ 1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1069 snaps = ondisk->snaps; 1070 for (i = 0; i < snap_count; i++) { 1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1073 } 1074 } 1075 1076 /* We won't fail any more, fill in the header */ 1077 1078 if (first_time) { 1079 header->object_prefix = object_prefix; 1080 header->obj_order = ondisk->options.order; 1081 } 1082 1083 /* The remaining fields always get updated (when we refresh) */ 1084 1085 header->image_size = le64_to_cpu(ondisk->image_size); 1086 header->snapc = snapc; 1087 header->snap_names = snap_names; 1088 header->snap_sizes = snap_sizes; 1089 1090 return 0; 1091 out_2big: 1092 ret = -EIO; 1093 out_err: 1094 kfree(snap_sizes); 1095 kfree(snap_names); 1096 ceph_put_snap_context(snapc); 1097 kfree(object_prefix); 1098 1099 return ret; 1100 } 1101 1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1103 { 1104 const char *snap_name; 1105 1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1107 1108 /* Skip over names until we find the one we are looking for */ 1109 1110 snap_name = rbd_dev->header.snap_names; 1111 while (which--) 1112 snap_name += strlen(snap_name) + 1; 1113 1114 return kstrdup(snap_name, GFP_KERNEL); 1115 } 1116 1117 /* 1118 * Snapshot id comparison function for use with qsort()/bsearch(). 1119 * Note that result is for snapshots in *descending* order. 1120 */ 1121 static int snapid_compare_reverse(const void *s1, const void *s2) 1122 { 1123 u64 snap_id1 = *(u64 *)s1; 1124 u64 snap_id2 = *(u64 *)s2; 1125 1126 if (snap_id1 < snap_id2) 1127 return 1; 1128 return snap_id1 == snap_id2 ? 0 : -1; 1129 } 1130 1131 /* 1132 * Search a snapshot context to see if the given snapshot id is 1133 * present. 1134 * 1135 * Returns the position of the snapshot id in the array if it's found, 1136 * or BAD_SNAP_INDEX otherwise. 1137 * 1138 * Note: The snapshot array is in kept sorted (by the osd) in 1139 * reverse order, highest snapshot id first. 1140 */ 1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1142 { 1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1144 u64 *found; 1145 1146 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1147 sizeof (snap_id), snapid_compare_reverse); 1148 1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1150 } 1151 1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1153 u64 snap_id) 1154 { 1155 u32 which; 1156 const char *snap_name; 1157 1158 which = rbd_dev_snap_index(rbd_dev, snap_id); 1159 if (which == BAD_SNAP_INDEX) 1160 return ERR_PTR(-ENOENT); 1161 1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1163 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1164 } 1165 1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1167 { 1168 if (snap_id == CEPH_NOSNAP) 1169 return RBD_SNAP_HEAD_NAME; 1170 1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1172 if (rbd_dev->image_format == 1) 1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1174 1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1176 } 1177 1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1179 u64 *snap_size) 1180 { 1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1182 if (snap_id == CEPH_NOSNAP) { 1183 *snap_size = rbd_dev->header.image_size; 1184 } else if (rbd_dev->image_format == 1) { 1185 u32 which; 1186 1187 which = rbd_dev_snap_index(rbd_dev, snap_id); 1188 if (which == BAD_SNAP_INDEX) 1189 return -ENOENT; 1190 1191 *snap_size = rbd_dev->header.snap_sizes[which]; 1192 } else { 1193 u64 size = 0; 1194 int ret; 1195 1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1197 if (ret) 1198 return ret; 1199 1200 *snap_size = size; 1201 } 1202 return 0; 1203 } 1204 1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1206 { 1207 u64 snap_id = rbd_dev->spec->snap_id; 1208 u64 size = 0; 1209 int ret; 1210 1211 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1212 if (ret) 1213 return ret; 1214 1215 rbd_dev->mapping.size = size; 1216 return 0; 1217 } 1218 1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1220 { 1221 rbd_dev->mapping.size = 0; 1222 } 1223 1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1225 { 1226 struct ceph_bio_iter it = *bio_pos; 1227 1228 ceph_bio_iter_advance(&it, off); 1229 ceph_bio_iter_advance_step(&it, bytes, ({ 1230 memzero_bvec(&bv); 1231 })); 1232 } 1233 1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1235 { 1236 struct ceph_bvec_iter it = *bvec_pos; 1237 1238 ceph_bvec_iter_advance(&it, off); 1239 ceph_bvec_iter_advance_step(&it, bytes, ({ 1240 memzero_bvec(&bv); 1241 })); 1242 } 1243 1244 /* 1245 * Zero a range in @obj_req data buffer defined by a bio (list) or 1246 * (private) bio_vec array. 1247 * 1248 * @off is relative to the start of the data buffer. 1249 */ 1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1251 u32 bytes) 1252 { 1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1254 1255 switch (obj_req->img_request->data_type) { 1256 case OBJ_REQUEST_BIO: 1257 zero_bios(&obj_req->bio_pos, off, bytes); 1258 break; 1259 case OBJ_REQUEST_BVECS: 1260 case OBJ_REQUEST_OWN_BVECS: 1261 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1262 break; 1263 default: 1264 BUG(); 1265 } 1266 } 1267 1268 static void rbd_obj_request_destroy(struct kref *kref); 1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1270 { 1271 rbd_assert(obj_request != NULL); 1272 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1273 kref_read(&obj_request->kref)); 1274 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1275 } 1276 1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1278 struct rbd_obj_request *obj_request) 1279 { 1280 rbd_assert(obj_request->img_request == NULL); 1281 1282 /* Image request now owns object's original reference */ 1283 obj_request->img_request = img_request; 1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1285 } 1286 1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1288 struct rbd_obj_request *obj_request) 1289 { 1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1291 list_del(&obj_request->ex.oe_item); 1292 rbd_assert(obj_request->img_request == img_request); 1293 rbd_obj_request_put(obj_request); 1294 } 1295 1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1297 { 1298 struct rbd_obj_request *obj_req = osd_req->r_priv; 1299 1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1302 obj_req->ex.oe_off, obj_req->ex.oe_len); 1303 ceph_osdc_start_request(osd_req->r_osdc, osd_req); 1304 } 1305 1306 /* 1307 * The default/initial value for all image request flags is 0. Each 1308 * is conditionally set to 1 at image request initialization time 1309 * and currently never change thereafter. 1310 */ 1311 static void img_request_layered_set(struct rbd_img_request *img_request) 1312 { 1313 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1314 } 1315 1316 static bool img_request_layered_test(struct rbd_img_request *img_request) 1317 { 1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1319 } 1320 1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1322 { 1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1324 1325 return !obj_req->ex.oe_off && 1326 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1327 } 1328 1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1330 { 1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1332 1333 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1334 rbd_dev->layout.object_size; 1335 } 1336 1337 /* 1338 * Must be called after rbd_obj_calc_img_extents(). 1339 */ 1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req) 1341 { 1342 rbd_assert(obj_req->img_request->snapc); 1343 1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) { 1345 dout("%s %p objno %llu discard\n", __func__, obj_req, 1346 obj_req->ex.oe_objno); 1347 return; 1348 } 1349 1350 if (!obj_req->num_img_extents) { 1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req, 1352 obj_req->ex.oe_objno); 1353 return; 1354 } 1355 1356 if (rbd_obj_is_entire(obj_req) && 1357 !obj_req->img_request->snapc->num_snaps) { 1358 dout("%s %p objno %llu entire\n", __func__, obj_req, 1359 obj_req->ex.oe_objno); 1360 return; 1361 } 1362 1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 1364 } 1365 1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1367 { 1368 return ceph_file_extents_bytes(obj_req->img_extents, 1369 obj_req->num_img_extents); 1370 } 1371 1372 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1373 { 1374 switch (img_req->op_type) { 1375 case OBJ_OP_READ: 1376 return false; 1377 case OBJ_OP_WRITE: 1378 case OBJ_OP_DISCARD: 1379 case OBJ_OP_ZEROOUT: 1380 return true; 1381 default: 1382 BUG(); 1383 } 1384 } 1385 1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1387 { 1388 struct rbd_obj_request *obj_req = osd_req->r_priv; 1389 int result; 1390 1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1392 osd_req->r_result, obj_req); 1393 1394 /* 1395 * Writes aren't allowed to return a data payload. In some 1396 * guarded write cases (e.g. stat + zero on an empty object) 1397 * a stat response makes it through, but we don't care. 1398 */ 1399 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1400 result = 0; 1401 else 1402 result = osd_req->r_result; 1403 1404 rbd_obj_handle_request(obj_req, result); 1405 } 1406 1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1408 { 1409 struct rbd_obj_request *obj_request = osd_req->r_priv; 1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1412 1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1414 osd_req->r_snapid = obj_request->img_request->snap_id; 1415 } 1416 1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1418 { 1419 struct rbd_obj_request *obj_request = osd_req->r_priv; 1420 1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1422 ktime_get_real_ts64(&osd_req->r_mtime); 1423 osd_req->r_data_offset = obj_request->ex.oe_off; 1424 } 1425 1426 static struct ceph_osd_request * 1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1428 struct ceph_snap_context *snapc, int num_ops) 1429 { 1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1432 struct ceph_osd_request *req; 1433 const char *name_format = rbd_dev->image_format == 1 ? 1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1435 int ret; 1436 1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1438 if (!req) 1439 return ERR_PTR(-ENOMEM); 1440 1441 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1442 req->r_callback = rbd_osd_req_callback; 1443 req->r_priv = obj_req; 1444 1445 /* 1446 * Data objects may be stored in a separate pool, but always in 1447 * the same namespace in that pool as the header in its pool. 1448 */ 1449 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1451 1452 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1453 rbd_dev->header.object_prefix, 1454 obj_req->ex.oe_objno); 1455 if (ret) 1456 return ERR_PTR(ret); 1457 1458 return req; 1459 } 1460 1461 static struct ceph_osd_request * 1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1463 { 1464 rbd_assert(obj_req->img_request->snapc); 1465 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1466 num_ops); 1467 } 1468 1469 static struct rbd_obj_request *rbd_obj_request_create(void) 1470 { 1471 struct rbd_obj_request *obj_request; 1472 1473 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1474 if (!obj_request) 1475 return NULL; 1476 1477 ceph_object_extent_init(&obj_request->ex); 1478 INIT_LIST_HEAD(&obj_request->osd_reqs); 1479 mutex_init(&obj_request->state_mutex); 1480 kref_init(&obj_request->kref); 1481 1482 dout("%s %p\n", __func__, obj_request); 1483 return obj_request; 1484 } 1485 1486 static void rbd_obj_request_destroy(struct kref *kref) 1487 { 1488 struct rbd_obj_request *obj_request; 1489 struct ceph_osd_request *osd_req; 1490 u32 i; 1491 1492 obj_request = container_of(kref, struct rbd_obj_request, kref); 1493 1494 dout("%s: obj %p\n", __func__, obj_request); 1495 1496 while (!list_empty(&obj_request->osd_reqs)) { 1497 osd_req = list_first_entry(&obj_request->osd_reqs, 1498 struct ceph_osd_request, r_private_item); 1499 list_del_init(&osd_req->r_private_item); 1500 ceph_osdc_put_request(osd_req); 1501 } 1502 1503 switch (obj_request->img_request->data_type) { 1504 case OBJ_REQUEST_NODATA: 1505 case OBJ_REQUEST_BIO: 1506 case OBJ_REQUEST_BVECS: 1507 break; /* Nothing to do */ 1508 case OBJ_REQUEST_OWN_BVECS: 1509 kfree(obj_request->bvec_pos.bvecs); 1510 break; 1511 default: 1512 BUG(); 1513 } 1514 1515 kfree(obj_request->img_extents); 1516 if (obj_request->copyup_bvecs) { 1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1518 if (obj_request->copyup_bvecs[i].bv_page) 1519 __free_page(obj_request->copyup_bvecs[i].bv_page); 1520 } 1521 kfree(obj_request->copyup_bvecs); 1522 } 1523 1524 kmem_cache_free(rbd_obj_request_cache, obj_request); 1525 } 1526 1527 /* It's OK to call this for a device with no parent */ 1528 1529 static void rbd_spec_put(struct rbd_spec *spec); 1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1531 { 1532 rbd_dev_remove_parent(rbd_dev); 1533 rbd_spec_put(rbd_dev->parent_spec); 1534 rbd_dev->parent_spec = NULL; 1535 rbd_dev->parent_overlap = 0; 1536 } 1537 1538 /* 1539 * Parent image reference counting is used to determine when an 1540 * image's parent fields can be safely torn down--after there are no 1541 * more in-flight requests to the parent image. When the last 1542 * reference is dropped, cleaning them up is safe. 1543 */ 1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1545 { 1546 int counter; 1547 1548 if (!rbd_dev->parent_spec) 1549 return; 1550 1551 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1552 if (counter > 0) 1553 return; 1554 1555 /* Last reference; clean up parent data structures */ 1556 1557 if (!counter) 1558 rbd_dev_unparent(rbd_dev); 1559 else 1560 rbd_warn(rbd_dev, "parent reference underflow"); 1561 } 1562 1563 /* 1564 * If an image has a non-zero parent overlap, get a reference to its 1565 * parent. 1566 * 1567 * Returns true if the rbd device has a parent with a non-zero 1568 * overlap and a reference for it was successfully taken, or 1569 * false otherwise. 1570 */ 1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1572 { 1573 int counter = 0; 1574 1575 if (!rbd_dev->parent_spec) 1576 return false; 1577 1578 if (rbd_dev->parent_overlap) 1579 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1580 1581 if (counter < 0) 1582 rbd_warn(rbd_dev, "parent reference overflow"); 1583 1584 return counter > 0; 1585 } 1586 1587 static void rbd_img_request_init(struct rbd_img_request *img_request, 1588 struct rbd_device *rbd_dev, 1589 enum obj_operation_type op_type) 1590 { 1591 memset(img_request, 0, sizeof(*img_request)); 1592 1593 img_request->rbd_dev = rbd_dev; 1594 img_request->op_type = op_type; 1595 1596 INIT_LIST_HEAD(&img_request->lock_item); 1597 INIT_LIST_HEAD(&img_request->object_extents); 1598 mutex_init(&img_request->state_mutex); 1599 } 1600 1601 /* 1602 * Only snap_id is captured here, for reads. For writes, snapshot 1603 * context is captured in rbd_img_object_requests() after exclusive 1604 * lock is ensured to be held. 1605 */ 1606 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1607 { 1608 struct rbd_device *rbd_dev = img_req->rbd_dev; 1609 1610 lockdep_assert_held(&rbd_dev->header_rwsem); 1611 1612 if (!rbd_img_is_write(img_req)) 1613 img_req->snap_id = rbd_dev->spec->snap_id; 1614 1615 if (rbd_dev_parent_get(rbd_dev)) 1616 img_request_layered_set(img_req); 1617 } 1618 1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1620 { 1621 struct rbd_obj_request *obj_request; 1622 struct rbd_obj_request *next_obj_request; 1623 1624 dout("%s: img %p\n", __func__, img_request); 1625 1626 WARN_ON(!list_empty(&img_request->lock_item)); 1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1628 rbd_img_obj_request_del(img_request, obj_request); 1629 1630 if (img_request_layered_test(img_request)) 1631 rbd_dev_parent_put(img_request->rbd_dev); 1632 1633 if (rbd_img_is_write(img_request)) 1634 ceph_put_snap_context(img_request->snapc); 1635 1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1637 kmem_cache_free(rbd_img_request_cache, img_request); 1638 } 1639 1640 #define BITS_PER_OBJ 2 1641 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1642 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1643 1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1645 u64 *index, u8 *shift) 1646 { 1647 u32 off; 1648 1649 rbd_assert(objno < rbd_dev->object_map_size); 1650 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1652 } 1653 1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1655 { 1656 u64 index; 1657 u8 shift; 1658 1659 lockdep_assert_held(&rbd_dev->object_map_lock); 1660 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1662 } 1663 1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1665 { 1666 u64 index; 1667 u8 shift; 1668 u8 *p; 1669 1670 lockdep_assert_held(&rbd_dev->object_map_lock); 1671 rbd_assert(!(val & ~OBJ_MASK)); 1672 1673 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1674 p = &rbd_dev->object_map[index]; 1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1676 } 1677 1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1679 { 1680 u8 state; 1681 1682 spin_lock(&rbd_dev->object_map_lock); 1683 state = __rbd_object_map_get(rbd_dev, objno); 1684 spin_unlock(&rbd_dev->object_map_lock); 1685 return state; 1686 } 1687 1688 static bool use_object_map(struct rbd_device *rbd_dev) 1689 { 1690 /* 1691 * An image mapped read-only can't use the object map -- it isn't 1692 * loaded because the header lock isn't acquired. Someone else can 1693 * write to the image and update the object map behind our back. 1694 * 1695 * A snapshot can't be written to, so using the object map is always 1696 * safe. 1697 */ 1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1699 return false; 1700 1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1703 } 1704 1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1706 { 1707 u8 state; 1708 1709 /* fall back to default logic if object map is disabled or invalid */ 1710 if (!use_object_map(rbd_dev)) 1711 return true; 1712 1713 state = rbd_object_map_get(rbd_dev, objno); 1714 return state != OBJECT_NONEXISTENT; 1715 } 1716 1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1718 struct ceph_object_id *oid) 1719 { 1720 if (snap_id == CEPH_NOSNAP) 1721 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1722 rbd_dev->spec->image_id); 1723 else 1724 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1725 rbd_dev->spec->image_id, snap_id); 1726 } 1727 1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1729 { 1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1731 CEPH_DEFINE_OID_ONSTACK(oid); 1732 u8 lock_type; 1733 char *lock_tag; 1734 struct ceph_locker *lockers; 1735 u32 num_lockers; 1736 bool broke_lock = false; 1737 int ret; 1738 1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1740 1741 again: 1742 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1743 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1744 if (ret != -EBUSY || broke_lock) { 1745 if (ret == -EEXIST) 1746 ret = 0; /* already locked by myself */ 1747 if (ret) 1748 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1749 return ret; 1750 } 1751 1752 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1753 RBD_LOCK_NAME, &lock_type, &lock_tag, 1754 &lockers, &num_lockers); 1755 if (ret) { 1756 if (ret == -ENOENT) 1757 goto again; 1758 1759 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1760 return ret; 1761 } 1762 1763 kfree(lock_tag); 1764 if (num_lockers == 0) 1765 goto again; 1766 1767 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1768 ENTITY_NAME(lockers[0].id.name)); 1769 1770 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1771 RBD_LOCK_NAME, lockers[0].id.cookie, 1772 &lockers[0].id.name); 1773 ceph_free_lockers(lockers, num_lockers); 1774 if (ret) { 1775 if (ret == -ENOENT) 1776 goto again; 1777 1778 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1779 return ret; 1780 } 1781 1782 broke_lock = true; 1783 goto again; 1784 } 1785 1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1787 { 1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1789 CEPH_DEFINE_OID_ONSTACK(oid); 1790 int ret; 1791 1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1793 1794 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1795 ""); 1796 if (ret && ret != -ENOENT) 1797 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1798 } 1799 1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1801 { 1802 u8 struct_v; 1803 u32 struct_len; 1804 u32 header_len; 1805 void *header_end; 1806 int ret; 1807 1808 ceph_decode_32_safe(p, end, header_len, e_inval); 1809 header_end = *p + header_len; 1810 1811 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1812 &struct_len); 1813 if (ret) 1814 return ret; 1815 1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1817 1818 *p = header_end; 1819 return 0; 1820 1821 e_inval: 1822 return -EINVAL; 1823 } 1824 1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1826 { 1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1828 CEPH_DEFINE_OID_ONSTACK(oid); 1829 struct page **pages; 1830 void *p, *end; 1831 size_t reply_len; 1832 u64 num_objects; 1833 u64 object_map_bytes; 1834 u64 object_map_size; 1835 int num_pages; 1836 int ret; 1837 1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1839 1840 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1841 rbd_dev->mapping.size); 1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1843 BITS_PER_BYTE); 1844 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1846 if (IS_ERR(pages)) 1847 return PTR_ERR(pages); 1848 1849 reply_len = num_pages * PAGE_SIZE; 1850 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1851 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1852 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1853 NULL, 0, pages, &reply_len); 1854 if (ret) 1855 goto out; 1856 1857 p = page_address(pages[0]); 1858 end = p + min(reply_len, (size_t)PAGE_SIZE); 1859 ret = decode_object_map_header(&p, end, &object_map_size); 1860 if (ret) 1861 goto out; 1862 1863 if (object_map_size != num_objects) { 1864 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1865 object_map_size, num_objects); 1866 ret = -EINVAL; 1867 goto out; 1868 } 1869 1870 if (offset_in_page(p) + object_map_bytes > reply_len) { 1871 ret = -EINVAL; 1872 goto out; 1873 } 1874 1875 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1876 if (!rbd_dev->object_map) { 1877 ret = -ENOMEM; 1878 goto out; 1879 } 1880 1881 rbd_dev->object_map_size = object_map_size; 1882 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1883 offset_in_page(p), object_map_bytes); 1884 1885 out: 1886 ceph_release_page_vector(pages, num_pages); 1887 return ret; 1888 } 1889 1890 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1891 { 1892 kvfree(rbd_dev->object_map); 1893 rbd_dev->object_map = NULL; 1894 rbd_dev->object_map_size = 0; 1895 } 1896 1897 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1898 { 1899 int ret; 1900 1901 ret = __rbd_object_map_load(rbd_dev); 1902 if (ret) 1903 return ret; 1904 1905 ret = rbd_dev_v2_get_flags(rbd_dev); 1906 if (ret) { 1907 rbd_object_map_free(rbd_dev); 1908 return ret; 1909 } 1910 1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1912 rbd_warn(rbd_dev, "object map is invalid"); 1913 1914 return 0; 1915 } 1916 1917 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1918 { 1919 int ret; 1920 1921 ret = rbd_object_map_lock(rbd_dev); 1922 if (ret) 1923 return ret; 1924 1925 ret = rbd_object_map_load(rbd_dev); 1926 if (ret) { 1927 rbd_object_map_unlock(rbd_dev); 1928 return ret; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1935 { 1936 rbd_object_map_free(rbd_dev); 1937 rbd_object_map_unlock(rbd_dev); 1938 } 1939 1940 /* 1941 * This function needs snap_id (or more precisely just something to 1942 * distinguish between HEAD and snapshot object maps), new_state and 1943 * current_state that were passed to rbd_object_map_update(). 1944 * 1945 * To avoid allocating and stashing a context we piggyback on the OSD 1946 * request. A HEAD update has two ops (assert_locked). For new_state 1947 * and current_state we decode our own object_map_update op, encoded in 1948 * rbd_cls_object_map_update(). 1949 */ 1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1951 struct ceph_osd_request *osd_req) 1952 { 1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1954 struct ceph_osd_data *osd_data; 1955 u64 objno; 1956 u8 state, new_state, current_state; 1957 bool has_current_state; 1958 void *p; 1959 1960 if (osd_req->r_result) 1961 return osd_req->r_result; 1962 1963 /* 1964 * Nothing to do for a snapshot object map. 1965 */ 1966 if (osd_req->r_num_ops == 1) 1967 return 0; 1968 1969 /* 1970 * Update in-memory HEAD object map. 1971 */ 1972 rbd_assert(osd_req->r_num_ops == 2); 1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1975 1976 p = page_address(osd_data->pages[0]); 1977 objno = ceph_decode_64(&p); 1978 rbd_assert(objno == obj_req->ex.oe_objno); 1979 rbd_assert(ceph_decode_64(&p) == objno + 1); 1980 new_state = ceph_decode_8(&p); 1981 has_current_state = ceph_decode_8(&p); 1982 if (has_current_state) 1983 current_state = ceph_decode_8(&p); 1984 1985 spin_lock(&rbd_dev->object_map_lock); 1986 state = __rbd_object_map_get(rbd_dev, objno); 1987 if (!has_current_state || current_state == state || 1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1989 __rbd_object_map_set(rbd_dev, objno, new_state); 1990 spin_unlock(&rbd_dev->object_map_lock); 1991 1992 return 0; 1993 } 1994 1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1996 { 1997 struct rbd_obj_request *obj_req = osd_req->r_priv; 1998 int result; 1999 2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 2001 osd_req->r_result, obj_req); 2002 2003 result = rbd_object_map_update_finish(obj_req, osd_req); 2004 rbd_obj_handle_request(obj_req, result); 2005 } 2006 2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2008 { 2009 u8 state = rbd_object_map_get(rbd_dev, objno); 2010 2011 if (state == new_state || 2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2014 return false; 2015 2016 return true; 2017 } 2018 2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2020 int which, u64 objno, u8 new_state, 2021 const u8 *current_state) 2022 { 2023 struct page **pages; 2024 void *p, *start; 2025 int ret; 2026 2027 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2028 if (ret) 2029 return ret; 2030 2031 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2032 if (IS_ERR(pages)) 2033 return PTR_ERR(pages); 2034 2035 p = start = page_address(pages[0]); 2036 ceph_encode_64(&p, objno); 2037 ceph_encode_64(&p, objno + 1); 2038 ceph_encode_8(&p, new_state); 2039 if (current_state) { 2040 ceph_encode_8(&p, 1); 2041 ceph_encode_8(&p, *current_state); 2042 } else { 2043 ceph_encode_8(&p, 0); 2044 } 2045 2046 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2047 false, true); 2048 return 0; 2049 } 2050 2051 /* 2052 * Return: 2053 * 0 - object map update sent 2054 * 1 - object map update isn't needed 2055 * <0 - error 2056 */ 2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2058 u8 new_state, const u8 *current_state) 2059 { 2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2062 struct ceph_osd_request *req; 2063 int num_ops = 1; 2064 int which = 0; 2065 int ret; 2066 2067 if (snap_id == CEPH_NOSNAP) { 2068 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2069 return 1; 2070 2071 num_ops++; /* assert_locked */ 2072 } 2073 2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2075 if (!req) 2076 return -ENOMEM; 2077 2078 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2079 req->r_callback = rbd_object_map_callback; 2080 req->r_priv = obj_req; 2081 2082 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2083 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2084 req->r_flags = CEPH_OSD_FLAG_WRITE; 2085 ktime_get_real_ts64(&req->r_mtime); 2086 2087 if (snap_id == CEPH_NOSNAP) { 2088 /* 2089 * Protect against possible race conditions during lock 2090 * ownership transitions. 2091 */ 2092 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2093 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2094 if (ret) 2095 return ret; 2096 } 2097 2098 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2099 new_state, current_state); 2100 if (ret) 2101 return ret; 2102 2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2104 if (ret) 2105 return ret; 2106 2107 ceph_osdc_start_request(osdc, req); 2108 return 0; 2109 } 2110 2111 static void prune_extents(struct ceph_file_extent *img_extents, 2112 u32 *num_img_extents, u64 overlap) 2113 { 2114 u32 cnt = *num_img_extents; 2115 2116 /* drop extents completely beyond the overlap */ 2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2118 cnt--; 2119 2120 if (cnt) { 2121 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2122 2123 /* trim final overlapping extent */ 2124 if (ex->fe_off + ex->fe_len > overlap) 2125 ex->fe_len = overlap - ex->fe_off; 2126 } 2127 2128 *num_img_extents = cnt; 2129 } 2130 2131 /* 2132 * Determine the byte range(s) covered by either just the object extent 2133 * or the entire object in the parent image. 2134 */ 2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2136 bool entire) 2137 { 2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2139 int ret; 2140 2141 if (!rbd_dev->parent_overlap) 2142 return 0; 2143 2144 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2145 entire ? 0 : obj_req->ex.oe_off, 2146 entire ? rbd_dev->layout.object_size : 2147 obj_req->ex.oe_len, 2148 &obj_req->img_extents, 2149 &obj_req->num_img_extents); 2150 if (ret) 2151 return ret; 2152 2153 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2154 rbd_dev->parent_overlap); 2155 return 0; 2156 } 2157 2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2159 { 2160 struct rbd_obj_request *obj_req = osd_req->r_priv; 2161 2162 switch (obj_req->img_request->data_type) { 2163 case OBJ_REQUEST_BIO: 2164 osd_req_op_extent_osd_data_bio(osd_req, which, 2165 &obj_req->bio_pos, 2166 obj_req->ex.oe_len); 2167 break; 2168 case OBJ_REQUEST_BVECS: 2169 case OBJ_REQUEST_OWN_BVECS: 2170 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2171 obj_req->ex.oe_len); 2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2174 &obj_req->bvec_pos); 2175 break; 2176 default: 2177 BUG(); 2178 } 2179 } 2180 2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2182 { 2183 struct page **pages; 2184 2185 /* 2186 * The response data for a STAT call consists of: 2187 * le64 length; 2188 * struct { 2189 * le32 tv_sec; 2190 * le32 tv_nsec; 2191 * } mtime; 2192 */ 2193 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2194 if (IS_ERR(pages)) 2195 return PTR_ERR(pages); 2196 2197 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2198 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2199 8 + sizeof(struct ceph_timespec), 2200 0, false, true); 2201 return 0; 2202 } 2203 2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2205 u32 bytes) 2206 { 2207 struct rbd_obj_request *obj_req = osd_req->r_priv; 2208 int ret; 2209 2210 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2211 if (ret) 2212 return ret; 2213 2214 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2215 obj_req->copyup_bvec_count, bytes); 2216 return 0; 2217 } 2218 2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2220 { 2221 obj_req->read_state = RBD_OBJ_READ_START; 2222 return 0; 2223 } 2224 2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2226 int which) 2227 { 2228 struct rbd_obj_request *obj_req = osd_req->r_priv; 2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2230 u16 opcode; 2231 2232 if (!use_object_map(rbd_dev) || 2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2234 osd_req_op_alloc_hint_init(osd_req, which++, 2235 rbd_dev->layout.object_size, 2236 rbd_dev->layout.object_size, 2237 rbd_dev->opts->alloc_hint_flags); 2238 } 2239 2240 if (rbd_obj_is_entire(obj_req)) 2241 opcode = CEPH_OSD_OP_WRITEFULL; 2242 else 2243 opcode = CEPH_OSD_OP_WRITE; 2244 2245 osd_req_op_extent_init(osd_req, which, opcode, 2246 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2247 rbd_osd_setup_data(osd_req, which); 2248 } 2249 2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2251 { 2252 int ret; 2253 2254 /* reverse map the entire object onto the parent */ 2255 ret = rbd_obj_calc_img_extents(obj_req, true); 2256 if (ret) 2257 return ret; 2258 2259 obj_req->write_state = RBD_OBJ_WRITE_START; 2260 return 0; 2261 } 2262 2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2264 { 2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2266 CEPH_OSD_OP_ZERO; 2267 } 2268 2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2270 int which) 2271 { 2272 struct rbd_obj_request *obj_req = osd_req->r_priv; 2273 2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2276 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2277 } else { 2278 osd_req_op_extent_init(osd_req, which, 2279 truncate_or_zero_opcode(obj_req), 2280 obj_req->ex.oe_off, obj_req->ex.oe_len, 2281 0, 0); 2282 } 2283 } 2284 2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2286 { 2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2288 u64 off, next_off; 2289 int ret; 2290 2291 /* 2292 * Align the range to alloc_size boundary and punt on discards 2293 * that are too small to free up any space. 2294 * 2295 * alloc_size == object_size && is_tail() is a special case for 2296 * filestore with filestore_punch_hole = false, needed to allow 2297 * truncate (in addition to delete). 2298 */ 2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2300 !rbd_obj_is_tail(obj_req)) { 2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2303 rbd_dev->opts->alloc_size); 2304 if (off >= next_off) 2305 return 1; 2306 2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2309 off, next_off - off); 2310 obj_req->ex.oe_off = off; 2311 obj_req->ex.oe_len = next_off - off; 2312 } 2313 2314 /* reverse map the entire object onto the parent */ 2315 ret = rbd_obj_calc_img_extents(obj_req, true); 2316 if (ret) 2317 return ret; 2318 2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2322 2323 obj_req->write_state = RBD_OBJ_WRITE_START; 2324 return 0; 2325 } 2326 2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2328 int which) 2329 { 2330 struct rbd_obj_request *obj_req = osd_req->r_priv; 2331 u16 opcode; 2332 2333 if (rbd_obj_is_entire(obj_req)) { 2334 if (obj_req->num_img_extents) { 2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2336 osd_req_op_init(osd_req, which++, 2337 CEPH_OSD_OP_CREATE, 0); 2338 opcode = CEPH_OSD_OP_TRUNCATE; 2339 } else { 2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2341 osd_req_op_init(osd_req, which++, 2342 CEPH_OSD_OP_DELETE, 0); 2343 opcode = 0; 2344 } 2345 } else { 2346 opcode = truncate_or_zero_opcode(obj_req); 2347 } 2348 2349 if (opcode) 2350 osd_req_op_extent_init(osd_req, which, opcode, 2351 obj_req->ex.oe_off, obj_req->ex.oe_len, 2352 0, 0); 2353 } 2354 2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2356 { 2357 int ret; 2358 2359 /* reverse map the entire object onto the parent */ 2360 ret = rbd_obj_calc_img_extents(obj_req, true); 2361 if (ret) 2362 return ret; 2363 2364 if (!obj_req->num_img_extents) { 2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2366 if (rbd_obj_is_entire(obj_req)) 2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2368 } 2369 2370 obj_req->write_state = RBD_OBJ_WRITE_START; 2371 return 0; 2372 } 2373 2374 static int count_write_ops(struct rbd_obj_request *obj_req) 2375 { 2376 struct rbd_img_request *img_req = obj_req->img_request; 2377 2378 switch (img_req->op_type) { 2379 case OBJ_OP_WRITE: 2380 if (!use_object_map(img_req->rbd_dev) || 2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2382 return 2; /* setallochint + write/writefull */ 2383 2384 return 1; /* write/writefull */ 2385 case OBJ_OP_DISCARD: 2386 return 1; /* delete/truncate/zero */ 2387 case OBJ_OP_ZEROOUT: 2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2390 return 2; /* create + truncate */ 2391 2392 return 1; /* delete/truncate/zero */ 2393 default: 2394 BUG(); 2395 } 2396 } 2397 2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2399 int which) 2400 { 2401 struct rbd_obj_request *obj_req = osd_req->r_priv; 2402 2403 switch (obj_req->img_request->op_type) { 2404 case OBJ_OP_WRITE: 2405 __rbd_osd_setup_write_ops(osd_req, which); 2406 break; 2407 case OBJ_OP_DISCARD: 2408 __rbd_osd_setup_discard_ops(osd_req, which); 2409 break; 2410 case OBJ_OP_ZEROOUT: 2411 __rbd_osd_setup_zeroout_ops(osd_req, which); 2412 break; 2413 default: 2414 BUG(); 2415 } 2416 } 2417 2418 /* 2419 * Prune the list of object requests (adjust offset and/or length, drop 2420 * redundant requests). Prepare object request state machines and image 2421 * request state machine for execution. 2422 */ 2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2424 { 2425 struct rbd_obj_request *obj_req, *next_obj_req; 2426 int ret; 2427 2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2429 switch (img_req->op_type) { 2430 case OBJ_OP_READ: 2431 ret = rbd_obj_init_read(obj_req); 2432 break; 2433 case OBJ_OP_WRITE: 2434 ret = rbd_obj_init_write(obj_req); 2435 break; 2436 case OBJ_OP_DISCARD: 2437 ret = rbd_obj_init_discard(obj_req); 2438 break; 2439 case OBJ_OP_ZEROOUT: 2440 ret = rbd_obj_init_zeroout(obj_req); 2441 break; 2442 default: 2443 BUG(); 2444 } 2445 if (ret < 0) 2446 return ret; 2447 if (ret > 0) { 2448 rbd_img_obj_request_del(img_req, obj_req); 2449 continue; 2450 } 2451 } 2452 2453 img_req->state = RBD_IMG_START; 2454 return 0; 2455 } 2456 2457 union rbd_img_fill_iter { 2458 struct ceph_bio_iter bio_iter; 2459 struct ceph_bvec_iter bvec_iter; 2460 }; 2461 2462 struct rbd_img_fill_ctx { 2463 enum obj_request_type pos_type; 2464 union rbd_img_fill_iter *pos; 2465 union rbd_img_fill_iter iter; 2466 ceph_object_extent_fn_t set_pos_fn; 2467 ceph_object_extent_fn_t count_fn; 2468 ceph_object_extent_fn_t copy_fn; 2469 }; 2470 2471 static struct ceph_object_extent *alloc_object_extent(void *arg) 2472 { 2473 struct rbd_img_request *img_req = arg; 2474 struct rbd_obj_request *obj_req; 2475 2476 obj_req = rbd_obj_request_create(); 2477 if (!obj_req) 2478 return NULL; 2479 2480 rbd_img_obj_request_add(img_req, obj_req); 2481 return &obj_req->ex; 2482 } 2483 2484 /* 2485 * While su != os && sc == 1 is technically not fancy (it's the same 2486 * layout as su == os && sc == 1), we can't use the nocopy path for it 2487 * because ->set_pos_fn() should be called only once per object. 2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2489 * treat su != os && sc == 1 as fancy. 2490 */ 2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2492 { 2493 return l->stripe_unit != l->object_size; 2494 } 2495 2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2497 struct ceph_file_extent *img_extents, 2498 u32 num_img_extents, 2499 struct rbd_img_fill_ctx *fctx) 2500 { 2501 u32 i; 2502 int ret; 2503 2504 img_req->data_type = fctx->pos_type; 2505 2506 /* 2507 * Create object requests and set each object request's starting 2508 * position in the provided bio (list) or bio_vec array. 2509 */ 2510 fctx->iter = *fctx->pos; 2511 for (i = 0; i < num_img_extents; i++) { 2512 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2513 img_extents[i].fe_off, 2514 img_extents[i].fe_len, 2515 &img_req->object_extents, 2516 alloc_object_extent, img_req, 2517 fctx->set_pos_fn, &fctx->iter); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return __rbd_img_fill_request(img_req); 2523 } 2524 2525 /* 2526 * Map a list of image extents to a list of object extents, create the 2527 * corresponding object requests (normally each to a different object, 2528 * but not always) and add them to @img_req. For each object request, 2529 * set up its data descriptor to point to the corresponding chunk(s) of 2530 * @fctx->pos data buffer. 2531 * 2532 * Because ceph_file_to_extents() will merge adjacent object extents 2533 * together, each object request's data descriptor may point to multiple 2534 * different chunks of @fctx->pos data buffer. 2535 * 2536 * @fctx->pos data buffer is assumed to be large enough. 2537 */ 2538 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2539 struct ceph_file_extent *img_extents, 2540 u32 num_img_extents, 2541 struct rbd_img_fill_ctx *fctx) 2542 { 2543 struct rbd_device *rbd_dev = img_req->rbd_dev; 2544 struct rbd_obj_request *obj_req; 2545 u32 i; 2546 int ret; 2547 2548 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2549 !rbd_layout_is_fancy(&rbd_dev->layout)) 2550 return rbd_img_fill_request_nocopy(img_req, img_extents, 2551 num_img_extents, fctx); 2552 2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2554 2555 /* 2556 * Create object requests and determine ->bvec_count for each object 2557 * request. Note that ->bvec_count sum over all object requests may 2558 * be greater than the number of bio_vecs in the provided bio (list) 2559 * or bio_vec array because when mapped, those bio_vecs can straddle 2560 * stripe unit boundaries. 2561 */ 2562 fctx->iter = *fctx->pos; 2563 for (i = 0; i < num_img_extents; i++) { 2564 ret = ceph_file_to_extents(&rbd_dev->layout, 2565 img_extents[i].fe_off, 2566 img_extents[i].fe_len, 2567 &img_req->object_extents, 2568 alloc_object_extent, img_req, 2569 fctx->count_fn, &fctx->iter); 2570 if (ret) 2571 return ret; 2572 } 2573 2574 for_each_obj_request(img_req, obj_req) { 2575 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2576 sizeof(*obj_req->bvec_pos.bvecs), 2577 GFP_NOIO); 2578 if (!obj_req->bvec_pos.bvecs) 2579 return -ENOMEM; 2580 } 2581 2582 /* 2583 * Fill in each object request's private bio_vec array, splitting and 2584 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2585 */ 2586 fctx->iter = *fctx->pos; 2587 for (i = 0; i < num_img_extents; i++) { 2588 ret = ceph_iterate_extents(&rbd_dev->layout, 2589 img_extents[i].fe_off, 2590 img_extents[i].fe_len, 2591 &img_req->object_extents, 2592 fctx->copy_fn, &fctx->iter); 2593 if (ret) 2594 return ret; 2595 } 2596 2597 return __rbd_img_fill_request(img_req); 2598 } 2599 2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2601 u64 off, u64 len) 2602 { 2603 struct ceph_file_extent ex = { off, len }; 2604 union rbd_img_fill_iter dummy = {}; 2605 struct rbd_img_fill_ctx fctx = { 2606 .pos_type = OBJ_REQUEST_NODATA, 2607 .pos = &dummy, 2608 }; 2609 2610 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2611 } 2612 2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2614 { 2615 struct rbd_obj_request *obj_req = 2616 container_of(ex, struct rbd_obj_request, ex); 2617 struct ceph_bio_iter *it = arg; 2618 2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2620 obj_req->bio_pos = *it; 2621 ceph_bio_iter_advance(it, bytes); 2622 } 2623 2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2625 { 2626 struct rbd_obj_request *obj_req = 2627 container_of(ex, struct rbd_obj_request, ex); 2628 struct ceph_bio_iter *it = arg; 2629 2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2631 ceph_bio_iter_advance_step(it, bytes, ({ 2632 obj_req->bvec_count++; 2633 })); 2634 2635 } 2636 2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2638 { 2639 struct rbd_obj_request *obj_req = 2640 container_of(ex, struct rbd_obj_request, ex); 2641 struct ceph_bio_iter *it = arg; 2642 2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2644 ceph_bio_iter_advance_step(it, bytes, ({ 2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2647 })); 2648 } 2649 2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2651 struct ceph_file_extent *img_extents, 2652 u32 num_img_extents, 2653 struct ceph_bio_iter *bio_pos) 2654 { 2655 struct rbd_img_fill_ctx fctx = { 2656 .pos_type = OBJ_REQUEST_BIO, 2657 .pos = (union rbd_img_fill_iter *)bio_pos, 2658 .set_pos_fn = set_bio_pos, 2659 .count_fn = count_bio_bvecs, 2660 .copy_fn = copy_bio_bvecs, 2661 }; 2662 2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2664 &fctx); 2665 } 2666 2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2668 u64 off, u64 len, struct bio *bio) 2669 { 2670 struct ceph_file_extent ex = { off, len }; 2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2672 2673 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2674 } 2675 2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2677 { 2678 struct rbd_obj_request *obj_req = 2679 container_of(ex, struct rbd_obj_request, ex); 2680 struct ceph_bvec_iter *it = arg; 2681 2682 obj_req->bvec_pos = *it; 2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2684 ceph_bvec_iter_advance(it, bytes); 2685 } 2686 2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2688 { 2689 struct rbd_obj_request *obj_req = 2690 container_of(ex, struct rbd_obj_request, ex); 2691 struct ceph_bvec_iter *it = arg; 2692 2693 ceph_bvec_iter_advance_step(it, bytes, ({ 2694 obj_req->bvec_count++; 2695 })); 2696 } 2697 2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2699 { 2700 struct rbd_obj_request *obj_req = 2701 container_of(ex, struct rbd_obj_request, ex); 2702 struct ceph_bvec_iter *it = arg; 2703 2704 ceph_bvec_iter_advance_step(it, bytes, ({ 2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2707 })); 2708 } 2709 2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2711 struct ceph_file_extent *img_extents, 2712 u32 num_img_extents, 2713 struct ceph_bvec_iter *bvec_pos) 2714 { 2715 struct rbd_img_fill_ctx fctx = { 2716 .pos_type = OBJ_REQUEST_BVECS, 2717 .pos = (union rbd_img_fill_iter *)bvec_pos, 2718 .set_pos_fn = set_bvec_pos, 2719 .count_fn = count_bvecs, 2720 .copy_fn = copy_bvecs, 2721 }; 2722 2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2724 &fctx); 2725 } 2726 2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2728 struct ceph_file_extent *img_extents, 2729 u32 num_img_extents, 2730 struct bio_vec *bvecs) 2731 { 2732 struct ceph_bvec_iter it = { 2733 .bvecs = bvecs, 2734 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2735 num_img_extents) }, 2736 }; 2737 2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2739 &it); 2740 } 2741 2742 static void rbd_img_handle_request_work(struct work_struct *work) 2743 { 2744 struct rbd_img_request *img_req = 2745 container_of(work, struct rbd_img_request, work); 2746 2747 rbd_img_handle_request(img_req, img_req->work_result); 2748 } 2749 2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2751 { 2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2753 img_req->work_result = result; 2754 queue_work(rbd_wq, &img_req->work); 2755 } 2756 2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2758 { 2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2760 2761 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2763 return true; 2764 } 2765 2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2767 obj_req->ex.oe_objno); 2768 return false; 2769 } 2770 2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2772 { 2773 struct ceph_osd_request *osd_req; 2774 int ret; 2775 2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2777 if (IS_ERR(osd_req)) 2778 return PTR_ERR(osd_req); 2779 2780 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2781 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2782 rbd_osd_setup_data(osd_req, 0); 2783 rbd_osd_format_read(osd_req); 2784 2785 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2786 if (ret) 2787 return ret; 2788 2789 rbd_osd_submit(osd_req); 2790 return 0; 2791 } 2792 2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2794 { 2795 struct rbd_img_request *img_req = obj_req->img_request; 2796 struct rbd_device *parent = img_req->rbd_dev->parent; 2797 struct rbd_img_request *child_img_req; 2798 int ret; 2799 2800 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2801 if (!child_img_req) 2802 return -ENOMEM; 2803 2804 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2806 child_img_req->obj_request = obj_req; 2807 2808 down_read(&parent->header_rwsem); 2809 rbd_img_capture_header(child_img_req); 2810 up_read(&parent->header_rwsem); 2811 2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2813 obj_req); 2814 2815 if (!rbd_img_is_write(img_req)) { 2816 switch (img_req->data_type) { 2817 case OBJ_REQUEST_BIO: 2818 ret = __rbd_img_fill_from_bio(child_img_req, 2819 obj_req->img_extents, 2820 obj_req->num_img_extents, 2821 &obj_req->bio_pos); 2822 break; 2823 case OBJ_REQUEST_BVECS: 2824 case OBJ_REQUEST_OWN_BVECS: 2825 ret = __rbd_img_fill_from_bvecs(child_img_req, 2826 obj_req->img_extents, 2827 obj_req->num_img_extents, 2828 &obj_req->bvec_pos); 2829 break; 2830 default: 2831 BUG(); 2832 } 2833 } else { 2834 ret = rbd_img_fill_from_bvecs(child_img_req, 2835 obj_req->img_extents, 2836 obj_req->num_img_extents, 2837 obj_req->copyup_bvecs); 2838 } 2839 if (ret) { 2840 rbd_img_request_destroy(child_img_req); 2841 return ret; 2842 } 2843 2844 /* avoid parent chain recursion */ 2845 rbd_img_schedule(child_img_req, 0); 2846 return 0; 2847 } 2848 2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2850 { 2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2852 int ret; 2853 2854 again: 2855 switch (obj_req->read_state) { 2856 case RBD_OBJ_READ_START: 2857 rbd_assert(!*result); 2858 2859 if (!rbd_obj_may_exist(obj_req)) { 2860 *result = -ENOENT; 2861 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2862 goto again; 2863 } 2864 2865 ret = rbd_obj_read_object(obj_req); 2866 if (ret) { 2867 *result = ret; 2868 return true; 2869 } 2870 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2871 return false; 2872 case RBD_OBJ_READ_OBJECT: 2873 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2874 /* reverse map this object extent onto the parent */ 2875 ret = rbd_obj_calc_img_extents(obj_req, false); 2876 if (ret) { 2877 *result = ret; 2878 return true; 2879 } 2880 if (obj_req->num_img_extents) { 2881 ret = rbd_obj_read_from_parent(obj_req); 2882 if (ret) { 2883 *result = ret; 2884 return true; 2885 } 2886 obj_req->read_state = RBD_OBJ_READ_PARENT; 2887 return false; 2888 } 2889 } 2890 2891 /* 2892 * -ENOENT means a hole in the image -- zero-fill the entire 2893 * length of the request. A short read also implies zero-fill 2894 * to the end of the request. 2895 */ 2896 if (*result == -ENOENT) { 2897 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2898 *result = 0; 2899 } else if (*result >= 0) { 2900 if (*result < obj_req->ex.oe_len) 2901 rbd_obj_zero_range(obj_req, *result, 2902 obj_req->ex.oe_len - *result); 2903 else 2904 rbd_assert(*result == obj_req->ex.oe_len); 2905 *result = 0; 2906 } 2907 return true; 2908 case RBD_OBJ_READ_PARENT: 2909 /* 2910 * The parent image is read only up to the overlap -- zero-fill 2911 * from the overlap to the end of the request. 2912 */ 2913 if (!*result) { 2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2915 2916 if (obj_overlap < obj_req->ex.oe_len) 2917 rbd_obj_zero_range(obj_req, obj_overlap, 2918 obj_req->ex.oe_len - obj_overlap); 2919 } 2920 return true; 2921 default: 2922 BUG(); 2923 } 2924 } 2925 2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2927 { 2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2929 2930 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2932 2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2935 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2936 return true; 2937 } 2938 2939 return false; 2940 } 2941 2942 /* 2943 * Return: 2944 * 0 - object map update sent 2945 * 1 - object map update isn't needed 2946 * <0 - error 2947 */ 2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2949 { 2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2951 u8 new_state; 2952 2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2954 return 1; 2955 2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2957 new_state = OBJECT_PENDING; 2958 else 2959 new_state = OBJECT_EXISTS; 2960 2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2962 } 2963 2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2965 { 2966 struct ceph_osd_request *osd_req; 2967 int num_ops = count_write_ops(obj_req); 2968 int which = 0; 2969 int ret; 2970 2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2972 num_ops++; /* stat */ 2973 2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2975 if (IS_ERR(osd_req)) 2976 return PTR_ERR(osd_req); 2977 2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2979 ret = rbd_osd_setup_stat(osd_req, which++); 2980 if (ret) 2981 return ret; 2982 } 2983 2984 rbd_osd_setup_write_ops(osd_req, which); 2985 rbd_osd_format_write(osd_req); 2986 2987 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2988 if (ret) 2989 return ret; 2990 2991 rbd_osd_submit(osd_req); 2992 return 0; 2993 } 2994 2995 /* 2996 * copyup_bvecs pages are never highmem pages 2997 */ 2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2999 { 3000 struct ceph_bvec_iter it = { 3001 .bvecs = bvecs, 3002 .iter = { .bi_size = bytes }, 3003 }; 3004 3005 ceph_bvec_iter_advance_step(&it, bytes, ({ 3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len)) 3007 return false; 3008 })); 3009 return true; 3010 } 3011 3012 #define MODS_ONLY U32_MAX 3013 3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3015 u32 bytes) 3016 { 3017 struct ceph_osd_request *osd_req; 3018 int ret; 3019 3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3022 3023 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3024 if (IS_ERR(osd_req)) 3025 return PTR_ERR(osd_req); 3026 3027 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3028 if (ret) 3029 return ret; 3030 3031 rbd_osd_format_write(osd_req); 3032 3033 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3034 if (ret) 3035 return ret; 3036 3037 rbd_osd_submit(osd_req); 3038 return 0; 3039 } 3040 3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3042 u32 bytes) 3043 { 3044 struct ceph_osd_request *osd_req; 3045 int num_ops = count_write_ops(obj_req); 3046 int which = 0; 3047 int ret; 3048 3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3050 3051 if (bytes != MODS_ONLY) 3052 num_ops++; /* copyup */ 3053 3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3055 if (IS_ERR(osd_req)) 3056 return PTR_ERR(osd_req); 3057 3058 if (bytes != MODS_ONLY) { 3059 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3060 if (ret) 3061 return ret; 3062 } 3063 3064 rbd_osd_setup_write_ops(osd_req, which); 3065 rbd_osd_format_write(osd_req); 3066 3067 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3068 if (ret) 3069 return ret; 3070 3071 rbd_osd_submit(osd_req); 3072 return 0; 3073 } 3074 3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3076 { 3077 u32 i; 3078 3079 rbd_assert(!obj_req->copyup_bvecs); 3080 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3081 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3082 sizeof(*obj_req->copyup_bvecs), 3083 GFP_NOIO); 3084 if (!obj_req->copyup_bvecs) 3085 return -ENOMEM; 3086 3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3089 struct page *page = alloc_page(GFP_NOIO); 3090 3091 if (!page) 3092 return -ENOMEM; 3093 3094 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0); 3095 obj_overlap -= len; 3096 } 3097 3098 rbd_assert(!obj_overlap); 3099 return 0; 3100 } 3101 3102 /* 3103 * The target object doesn't exist. Read the data for the entire 3104 * target object up to the overlap point (if any) from the parent, 3105 * so we can use it for a copyup. 3106 */ 3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3108 { 3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3110 int ret; 3111 3112 rbd_assert(obj_req->num_img_extents); 3113 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3114 rbd_dev->parent_overlap); 3115 if (!obj_req->num_img_extents) { 3116 /* 3117 * The overlap has become 0 (most likely because the 3118 * image has been flattened). Re-submit the original write 3119 * request -- pass MODS_ONLY since the copyup isn't needed 3120 * anymore. 3121 */ 3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3123 } 3124 3125 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3126 if (ret) 3127 return ret; 3128 3129 return rbd_obj_read_from_parent(obj_req); 3130 } 3131 3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3133 { 3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3136 u8 new_state; 3137 u32 i; 3138 int ret; 3139 3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3141 3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3143 return; 3144 3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3146 return; 3147 3148 for (i = 0; i < snapc->num_snaps; i++) { 3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3150 i + 1 < snapc->num_snaps) 3151 new_state = OBJECT_EXISTS_CLEAN; 3152 else 3153 new_state = OBJECT_EXISTS; 3154 3155 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3156 new_state, NULL); 3157 if (ret < 0) { 3158 obj_req->pending.result = ret; 3159 return; 3160 } 3161 3162 rbd_assert(!ret); 3163 obj_req->pending.num_pending++; 3164 } 3165 } 3166 3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3168 { 3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3170 int ret; 3171 3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3173 3174 /* 3175 * Only send non-zero copyup data to save some I/O and network 3176 * bandwidth -- zero copyup data is equivalent to the object not 3177 * existing. 3178 */ 3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3180 bytes = 0; 3181 3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3183 /* 3184 * Send a copyup request with an empty snapshot context to 3185 * deep-copyup the object through all existing snapshots. 3186 * A second request with the current snapshot context will be 3187 * sent for the actual modification. 3188 */ 3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3190 if (ret) { 3191 obj_req->pending.result = ret; 3192 return; 3193 } 3194 3195 obj_req->pending.num_pending++; 3196 bytes = MODS_ONLY; 3197 } 3198 3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3200 if (ret) { 3201 obj_req->pending.result = ret; 3202 return; 3203 } 3204 3205 obj_req->pending.num_pending++; 3206 } 3207 3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3209 { 3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3211 int ret; 3212 3213 again: 3214 switch (obj_req->copyup_state) { 3215 case RBD_OBJ_COPYUP_START: 3216 rbd_assert(!*result); 3217 3218 ret = rbd_obj_copyup_read_parent(obj_req); 3219 if (ret) { 3220 *result = ret; 3221 return true; 3222 } 3223 if (obj_req->num_img_extents) 3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3225 else 3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3227 return false; 3228 case RBD_OBJ_COPYUP_READ_PARENT: 3229 if (*result) 3230 return true; 3231 3232 if (is_zero_bvecs(obj_req->copyup_bvecs, 3233 rbd_obj_img_extents_bytes(obj_req))) { 3234 dout("%s %p detected zeros\n", __func__, obj_req); 3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3236 } 3237 3238 rbd_obj_copyup_object_maps(obj_req); 3239 if (!obj_req->pending.num_pending) { 3240 *result = obj_req->pending.result; 3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3242 goto again; 3243 } 3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3245 return false; 3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3247 if (!pending_result_dec(&obj_req->pending, result)) 3248 return false; 3249 fallthrough; 3250 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3251 if (*result) { 3252 rbd_warn(rbd_dev, "snap object map update failed: %d", 3253 *result); 3254 return true; 3255 } 3256 3257 rbd_obj_copyup_write_object(obj_req); 3258 if (!obj_req->pending.num_pending) { 3259 *result = obj_req->pending.result; 3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3261 goto again; 3262 } 3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3264 return false; 3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3266 if (!pending_result_dec(&obj_req->pending, result)) 3267 return false; 3268 fallthrough; 3269 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3270 return true; 3271 default: 3272 BUG(); 3273 } 3274 } 3275 3276 /* 3277 * Return: 3278 * 0 - object map update sent 3279 * 1 - object map update isn't needed 3280 * <0 - error 3281 */ 3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3283 { 3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3285 u8 current_state = OBJECT_PENDING; 3286 3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3288 return 1; 3289 3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3291 return 1; 3292 3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3294 ¤t_state); 3295 } 3296 3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3298 { 3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3300 int ret; 3301 3302 again: 3303 switch (obj_req->write_state) { 3304 case RBD_OBJ_WRITE_START: 3305 rbd_assert(!*result); 3306 3307 rbd_obj_set_copyup_enabled(obj_req); 3308 if (rbd_obj_write_is_noop(obj_req)) 3309 return true; 3310 3311 ret = rbd_obj_write_pre_object_map(obj_req); 3312 if (ret < 0) { 3313 *result = ret; 3314 return true; 3315 } 3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3317 if (ret > 0) 3318 goto again; 3319 return false; 3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3321 if (*result) { 3322 rbd_warn(rbd_dev, "pre object map update failed: %d", 3323 *result); 3324 return true; 3325 } 3326 ret = rbd_obj_write_object(obj_req); 3327 if (ret) { 3328 *result = ret; 3329 return true; 3330 } 3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3332 return false; 3333 case RBD_OBJ_WRITE_OBJECT: 3334 if (*result == -ENOENT) { 3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3336 *result = 0; 3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3339 goto again; 3340 } 3341 /* 3342 * On a non-existent object: 3343 * delete - -ENOENT, truncate/zero - 0 3344 */ 3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3346 *result = 0; 3347 } 3348 if (*result) 3349 return true; 3350 3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3352 goto again; 3353 case __RBD_OBJ_WRITE_COPYUP: 3354 if (!rbd_obj_advance_copyup(obj_req, result)) 3355 return false; 3356 fallthrough; 3357 case RBD_OBJ_WRITE_COPYUP: 3358 if (*result) { 3359 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3360 return true; 3361 } 3362 ret = rbd_obj_write_post_object_map(obj_req); 3363 if (ret < 0) { 3364 *result = ret; 3365 return true; 3366 } 3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3368 if (ret > 0) 3369 goto again; 3370 return false; 3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3372 if (*result) 3373 rbd_warn(rbd_dev, "post object map update failed: %d", 3374 *result); 3375 return true; 3376 default: 3377 BUG(); 3378 } 3379 } 3380 3381 /* 3382 * Return true if @obj_req is completed. 3383 */ 3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3385 int *result) 3386 { 3387 struct rbd_img_request *img_req = obj_req->img_request; 3388 struct rbd_device *rbd_dev = img_req->rbd_dev; 3389 bool done; 3390 3391 mutex_lock(&obj_req->state_mutex); 3392 if (!rbd_img_is_write(img_req)) 3393 done = rbd_obj_advance_read(obj_req, result); 3394 else 3395 done = rbd_obj_advance_write(obj_req, result); 3396 mutex_unlock(&obj_req->state_mutex); 3397 3398 if (done && *result) { 3399 rbd_assert(*result < 0); 3400 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3401 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3403 } 3404 return done; 3405 } 3406 3407 /* 3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3409 * recursion. 3410 */ 3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3412 { 3413 if (__rbd_obj_handle_request(obj_req, &result)) 3414 rbd_img_handle_request(obj_req->img_request, result); 3415 } 3416 3417 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3418 { 3419 struct rbd_device *rbd_dev = img_req->rbd_dev; 3420 3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3422 return false; 3423 3424 if (rbd_is_ro(rbd_dev)) 3425 return false; 3426 3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3428 if (rbd_dev->opts->lock_on_read || 3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3430 return true; 3431 3432 return rbd_img_is_write(img_req); 3433 } 3434 3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3436 { 3437 struct rbd_device *rbd_dev = img_req->rbd_dev; 3438 bool locked; 3439 3440 lockdep_assert_held(&rbd_dev->lock_rwsem); 3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3442 spin_lock(&rbd_dev->lock_lists_lock); 3443 rbd_assert(list_empty(&img_req->lock_item)); 3444 if (!locked) 3445 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3446 else 3447 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3448 spin_unlock(&rbd_dev->lock_lists_lock); 3449 return locked; 3450 } 3451 3452 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3453 { 3454 struct rbd_device *rbd_dev = img_req->rbd_dev; 3455 bool need_wakeup = false; 3456 3457 lockdep_assert_held(&rbd_dev->lock_rwsem); 3458 spin_lock(&rbd_dev->lock_lists_lock); 3459 if (!list_empty(&img_req->lock_item)) { 3460 list_del_init(&img_req->lock_item); 3461 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3462 list_empty(&rbd_dev->running_list)); 3463 } 3464 spin_unlock(&rbd_dev->lock_lists_lock); 3465 if (need_wakeup) 3466 complete(&rbd_dev->releasing_wait); 3467 } 3468 3469 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3470 { 3471 struct rbd_device *rbd_dev = img_req->rbd_dev; 3472 3473 if (!need_exclusive_lock(img_req)) 3474 return 1; 3475 3476 if (rbd_lock_add_request(img_req)) 3477 return 1; 3478 3479 if (rbd_dev->opts->exclusive) { 3480 WARN_ON(1); /* lock got released? */ 3481 return -EROFS; 3482 } 3483 3484 /* 3485 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3486 * and cancel_delayed_work() in wake_lock_waiters(). 3487 */ 3488 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3489 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3490 return 0; 3491 } 3492 3493 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3494 { 3495 struct rbd_device *rbd_dev = img_req->rbd_dev; 3496 struct rbd_obj_request *obj_req; 3497 3498 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3499 rbd_assert(!need_exclusive_lock(img_req) || 3500 __rbd_is_lock_owner(rbd_dev)); 3501 3502 if (rbd_img_is_write(img_req)) { 3503 rbd_assert(!img_req->snapc); 3504 down_read(&rbd_dev->header_rwsem); 3505 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 3506 up_read(&rbd_dev->header_rwsem); 3507 } 3508 3509 for_each_obj_request(img_req, obj_req) { 3510 int result = 0; 3511 3512 if (__rbd_obj_handle_request(obj_req, &result)) { 3513 if (result) { 3514 img_req->pending.result = result; 3515 return; 3516 } 3517 } else { 3518 img_req->pending.num_pending++; 3519 } 3520 } 3521 } 3522 3523 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3524 { 3525 int ret; 3526 3527 again: 3528 switch (img_req->state) { 3529 case RBD_IMG_START: 3530 rbd_assert(!*result); 3531 3532 ret = rbd_img_exclusive_lock(img_req); 3533 if (ret < 0) { 3534 *result = ret; 3535 return true; 3536 } 3537 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3538 if (ret > 0) 3539 goto again; 3540 return false; 3541 case RBD_IMG_EXCLUSIVE_LOCK: 3542 if (*result) 3543 return true; 3544 3545 rbd_img_object_requests(img_req); 3546 if (!img_req->pending.num_pending) { 3547 *result = img_req->pending.result; 3548 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3549 goto again; 3550 } 3551 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3552 return false; 3553 case __RBD_IMG_OBJECT_REQUESTS: 3554 if (!pending_result_dec(&img_req->pending, result)) 3555 return false; 3556 fallthrough; 3557 case RBD_IMG_OBJECT_REQUESTS: 3558 return true; 3559 default: 3560 BUG(); 3561 } 3562 } 3563 3564 /* 3565 * Return true if @img_req is completed. 3566 */ 3567 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3568 int *result) 3569 { 3570 struct rbd_device *rbd_dev = img_req->rbd_dev; 3571 bool done; 3572 3573 if (need_exclusive_lock(img_req)) { 3574 down_read(&rbd_dev->lock_rwsem); 3575 mutex_lock(&img_req->state_mutex); 3576 done = rbd_img_advance(img_req, result); 3577 if (done) 3578 rbd_lock_del_request(img_req); 3579 mutex_unlock(&img_req->state_mutex); 3580 up_read(&rbd_dev->lock_rwsem); 3581 } else { 3582 mutex_lock(&img_req->state_mutex); 3583 done = rbd_img_advance(img_req, result); 3584 mutex_unlock(&img_req->state_mutex); 3585 } 3586 3587 if (done && *result) { 3588 rbd_assert(*result < 0); 3589 rbd_warn(rbd_dev, "%s%s result %d", 3590 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3591 obj_op_name(img_req->op_type), *result); 3592 } 3593 return done; 3594 } 3595 3596 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3597 { 3598 again: 3599 if (!__rbd_img_handle_request(img_req, &result)) 3600 return; 3601 3602 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3603 struct rbd_obj_request *obj_req = img_req->obj_request; 3604 3605 rbd_img_request_destroy(img_req); 3606 if (__rbd_obj_handle_request(obj_req, &result)) { 3607 img_req = obj_req->img_request; 3608 goto again; 3609 } 3610 } else { 3611 struct request *rq = blk_mq_rq_from_pdu(img_req); 3612 3613 rbd_img_request_destroy(img_req); 3614 blk_mq_end_request(rq, errno_to_blk_status(result)); 3615 } 3616 } 3617 3618 static const struct rbd_client_id rbd_empty_cid; 3619 3620 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3621 const struct rbd_client_id *rhs) 3622 { 3623 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3624 } 3625 3626 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3627 { 3628 struct rbd_client_id cid; 3629 3630 mutex_lock(&rbd_dev->watch_mutex); 3631 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3632 cid.handle = rbd_dev->watch_cookie; 3633 mutex_unlock(&rbd_dev->watch_mutex); 3634 return cid; 3635 } 3636 3637 /* 3638 * lock_rwsem must be held for write 3639 */ 3640 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3641 const struct rbd_client_id *cid) 3642 { 3643 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3644 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3645 cid->gid, cid->handle); 3646 rbd_dev->owner_cid = *cid; /* struct */ 3647 } 3648 3649 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3650 { 3651 mutex_lock(&rbd_dev->watch_mutex); 3652 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3653 mutex_unlock(&rbd_dev->watch_mutex); 3654 } 3655 3656 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3657 { 3658 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3659 3660 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3661 strcpy(rbd_dev->lock_cookie, cookie); 3662 rbd_set_owner_cid(rbd_dev, &cid); 3663 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3664 } 3665 3666 /* 3667 * lock_rwsem must be held for write 3668 */ 3669 static int rbd_lock(struct rbd_device *rbd_dev) 3670 { 3671 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3672 char cookie[32]; 3673 int ret; 3674 3675 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3676 rbd_dev->lock_cookie[0] != '\0'); 3677 3678 format_lock_cookie(rbd_dev, cookie); 3679 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3680 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3681 RBD_LOCK_TAG, "", 0); 3682 if (ret && ret != -EEXIST) 3683 return ret; 3684 3685 __rbd_lock(rbd_dev, cookie); 3686 return 0; 3687 } 3688 3689 /* 3690 * lock_rwsem must be held for write 3691 */ 3692 static void rbd_unlock(struct rbd_device *rbd_dev) 3693 { 3694 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3695 int ret; 3696 3697 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3698 rbd_dev->lock_cookie[0] == '\0'); 3699 3700 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3701 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3702 if (ret && ret != -ENOENT) 3703 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3704 3705 /* treat errors as the image is unlocked */ 3706 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3707 rbd_dev->lock_cookie[0] = '\0'; 3708 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3709 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3710 } 3711 3712 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3713 enum rbd_notify_op notify_op, 3714 struct page ***preply_pages, 3715 size_t *preply_len) 3716 { 3717 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3718 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3719 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3720 int buf_size = sizeof(buf); 3721 void *p = buf; 3722 3723 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3724 3725 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3726 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3727 ceph_encode_32(&p, notify_op); 3728 ceph_encode_64(&p, cid.gid); 3729 ceph_encode_64(&p, cid.handle); 3730 3731 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3732 &rbd_dev->header_oloc, buf, buf_size, 3733 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3734 } 3735 3736 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3737 enum rbd_notify_op notify_op) 3738 { 3739 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3740 } 3741 3742 static void rbd_notify_acquired_lock(struct work_struct *work) 3743 { 3744 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3745 acquired_lock_work); 3746 3747 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3748 } 3749 3750 static void rbd_notify_released_lock(struct work_struct *work) 3751 { 3752 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3753 released_lock_work); 3754 3755 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3756 } 3757 3758 static int rbd_request_lock(struct rbd_device *rbd_dev) 3759 { 3760 struct page **reply_pages; 3761 size_t reply_len; 3762 bool lock_owner_responded = false; 3763 int ret; 3764 3765 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3766 3767 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3768 &reply_pages, &reply_len); 3769 if (ret && ret != -ETIMEDOUT) { 3770 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3771 goto out; 3772 } 3773 3774 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3775 void *p = page_address(reply_pages[0]); 3776 void *const end = p + reply_len; 3777 u32 n; 3778 3779 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3780 while (n--) { 3781 u8 struct_v; 3782 u32 len; 3783 3784 ceph_decode_need(&p, end, 8 + 8, e_inval); 3785 p += 8 + 8; /* skip gid and cookie */ 3786 3787 ceph_decode_32_safe(&p, end, len, e_inval); 3788 if (!len) 3789 continue; 3790 3791 if (lock_owner_responded) { 3792 rbd_warn(rbd_dev, 3793 "duplicate lock owners detected"); 3794 ret = -EIO; 3795 goto out; 3796 } 3797 3798 lock_owner_responded = true; 3799 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3800 &struct_v, &len); 3801 if (ret) { 3802 rbd_warn(rbd_dev, 3803 "failed to decode ResponseMessage: %d", 3804 ret); 3805 goto e_inval; 3806 } 3807 3808 ret = ceph_decode_32(&p); 3809 } 3810 } 3811 3812 if (!lock_owner_responded) { 3813 rbd_warn(rbd_dev, "no lock owners detected"); 3814 ret = -ETIMEDOUT; 3815 } 3816 3817 out: 3818 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3819 return ret; 3820 3821 e_inval: 3822 ret = -EINVAL; 3823 goto out; 3824 } 3825 3826 /* 3827 * Either image request state machine(s) or rbd_add_acquire_lock() 3828 * (i.e. "rbd map"). 3829 */ 3830 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3831 { 3832 struct rbd_img_request *img_req; 3833 3834 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3835 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3836 3837 cancel_delayed_work(&rbd_dev->lock_dwork); 3838 if (!completion_done(&rbd_dev->acquire_wait)) { 3839 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3840 list_empty(&rbd_dev->running_list)); 3841 rbd_dev->acquire_err = result; 3842 complete_all(&rbd_dev->acquire_wait); 3843 return; 3844 } 3845 3846 while (!list_empty(&rbd_dev->acquiring_list)) { 3847 img_req = list_first_entry(&rbd_dev->acquiring_list, 3848 struct rbd_img_request, lock_item); 3849 mutex_lock(&img_req->state_mutex); 3850 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3851 if (!result) 3852 list_move_tail(&img_req->lock_item, 3853 &rbd_dev->running_list); 3854 else 3855 list_del_init(&img_req->lock_item); 3856 rbd_img_schedule(img_req, result); 3857 mutex_unlock(&img_req->state_mutex); 3858 } 3859 } 3860 3861 static bool locker_equal(const struct ceph_locker *lhs, 3862 const struct ceph_locker *rhs) 3863 { 3864 return lhs->id.name.type == rhs->id.name.type && 3865 lhs->id.name.num == rhs->id.name.num && 3866 !strcmp(lhs->id.cookie, rhs->id.cookie) && 3867 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr); 3868 } 3869 3870 static void free_locker(struct ceph_locker *locker) 3871 { 3872 if (locker) 3873 ceph_free_lockers(locker, 1); 3874 } 3875 3876 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev) 3877 { 3878 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3879 struct ceph_locker *lockers; 3880 u32 num_lockers; 3881 u8 lock_type; 3882 char *lock_tag; 3883 u64 handle; 3884 int ret; 3885 3886 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3887 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3888 &lock_type, &lock_tag, &lockers, &num_lockers); 3889 if (ret) { 3890 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret); 3891 return ERR_PTR(ret); 3892 } 3893 3894 if (num_lockers == 0) { 3895 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3896 lockers = NULL; 3897 goto out; 3898 } 3899 3900 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3901 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3902 lock_tag); 3903 goto err_busy; 3904 } 3905 3906 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) { 3907 rbd_warn(rbd_dev, "incompatible lock type detected"); 3908 goto err_busy; 3909 } 3910 3911 WARN_ON(num_lockers != 1); 3912 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", 3913 &handle); 3914 if (ret != 1) { 3915 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3916 lockers[0].id.cookie); 3917 goto err_busy; 3918 } 3919 if (ceph_addr_is_blank(&lockers[0].info.addr)) { 3920 rbd_warn(rbd_dev, "locker has a blank address"); 3921 goto err_busy; 3922 } 3923 3924 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n", 3925 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name), 3926 &lockers[0].info.addr.in_addr, 3927 le32_to_cpu(lockers[0].info.addr.nonce), handle); 3928 3929 out: 3930 kfree(lock_tag); 3931 return lockers; 3932 3933 err_busy: 3934 kfree(lock_tag); 3935 ceph_free_lockers(lockers, num_lockers); 3936 return ERR_PTR(-EBUSY); 3937 } 3938 3939 static int find_watcher(struct rbd_device *rbd_dev, 3940 const struct ceph_locker *locker) 3941 { 3942 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3943 struct ceph_watch_item *watchers; 3944 u32 num_watchers; 3945 u64 cookie; 3946 int i; 3947 int ret; 3948 3949 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3950 &rbd_dev->header_oloc, &watchers, 3951 &num_watchers); 3952 if (ret) { 3953 rbd_warn(rbd_dev, "failed to get watchers: %d", ret); 3954 return ret; 3955 } 3956 3957 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3958 for (i = 0; i < num_watchers; i++) { 3959 /* 3960 * Ignore addr->type while comparing. This mimics 3961 * entity_addr_t::get_legacy_str() + strcmp(). 3962 */ 3963 if (ceph_addr_equal_no_type(&watchers[i].addr, 3964 &locker->info.addr) && 3965 watchers[i].cookie == cookie) { 3966 struct rbd_client_id cid = { 3967 .gid = le64_to_cpu(watchers[i].name.num), 3968 .handle = cookie, 3969 }; 3970 3971 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3972 rbd_dev, cid.gid, cid.handle); 3973 rbd_set_owner_cid(rbd_dev, &cid); 3974 ret = 1; 3975 goto out; 3976 } 3977 } 3978 3979 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3980 ret = 0; 3981 out: 3982 kfree(watchers); 3983 return ret; 3984 } 3985 3986 /* 3987 * lock_rwsem must be held for write 3988 */ 3989 static int rbd_try_lock(struct rbd_device *rbd_dev) 3990 { 3991 struct ceph_client *client = rbd_dev->rbd_client->client; 3992 struct ceph_locker *locker, *refreshed_locker; 3993 int ret; 3994 3995 for (;;) { 3996 locker = refreshed_locker = NULL; 3997 3998 ret = rbd_lock(rbd_dev); 3999 if (!ret) 4000 goto out; 4001 if (ret != -EBUSY) { 4002 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4003 goto out; 4004 } 4005 4006 /* determine if the current lock holder is still alive */ 4007 locker = get_lock_owner_info(rbd_dev); 4008 if (IS_ERR(locker)) { 4009 ret = PTR_ERR(locker); 4010 locker = NULL; 4011 goto out; 4012 } 4013 if (!locker) 4014 goto again; 4015 4016 ret = find_watcher(rbd_dev, locker); 4017 if (ret) 4018 goto out; /* request lock or error */ 4019 4020 refreshed_locker = get_lock_owner_info(rbd_dev); 4021 if (IS_ERR(refreshed_locker)) { 4022 ret = PTR_ERR(refreshed_locker); 4023 refreshed_locker = NULL; 4024 goto out; 4025 } 4026 if (!refreshed_locker || 4027 !locker_equal(locker, refreshed_locker)) 4028 goto again; 4029 4030 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 4031 ENTITY_NAME(locker->id.name)); 4032 4033 ret = ceph_monc_blocklist_add(&client->monc, 4034 &locker->info.addr); 4035 if (ret) { 4036 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d", 4037 ENTITY_NAME(locker->id.name), ret); 4038 goto out; 4039 } 4040 4041 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4042 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4043 locker->id.cookie, &locker->id.name); 4044 if (ret && ret != -ENOENT) { 4045 rbd_warn(rbd_dev, "failed to break header lock: %d", 4046 ret); 4047 goto out; 4048 } 4049 4050 again: 4051 free_locker(refreshed_locker); 4052 free_locker(locker); 4053 } 4054 4055 out: 4056 free_locker(refreshed_locker); 4057 free_locker(locker); 4058 return ret; 4059 } 4060 4061 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4062 { 4063 int ret; 4064 4065 ret = rbd_dev_refresh(rbd_dev); 4066 if (ret) 4067 return ret; 4068 4069 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4070 ret = rbd_object_map_open(rbd_dev); 4071 if (ret) 4072 return ret; 4073 } 4074 4075 return 0; 4076 } 4077 4078 /* 4079 * Return: 4080 * 0 - lock acquired 4081 * 1 - caller should call rbd_request_lock() 4082 * <0 - error 4083 */ 4084 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4085 { 4086 int ret; 4087 4088 down_read(&rbd_dev->lock_rwsem); 4089 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4090 rbd_dev->lock_state); 4091 if (__rbd_is_lock_owner(rbd_dev)) { 4092 up_read(&rbd_dev->lock_rwsem); 4093 return 0; 4094 } 4095 4096 up_read(&rbd_dev->lock_rwsem); 4097 down_write(&rbd_dev->lock_rwsem); 4098 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4099 rbd_dev->lock_state); 4100 if (__rbd_is_lock_owner(rbd_dev)) { 4101 up_write(&rbd_dev->lock_rwsem); 4102 return 0; 4103 } 4104 4105 ret = rbd_try_lock(rbd_dev); 4106 if (ret < 0) { 4107 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret); 4108 goto out; 4109 } 4110 if (ret > 0) { 4111 up_write(&rbd_dev->lock_rwsem); 4112 return ret; 4113 } 4114 4115 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4116 rbd_assert(list_empty(&rbd_dev->running_list)); 4117 4118 ret = rbd_post_acquire_action(rbd_dev); 4119 if (ret) { 4120 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4121 /* 4122 * Can't stay in RBD_LOCK_STATE_LOCKED because 4123 * rbd_lock_add_request() would let the request through, 4124 * assuming that e.g. object map is locked and loaded. 4125 */ 4126 rbd_unlock(rbd_dev); 4127 } 4128 4129 out: 4130 wake_lock_waiters(rbd_dev, ret); 4131 up_write(&rbd_dev->lock_rwsem); 4132 return ret; 4133 } 4134 4135 static void rbd_acquire_lock(struct work_struct *work) 4136 { 4137 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4138 struct rbd_device, lock_dwork); 4139 int ret; 4140 4141 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4142 again: 4143 ret = rbd_try_acquire_lock(rbd_dev); 4144 if (ret <= 0) { 4145 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4146 return; 4147 } 4148 4149 ret = rbd_request_lock(rbd_dev); 4150 if (ret == -ETIMEDOUT) { 4151 goto again; /* treat this as a dead client */ 4152 } else if (ret == -EROFS) { 4153 rbd_warn(rbd_dev, "peer will not release lock"); 4154 down_write(&rbd_dev->lock_rwsem); 4155 wake_lock_waiters(rbd_dev, ret); 4156 up_write(&rbd_dev->lock_rwsem); 4157 } else if (ret < 0) { 4158 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4159 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4160 RBD_RETRY_DELAY); 4161 } else { 4162 /* 4163 * lock owner acked, but resend if we don't see them 4164 * release the lock 4165 */ 4166 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4167 rbd_dev); 4168 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4169 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4170 } 4171 } 4172 4173 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4174 { 4175 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4176 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4177 4178 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4179 return false; 4180 4181 /* 4182 * Ensure that all in-flight IO is flushed. 4183 */ 4184 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4185 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4186 if (list_empty(&rbd_dev->running_list)) 4187 return true; 4188 4189 up_write(&rbd_dev->lock_rwsem); 4190 wait_for_completion(&rbd_dev->releasing_wait); 4191 4192 down_write(&rbd_dev->lock_rwsem); 4193 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4194 return false; 4195 4196 rbd_assert(list_empty(&rbd_dev->running_list)); 4197 return true; 4198 } 4199 4200 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4201 { 4202 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4203 rbd_object_map_close(rbd_dev); 4204 } 4205 4206 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4207 { 4208 rbd_assert(list_empty(&rbd_dev->running_list)); 4209 4210 rbd_pre_release_action(rbd_dev); 4211 rbd_unlock(rbd_dev); 4212 } 4213 4214 /* 4215 * lock_rwsem must be held for write 4216 */ 4217 static void rbd_release_lock(struct rbd_device *rbd_dev) 4218 { 4219 if (!rbd_quiesce_lock(rbd_dev)) 4220 return; 4221 4222 __rbd_release_lock(rbd_dev); 4223 4224 /* 4225 * Give others a chance to grab the lock - we would re-acquire 4226 * almost immediately if we got new IO while draining the running 4227 * list otherwise. We need to ack our own notifications, so this 4228 * lock_dwork will be requeued from rbd_handle_released_lock() by 4229 * way of maybe_kick_acquire(). 4230 */ 4231 cancel_delayed_work(&rbd_dev->lock_dwork); 4232 } 4233 4234 static void rbd_release_lock_work(struct work_struct *work) 4235 { 4236 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4237 unlock_work); 4238 4239 down_write(&rbd_dev->lock_rwsem); 4240 rbd_release_lock(rbd_dev); 4241 up_write(&rbd_dev->lock_rwsem); 4242 } 4243 4244 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4245 { 4246 bool have_requests; 4247 4248 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4249 if (__rbd_is_lock_owner(rbd_dev)) 4250 return; 4251 4252 spin_lock(&rbd_dev->lock_lists_lock); 4253 have_requests = !list_empty(&rbd_dev->acquiring_list); 4254 spin_unlock(&rbd_dev->lock_lists_lock); 4255 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4256 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4257 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4258 } 4259 } 4260 4261 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4262 void **p) 4263 { 4264 struct rbd_client_id cid = { 0 }; 4265 4266 if (struct_v >= 2) { 4267 cid.gid = ceph_decode_64(p); 4268 cid.handle = ceph_decode_64(p); 4269 } 4270 4271 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4272 cid.handle); 4273 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4274 down_write(&rbd_dev->lock_rwsem); 4275 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4276 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4277 __func__, rbd_dev, cid.gid, cid.handle); 4278 } else { 4279 rbd_set_owner_cid(rbd_dev, &cid); 4280 } 4281 downgrade_write(&rbd_dev->lock_rwsem); 4282 } else { 4283 down_read(&rbd_dev->lock_rwsem); 4284 } 4285 4286 maybe_kick_acquire(rbd_dev); 4287 up_read(&rbd_dev->lock_rwsem); 4288 } 4289 4290 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4291 void **p) 4292 { 4293 struct rbd_client_id cid = { 0 }; 4294 4295 if (struct_v >= 2) { 4296 cid.gid = ceph_decode_64(p); 4297 cid.handle = ceph_decode_64(p); 4298 } 4299 4300 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4301 cid.handle); 4302 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4303 down_write(&rbd_dev->lock_rwsem); 4304 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4305 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4306 __func__, rbd_dev, cid.gid, cid.handle, 4307 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4308 } else { 4309 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4310 } 4311 downgrade_write(&rbd_dev->lock_rwsem); 4312 } else { 4313 down_read(&rbd_dev->lock_rwsem); 4314 } 4315 4316 maybe_kick_acquire(rbd_dev); 4317 up_read(&rbd_dev->lock_rwsem); 4318 } 4319 4320 /* 4321 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4322 * ResponseMessage is needed. 4323 */ 4324 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4325 void **p) 4326 { 4327 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4328 struct rbd_client_id cid = { 0 }; 4329 int result = 1; 4330 4331 if (struct_v >= 2) { 4332 cid.gid = ceph_decode_64(p); 4333 cid.handle = ceph_decode_64(p); 4334 } 4335 4336 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4337 cid.handle); 4338 if (rbd_cid_equal(&cid, &my_cid)) 4339 return result; 4340 4341 down_read(&rbd_dev->lock_rwsem); 4342 if (__rbd_is_lock_owner(rbd_dev)) { 4343 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4344 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4345 goto out_unlock; 4346 4347 /* 4348 * encode ResponseMessage(0) so the peer can detect 4349 * a missing owner 4350 */ 4351 result = 0; 4352 4353 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4354 if (!rbd_dev->opts->exclusive) { 4355 dout("%s rbd_dev %p queueing unlock_work\n", 4356 __func__, rbd_dev); 4357 queue_work(rbd_dev->task_wq, 4358 &rbd_dev->unlock_work); 4359 } else { 4360 /* refuse to release the lock */ 4361 result = -EROFS; 4362 } 4363 } 4364 } 4365 4366 out_unlock: 4367 up_read(&rbd_dev->lock_rwsem); 4368 return result; 4369 } 4370 4371 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4372 u64 notify_id, u64 cookie, s32 *result) 4373 { 4374 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4375 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4376 int buf_size = sizeof(buf); 4377 int ret; 4378 4379 if (result) { 4380 void *p = buf; 4381 4382 /* encode ResponseMessage */ 4383 ceph_start_encoding(&p, 1, 1, 4384 buf_size - CEPH_ENCODING_START_BLK_LEN); 4385 ceph_encode_32(&p, *result); 4386 } else { 4387 buf_size = 0; 4388 } 4389 4390 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4391 &rbd_dev->header_oloc, notify_id, cookie, 4392 buf, buf_size); 4393 if (ret) 4394 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4395 } 4396 4397 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4398 u64 cookie) 4399 { 4400 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4401 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4402 } 4403 4404 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4405 u64 notify_id, u64 cookie, s32 result) 4406 { 4407 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4408 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4409 } 4410 4411 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4412 u64 notifier_id, void *data, size_t data_len) 4413 { 4414 struct rbd_device *rbd_dev = arg; 4415 void *p = data; 4416 void *const end = p + data_len; 4417 u8 struct_v = 0; 4418 u32 len; 4419 u32 notify_op; 4420 int ret; 4421 4422 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4423 __func__, rbd_dev, cookie, notify_id, data_len); 4424 if (data_len) { 4425 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4426 &struct_v, &len); 4427 if (ret) { 4428 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4429 ret); 4430 return; 4431 } 4432 4433 notify_op = ceph_decode_32(&p); 4434 } else { 4435 /* legacy notification for header updates */ 4436 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4437 len = 0; 4438 } 4439 4440 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4441 switch (notify_op) { 4442 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4443 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4444 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4445 break; 4446 case RBD_NOTIFY_OP_RELEASED_LOCK: 4447 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4448 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4449 break; 4450 case RBD_NOTIFY_OP_REQUEST_LOCK: 4451 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4452 if (ret <= 0) 4453 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4454 cookie, ret); 4455 else 4456 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4457 break; 4458 case RBD_NOTIFY_OP_HEADER_UPDATE: 4459 ret = rbd_dev_refresh(rbd_dev); 4460 if (ret) 4461 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4462 4463 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4464 break; 4465 default: 4466 if (rbd_is_lock_owner(rbd_dev)) 4467 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4468 cookie, -EOPNOTSUPP); 4469 else 4470 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4471 break; 4472 } 4473 } 4474 4475 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4476 4477 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4478 { 4479 struct rbd_device *rbd_dev = arg; 4480 4481 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4482 4483 down_write(&rbd_dev->lock_rwsem); 4484 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4485 up_write(&rbd_dev->lock_rwsem); 4486 4487 mutex_lock(&rbd_dev->watch_mutex); 4488 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4489 __rbd_unregister_watch(rbd_dev); 4490 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4491 4492 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4493 } 4494 mutex_unlock(&rbd_dev->watch_mutex); 4495 } 4496 4497 /* 4498 * watch_mutex must be locked 4499 */ 4500 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4501 { 4502 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4503 struct ceph_osd_linger_request *handle; 4504 4505 rbd_assert(!rbd_dev->watch_handle); 4506 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4507 4508 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4509 &rbd_dev->header_oloc, rbd_watch_cb, 4510 rbd_watch_errcb, rbd_dev); 4511 if (IS_ERR(handle)) 4512 return PTR_ERR(handle); 4513 4514 rbd_dev->watch_handle = handle; 4515 return 0; 4516 } 4517 4518 /* 4519 * watch_mutex must be locked 4520 */ 4521 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4522 { 4523 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4524 int ret; 4525 4526 rbd_assert(rbd_dev->watch_handle); 4527 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4528 4529 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4530 if (ret) 4531 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4532 4533 rbd_dev->watch_handle = NULL; 4534 } 4535 4536 static int rbd_register_watch(struct rbd_device *rbd_dev) 4537 { 4538 int ret; 4539 4540 mutex_lock(&rbd_dev->watch_mutex); 4541 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4542 ret = __rbd_register_watch(rbd_dev); 4543 if (ret) 4544 goto out; 4545 4546 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4547 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4548 4549 out: 4550 mutex_unlock(&rbd_dev->watch_mutex); 4551 return ret; 4552 } 4553 4554 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4555 { 4556 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4557 4558 cancel_work_sync(&rbd_dev->acquired_lock_work); 4559 cancel_work_sync(&rbd_dev->released_lock_work); 4560 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4561 cancel_work_sync(&rbd_dev->unlock_work); 4562 } 4563 4564 /* 4565 * header_rwsem must not be held to avoid a deadlock with 4566 * rbd_dev_refresh() when flushing notifies. 4567 */ 4568 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4569 { 4570 cancel_tasks_sync(rbd_dev); 4571 4572 mutex_lock(&rbd_dev->watch_mutex); 4573 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4574 __rbd_unregister_watch(rbd_dev); 4575 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4576 mutex_unlock(&rbd_dev->watch_mutex); 4577 4578 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4579 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4580 } 4581 4582 /* 4583 * lock_rwsem must be held for write 4584 */ 4585 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4586 { 4587 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4588 char cookie[32]; 4589 int ret; 4590 4591 if (!rbd_quiesce_lock(rbd_dev)) 4592 return; 4593 4594 format_lock_cookie(rbd_dev, cookie); 4595 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4596 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4597 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4598 RBD_LOCK_TAG, cookie); 4599 if (ret) { 4600 if (ret != -EOPNOTSUPP) 4601 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4602 ret); 4603 4604 /* 4605 * Lock cookie cannot be updated on older OSDs, so do 4606 * a manual release and queue an acquire. 4607 */ 4608 __rbd_release_lock(rbd_dev); 4609 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4610 } else { 4611 __rbd_lock(rbd_dev, cookie); 4612 wake_lock_waiters(rbd_dev, 0); 4613 } 4614 } 4615 4616 static void rbd_reregister_watch(struct work_struct *work) 4617 { 4618 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4619 struct rbd_device, watch_dwork); 4620 int ret; 4621 4622 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4623 4624 mutex_lock(&rbd_dev->watch_mutex); 4625 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4626 mutex_unlock(&rbd_dev->watch_mutex); 4627 return; 4628 } 4629 4630 ret = __rbd_register_watch(rbd_dev); 4631 if (ret) { 4632 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4633 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4634 queue_delayed_work(rbd_dev->task_wq, 4635 &rbd_dev->watch_dwork, 4636 RBD_RETRY_DELAY); 4637 mutex_unlock(&rbd_dev->watch_mutex); 4638 return; 4639 } 4640 4641 mutex_unlock(&rbd_dev->watch_mutex); 4642 down_write(&rbd_dev->lock_rwsem); 4643 wake_lock_waiters(rbd_dev, ret); 4644 up_write(&rbd_dev->lock_rwsem); 4645 return; 4646 } 4647 4648 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4649 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4650 mutex_unlock(&rbd_dev->watch_mutex); 4651 4652 down_write(&rbd_dev->lock_rwsem); 4653 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4654 rbd_reacquire_lock(rbd_dev); 4655 up_write(&rbd_dev->lock_rwsem); 4656 4657 ret = rbd_dev_refresh(rbd_dev); 4658 if (ret) 4659 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4660 } 4661 4662 /* 4663 * Synchronous osd object method call. Returns the number of bytes 4664 * returned in the outbound buffer, or a negative error code. 4665 */ 4666 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4667 struct ceph_object_id *oid, 4668 struct ceph_object_locator *oloc, 4669 const char *method_name, 4670 const void *outbound, 4671 size_t outbound_size, 4672 void *inbound, 4673 size_t inbound_size) 4674 { 4675 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4676 struct page *req_page = NULL; 4677 struct page *reply_page; 4678 int ret; 4679 4680 /* 4681 * Method calls are ultimately read operations. The result 4682 * should placed into the inbound buffer provided. They 4683 * also supply outbound data--parameters for the object 4684 * method. Currently if this is present it will be a 4685 * snapshot id. 4686 */ 4687 if (outbound) { 4688 if (outbound_size > PAGE_SIZE) 4689 return -E2BIG; 4690 4691 req_page = alloc_page(GFP_KERNEL); 4692 if (!req_page) 4693 return -ENOMEM; 4694 4695 memcpy(page_address(req_page), outbound, outbound_size); 4696 } 4697 4698 reply_page = alloc_page(GFP_KERNEL); 4699 if (!reply_page) { 4700 if (req_page) 4701 __free_page(req_page); 4702 return -ENOMEM; 4703 } 4704 4705 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4706 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4707 &reply_page, &inbound_size); 4708 if (!ret) { 4709 memcpy(inbound, page_address(reply_page), inbound_size); 4710 ret = inbound_size; 4711 } 4712 4713 if (req_page) 4714 __free_page(req_page); 4715 __free_page(reply_page); 4716 return ret; 4717 } 4718 4719 static void rbd_queue_workfn(struct work_struct *work) 4720 { 4721 struct rbd_img_request *img_request = 4722 container_of(work, struct rbd_img_request, work); 4723 struct rbd_device *rbd_dev = img_request->rbd_dev; 4724 enum obj_operation_type op_type = img_request->op_type; 4725 struct request *rq = blk_mq_rq_from_pdu(img_request); 4726 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4727 u64 length = blk_rq_bytes(rq); 4728 u64 mapping_size; 4729 int result; 4730 4731 /* Ignore/skip any zero-length requests */ 4732 if (!length) { 4733 dout("%s: zero-length request\n", __func__); 4734 result = 0; 4735 goto err_img_request; 4736 } 4737 4738 blk_mq_start_request(rq); 4739 4740 down_read(&rbd_dev->header_rwsem); 4741 mapping_size = rbd_dev->mapping.size; 4742 rbd_img_capture_header(img_request); 4743 up_read(&rbd_dev->header_rwsem); 4744 4745 if (offset + length > mapping_size) { 4746 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4747 length, mapping_size); 4748 result = -EIO; 4749 goto err_img_request; 4750 } 4751 4752 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4753 img_request, obj_op_name(op_type), offset, length); 4754 4755 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4756 result = rbd_img_fill_nodata(img_request, offset, length); 4757 else 4758 result = rbd_img_fill_from_bio(img_request, offset, length, 4759 rq->bio); 4760 if (result) 4761 goto err_img_request; 4762 4763 rbd_img_handle_request(img_request, 0); 4764 return; 4765 4766 err_img_request: 4767 rbd_img_request_destroy(img_request); 4768 if (result) 4769 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4770 obj_op_name(op_type), length, offset, result); 4771 blk_mq_end_request(rq, errno_to_blk_status(result)); 4772 } 4773 4774 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4775 const struct blk_mq_queue_data *bd) 4776 { 4777 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4778 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4779 enum obj_operation_type op_type; 4780 4781 switch (req_op(bd->rq)) { 4782 case REQ_OP_DISCARD: 4783 op_type = OBJ_OP_DISCARD; 4784 break; 4785 case REQ_OP_WRITE_ZEROES: 4786 op_type = OBJ_OP_ZEROOUT; 4787 break; 4788 case REQ_OP_WRITE: 4789 op_type = OBJ_OP_WRITE; 4790 break; 4791 case REQ_OP_READ: 4792 op_type = OBJ_OP_READ; 4793 break; 4794 default: 4795 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4796 return BLK_STS_IOERR; 4797 } 4798 4799 rbd_img_request_init(img_req, rbd_dev, op_type); 4800 4801 if (rbd_img_is_write(img_req)) { 4802 if (rbd_is_ro(rbd_dev)) { 4803 rbd_warn(rbd_dev, "%s on read-only mapping", 4804 obj_op_name(img_req->op_type)); 4805 return BLK_STS_IOERR; 4806 } 4807 rbd_assert(!rbd_is_snap(rbd_dev)); 4808 } 4809 4810 INIT_WORK(&img_req->work, rbd_queue_workfn); 4811 queue_work(rbd_wq, &img_req->work); 4812 return BLK_STS_OK; 4813 } 4814 4815 static void rbd_free_disk(struct rbd_device *rbd_dev) 4816 { 4817 put_disk(rbd_dev->disk); 4818 blk_mq_free_tag_set(&rbd_dev->tag_set); 4819 rbd_dev->disk = NULL; 4820 } 4821 4822 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4823 struct ceph_object_id *oid, 4824 struct ceph_object_locator *oloc, 4825 void *buf, int buf_len) 4826 4827 { 4828 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4829 struct ceph_osd_request *req; 4830 struct page **pages; 4831 int num_pages = calc_pages_for(0, buf_len); 4832 int ret; 4833 4834 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4835 if (!req) 4836 return -ENOMEM; 4837 4838 ceph_oid_copy(&req->r_base_oid, oid); 4839 ceph_oloc_copy(&req->r_base_oloc, oloc); 4840 req->r_flags = CEPH_OSD_FLAG_READ; 4841 4842 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4843 if (IS_ERR(pages)) { 4844 ret = PTR_ERR(pages); 4845 goto out_req; 4846 } 4847 4848 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4849 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4850 true); 4851 4852 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4853 if (ret) 4854 goto out_req; 4855 4856 ceph_osdc_start_request(osdc, req); 4857 ret = ceph_osdc_wait_request(osdc, req); 4858 if (ret >= 0) 4859 ceph_copy_from_page_vector(pages, buf, 0, ret); 4860 4861 out_req: 4862 ceph_osdc_put_request(req); 4863 return ret; 4864 } 4865 4866 /* 4867 * Read the complete header for the given rbd device. On successful 4868 * return, the rbd_dev->header field will contain up-to-date 4869 * information about the image. 4870 */ 4871 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev, 4872 struct rbd_image_header *header, 4873 bool first_time) 4874 { 4875 struct rbd_image_header_ondisk *ondisk = NULL; 4876 u32 snap_count = 0; 4877 u64 names_size = 0; 4878 u32 want_count; 4879 int ret; 4880 4881 /* 4882 * The complete header will include an array of its 64-bit 4883 * snapshot ids, followed by the names of those snapshots as 4884 * a contiguous block of NUL-terminated strings. Note that 4885 * the number of snapshots could change by the time we read 4886 * it in, in which case we re-read it. 4887 */ 4888 do { 4889 size_t size; 4890 4891 kfree(ondisk); 4892 4893 size = sizeof (*ondisk); 4894 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4895 size += names_size; 4896 ondisk = kmalloc(size, GFP_KERNEL); 4897 if (!ondisk) 4898 return -ENOMEM; 4899 4900 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4901 &rbd_dev->header_oloc, ondisk, size); 4902 if (ret < 0) 4903 goto out; 4904 if ((size_t)ret < size) { 4905 ret = -ENXIO; 4906 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4907 size, ret); 4908 goto out; 4909 } 4910 if (!rbd_dev_ondisk_valid(ondisk)) { 4911 ret = -ENXIO; 4912 rbd_warn(rbd_dev, "invalid header"); 4913 goto out; 4914 } 4915 4916 names_size = le64_to_cpu(ondisk->snap_names_len); 4917 want_count = snap_count; 4918 snap_count = le32_to_cpu(ondisk->snap_count); 4919 } while (snap_count != want_count); 4920 4921 ret = rbd_header_from_disk(header, ondisk, first_time); 4922 out: 4923 kfree(ondisk); 4924 4925 return ret; 4926 } 4927 4928 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4929 { 4930 sector_t size; 4931 4932 /* 4933 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4934 * try to update its size. If REMOVING is set, updating size 4935 * is just useless work since the device can't be opened. 4936 */ 4937 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4938 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4939 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4940 dout("setting size to %llu sectors", (unsigned long long)size); 4941 set_capacity_and_notify(rbd_dev->disk, size); 4942 } 4943 } 4944 4945 static const struct blk_mq_ops rbd_mq_ops = { 4946 .queue_rq = rbd_queue_rq, 4947 }; 4948 4949 static int rbd_init_disk(struct rbd_device *rbd_dev) 4950 { 4951 struct gendisk *disk; 4952 struct request_queue *q; 4953 unsigned int objset_bytes = 4954 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4955 struct queue_limits lim = { 4956 .max_hw_sectors = objset_bytes >> SECTOR_SHIFT, 4957 .io_opt = objset_bytes, 4958 .io_min = rbd_dev->opts->alloc_size, 4959 .max_segments = USHRT_MAX, 4960 .max_segment_size = UINT_MAX, 4961 }; 4962 int err; 4963 4964 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4965 rbd_dev->tag_set.ops = &rbd_mq_ops; 4966 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4967 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4968 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4969 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4970 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4971 4972 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4973 if (err) 4974 return err; 4975 4976 if (rbd_dev->opts->trim) { 4977 lim.discard_granularity = rbd_dev->opts->alloc_size; 4978 lim.max_hw_discard_sectors = objset_bytes >> SECTOR_SHIFT; 4979 lim.max_write_zeroes_sectors = objset_bytes >> SECTOR_SHIFT; 4980 } 4981 4982 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, &lim, rbd_dev); 4983 if (IS_ERR(disk)) { 4984 err = PTR_ERR(disk); 4985 goto out_tag_set; 4986 } 4987 q = disk->queue; 4988 4989 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4990 rbd_dev->dev_id); 4991 disk->major = rbd_dev->major; 4992 disk->first_minor = rbd_dev->minor; 4993 if (single_major) 4994 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 4995 else 4996 disk->minors = RBD_MINORS_PER_MAJOR; 4997 disk->fops = &rbd_bd_ops; 4998 disk->private_data = rbd_dev; 4999 5000 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 5001 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 5002 5003 rbd_dev->disk = disk; 5004 5005 return 0; 5006 out_tag_set: 5007 blk_mq_free_tag_set(&rbd_dev->tag_set); 5008 return err; 5009 } 5010 5011 /* 5012 sysfs 5013 */ 5014 5015 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5016 { 5017 return container_of(dev, struct rbd_device, dev); 5018 } 5019 5020 static ssize_t rbd_size_show(struct device *dev, 5021 struct device_attribute *attr, char *buf) 5022 { 5023 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5024 5025 return sprintf(buf, "%llu\n", 5026 (unsigned long long)rbd_dev->mapping.size); 5027 } 5028 5029 static ssize_t rbd_features_show(struct device *dev, 5030 struct device_attribute *attr, char *buf) 5031 { 5032 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5033 5034 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5035 } 5036 5037 static ssize_t rbd_major_show(struct device *dev, 5038 struct device_attribute *attr, char *buf) 5039 { 5040 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5041 5042 if (rbd_dev->major) 5043 return sprintf(buf, "%d\n", rbd_dev->major); 5044 5045 return sprintf(buf, "(none)\n"); 5046 } 5047 5048 static ssize_t rbd_minor_show(struct device *dev, 5049 struct device_attribute *attr, char *buf) 5050 { 5051 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5052 5053 return sprintf(buf, "%d\n", rbd_dev->minor); 5054 } 5055 5056 static ssize_t rbd_client_addr_show(struct device *dev, 5057 struct device_attribute *attr, char *buf) 5058 { 5059 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5060 struct ceph_entity_addr *client_addr = 5061 ceph_client_addr(rbd_dev->rbd_client->client); 5062 5063 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5064 le32_to_cpu(client_addr->nonce)); 5065 } 5066 5067 static ssize_t rbd_client_id_show(struct device *dev, 5068 struct device_attribute *attr, char *buf) 5069 { 5070 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5071 5072 return sprintf(buf, "client%lld\n", 5073 ceph_client_gid(rbd_dev->rbd_client->client)); 5074 } 5075 5076 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5077 struct device_attribute *attr, char *buf) 5078 { 5079 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5080 5081 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5082 } 5083 5084 static ssize_t rbd_config_info_show(struct device *dev, 5085 struct device_attribute *attr, char *buf) 5086 { 5087 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5088 5089 if (!capable(CAP_SYS_ADMIN)) 5090 return -EPERM; 5091 5092 return sprintf(buf, "%s\n", rbd_dev->config_info); 5093 } 5094 5095 static ssize_t rbd_pool_show(struct device *dev, 5096 struct device_attribute *attr, char *buf) 5097 { 5098 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5099 5100 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5101 } 5102 5103 static ssize_t rbd_pool_id_show(struct device *dev, 5104 struct device_attribute *attr, char *buf) 5105 { 5106 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5107 5108 return sprintf(buf, "%llu\n", 5109 (unsigned long long) rbd_dev->spec->pool_id); 5110 } 5111 5112 static ssize_t rbd_pool_ns_show(struct device *dev, 5113 struct device_attribute *attr, char *buf) 5114 { 5115 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5116 5117 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5118 } 5119 5120 static ssize_t rbd_name_show(struct device *dev, 5121 struct device_attribute *attr, char *buf) 5122 { 5123 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5124 5125 if (rbd_dev->spec->image_name) 5126 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5127 5128 return sprintf(buf, "(unknown)\n"); 5129 } 5130 5131 static ssize_t rbd_image_id_show(struct device *dev, 5132 struct device_attribute *attr, char *buf) 5133 { 5134 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5135 5136 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5137 } 5138 5139 /* 5140 * Shows the name of the currently-mapped snapshot (or 5141 * RBD_SNAP_HEAD_NAME for the base image). 5142 */ 5143 static ssize_t rbd_snap_show(struct device *dev, 5144 struct device_attribute *attr, 5145 char *buf) 5146 { 5147 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5148 5149 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5150 } 5151 5152 static ssize_t rbd_snap_id_show(struct device *dev, 5153 struct device_attribute *attr, char *buf) 5154 { 5155 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5156 5157 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5158 } 5159 5160 /* 5161 * For a v2 image, shows the chain of parent images, separated by empty 5162 * lines. For v1 images or if there is no parent, shows "(no parent 5163 * image)". 5164 */ 5165 static ssize_t rbd_parent_show(struct device *dev, 5166 struct device_attribute *attr, 5167 char *buf) 5168 { 5169 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5170 ssize_t count = 0; 5171 5172 if (!rbd_dev->parent) 5173 return sprintf(buf, "(no parent image)\n"); 5174 5175 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5176 struct rbd_spec *spec = rbd_dev->parent_spec; 5177 5178 count += sprintf(&buf[count], "%s" 5179 "pool_id %llu\npool_name %s\n" 5180 "pool_ns %s\n" 5181 "image_id %s\nimage_name %s\n" 5182 "snap_id %llu\nsnap_name %s\n" 5183 "overlap %llu\n", 5184 !count ? "" : "\n", /* first? */ 5185 spec->pool_id, spec->pool_name, 5186 spec->pool_ns ?: "", 5187 spec->image_id, spec->image_name ?: "(unknown)", 5188 spec->snap_id, spec->snap_name, 5189 rbd_dev->parent_overlap); 5190 } 5191 5192 return count; 5193 } 5194 5195 static ssize_t rbd_image_refresh(struct device *dev, 5196 struct device_attribute *attr, 5197 const char *buf, 5198 size_t size) 5199 { 5200 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5201 int ret; 5202 5203 if (!capable(CAP_SYS_ADMIN)) 5204 return -EPERM; 5205 5206 ret = rbd_dev_refresh(rbd_dev); 5207 if (ret) 5208 return ret; 5209 5210 return size; 5211 } 5212 5213 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5214 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5215 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5216 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5217 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5218 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5219 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5220 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5221 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5222 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5223 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5224 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5225 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5226 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5227 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5228 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5229 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5230 5231 static struct attribute *rbd_attrs[] = { 5232 &dev_attr_size.attr, 5233 &dev_attr_features.attr, 5234 &dev_attr_major.attr, 5235 &dev_attr_minor.attr, 5236 &dev_attr_client_addr.attr, 5237 &dev_attr_client_id.attr, 5238 &dev_attr_cluster_fsid.attr, 5239 &dev_attr_config_info.attr, 5240 &dev_attr_pool.attr, 5241 &dev_attr_pool_id.attr, 5242 &dev_attr_pool_ns.attr, 5243 &dev_attr_name.attr, 5244 &dev_attr_image_id.attr, 5245 &dev_attr_current_snap.attr, 5246 &dev_attr_snap_id.attr, 5247 &dev_attr_parent.attr, 5248 &dev_attr_refresh.attr, 5249 NULL 5250 }; 5251 5252 static struct attribute_group rbd_attr_group = { 5253 .attrs = rbd_attrs, 5254 }; 5255 5256 static const struct attribute_group *rbd_attr_groups[] = { 5257 &rbd_attr_group, 5258 NULL 5259 }; 5260 5261 static void rbd_dev_release(struct device *dev); 5262 5263 static const struct device_type rbd_device_type = { 5264 .name = "rbd", 5265 .groups = rbd_attr_groups, 5266 .release = rbd_dev_release, 5267 }; 5268 5269 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5270 { 5271 kref_get(&spec->kref); 5272 5273 return spec; 5274 } 5275 5276 static void rbd_spec_free(struct kref *kref); 5277 static void rbd_spec_put(struct rbd_spec *spec) 5278 { 5279 if (spec) 5280 kref_put(&spec->kref, rbd_spec_free); 5281 } 5282 5283 static struct rbd_spec *rbd_spec_alloc(void) 5284 { 5285 struct rbd_spec *spec; 5286 5287 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5288 if (!spec) 5289 return NULL; 5290 5291 spec->pool_id = CEPH_NOPOOL; 5292 spec->snap_id = CEPH_NOSNAP; 5293 kref_init(&spec->kref); 5294 5295 return spec; 5296 } 5297 5298 static void rbd_spec_free(struct kref *kref) 5299 { 5300 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5301 5302 kfree(spec->pool_name); 5303 kfree(spec->pool_ns); 5304 kfree(spec->image_id); 5305 kfree(spec->image_name); 5306 kfree(spec->snap_name); 5307 kfree(spec); 5308 } 5309 5310 static void rbd_dev_free(struct rbd_device *rbd_dev) 5311 { 5312 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5313 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5314 5315 ceph_oid_destroy(&rbd_dev->header_oid); 5316 ceph_oloc_destroy(&rbd_dev->header_oloc); 5317 kfree(rbd_dev->config_info); 5318 5319 rbd_put_client(rbd_dev->rbd_client); 5320 rbd_spec_put(rbd_dev->spec); 5321 kfree(rbd_dev->opts); 5322 kfree(rbd_dev); 5323 } 5324 5325 static void rbd_dev_release(struct device *dev) 5326 { 5327 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5328 bool need_put = !!rbd_dev->opts; 5329 5330 if (need_put) { 5331 destroy_workqueue(rbd_dev->task_wq); 5332 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id); 5333 } 5334 5335 rbd_dev_free(rbd_dev); 5336 5337 /* 5338 * This is racy, but way better than putting module outside of 5339 * the release callback. The race window is pretty small, so 5340 * doing something similar to dm (dm-builtin.c) is overkill. 5341 */ 5342 if (need_put) 5343 module_put(THIS_MODULE); 5344 } 5345 5346 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec) 5347 { 5348 struct rbd_device *rbd_dev; 5349 5350 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5351 if (!rbd_dev) 5352 return NULL; 5353 5354 spin_lock_init(&rbd_dev->lock); 5355 INIT_LIST_HEAD(&rbd_dev->node); 5356 init_rwsem(&rbd_dev->header_rwsem); 5357 5358 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5359 ceph_oid_init(&rbd_dev->header_oid); 5360 rbd_dev->header_oloc.pool = spec->pool_id; 5361 if (spec->pool_ns) { 5362 WARN_ON(!*spec->pool_ns); 5363 rbd_dev->header_oloc.pool_ns = 5364 ceph_find_or_create_string(spec->pool_ns, 5365 strlen(spec->pool_ns)); 5366 } 5367 5368 mutex_init(&rbd_dev->watch_mutex); 5369 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5370 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5371 5372 init_rwsem(&rbd_dev->lock_rwsem); 5373 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5374 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5375 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5376 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5377 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5378 spin_lock_init(&rbd_dev->lock_lists_lock); 5379 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5380 INIT_LIST_HEAD(&rbd_dev->running_list); 5381 init_completion(&rbd_dev->acquire_wait); 5382 init_completion(&rbd_dev->releasing_wait); 5383 5384 spin_lock_init(&rbd_dev->object_map_lock); 5385 5386 rbd_dev->dev.bus = &rbd_bus_type; 5387 rbd_dev->dev.type = &rbd_device_type; 5388 rbd_dev->dev.parent = &rbd_root_dev; 5389 device_initialize(&rbd_dev->dev); 5390 5391 return rbd_dev; 5392 } 5393 5394 /* 5395 * Create a mapping rbd_dev. 5396 */ 5397 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5398 struct rbd_spec *spec, 5399 struct rbd_options *opts) 5400 { 5401 struct rbd_device *rbd_dev; 5402 5403 rbd_dev = __rbd_dev_create(spec); 5404 if (!rbd_dev) 5405 return NULL; 5406 5407 /* get an id and fill in device name */ 5408 rbd_dev->dev_id = ida_alloc_max(&rbd_dev_id_ida, 5409 minor_to_rbd_dev_id(1 << MINORBITS) - 1, 5410 GFP_KERNEL); 5411 if (rbd_dev->dev_id < 0) 5412 goto fail_rbd_dev; 5413 5414 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5415 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5416 rbd_dev->name); 5417 if (!rbd_dev->task_wq) 5418 goto fail_dev_id; 5419 5420 /* we have a ref from do_rbd_add() */ 5421 __module_get(THIS_MODULE); 5422 5423 rbd_dev->rbd_client = rbdc; 5424 rbd_dev->spec = spec; 5425 rbd_dev->opts = opts; 5426 5427 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5428 return rbd_dev; 5429 5430 fail_dev_id: 5431 ida_free(&rbd_dev_id_ida, rbd_dev->dev_id); 5432 fail_rbd_dev: 5433 rbd_dev_free(rbd_dev); 5434 return NULL; 5435 } 5436 5437 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5438 { 5439 if (rbd_dev) 5440 put_device(&rbd_dev->dev); 5441 } 5442 5443 /* 5444 * Get the size and object order for an image snapshot, or if 5445 * snap_id is CEPH_NOSNAP, gets this information for the base 5446 * image. 5447 */ 5448 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5449 u8 *order, u64 *snap_size) 5450 { 5451 __le64 snapid = cpu_to_le64(snap_id); 5452 int ret; 5453 struct { 5454 u8 order; 5455 __le64 size; 5456 } __attribute__ ((packed)) size_buf = { 0 }; 5457 5458 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5459 &rbd_dev->header_oloc, "get_size", 5460 &snapid, sizeof(snapid), 5461 &size_buf, sizeof(size_buf)); 5462 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5463 if (ret < 0) 5464 return ret; 5465 if (ret < sizeof (size_buf)) 5466 return -ERANGE; 5467 5468 if (order) { 5469 *order = size_buf.order; 5470 dout(" order %u", (unsigned int)*order); 5471 } 5472 *snap_size = le64_to_cpu(size_buf.size); 5473 5474 dout(" snap_id 0x%016llx snap_size = %llu\n", 5475 (unsigned long long)snap_id, 5476 (unsigned long long)*snap_size); 5477 5478 return 0; 5479 } 5480 5481 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev, 5482 char **pobject_prefix) 5483 { 5484 size_t size; 5485 void *reply_buf; 5486 char *object_prefix; 5487 int ret; 5488 void *p; 5489 5490 /* Response will be an encoded string, which includes a length */ 5491 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5492 reply_buf = kzalloc(size, GFP_KERNEL); 5493 if (!reply_buf) 5494 return -ENOMEM; 5495 5496 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5497 &rbd_dev->header_oloc, "get_object_prefix", 5498 NULL, 0, reply_buf, size); 5499 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5500 if (ret < 0) 5501 goto out; 5502 5503 p = reply_buf; 5504 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL, 5505 GFP_NOIO); 5506 if (IS_ERR(object_prefix)) { 5507 ret = PTR_ERR(object_prefix); 5508 goto out; 5509 } 5510 ret = 0; 5511 5512 *pobject_prefix = object_prefix; 5513 dout(" object_prefix = %s\n", object_prefix); 5514 out: 5515 kfree(reply_buf); 5516 5517 return ret; 5518 } 5519 5520 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5521 bool read_only, u64 *snap_features) 5522 { 5523 struct { 5524 __le64 snap_id; 5525 u8 read_only; 5526 } features_in; 5527 struct { 5528 __le64 features; 5529 __le64 incompat; 5530 } __attribute__ ((packed)) features_buf = { 0 }; 5531 u64 unsup; 5532 int ret; 5533 5534 features_in.snap_id = cpu_to_le64(snap_id); 5535 features_in.read_only = read_only; 5536 5537 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5538 &rbd_dev->header_oloc, "get_features", 5539 &features_in, sizeof(features_in), 5540 &features_buf, sizeof(features_buf)); 5541 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5542 if (ret < 0) 5543 return ret; 5544 if (ret < sizeof (features_buf)) 5545 return -ERANGE; 5546 5547 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5548 if (unsup) { 5549 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5550 unsup); 5551 return -ENXIO; 5552 } 5553 5554 *snap_features = le64_to_cpu(features_buf.features); 5555 5556 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5557 (unsigned long long)snap_id, 5558 (unsigned long long)*snap_features, 5559 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5560 5561 return 0; 5562 } 5563 5564 /* 5565 * These are generic image flags, but since they are used only for 5566 * object map, store them in rbd_dev->object_map_flags. 5567 * 5568 * For the same reason, this function is called only on object map 5569 * (re)load and not on header refresh. 5570 */ 5571 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5572 { 5573 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5574 __le64 flags; 5575 int ret; 5576 5577 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5578 &rbd_dev->header_oloc, "get_flags", 5579 &snapid, sizeof(snapid), 5580 &flags, sizeof(flags)); 5581 if (ret < 0) 5582 return ret; 5583 if (ret < sizeof(flags)) 5584 return -EBADMSG; 5585 5586 rbd_dev->object_map_flags = le64_to_cpu(flags); 5587 return 0; 5588 } 5589 5590 struct parent_image_info { 5591 u64 pool_id; 5592 const char *pool_ns; 5593 const char *image_id; 5594 u64 snap_id; 5595 5596 bool has_overlap; 5597 u64 overlap; 5598 }; 5599 5600 static void rbd_parent_info_cleanup(struct parent_image_info *pii) 5601 { 5602 kfree(pii->pool_ns); 5603 kfree(pii->image_id); 5604 5605 memset(pii, 0, sizeof(*pii)); 5606 } 5607 5608 /* 5609 * The caller is responsible for @pii. 5610 */ 5611 static int decode_parent_image_spec(void **p, void *end, 5612 struct parent_image_info *pii) 5613 { 5614 u8 struct_v; 5615 u32 struct_len; 5616 int ret; 5617 5618 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5619 &struct_v, &struct_len); 5620 if (ret) 5621 return ret; 5622 5623 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5624 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5625 if (IS_ERR(pii->pool_ns)) { 5626 ret = PTR_ERR(pii->pool_ns); 5627 pii->pool_ns = NULL; 5628 return ret; 5629 } 5630 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5631 if (IS_ERR(pii->image_id)) { 5632 ret = PTR_ERR(pii->image_id); 5633 pii->image_id = NULL; 5634 return ret; 5635 } 5636 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5637 return 0; 5638 5639 e_inval: 5640 return -EINVAL; 5641 } 5642 5643 static int __get_parent_info(struct rbd_device *rbd_dev, 5644 struct page *req_page, 5645 struct page *reply_page, 5646 struct parent_image_info *pii) 5647 { 5648 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5649 size_t reply_len = PAGE_SIZE; 5650 void *p, *end; 5651 int ret; 5652 5653 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5654 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5655 req_page, sizeof(u64), &reply_page, &reply_len); 5656 if (ret) 5657 return ret == -EOPNOTSUPP ? 1 : ret; 5658 5659 p = page_address(reply_page); 5660 end = p + reply_len; 5661 ret = decode_parent_image_spec(&p, end, pii); 5662 if (ret) 5663 return ret; 5664 5665 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5666 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5667 req_page, sizeof(u64), &reply_page, &reply_len); 5668 if (ret) 5669 return ret; 5670 5671 p = page_address(reply_page); 5672 end = p + reply_len; 5673 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5674 if (pii->has_overlap) 5675 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5676 5677 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5678 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5679 pii->has_overlap, pii->overlap); 5680 return 0; 5681 5682 e_inval: 5683 return -EINVAL; 5684 } 5685 5686 /* 5687 * The caller is responsible for @pii. 5688 */ 5689 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5690 struct page *req_page, 5691 struct page *reply_page, 5692 struct parent_image_info *pii) 5693 { 5694 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5695 size_t reply_len = PAGE_SIZE; 5696 void *p, *end; 5697 int ret; 5698 5699 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5700 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5701 req_page, sizeof(u64), &reply_page, &reply_len); 5702 if (ret) 5703 return ret; 5704 5705 p = page_address(reply_page); 5706 end = p + reply_len; 5707 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5708 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5709 if (IS_ERR(pii->image_id)) { 5710 ret = PTR_ERR(pii->image_id); 5711 pii->image_id = NULL; 5712 return ret; 5713 } 5714 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5715 pii->has_overlap = true; 5716 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5717 5718 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5719 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5720 pii->has_overlap, pii->overlap); 5721 return 0; 5722 5723 e_inval: 5724 return -EINVAL; 5725 } 5726 5727 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev, 5728 struct parent_image_info *pii) 5729 { 5730 struct page *req_page, *reply_page; 5731 void *p; 5732 int ret; 5733 5734 req_page = alloc_page(GFP_KERNEL); 5735 if (!req_page) 5736 return -ENOMEM; 5737 5738 reply_page = alloc_page(GFP_KERNEL); 5739 if (!reply_page) { 5740 __free_page(req_page); 5741 return -ENOMEM; 5742 } 5743 5744 p = page_address(req_page); 5745 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5746 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5747 if (ret > 0) 5748 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5749 pii); 5750 5751 __free_page(req_page); 5752 __free_page(reply_page); 5753 return ret; 5754 } 5755 5756 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev) 5757 { 5758 struct rbd_spec *parent_spec; 5759 struct parent_image_info pii = { 0 }; 5760 int ret; 5761 5762 parent_spec = rbd_spec_alloc(); 5763 if (!parent_spec) 5764 return -ENOMEM; 5765 5766 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 5767 if (ret) 5768 goto out_err; 5769 5770 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) 5771 goto out; /* No parent? No problem. */ 5772 5773 /* The ceph file layout needs to fit pool id in 32 bits */ 5774 5775 ret = -EIO; 5776 if (pii.pool_id > (u64)U32_MAX) { 5777 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5778 (unsigned long long)pii.pool_id, U32_MAX); 5779 goto out_err; 5780 } 5781 5782 /* 5783 * The parent won't change except when the clone is flattened, 5784 * so we only need to record the parent image spec once. 5785 */ 5786 parent_spec->pool_id = pii.pool_id; 5787 if (pii.pool_ns && *pii.pool_ns) { 5788 parent_spec->pool_ns = pii.pool_ns; 5789 pii.pool_ns = NULL; 5790 } 5791 parent_spec->image_id = pii.image_id; 5792 pii.image_id = NULL; 5793 parent_spec->snap_id = pii.snap_id; 5794 5795 rbd_assert(!rbd_dev->parent_spec); 5796 rbd_dev->parent_spec = parent_spec; 5797 parent_spec = NULL; /* rbd_dev now owns this */ 5798 5799 /* 5800 * Record the parent overlap. If it's zero, issue a warning as 5801 * we will proceed as if there is no parent. 5802 */ 5803 if (!pii.overlap) 5804 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5805 rbd_dev->parent_overlap = pii.overlap; 5806 5807 out: 5808 ret = 0; 5809 out_err: 5810 rbd_parent_info_cleanup(&pii); 5811 rbd_spec_put(parent_spec); 5812 return ret; 5813 } 5814 5815 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev, 5816 u64 *stripe_unit, u64 *stripe_count) 5817 { 5818 struct { 5819 __le64 stripe_unit; 5820 __le64 stripe_count; 5821 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5822 size_t size = sizeof (striping_info_buf); 5823 int ret; 5824 5825 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5826 &rbd_dev->header_oloc, "get_stripe_unit_count", 5827 NULL, 0, &striping_info_buf, size); 5828 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5829 if (ret < 0) 5830 return ret; 5831 if (ret < size) 5832 return -ERANGE; 5833 5834 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit); 5835 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count); 5836 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit, 5837 *stripe_count); 5838 5839 return 0; 5840 } 5841 5842 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id) 5843 { 5844 __le64 data_pool_buf; 5845 int ret; 5846 5847 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5848 &rbd_dev->header_oloc, "get_data_pool", 5849 NULL, 0, &data_pool_buf, 5850 sizeof(data_pool_buf)); 5851 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5852 if (ret < 0) 5853 return ret; 5854 if (ret < sizeof(data_pool_buf)) 5855 return -EBADMSG; 5856 5857 *data_pool_id = le64_to_cpu(data_pool_buf); 5858 dout(" data_pool_id = %lld\n", *data_pool_id); 5859 WARN_ON(*data_pool_id == CEPH_NOPOOL); 5860 5861 return 0; 5862 } 5863 5864 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5865 { 5866 CEPH_DEFINE_OID_ONSTACK(oid); 5867 size_t image_id_size; 5868 char *image_id; 5869 void *p; 5870 void *end; 5871 size_t size; 5872 void *reply_buf = NULL; 5873 size_t len = 0; 5874 char *image_name = NULL; 5875 int ret; 5876 5877 rbd_assert(!rbd_dev->spec->image_name); 5878 5879 len = strlen(rbd_dev->spec->image_id); 5880 image_id_size = sizeof (__le32) + len; 5881 image_id = kmalloc(image_id_size, GFP_KERNEL); 5882 if (!image_id) 5883 return NULL; 5884 5885 p = image_id; 5886 end = image_id + image_id_size; 5887 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5888 5889 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5890 reply_buf = kmalloc(size, GFP_KERNEL); 5891 if (!reply_buf) 5892 goto out; 5893 5894 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5895 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5896 "dir_get_name", image_id, image_id_size, 5897 reply_buf, size); 5898 if (ret < 0) 5899 goto out; 5900 p = reply_buf; 5901 end = reply_buf + ret; 5902 5903 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5904 if (IS_ERR(image_name)) 5905 image_name = NULL; 5906 else 5907 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5908 out: 5909 kfree(reply_buf); 5910 kfree(image_id); 5911 5912 return image_name; 5913 } 5914 5915 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5916 { 5917 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5918 const char *snap_name; 5919 u32 which = 0; 5920 5921 /* Skip over names until we find the one we are looking for */ 5922 5923 snap_name = rbd_dev->header.snap_names; 5924 while (which < snapc->num_snaps) { 5925 if (!strcmp(name, snap_name)) 5926 return snapc->snaps[which]; 5927 snap_name += strlen(snap_name) + 1; 5928 which++; 5929 } 5930 return CEPH_NOSNAP; 5931 } 5932 5933 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5934 { 5935 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5936 u32 which; 5937 bool found = false; 5938 u64 snap_id; 5939 5940 for (which = 0; !found && which < snapc->num_snaps; which++) { 5941 const char *snap_name; 5942 5943 snap_id = snapc->snaps[which]; 5944 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5945 if (IS_ERR(snap_name)) { 5946 /* ignore no-longer existing snapshots */ 5947 if (PTR_ERR(snap_name) == -ENOENT) 5948 continue; 5949 else 5950 break; 5951 } 5952 found = !strcmp(name, snap_name); 5953 kfree(snap_name); 5954 } 5955 return found ? snap_id : CEPH_NOSNAP; 5956 } 5957 5958 /* 5959 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5960 * no snapshot by that name is found, or if an error occurs. 5961 */ 5962 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5963 { 5964 if (rbd_dev->image_format == 1) 5965 return rbd_v1_snap_id_by_name(rbd_dev, name); 5966 5967 return rbd_v2_snap_id_by_name(rbd_dev, name); 5968 } 5969 5970 /* 5971 * An image being mapped will have everything but the snap id. 5972 */ 5973 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5974 { 5975 struct rbd_spec *spec = rbd_dev->spec; 5976 5977 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5978 rbd_assert(spec->image_id && spec->image_name); 5979 rbd_assert(spec->snap_name); 5980 5981 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5982 u64 snap_id; 5983 5984 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5985 if (snap_id == CEPH_NOSNAP) 5986 return -ENOENT; 5987 5988 spec->snap_id = snap_id; 5989 } else { 5990 spec->snap_id = CEPH_NOSNAP; 5991 } 5992 5993 return 0; 5994 } 5995 5996 /* 5997 * A parent image will have all ids but none of the names. 5998 * 5999 * All names in an rbd spec are dynamically allocated. It's OK if we 6000 * can't figure out the name for an image id. 6001 */ 6002 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6003 { 6004 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6005 struct rbd_spec *spec = rbd_dev->spec; 6006 const char *pool_name; 6007 const char *image_name; 6008 const char *snap_name; 6009 int ret; 6010 6011 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6012 rbd_assert(spec->image_id); 6013 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6014 6015 /* Get the pool name; we have to make our own copy of this */ 6016 6017 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6018 if (!pool_name) { 6019 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6020 return -EIO; 6021 } 6022 pool_name = kstrdup(pool_name, GFP_KERNEL); 6023 if (!pool_name) 6024 return -ENOMEM; 6025 6026 /* Fetch the image name; tolerate failure here */ 6027 6028 image_name = rbd_dev_image_name(rbd_dev); 6029 if (!image_name) 6030 rbd_warn(rbd_dev, "unable to get image name"); 6031 6032 /* Fetch the snapshot name */ 6033 6034 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6035 if (IS_ERR(snap_name)) { 6036 ret = PTR_ERR(snap_name); 6037 goto out_err; 6038 } 6039 6040 spec->pool_name = pool_name; 6041 spec->image_name = image_name; 6042 spec->snap_name = snap_name; 6043 6044 return 0; 6045 6046 out_err: 6047 kfree(image_name); 6048 kfree(pool_name); 6049 return ret; 6050 } 6051 6052 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, 6053 struct ceph_snap_context **psnapc) 6054 { 6055 size_t size; 6056 int ret; 6057 void *reply_buf; 6058 void *p; 6059 void *end; 6060 u64 seq; 6061 u32 snap_count; 6062 struct ceph_snap_context *snapc; 6063 u32 i; 6064 6065 /* 6066 * We'll need room for the seq value (maximum snapshot id), 6067 * snapshot count, and array of that many snapshot ids. 6068 * For now we have a fixed upper limit on the number we're 6069 * prepared to receive. 6070 */ 6071 size = sizeof (__le64) + sizeof (__le32) + 6072 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6073 reply_buf = kzalloc(size, GFP_KERNEL); 6074 if (!reply_buf) 6075 return -ENOMEM; 6076 6077 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6078 &rbd_dev->header_oloc, "get_snapcontext", 6079 NULL, 0, reply_buf, size); 6080 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6081 if (ret < 0) 6082 goto out; 6083 6084 p = reply_buf; 6085 end = reply_buf + ret; 6086 ret = -ERANGE; 6087 ceph_decode_64_safe(&p, end, seq, out); 6088 ceph_decode_32_safe(&p, end, snap_count, out); 6089 6090 /* 6091 * Make sure the reported number of snapshot ids wouldn't go 6092 * beyond the end of our buffer. But before checking that, 6093 * make sure the computed size of the snapshot context we 6094 * allocate is representable in a size_t. 6095 */ 6096 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6097 / sizeof (u64)) { 6098 ret = -EINVAL; 6099 goto out; 6100 } 6101 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6102 goto out; 6103 ret = 0; 6104 6105 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6106 if (!snapc) { 6107 ret = -ENOMEM; 6108 goto out; 6109 } 6110 snapc->seq = seq; 6111 for (i = 0; i < snap_count; i++) 6112 snapc->snaps[i] = ceph_decode_64(&p); 6113 6114 *psnapc = snapc; 6115 dout(" snap context seq = %llu, snap_count = %u\n", 6116 (unsigned long long)seq, (unsigned int)snap_count); 6117 out: 6118 kfree(reply_buf); 6119 6120 return ret; 6121 } 6122 6123 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6124 u64 snap_id) 6125 { 6126 size_t size; 6127 void *reply_buf; 6128 __le64 snapid; 6129 int ret; 6130 void *p; 6131 void *end; 6132 char *snap_name; 6133 6134 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6135 reply_buf = kmalloc(size, GFP_KERNEL); 6136 if (!reply_buf) 6137 return ERR_PTR(-ENOMEM); 6138 6139 snapid = cpu_to_le64(snap_id); 6140 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6141 &rbd_dev->header_oloc, "get_snapshot_name", 6142 &snapid, sizeof(snapid), reply_buf, size); 6143 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6144 if (ret < 0) { 6145 snap_name = ERR_PTR(ret); 6146 goto out; 6147 } 6148 6149 p = reply_buf; 6150 end = reply_buf + ret; 6151 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6152 if (IS_ERR(snap_name)) 6153 goto out; 6154 6155 dout(" snap_id 0x%016llx snap_name = %s\n", 6156 (unsigned long long)snap_id, snap_name); 6157 out: 6158 kfree(reply_buf); 6159 6160 return snap_name; 6161 } 6162 6163 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev, 6164 struct rbd_image_header *header, 6165 bool first_time) 6166 { 6167 int ret; 6168 6169 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 6170 first_time ? &header->obj_order : NULL, 6171 &header->image_size); 6172 if (ret) 6173 return ret; 6174 6175 if (first_time) { 6176 ret = rbd_dev_v2_header_onetime(rbd_dev, header); 6177 if (ret) 6178 return ret; 6179 } 6180 6181 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc); 6182 if (ret) 6183 return ret; 6184 6185 return 0; 6186 } 6187 6188 static int rbd_dev_header_info(struct rbd_device *rbd_dev, 6189 struct rbd_image_header *header, 6190 bool first_time) 6191 { 6192 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6193 rbd_assert(!header->object_prefix && !header->snapc); 6194 6195 if (rbd_dev->image_format == 1) 6196 return rbd_dev_v1_header_info(rbd_dev, header, first_time); 6197 6198 return rbd_dev_v2_header_info(rbd_dev, header, first_time); 6199 } 6200 6201 /* 6202 * Skips over white space at *buf, and updates *buf to point to the 6203 * first found non-space character (if any). Returns the length of 6204 * the token (string of non-white space characters) found. Note 6205 * that *buf must be terminated with '\0'. 6206 */ 6207 static inline size_t next_token(const char **buf) 6208 { 6209 /* 6210 * These are the characters that produce nonzero for 6211 * isspace() in the "C" and "POSIX" locales. 6212 */ 6213 static const char spaces[] = " \f\n\r\t\v"; 6214 6215 *buf += strspn(*buf, spaces); /* Find start of token */ 6216 6217 return strcspn(*buf, spaces); /* Return token length */ 6218 } 6219 6220 /* 6221 * Finds the next token in *buf, dynamically allocates a buffer big 6222 * enough to hold a copy of it, and copies the token into the new 6223 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6224 * that a duplicate buffer is created even for a zero-length token. 6225 * 6226 * Returns a pointer to the newly-allocated duplicate, or a null 6227 * pointer if memory for the duplicate was not available. If 6228 * the lenp argument is a non-null pointer, the length of the token 6229 * (not including the '\0') is returned in *lenp. 6230 * 6231 * If successful, the *buf pointer will be updated to point beyond 6232 * the end of the found token. 6233 * 6234 * Note: uses GFP_KERNEL for allocation. 6235 */ 6236 static inline char *dup_token(const char **buf, size_t *lenp) 6237 { 6238 char *dup; 6239 size_t len; 6240 6241 len = next_token(buf); 6242 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6243 if (!dup) 6244 return NULL; 6245 *(dup + len) = '\0'; 6246 *buf += len; 6247 6248 if (lenp) 6249 *lenp = len; 6250 6251 return dup; 6252 } 6253 6254 static int rbd_parse_param(struct fs_parameter *param, 6255 struct rbd_parse_opts_ctx *pctx) 6256 { 6257 struct rbd_options *opt = pctx->opts; 6258 struct fs_parse_result result; 6259 struct p_log log = {.prefix = "rbd"}; 6260 int token, ret; 6261 6262 ret = ceph_parse_param(param, pctx->copts, NULL); 6263 if (ret != -ENOPARAM) 6264 return ret; 6265 6266 token = __fs_parse(&log, rbd_parameters, param, &result); 6267 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6268 if (token < 0) { 6269 if (token == -ENOPARAM) 6270 return inval_plog(&log, "Unknown parameter '%s'", 6271 param->key); 6272 return token; 6273 } 6274 6275 switch (token) { 6276 case Opt_queue_depth: 6277 if (result.uint_32 < 1) 6278 goto out_of_range; 6279 opt->queue_depth = result.uint_32; 6280 break; 6281 case Opt_alloc_size: 6282 if (result.uint_32 < SECTOR_SIZE) 6283 goto out_of_range; 6284 if (!is_power_of_2(result.uint_32)) 6285 return inval_plog(&log, "alloc_size must be a power of 2"); 6286 opt->alloc_size = result.uint_32; 6287 break; 6288 case Opt_lock_timeout: 6289 /* 0 is "wait forever" (i.e. infinite timeout) */ 6290 if (result.uint_32 > INT_MAX / 1000) 6291 goto out_of_range; 6292 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6293 break; 6294 case Opt_pool_ns: 6295 kfree(pctx->spec->pool_ns); 6296 pctx->spec->pool_ns = param->string; 6297 param->string = NULL; 6298 break; 6299 case Opt_compression_hint: 6300 switch (result.uint_32) { 6301 case Opt_compression_hint_none: 6302 opt->alloc_hint_flags &= 6303 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6304 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6305 break; 6306 case Opt_compression_hint_compressible: 6307 opt->alloc_hint_flags |= 6308 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6309 opt->alloc_hint_flags &= 6310 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6311 break; 6312 case Opt_compression_hint_incompressible: 6313 opt->alloc_hint_flags |= 6314 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6315 opt->alloc_hint_flags &= 6316 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6317 break; 6318 default: 6319 BUG(); 6320 } 6321 break; 6322 case Opt_read_only: 6323 opt->read_only = true; 6324 break; 6325 case Opt_read_write: 6326 opt->read_only = false; 6327 break; 6328 case Opt_lock_on_read: 6329 opt->lock_on_read = true; 6330 break; 6331 case Opt_exclusive: 6332 opt->exclusive = true; 6333 break; 6334 case Opt_notrim: 6335 opt->trim = false; 6336 break; 6337 default: 6338 BUG(); 6339 } 6340 6341 return 0; 6342 6343 out_of_range: 6344 return inval_plog(&log, "%s out of range", param->key); 6345 } 6346 6347 /* 6348 * This duplicates most of generic_parse_monolithic(), untying it from 6349 * fs_context and skipping standard superblock and security options. 6350 */ 6351 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6352 { 6353 char *key; 6354 int ret = 0; 6355 6356 dout("%s '%s'\n", __func__, options); 6357 while ((key = strsep(&options, ",")) != NULL) { 6358 if (*key) { 6359 struct fs_parameter param = { 6360 .key = key, 6361 .type = fs_value_is_flag, 6362 }; 6363 char *value = strchr(key, '='); 6364 size_t v_len = 0; 6365 6366 if (value) { 6367 if (value == key) 6368 continue; 6369 *value++ = 0; 6370 v_len = strlen(value); 6371 param.string = kmemdup_nul(value, v_len, 6372 GFP_KERNEL); 6373 if (!param.string) 6374 return -ENOMEM; 6375 param.type = fs_value_is_string; 6376 } 6377 param.size = v_len; 6378 6379 ret = rbd_parse_param(¶m, pctx); 6380 kfree(param.string); 6381 if (ret) 6382 break; 6383 } 6384 } 6385 6386 return ret; 6387 } 6388 6389 /* 6390 * Parse the options provided for an "rbd add" (i.e., rbd image 6391 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6392 * and the data written is passed here via a NUL-terminated buffer. 6393 * Returns 0 if successful or an error code otherwise. 6394 * 6395 * The information extracted from these options is recorded in 6396 * the other parameters which return dynamically-allocated 6397 * structures: 6398 * ceph_opts 6399 * The address of a pointer that will refer to a ceph options 6400 * structure. Caller must release the returned pointer using 6401 * ceph_destroy_options() when it is no longer needed. 6402 * rbd_opts 6403 * Address of an rbd options pointer. Fully initialized by 6404 * this function; caller must release with kfree(). 6405 * spec 6406 * Address of an rbd image specification pointer. Fully 6407 * initialized by this function based on parsed options. 6408 * Caller must release with rbd_spec_put(). 6409 * 6410 * The options passed take this form: 6411 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6412 * where: 6413 * <mon_addrs> 6414 * A comma-separated list of one or more monitor addresses. 6415 * A monitor address is an ip address, optionally followed 6416 * by a port number (separated by a colon). 6417 * I.e.: ip1[:port1][,ip2[:port2]...] 6418 * <options> 6419 * A comma-separated list of ceph and/or rbd options. 6420 * <pool_name> 6421 * The name of the rados pool containing the rbd image. 6422 * <image_name> 6423 * The name of the image in that pool to map. 6424 * <snap_id> 6425 * An optional snapshot id. If provided, the mapping will 6426 * present data from the image at the time that snapshot was 6427 * created. The image head is used if no snapshot id is 6428 * provided. Snapshot mappings are always read-only. 6429 */ 6430 static int rbd_add_parse_args(const char *buf, 6431 struct ceph_options **ceph_opts, 6432 struct rbd_options **opts, 6433 struct rbd_spec **rbd_spec) 6434 { 6435 size_t len; 6436 char *options; 6437 const char *mon_addrs; 6438 char *snap_name; 6439 size_t mon_addrs_size; 6440 struct rbd_parse_opts_ctx pctx = { 0 }; 6441 int ret; 6442 6443 /* The first four tokens are required */ 6444 6445 len = next_token(&buf); 6446 if (!len) { 6447 rbd_warn(NULL, "no monitor address(es) provided"); 6448 return -EINVAL; 6449 } 6450 mon_addrs = buf; 6451 mon_addrs_size = len; 6452 buf += len; 6453 6454 ret = -EINVAL; 6455 options = dup_token(&buf, NULL); 6456 if (!options) 6457 return -ENOMEM; 6458 if (!*options) { 6459 rbd_warn(NULL, "no options provided"); 6460 goto out_err; 6461 } 6462 6463 pctx.spec = rbd_spec_alloc(); 6464 if (!pctx.spec) 6465 goto out_mem; 6466 6467 pctx.spec->pool_name = dup_token(&buf, NULL); 6468 if (!pctx.spec->pool_name) 6469 goto out_mem; 6470 if (!*pctx.spec->pool_name) { 6471 rbd_warn(NULL, "no pool name provided"); 6472 goto out_err; 6473 } 6474 6475 pctx.spec->image_name = dup_token(&buf, NULL); 6476 if (!pctx.spec->image_name) 6477 goto out_mem; 6478 if (!*pctx.spec->image_name) { 6479 rbd_warn(NULL, "no image name provided"); 6480 goto out_err; 6481 } 6482 6483 /* 6484 * Snapshot name is optional; default is to use "-" 6485 * (indicating the head/no snapshot). 6486 */ 6487 len = next_token(&buf); 6488 if (!len) { 6489 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6490 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6491 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6492 ret = -ENAMETOOLONG; 6493 goto out_err; 6494 } 6495 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6496 if (!snap_name) 6497 goto out_mem; 6498 *(snap_name + len) = '\0'; 6499 pctx.spec->snap_name = snap_name; 6500 6501 pctx.copts = ceph_alloc_options(); 6502 if (!pctx.copts) 6503 goto out_mem; 6504 6505 /* Initialize all rbd options to the defaults */ 6506 6507 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6508 if (!pctx.opts) 6509 goto out_mem; 6510 6511 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6512 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6513 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6514 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6515 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6516 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6517 pctx.opts->trim = RBD_TRIM_DEFAULT; 6518 6519 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL, 6520 ','); 6521 if (ret) 6522 goto out_err; 6523 6524 ret = rbd_parse_options(options, &pctx); 6525 if (ret) 6526 goto out_err; 6527 6528 *ceph_opts = pctx.copts; 6529 *opts = pctx.opts; 6530 *rbd_spec = pctx.spec; 6531 kfree(options); 6532 return 0; 6533 6534 out_mem: 6535 ret = -ENOMEM; 6536 out_err: 6537 kfree(pctx.opts); 6538 ceph_destroy_options(pctx.copts); 6539 rbd_spec_put(pctx.spec); 6540 kfree(options); 6541 return ret; 6542 } 6543 6544 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6545 { 6546 down_write(&rbd_dev->lock_rwsem); 6547 if (__rbd_is_lock_owner(rbd_dev)) 6548 __rbd_release_lock(rbd_dev); 6549 up_write(&rbd_dev->lock_rwsem); 6550 } 6551 6552 /* 6553 * If the wait is interrupted, an error is returned even if the lock 6554 * was successfully acquired. rbd_dev_image_unlock() will release it 6555 * if needed. 6556 */ 6557 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6558 { 6559 long ret; 6560 6561 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6562 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6563 return 0; 6564 6565 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6566 return -EINVAL; 6567 } 6568 6569 if (rbd_is_ro(rbd_dev)) 6570 return 0; 6571 6572 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6573 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6574 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6575 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6576 if (ret > 0) { 6577 ret = rbd_dev->acquire_err; 6578 } else { 6579 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6580 if (!ret) 6581 ret = -ETIMEDOUT; 6582 6583 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret); 6584 } 6585 if (ret) 6586 return ret; 6587 6588 /* 6589 * The lock may have been released by now, unless automatic lock 6590 * transitions are disabled. 6591 */ 6592 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6593 return 0; 6594 } 6595 6596 /* 6597 * An rbd format 2 image has a unique identifier, distinct from the 6598 * name given to it by the user. Internally, that identifier is 6599 * what's used to specify the names of objects related to the image. 6600 * 6601 * A special "rbd id" object is used to map an rbd image name to its 6602 * id. If that object doesn't exist, then there is no v2 rbd image 6603 * with the supplied name. 6604 * 6605 * This function will record the given rbd_dev's image_id field if 6606 * it can be determined, and in that case will return 0. If any 6607 * errors occur a negative errno will be returned and the rbd_dev's 6608 * image_id field will be unchanged (and should be NULL). 6609 */ 6610 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6611 { 6612 int ret; 6613 size_t size; 6614 CEPH_DEFINE_OID_ONSTACK(oid); 6615 void *response; 6616 char *image_id; 6617 6618 /* 6619 * When probing a parent image, the image id is already 6620 * known (and the image name likely is not). There's no 6621 * need to fetch the image id again in this case. We 6622 * do still need to set the image format though. 6623 */ 6624 if (rbd_dev->spec->image_id) { 6625 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6626 6627 return 0; 6628 } 6629 6630 /* 6631 * First, see if the format 2 image id file exists, and if 6632 * so, get the image's persistent id from it. 6633 */ 6634 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6635 rbd_dev->spec->image_name); 6636 if (ret) 6637 return ret; 6638 6639 dout("rbd id object name is %s\n", oid.name); 6640 6641 /* Response will be an encoded string, which includes a length */ 6642 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6643 response = kzalloc(size, GFP_NOIO); 6644 if (!response) { 6645 ret = -ENOMEM; 6646 goto out; 6647 } 6648 6649 /* If it doesn't exist we'll assume it's a format 1 image */ 6650 6651 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6652 "get_id", NULL, 0, 6653 response, size); 6654 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6655 if (ret == -ENOENT) { 6656 image_id = kstrdup("", GFP_KERNEL); 6657 ret = image_id ? 0 : -ENOMEM; 6658 if (!ret) 6659 rbd_dev->image_format = 1; 6660 } else if (ret >= 0) { 6661 void *p = response; 6662 6663 image_id = ceph_extract_encoded_string(&p, p + ret, 6664 NULL, GFP_NOIO); 6665 ret = PTR_ERR_OR_ZERO(image_id); 6666 if (!ret) 6667 rbd_dev->image_format = 2; 6668 } 6669 6670 if (!ret) { 6671 rbd_dev->spec->image_id = image_id; 6672 dout("image_id is %s\n", image_id); 6673 } 6674 out: 6675 kfree(response); 6676 ceph_oid_destroy(&oid); 6677 return ret; 6678 } 6679 6680 /* 6681 * Undo whatever state changes are made by v1 or v2 header info 6682 * call. 6683 */ 6684 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6685 { 6686 rbd_dev_parent_put(rbd_dev); 6687 rbd_object_map_free(rbd_dev); 6688 rbd_dev_mapping_clear(rbd_dev); 6689 6690 /* Free dynamic fields from the header, then zero it out */ 6691 6692 rbd_image_header_cleanup(&rbd_dev->header); 6693 } 6694 6695 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 6696 struct rbd_image_header *header) 6697 { 6698 int ret; 6699 6700 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix); 6701 if (ret) 6702 return ret; 6703 6704 /* 6705 * Get the and check features for the image. Currently the 6706 * features are assumed to never change. 6707 */ 6708 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 6709 rbd_is_ro(rbd_dev), &header->features); 6710 if (ret) 6711 return ret; 6712 6713 /* If the image supports fancy striping, get its parameters */ 6714 6715 if (header->features & RBD_FEATURE_STRIPINGV2) { 6716 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit, 6717 &header->stripe_count); 6718 if (ret) 6719 return ret; 6720 } 6721 6722 if (header->features & RBD_FEATURE_DATA_POOL) { 6723 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id); 6724 if (ret) 6725 return ret; 6726 } 6727 6728 return 0; 6729 } 6730 6731 /* 6732 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6733 * rbd_dev_image_probe() recursion depth, which means it's also the 6734 * length of the already discovered part of the parent chain. 6735 */ 6736 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6737 { 6738 struct rbd_device *parent = NULL; 6739 int ret; 6740 6741 if (!rbd_dev->parent_spec) 6742 return 0; 6743 6744 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6745 pr_info("parent chain is too long (%d)\n", depth); 6746 ret = -EINVAL; 6747 goto out_err; 6748 } 6749 6750 parent = __rbd_dev_create(rbd_dev->parent_spec); 6751 if (!parent) { 6752 ret = -ENOMEM; 6753 goto out_err; 6754 } 6755 6756 /* 6757 * Images related by parent/child relationships always share 6758 * rbd_client and spec/parent_spec, so bump their refcounts. 6759 */ 6760 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client); 6761 parent->spec = rbd_spec_get(rbd_dev->parent_spec); 6762 6763 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6764 6765 ret = rbd_dev_image_probe(parent, depth); 6766 if (ret < 0) 6767 goto out_err; 6768 6769 rbd_dev->parent = parent; 6770 atomic_set(&rbd_dev->parent_ref, 1); 6771 return 0; 6772 6773 out_err: 6774 rbd_dev_unparent(rbd_dev); 6775 rbd_dev_destroy(parent); 6776 return ret; 6777 } 6778 6779 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6780 { 6781 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6782 rbd_free_disk(rbd_dev); 6783 if (!single_major) 6784 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6785 } 6786 6787 /* 6788 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6789 * upon return. 6790 */ 6791 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6792 { 6793 int ret; 6794 6795 /* Record our major and minor device numbers. */ 6796 6797 if (!single_major) { 6798 ret = register_blkdev(0, rbd_dev->name); 6799 if (ret < 0) 6800 goto err_out_unlock; 6801 6802 rbd_dev->major = ret; 6803 rbd_dev->minor = 0; 6804 } else { 6805 rbd_dev->major = rbd_major; 6806 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6807 } 6808 6809 /* Set up the blkdev mapping. */ 6810 6811 ret = rbd_init_disk(rbd_dev); 6812 if (ret) 6813 goto err_out_blkdev; 6814 6815 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6816 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6817 6818 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6819 if (ret) 6820 goto err_out_disk; 6821 6822 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6823 up_write(&rbd_dev->header_rwsem); 6824 return 0; 6825 6826 err_out_disk: 6827 rbd_free_disk(rbd_dev); 6828 err_out_blkdev: 6829 if (!single_major) 6830 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6831 err_out_unlock: 6832 up_write(&rbd_dev->header_rwsem); 6833 return ret; 6834 } 6835 6836 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6837 { 6838 struct rbd_spec *spec = rbd_dev->spec; 6839 int ret; 6840 6841 /* Record the header object name for this rbd image. */ 6842 6843 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6844 if (rbd_dev->image_format == 1) 6845 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6846 spec->image_name, RBD_SUFFIX); 6847 else 6848 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6849 RBD_HEADER_PREFIX, spec->image_id); 6850 6851 return ret; 6852 } 6853 6854 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6855 { 6856 if (!is_snap) { 6857 pr_info("image %s/%s%s%s does not exist\n", 6858 rbd_dev->spec->pool_name, 6859 rbd_dev->spec->pool_ns ?: "", 6860 rbd_dev->spec->pool_ns ? "/" : "", 6861 rbd_dev->spec->image_name); 6862 } else { 6863 pr_info("snap %s/%s%s%s@%s does not exist\n", 6864 rbd_dev->spec->pool_name, 6865 rbd_dev->spec->pool_ns ?: "", 6866 rbd_dev->spec->pool_ns ? "/" : "", 6867 rbd_dev->spec->image_name, 6868 rbd_dev->spec->snap_name); 6869 } 6870 } 6871 6872 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6873 { 6874 if (!rbd_is_ro(rbd_dev)) 6875 rbd_unregister_watch(rbd_dev); 6876 6877 rbd_dev_unprobe(rbd_dev); 6878 rbd_dev->image_format = 0; 6879 kfree(rbd_dev->spec->image_id); 6880 rbd_dev->spec->image_id = NULL; 6881 } 6882 6883 /* 6884 * Probe for the existence of the header object for the given rbd 6885 * device. If this image is the one being mapped (i.e., not a 6886 * parent), initiate a watch on its header object before using that 6887 * object to get detailed information about the rbd image. 6888 * 6889 * On success, returns with header_rwsem held for write if called 6890 * with @depth == 0. 6891 */ 6892 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6893 { 6894 bool need_watch = !rbd_is_ro(rbd_dev); 6895 int ret; 6896 6897 /* 6898 * Get the id from the image id object. Unless there's an 6899 * error, rbd_dev->spec->image_id will be filled in with 6900 * a dynamically-allocated string, and rbd_dev->image_format 6901 * will be set to either 1 or 2. 6902 */ 6903 ret = rbd_dev_image_id(rbd_dev); 6904 if (ret) 6905 return ret; 6906 6907 ret = rbd_dev_header_name(rbd_dev); 6908 if (ret) 6909 goto err_out_format; 6910 6911 if (need_watch) { 6912 ret = rbd_register_watch(rbd_dev); 6913 if (ret) { 6914 if (ret == -ENOENT) 6915 rbd_print_dne(rbd_dev, false); 6916 goto err_out_format; 6917 } 6918 } 6919 6920 if (!depth) 6921 down_write(&rbd_dev->header_rwsem); 6922 6923 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true); 6924 if (ret) { 6925 if (ret == -ENOENT && !need_watch) 6926 rbd_print_dne(rbd_dev, false); 6927 goto err_out_probe; 6928 } 6929 6930 rbd_init_layout(rbd_dev); 6931 6932 /* 6933 * If this image is the one being mapped, we have pool name and 6934 * id, image name and id, and snap name - need to fill snap id. 6935 * Otherwise this is a parent image, identified by pool, image 6936 * and snap ids - need to fill in names for those ids. 6937 */ 6938 if (!depth) 6939 ret = rbd_spec_fill_snap_id(rbd_dev); 6940 else 6941 ret = rbd_spec_fill_names(rbd_dev); 6942 if (ret) { 6943 if (ret == -ENOENT) 6944 rbd_print_dne(rbd_dev, true); 6945 goto err_out_probe; 6946 } 6947 6948 ret = rbd_dev_mapping_set(rbd_dev); 6949 if (ret) 6950 goto err_out_probe; 6951 6952 if (rbd_is_snap(rbd_dev) && 6953 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6954 ret = rbd_object_map_load(rbd_dev); 6955 if (ret) 6956 goto err_out_probe; 6957 } 6958 6959 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6960 ret = rbd_dev_setup_parent(rbd_dev); 6961 if (ret) 6962 goto err_out_probe; 6963 } 6964 6965 ret = rbd_dev_probe_parent(rbd_dev, depth); 6966 if (ret) 6967 goto err_out_probe; 6968 6969 dout("discovered format %u image, header name is %s\n", 6970 rbd_dev->image_format, rbd_dev->header_oid.name); 6971 return 0; 6972 6973 err_out_probe: 6974 if (!depth) 6975 up_write(&rbd_dev->header_rwsem); 6976 if (need_watch) 6977 rbd_unregister_watch(rbd_dev); 6978 rbd_dev_unprobe(rbd_dev); 6979 err_out_format: 6980 rbd_dev->image_format = 0; 6981 kfree(rbd_dev->spec->image_id); 6982 rbd_dev->spec->image_id = NULL; 6983 return ret; 6984 } 6985 6986 static void rbd_dev_update_header(struct rbd_device *rbd_dev, 6987 struct rbd_image_header *header) 6988 { 6989 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6990 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */ 6991 6992 if (rbd_dev->header.image_size != header->image_size) { 6993 rbd_dev->header.image_size = header->image_size; 6994 6995 if (!rbd_is_snap(rbd_dev)) { 6996 rbd_dev->mapping.size = header->image_size; 6997 rbd_dev_update_size(rbd_dev); 6998 } 6999 } 7000 7001 ceph_put_snap_context(rbd_dev->header.snapc); 7002 rbd_dev->header.snapc = header->snapc; 7003 header->snapc = NULL; 7004 7005 if (rbd_dev->image_format == 1) { 7006 kfree(rbd_dev->header.snap_names); 7007 rbd_dev->header.snap_names = header->snap_names; 7008 header->snap_names = NULL; 7009 7010 kfree(rbd_dev->header.snap_sizes); 7011 rbd_dev->header.snap_sizes = header->snap_sizes; 7012 header->snap_sizes = NULL; 7013 } 7014 } 7015 7016 static void rbd_dev_update_parent(struct rbd_device *rbd_dev, 7017 struct parent_image_info *pii) 7018 { 7019 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) { 7020 /* 7021 * Either the parent never existed, or we have 7022 * record of it but the image got flattened so it no 7023 * longer has a parent. When the parent of a 7024 * layered image disappears we immediately set the 7025 * overlap to 0. The effect of this is that all new 7026 * requests will be treated as if the image had no 7027 * parent. 7028 * 7029 * If !pii.has_overlap, the parent image spec is not 7030 * applicable. It's there to avoid duplication in each 7031 * snapshot record. 7032 */ 7033 if (rbd_dev->parent_overlap) { 7034 rbd_dev->parent_overlap = 0; 7035 rbd_dev_parent_put(rbd_dev); 7036 pr_info("%s: clone has been flattened\n", 7037 rbd_dev->disk->disk_name); 7038 } 7039 } else { 7040 rbd_assert(rbd_dev->parent_spec); 7041 7042 /* 7043 * Update the parent overlap. If it became zero, issue 7044 * a warning as we will proceed as if there is no parent. 7045 */ 7046 if (!pii->overlap && rbd_dev->parent_overlap) 7047 rbd_warn(rbd_dev, 7048 "clone has become standalone (overlap 0)"); 7049 rbd_dev->parent_overlap = pii->overlap; 7050 } 7051 } 7052 7053 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 7054 { 7055 struct rbd_image_header header = { 0 }; 7056 struct parent_image_info pii = { 0 }; 7057 int ret; 7058 7059 dout("%s rbd_dev %p\n", __func__, rbd_dev); 7060 7061 ret = rbd_dev_header_info(rbd_dev, &header, false); 7062 if (ret) 7063 goto out; 7064 7065 /* 7066 * If there is a parent, see if it has disappeared due to the 7067 * mapped image getting flattened. 7068 */ 7069 if (rbd_dev->parent) { 7070 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 7071 if (ret) 7072 goto out; 7073 } 7074 7075 down_write(&rbd_dev->header_rwsem); 7076 rbd_dev_update_header(rbd_dev, &header); 7077 if (rbd_dev->parent) 7078 rbd_dev_update_parent(rbd_dev, &pii); 7079 up_write(&rbd_dev->header_rwsem); 7080 7081 out: 7082 rbd_parent_info_cleanup(&pii); 7083 rbd_image_header_cleanup(&header); 7084 return ret; 7085 } 7086 7087 static ssize_t do_rbd_add(const char *buf, size_t count) 7088 { 7089 struct rbd_device *rbd_dev = NULL; 7090 struct ceph_options *ceph_opts = NULL; 7091 struct rbd_options *rbd_opts = NULL; 7092 struct rbd_spec *spec = NULL; 7093 struct rbd_client *rbdc; 7094 int rc; 7095 7096 if (!capable(CAP_SYS_ADMIN)) 7097 return -EPERM; 7098 7099 if (!try_module_get(THIS_MODULE)) 7100 return -ENODEV; 7101 7102 /* parse add command */ 7103 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7104 if (rc < 0) 7105 goto out; 7106 7107 rbdc = rbd_get_client(ceph_opts); 7108 if (IS_ERR(rbdc)) { 7109 rc = PTR_ERR(rbdc); 7110 goto err_out_args; 7111 } 7112 7113 /* pick the pool */ 7114 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7115 if (rc < 0) { 7116 if (rc == -ENOENT) 7117 pr_info("pool %s does not exist\n", spec->pool_name); 7118 goto err_out_client; 7119 } 7120 spec->pool_id = (u64)rc; 7121 7122 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7123 if (!rbd_dev) { 7124 rc = -ENOMEM; 7125 goto err_out_client; 7126 } 7127 rbdc = NULL; /* rbd_dev now owns this */ 7128 spec = NULL; /* rbd_dev now owns this */ 7129 rbd_opts = NULL; /* rbd_dev now owns this */ 7130 7131 /* if we are mapping a snapshot it will be a read-only mapping */ 7132 if (rbd_dev->opts->read_only || 7133 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7134 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7135 7136 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7137 if (!rbd_dev->config_info) { 7138 rc = -ENOMEM; 7139 goto err_out_rbd_dev; 7140 } 7141 7142 rc = rbd_dev_image_probe(rbd_dev, 0); 7143 if (rc < 0) 7144 goto err_out_rbd_dev; 7145 7146 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7147 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7148 rbd_dev->layout.object_size); 7149 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7150 } 7151 7152 rc = rbd_dev_device_setup(rbd_dev); 7153 if (rc) 7154 goto err_out_image_probe; 7155 7156 rc = rbd_add_acquire_lock(rbd_dev); 7157 if (rc) 7158 goto err_out_image_lock; 7159 7160 /* Everything's ready. Announce the disk to the world. */ 7161 7162 rc = device_add(&rbd_dev->dev); 7163 if (rc) 7164 goto err_out_image_lock; 7165 7166 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7167 if (rc) 7168 goto err_out_cleanup_disk; 7169 7170 spin_lock(&rbd_dev_list_lock); 7171 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7172 spin_unlock(&rbd_dev_list_lock); 7173 7174 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7175 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7176 rbd_dev->header.features); 7177 rc = count; 7178 out: 7179 module_put(THIS_MODULE); 7180 return rc; 7181 7182 err_out_cleanup_disk: 7183 rbd_free_disk(rbd_dev); 7184 err_out_image_lock: 7185 rbd_dev_image_unlock(rbd_dev); 7186 rbd_dev_device_release(rbd_dev); 7187 err_out_image_probe: 7188 rbd_dev_image_release(rbd_dev); 7189 err_out_rbd_dev: 7190 rbd_dev_destroy(rbd_dev); 7191 err_out_client: 7192 rbd_put_client(rbdc); 7193 err_out_args: 7194 rbd_spec_put(spec); 7195 kfree(rbd_opts); 7196 goto out; 7197 } 7198 7199 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count) 7200 { 7201 if (single_major) 7202 return -EINVAL; 7203 7204 return do_rbd_add(buf, count); 7205 } 7206 7207 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 7208 size_t count) 7209 { 7210 return do_rbd_add(buf, count); 7211 } 7212 7213 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7214 { 7215 while (rbd_dev->parent) { 7216 struct rbd_device *first = rbd_dev; 7217 struct rbd_device *second = first->parent; 7218 struct rbd_device *third; 7219 7220 /* 7221 * Follow to the parent with no grandparent and 7222 * remove it. 7223 */ 7224 while (second && (third = second->parent)) { 7225 first = second; 7226 second = third; 7227 } 7228 rbd_assert(second); 7229 rbd_dev_image_release(second); 7230 rbd_dev_destroy(second); 7231 first->parent = NULL; 7232 first->parent_overlap = 0; 7233 7234 rbd_assert(first->parent_spec); 7235 rbd_spec_put(first->parent_spec); 7236 first->parent_spec = NULL; 7237 } 7238 } 7239 7240 static ssize_t do_rbd_remove(const char *buf, size_t count) 7241 { 7242 struct rbd_device *rbd_dev = NULL; 7243 int dev_id; 7244 char opt_buf[6]; 7245 bool force = false; 7246 int ret; 7247 7248 if (!capable(CAP_SYS_ADMIN)) 7249 return -EPERM; 7250 7251 dev_id = -1; 7252 opt_buf[0] = '\0'; 7253 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7254 if (dev_id < 0) { 7255 pr_err("dev_id out of range\n"); 7256 return -EINVAL; 7257 } 7258 if (opt_buf[0] != '\0') { 7259 if (!strcmp(opt_buf, "force")) { 7260 force = true; 7261 } else { 7262 pr_err("bad remove option at '%s'\n", opt_buf); 7263 return -EINVAL; 7264 } 7265 } 7266 7267 ret = -ENOENT; 7268 spin_lock(&rbd_dev_list_lock); 7269 list_for_each_entry(rbd_dev, &rbd_dev_list, node) { 7270 if (rbd_dev->dev_id == dev_id) { 7271 ret = 0; 7272 break; 7273 } 7274 } 7275 if (!ret) { 7276 spin_lock_irq(&rbd_dev->lock); 7277 if (rbd_dev->open_count && !force) 7278 ret = -EBUSY; 7279 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7280 &rbd_dev->flags)) 7281 ret = -EINPROGRESS; 7282 spin_unlock_irq(&rbd_dev->lock); 7283 } 7284 spin_unlock(&rbd_dev_list_lock); 7285 if (ret) 7286 return ret; 7287 7288 if (force) { 7289 /* 7290 * Prevent new IO from being queued and wait for existing 7291 * IO to complete/fail. 7292 */ 7293 blk_mq_freeze_queue(rbd_dev->disk->queue); 7294 blk_mark_disk_dead(rbd_dev->disk); 7295 } 7296 7297 del_gendisk(rbd_dev->disk); 7298 spin_lock(&rbd_dev_list_lock); 7299 list_del_init(&rbd_dev->node); 7300 spin_unlock(&rbd_dev_list_lock); 7301 device_del(&rbd_dev->dev); 7302 7303 rbd_dev_image_unlock(rbd_dev); 7304 rbd_dev_device_release(rbd_dev); 7305 rbd_dev_image_release(rbd_dev); 7306 rbd_dev_destroy(rbd_dev); 7307 return count; 7308 } 7309 7310 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count) 7311 { 7312 if (single_major) 7313 return -EINVAL; 7314 7315 return do_rbd_remove(buf, count); 7316 } 7317 7318 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 7319 size_t count) 7320 { 7321 return do_rbd_remove(buf, count); 7322 } 7323 7324 /* 7325 * create control files in sysfs 7326 * /sys/bus/rbd/... 7327 */ 7328 static int __init rbd_sysfs_init(void) 7329 { 7330 int ret; 7331 7332 ret = device_register(&rbd_root_dev); 7333 if (ret < 0) { 7334 put_device(&rbd_root_dev); 7335 return ret; 7336 } 7337 7338 ret = bus_register(&rbd_bus_type); 7339 if (ret < 0) 7340 device_unregister(&rbd_root_dev); 7341 7342 return ret; 7343 } 7344 7345 static void __exit rbd_sysfs_cleanup(void) 7346 { 7347 bus_unregister(&rbd_bus_type); 7348 device_unregister(&rbd_root_dev); 7349 } 7350 7351 static int __init rbd_slab_init(void) 7352 { 7353 rbd_assert(!rbd_img_request_cache); 7354 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7355 if (!rbd_img_request_cache) 7356 return -ENOMEM; 7357 7358 rbd_assert(!rbd_obj_request_cache); 7359 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7360 if (!rbd_obj_request_cache) 7361 goto out_err; 7362 7363 return 0; 7364 7365 out_err: 7366 kmem_cache_destroy(rbd_img_request_cache); 7367 rbd_img_request_cache = NULL; 7368 return -ENOMEM; 7369 } 7370 7371 static void rbd_slab_exit(void) 7372 { 7373 rbd_assert(rbd_obj_request_cache); 7374 kmem_cache_destroy(rbd_obj_request_cache); 7375 rbd_obj_request_cache = NULL; 7376 7377 rbd_assert(rbd_img_request_cache); 7378 kmem_cache_destroy(rbd_img_request_cache); 7379 rbd_img_request_cache = NULL; 7380 } 7381 7382 static int __init rbd_init(void) 7383 { 7384 int rc; 7385 7386 if (!libceph_compatible(NULL)) { 7387 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7388 return -EINVAL; 7389 } 7390 7391 rc = rbd_slab_init(); 7392 if (rc) 7393 return rc; 7394 7395 /* 7396 * The number of active work items is limited by the number of 7397 * rbd devices * queue depth, so leave @max_active at default. 7398 */ 7399 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7400 if (!rbd_wq) { 7401 rc = -ENOMEM; 7402 goto err_out_slab; 7403 } 7404 7405 if (single_major) { 7406 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7407 if (rbd_major < 0) { 7408 rc = rbd_major; 7409 goto err_out_wq; 7410 } 7411 } 7412 7413 rc = rbd_sysfs_init(); 7414 if (rc) 7415 goto err_out_blkdev; 7416 7417 if (single_major) 7418 pr_info("loaded (major %d)\n", rbd_major); 7419 else 7420 pr_info("loaded\n"); 7421 7422 return 0; 7423 7424 err_out_blkdev: 7425 if (single_major) 7426 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7427 err_out_wq: 7428 destroy_workqueue(rbd_wq); 7429 err_out_slab: 7430 rbd_slab_exit(); 7431 return rc; 7432 } 7433 7434 static void __exit rbd_exit(void) 7435 { 7436 ida_destroy(&rbd_dev_id_ida); 7437 rbd_sysfs_cleanup(); 7438 if (single_major) 7439 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7440 destroy_workqueue(rbd_wq); 7441 rbd_slab_exit(); 7442 } 7443 7444 module_init(rbd_init); 7445 module_exit(rbd_exit); 7446 7447 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7448 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7449 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7450 /* following authorship retained from original osdblk.c */ 7451 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7452 7453 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7454 MODULE_LICENSE("GPL"); 7455