1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <linux/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43
44 #include <linux/device-mapper.h>
45
46 #include "dm-audit.h"
47
48 #define DM_MSG_PREFIX "crypt"
49
50 static DEFINE_IDA(workqueue_ida);
51
52 /*
53 * context holding the current state of a multi-part conversion
54 */
55 struct convert_context {
56 struct completion restart;
57 struct bio *bio_in;
58 struct bvec_iter iter_in;
59 struct bio *bio_out;
60 struct bvec_iter iter_out;
61 atomic_t cc_pending;
62 u64 cc_sector;
63 union {
64 struct skcipher_request *req;
65 struct aead_request *req_aead;
66 } r;
67 bool aead_recheck;
68 bool aead_failed;
69
70 };
71
72 /*
73 * per bio private data
74 */
75 struct dm_crypt_io {
76 struct crypt_config *cc;
77 struct bio *base_bio;
78 u8 *integrity_metadata;
79 bool integrity_metadata_from_pool:1;
80
81 struct work_struct work;
82
83 struct convert_context ctx;
84
85 atomic_t io_pending;
86 blk_status_t error;
87 sector_t sector;
88
89 struct bvec_iter saved_bi_iter;
90
91 struct rb_node rb_node;
92 } CRYPTO_MINALIGN_ATTR;
93
94 struct dm_crypt_request {
95 struct convert_context *ctx;
96 struct scatterlist sg_in[4];
97 struct scatterlist sg_out[4];
98 u64 iv_sector;
99 };
100
101 struct crypt_config;
102
103 struct crypt_iv_operations {
104 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
105 const char *opts);
106 void (*dtr)(struct crypt_config *cc);
107 int (*init)(struct crypt_config *cc);
108 int (*wipe)(struct crypt_config *cc);
109 int (*generator)(struct crypt_config *cc, u8 *iv,
110 struct dm_crypt_request *dmreq);
111 int (*post)(struct crypt_config *cc, u8 *iv,
112 struct dm_crypt_request *dmreq);
113 };
114
115 struct iv_benbi_private {
116 int shift;
117 };
118
119 #define LMK_SEED_SIZE 64 /* hash + 0 */
120 struct iv_lmk_private {
121 struct crypto_shash *hash_tfm;
122 u8 *seed;
123 };
124
125 #define TCW_WHITENING_SIZE 16
126 struct iv_tcw_private {
127 struct crypto_shash *crc32_tfm;
128 u8 *iv_seed;
129 u8 *whitening;
130 };
131
132 #define ELEPHANT_MAX_KEY_SIZE 32
133 struct iv_elephant_private {
134 struct crypto_skcipher *tfm;
135 };
136
137 /*
138 * Crypt: maps a linear range of a block device
139 * and encrypts / decrypts at the same time.
140 */
141 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
142 DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
143 DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
144 DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
145
146 enum cipher_flags {
147 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
148 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
149 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
150 CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */
151 };
152
153 /*
154 * The fields in here must be read only after initialization.
155 */
156 struct crypt_config {
157 struct dm_dev *dev;
158 sector_t start;
159
160 struct percpu_counter n_allocated_pages;
161
162 struct workqueue_struct *io_queue;
163 struct workqueue_struct *crypt_queue;
164
165 spinlock_t write_thread_lock;
166 struct task_struct *write_thread;
167 struct rb_root write_tree;
168
169 char *cipher_string;
170 char *cipher_auth;
171 char *key_string;
172
173 const struct crypt_iv_operations *iv_gen_ops;
174 union {
175 struct iv_benbi_private benbi;
176 struct iv_lmk_private lmk;
177 struct iv_tcw_private tcw;
178 struct iv_elephant_private elephant;
179 } iv_gen_private;
180 u64 iv_offset;
181 unsigned int iv_size;
182 unsigned short sector_size;
183 unsigned char sector_shift;
184
185 union {
186 struct crypto_skcipher **tfms;
187 struct crypto_aead **tfms_aead;
188 } cipher_tfm;
189 unsigned int tfms_count;
190 int workqueue_id;
191 unsigned long cipher_flags;
192
193 /*
194 * Layout of each crypto request:
195 *
196 * struct skcipher_request
197 * context
198 * padding
199 * struct dm_crypt_request
200 * padding
201 * IV
202 *
203 * The padding is added so that dm_crypt_request and the IV are
204 * correctly aligned.
205 */
206 unsigned int dmreq_start;
207
208 unsigned int per_bio_data_size;
209
210 unsigned long flags;
211 unsigned int key_size;
212 unsigned int key_parts; /* independent parts in key buffer */
213 unsigned int key_extra_size; /* additional keys length */
214 unsigned int key_mac_size; /* MAC key size for authenc(...) */
215
216 unsigned int integrity_tag_size;
217 unsigned int integrity_iv_size;
218 unsigned int used_tag_size;
219 unsigned int tuple_size;
220
221 /*
222 * pool for per bio private data, crypto requests,
223 * encryption requeusts/buffer pages and integrity tags
224 */
225 unsigned int tag_pool_max_sectors;
226 mempool_t tag_pool;
227 mempool_t req_pool;
228 mempool_t page_pool;
229
230 struct bio_set bs;
231 struct mutex bio_alloc_lock;
232
233 u8 *authenc_key; /* space for keys in authenc() format (if used) */
234 u8 key[] __counted_by(key_size);
235 };
236
237 #define MIN_IOS 64
238 #define MAX_TAG_SIZE 480
239 #define POOL_ENTRY_SIZE 512
240
241 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
242 static unsigned int dm_crypt_clients_n;
243 static volatile unsigned long dm_crypt_pages_per_client;
244 #define DM_CRYPT_MEMORY_PERCENT 2
245 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
246 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072
247 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072
248
249 static unsigned int max_read_size = 0;
250 module_param(max_read_size, uint, 0644);
251 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
252 static unsigned int max_write_size = 0;
253 module_param(max_write_size, uint, 0644);
254 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
get_max_request_size(struct crypt_config * cc,bool wrt)255 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
256 {
257 unsigned val, sector_align;
258 val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
259 if (likely(!val))
260 val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
261 if (wrt || cc->used_tag_size) {
262 if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
263 val = BIO_MAX_VECS << PAGE_SHIFT;
264 }
265 sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
266 val = round_down(val, sector_align);
267 if (unlikely(!val))
268 val = sector_align;
269 return val >> SECTOR_SHIFT;
270 }
271
272 static void crypt_endio(struct bio *clone);
273 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
274 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
275 struct scatterlist *sg);
276
277 static bool crypt_integrity_aead(struct crypt_config *cc);
278
279 /*
280 * Use this to access cipher attributes that are independent of the key.
281 */
any_tfm(struct crypt_config * cc)282 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
283 {
284 return cc->cipher_tfm.tfms[0];
285 }
286
any_tfm_aead(struct crypt_config * cc)287 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
288 {
289 return cc->cipher_tfm.tfms_aead[0];
290 }
291
292 /*
293 * Different IV generation algorithms:
294 *
295 * plain: the initial vector is the 32-bit little-endian version of the sector
296 * number, padded with zeros if necessary.
297 *
298 * plain64: the initial vector is the 64-bit little-endian version of the sector
299 * number, padded with zeros if necessary.
300 *
301 * plain64be: the initial vector is the 64-bit big-endian version of the sector
302 * number, padded with zeros if necessary.
303 *
304 * essiv: "encrypted sector|salt initial vector", the sector number is
305 * encrypted with the bulk cipher using a salt as key. The salt
306 * should be derived from the bulk cipher's key via hashing.
307 *
308 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
309 * (needed for LRW-32-AES and possible other narrow block modes)
310 *
311 * null: the initial vector is always zero. Provides compatibility with
312 * obsolete loop_fish2 devices. Do not use for new devices.
313 *
314 * lmk: Compatible implementation of the block chaining mode used
315 * by the Loop-AES block device encryption system
316 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
317 * It operates on full 512 byte sectors and uses CBC
318 * with an IV derived from the sector number, the data and
319 * optionally extra IV seed.
320 * This means that after decryption the first block
321 * of sector must be tweaked according to decrypted data.
322 * Loop-AES can use three encryption schemes:
323 * version 1: is plain aes-cbc mode
324 * version 2: uses 64 multikey scheme with lmk IV generator
325 * version 3: the same as version 2 with additional IV seed
326 * (it uses 65 keys, last key is used as IV seed)
327 *
328 * tcw: Compatible implementation of the block chaining mode used
329 * by the TrueCrypt device encryption system (prior to version 4.1).
330 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
331 * It operates on full 512 byte sectors and uses CBC
332 * with an IV derived from initial key and the sector number.
333 * In addition, whitening value is applied on every sector, whitening
334 * is calculated from initial key, sector number and mixed using CRC32.
335 * Note that this encryption scheme is vulnerable to watermarking attacks
336 * and should be used for old compatible containers access only.
337 *
338 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
339 * The IV is encrypted little-endian byte-offset (with the same key
340 * and cipher as the volume).
341 *
342 * elephant: The extended version of eboiv with additional Elephant diffuser
343 * used with Bitlocker CBC mode.
344 * This mode was used in older Windows systems
345 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
346 */
347
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)348 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
349 struct dm_crypt_request *dmreq)
350 {
351 memset(iv, 0, cc->iv_size);
352 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
353
354 return 0;
355 }
356
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)357 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
358 struct dm_crypt_request *dmreq)
359 {
360 memset(iv, 0, cc->iv_size);
361 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
362
363 return 0;
364 }
365
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)366 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
367 struct dm_crypt_request *dmreq)
368 {
369 memset(iv, 0, cc->iv_size);
370 /* iv_size is at least of size u64; usually it is 16 bytes */
371 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
372
373 return 0;
374 }
375
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)376 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
377 struct dm_crypt_request *dmreq)
378 {
379 /*
380 * ESSIV encryption of the IV is now handled by the crypto API,
381 * so just pass the plain sector number here.
382 */
383 memset(iv, 0, cc->iv_size);
384 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
385
386 return 0;
387 }
388
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)389 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
390 const char *opts)
391 {
392 unsigned int bs;
393 int log;
394
395 if (crypt_integrity_aead(cc))
396 bs = crypto_aead_blocksize(any_tfm_aead(cc));
397 else
398 bs = crypto_skcipher_blocksize(any_tfm(cc));
399 log = ilog2(bs);
400
401 /*
402 * We need to calculate how far we must shift the sector count
403 * to get the cipher block count, we use this shift in _gen.
404 */
405 if (1 << log != bs) {
406 ti->error = "cypher blocksize is not a power of 2";
407 return -EINVAL;
408 }
409
410 if (log > 9) {
411 ti->error = "cypher blocksize is > 512";
412 return -EINVAL;
413 }
414
415 cc->iv_gen_private.benbi.shift = 9 - log;
416
417 return 0;
418 }
419
crypt_iv_benbi_dtr(struct crypt_config * cc)420 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
421 {
422 }
423
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)424 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
425 struct dm_crypt_request *dmreq)
426 {
427 __be64 val;
428
429 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
430
431 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
432 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
433
434 return 0;
435 }
436
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)437 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
438 struct dm_crypt_request *dmreq)
439 {
440 memset(iv, 0, cc->iv_size);
441
442 return 0;
443 }
444
crypt_iv_lmk_dtr(struct crypt_config * cc)445 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
446 {
447 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
448
449 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
450 crypto_free_shash(lmk->hash_tfm);
451 lmk->hash_tfm = NULL;
452
453 kfree_sensitive(lmk->seed);
454 lmk->seed = NULL;
455 }
456
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)457 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
458 const char *opts)
459 {
460 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461
462 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
463 ti->error = "Unsupported sector size for LMK";
464 return -EINVAL;
465 }
466
467 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
468 CRYPTO_ALG_ALLOCATES_MEMORY);
469 if (IS_ERR(lmk->hash_tfm)) {
470 ti->error = "Error initializing LMK hash";
471 return PTR_ERR(lmk->hash_tfm);
472 }
473
474 /* No seed in LMK version 2 */
475 if (cc->key_parts == cc->tfms_count) {
476 lmk->seed = NULL;
477 return 0;
478 }
479
480 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
481 if (!lmk->seed) {
482 crypt_iv_lmk_dtr(cc);
483 ti->error = "Error kmallocing seed storage in LMK";
484 return -ENOMEM;
485 }
486
487 return 0;
488 }
489
crypt_iv_lmk_init(struct crypt_config * cc)490 static int crypt_iv_lmk_init(struct crypt_config *cc)
491 {
492 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
493 int subkey_size = cc->key_size / cc->key_parts;
494
495 /* LMK seed is on the position of LMK_KEYS + 1 key */
496 if (lmk->seed)
497 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
498 crypto_shash_digestsize(lmk->hash_tfm));
499
500 return 0;
501 }
502
crypt_iv_lmk_wipe(struct crypt_config * cc)503 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
504 {
505 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
506
507 if (lmk->seed)
508 memset(lmk->seed, 0, LMK_SEED_SIZE);
509
510 return 0;
511 }
512
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)513 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
514 struct dm_crypt_request *dmreq,
515 u8 *data)
516 {
517 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
518 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
519 struct md5_state md5state;
520 __le32 buf[4];
521 int i, r;
522
523 desc->tfm = lmk->hash_tfm;
524
525 r = crypto_shash_init(desc);
526 if (r)
527 return r;
528
529 if (lmk->seed) {
530 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
531 if (r)
532 return r;
533 }
534
535 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
536 r = crypto_shash_update(desc, data + 16, 16 * 31);
537 if (r)
538 return r;
539
540 /* Sector is cropped to 56 bits here */
541 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
542 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
543 buf[2] = cpu_to_le32(4024);
544 buf[3] = 0;
545 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
546 if (r)
547 return r;
548
549 /* No MD5 padding here */
550 r = crypto_shash_export(desc, &md5state);
551 if (r)
552 return r;
553
554 for (i = 0; i < MD5_HASH_WORDS; i++)
555 __cpu_to_le32s(&md5state.hash[i]);
556 memcpy(iv, &md5state.hash, cc->iv_size);
557
558 return 0;
559 }
560
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)561 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
562 struct dm_crypt_request *dmreq)
563 {
564 struct scatterlist *sg;
565 u8 *src;
566 int r = 0;
567
568 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
569 sg = crypt_get_sg_data(cc, dmreq->sg_in);
570 src = kmap_local_page(sg_page(sg));
571 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
572 kunmap_local(src);
573 } else
574 memset(iv, 0, cc->iv_size);
575
576 return r;
577 }
578
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)579 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
580 struct dm_crypt_request *dmreq)
581 {
582 struct scatterlist *sg;
583 u8 *dst;
584 int r;
585
586 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
587 return 0;
588
589 sg = crypt_get_sg_data(cc, dmreq->sg_out);
590 dst = kmap_local_page(sg_page(sg));
591 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
592
593 /* Tweak the first block of plaintext sector */
594 if (!r)
595 crypto_xor(dst + sg->offset, iv, cc->iv_size);
596
597 kunmap_local(dst);
598 return r;
599 }
600
crypt_iv_tcw_dtr(struct crypt_config * cc)601 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
602 {
603 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
604
605 kfree_sensitive(tcw->iv_seed);
606 tcw->iv_seed = NULL;
607 kfree_sensitive(tcw->whitening);
608 tcw->whitening = NULL;
609
610 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
611 crypto_free_shash(tcw->crc32_tfm);
612 tcw->crc32_tfm = NULL;
613 }
614
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)615 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
616 const char *opts)
617 {
618 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619
620 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
621 ti->error = "Unsupported sector size for TCW";
622 return -EINVAL;
623 }
624
625 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
626 ti->error = "Wrong key size for TCW";
627 return -EINVAL;
628 }
629
630 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
631 CRYPTO_ALG_ALLOCATES_MEMORY);
632 if (IS_ERR(tcw->crc32_tfm)) {
633 ti->error = "Error initializing CRC32 in TCW";
634 return PTR_ERR(tcw->crc32_tfm);
635 }
636
637 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
638 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
639 if (!tcw->iv_seed || !tcw->whitening) {
640 crypt_iv_tcw_dtr(cc);
641 ti->error = "Error allocating seed storage in TCW";
642 return -ENOMEM;
643 }
644
645 return 0;
646 }
647
crypt_iv_tcw_init(struct crypt_config * cc)648 static int crypt_iv_tcw_init(struct crypt_config *cc)
649 {
650 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
651 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
652
653 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
654 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
655 TCW_WHITENING_SIZE);
656
657 return 0;
658 }
659
crypt_iv_tcw_wipe(struct crypt_config * cc)660 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
661 {
662 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
663
664 memset(tcw->iv_seed, 0, cc->iv_size);
665 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
666
667 return 0;
668 }
669
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)670 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
671 struct dm_crypt_request *dmreq,
672 u8 *data)
673 {
674 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 __le64 sector = cpu_to_le64(dmreq->iv_sector);
676 u8 buf[TCW_WHITENING_SIZE];
677 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
678 int i, r;
679
680 /* xor whitening with sector number */
681 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
682 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
683
684 /* calculate crc32 for every 32bit part and xor it */
685 desc->tfm = tcw->crc32_tfm;
686 for (i = 0; i < 4; i++) {
687 r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
688 if (r)
689 goto out;
690 }
691 crypto_xor(&buf[0], &buf[12], 4);
692 crypto_xor(&buf[4], &buf[8], 4);
693
694 /* apply whitening (8 bytes) to whole sector */
695 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
696 crypto_xor(data + i * 8, buf, 8);
697 out:
698 memzero_explicit(buf, sizeof(buf));
699 return r;
700 }
701
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)702 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
703 struct dm_crypt_request *dmreq)
704 {
705 struct scatterlist *sg;
706 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
707 __le64 sector = cpu_to_le64(dmreq->iv_sector);
708 u8 *src;
709 int r = 0;
710
711 /* Remove whitening from ciphertext */
712 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
713 sg = crypt_get_sg_data(cc, dmreq->sg_in);
714 src = kmap_local_page(sg_page(sg));
715 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
716 kunmap_local(src);
717 }
718
719 /* Calculate IV */
720 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
721 if (cc->iv_size > 8)
722 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
723 cc->iv_size - 8);
724
725 return r;
726 }
727
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)728 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
729 struct dm_crypt_request *dmreq)
730 {
731 struct scatterlist *sg;
732 u8 *dst;
733 int r;
734
735 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
736 return 0;
737
738 /* Apply whitening on ciphertext */
739 sg = crypt_get_sg_data(cc, dmreq->sg_out);
740 dst = kmap_local_page(sg_page(sg));
741 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
742 kunmap_local(dst);
743
744 return r;
745 }
746
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)747 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
748 struct dm_crypt_request *dmreq)
749 {
750 /* Used only for writes, there must be an additional space to store IV */
751 get_random_bytes(iv, cc->iv_size);
752 return 0;
753 }
754
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)755 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
756 const char *opts)
757 {
758 if (crypt_integrity_aead(cc)) {
759 ti->error = "AEAD transforms not supported for EBOIV";
760 return -EINVAL;
761 }
762
763 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
764 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
765 return -EINVAL;
766 }
767
768 return 0;
769 }
770
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)771 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
772 struct dm_crypt_request *dmreq)
773 {
774 struct crypto_skcipher *tfm = any_tfm(cc);
775 struct skcipher_request *req;
776 struct scatterlist src, dst;
777 DECLARE_CRYPTO_WAIT(wait);
778 unsigned int reqsize;
779 int err;
780 u8 *buf;
781
782 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
783 reqsize = ALIGN(reqsize, __alignof__(__le64));
784
785 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
786 if (!req)
787 return -ENOMEM;
788
789 skcipher_request_set_tfm(req, tfm);
790
791 buf = (u8 *)req + reqsize;
792 memset(buf, 0, cc->iv_size);
793 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
794
795 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
796 sg_init_one(&dst, iv, cc->iv_size);
797 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
798 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
799 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
800 kfree_sensitive(req);
801
802 return err;
803 }
804
crypt_iv_elephant_dtr(struct crypt_config * cc)805 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
806 {
807 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
808
809 crypto_free_skcipher(elephant->tfm);
810 elephant->tfm = NULL;
811 }
812
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)813 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
814 const char *opts)
815 {
816 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
817 int r;
818
819 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
820 CRYPTO_ALG_ALLOCATES_MEMORY);
821 if (IS_ERR(elephant->tfm)) {
822 r = PTR_ERR(elephant->tfm);
823 elephant->tfm = NULL;
824 return r;
825 }
826
827 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
828 if (r)
829 crypt_iv_elephant_dtr(cc);
830 return r;
831 }
832
diffuser_disk_to_cpu(u32 * d,size_t n)833 static void diffuser_disk_to_cpu(u32 *d, size_t n)
834 {
835 #ifndef __LITTLE_ENDIAN
836 int i;
837
838 for (i = 0; i < n; i++)
839 d[i] = le32_to_cpu((__le32)d[i]);
840 #endif
841 }
842
diffuser_cpu_to_disk(__le32 * d,size_t n)843 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
844 {
845 #ifndef __LITTLE_ENDIAN
846 int i;
847
848 for (i = 0; i < n; i++)
849 d[i] = cpu_to_le32((u32)d[i]);
850 #endif
851 }
852
diffuser_a_decrypt(u32 * d,size_t n)853 static void diffuser_a_decrypt(u32 *d, size_t n)
854 {
855 int i, i1, i2, i3;
856
857 for (i = 0; i < 5; i++) {
858 i1 = 0;
859 i2 = n - 2;
860 i3 = n - 5;
861
862 while (i1 < (n - 1)) {
863 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
864 i1++; i2++; i3++;
865
866 if (i3 >= n)
867 i3 -= n;
868
869 d[i1] += d[i2] ^ d[i3];
870 i1++; i2++; i3++;
871
872 if (i2 >= n)
873 i2 -= n;
874
875 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
876 i1++; i2++; i3++;
877
878 d[i1] += d[i2] ^ d[i3];
879 i1++; i2++; i3++;
880 }
881 }
882 }
883
diffuser_a_encrypt(u32 * d,size_t n)884 static void diffuser_a_encrypt(u32 *d, size_t n)
885 {
886 int i, i1, i2, i3;
887
888 for (i = 0; i < 5; i++) {
889 i1 = n - 1;
890 i2 = n - 2 - 1;
891 i3 = n - 5 - 1;
892
893 while (i1 > 0) {
894 d[i1] -= d[i2] ^ d[i3];
895 i1--; i2--; i3--;
896
897 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
898 i1--; i2--; i3--;
899
900 if (i2 < 0)
901 i2 += n;
902
903 d[i1] -= d[i2] ^ d[i3];
904 i1--; i2--; i3--;
905
906 if (i3 < 0)
907 i3 += n;
908
909 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
910 i1--; i2--; i3--;
911 }
912 }
913 }
914
diffuser_b_decrypt(u32 * d,size_t n)915 static void diffuser_b_decrypt(u32 *d, size_t n)
916 {
917 int i, i1, i2, i3;
918
919 for (i = 0; i < 3; i++) {
920 i1 = 0;
921 i2 = 2;
922 i3 = 5;
923
924 while (i1 < (n - 1)) {
925 d[i1] += d[i2] ^ d[i3];
926 i1++; i2++; i3++;
927
928 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
929 i1++; i2++; i3++;
930
931 if (i2 >= n)
932 i2 -= n;
933
934 d[i1] += d[i2] ^ d[i3];
935 i1++; i2++; i3++;
936
937 if (i3 >= n)
938 i3 -= n;
939
940 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
941 i1++; i2++; i3++;
942 }
943 }
944 }
945
diffuser_b_encrypt(u32 * d,size_t n)946 static void diffuser_b_encrypt(u32 *d, size_t n)
947 {
948 int i, i1, i2, i3;
949
950 for (i = 0; i < 3; i++) {
951 i1 = n - 1;
952 i2 = 2 - 1;
953 i3 = 5 - 1;
954
955 while (i1 > 0) {
956 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
957 i1--; i2--; i3--;
958
959 if (i3 < 0)
960 i3 += n;
961
962 d[i1] -= d[i2] ^ d[i3];
963 i1--; i2--; i3--;
964
965 if (i2 < 0)
966 i2 += n;
967
968 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
969 i1--; i2--; i3--;
970
971 d[i1] -= d[i2] ^ d[i3];
972 i1--; i2--; i3--;
973 }
974 }
975 }
976
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)977 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
978 {
979 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
980 u8 *es, *ks, *data, *data2, *data_offset;
981 struct skcipher_request *req;
982 struct scatterlist *sg, *sg2, src, dst;
983 DECLARE_CRYPTO_WAIT(wait);
984 int i, r;
985
986 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
987 es = kzalloc(16, GFP_NOIO); /* Key for AES */
988 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
989
990 if (!req || !es || !ks) {
991 r = -ENOMEM;
992 goto out;
993 }
994
995 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
996
997 /* E(Ks, e(s)) */
998 sg_init_one(&src, es, 16);
999 sg_init_one(&dst, ks, 16);
1000 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
1001 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
1002 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1003 if (r)
1004 goto out;
1005
1006 /* E(Ks, e'(s)) */
1007 es[15] = 0x80;
1008 sg_init_one(&dst, &ks[16], 16);
1009 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1010 if (r)
1011 goto out;
1012
1013 sg = crypt_get_sg_data(cc, dmreq->sg_out);
1014 data = kmap_local_page(sg_page(sg));
1015 data_offset = data + sg->offset;
1016
1017 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
1018 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1019 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1020 data2 = kmap_local_page(sg_page(sg2));
1021 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1022 kunmap_local(data2);
1023 }
1024
1025 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1026 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1027 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1028 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1029 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1030 }
1031
1032 for (i = 0; i < (cc->sector_size / 32); i++)
1033 crypto_xor(data_offset + i * 32, ks, 32);
1034
1035 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1036 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1037 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1038 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1039 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1040 }
1041
1042 kunmap_local(data);
1043 out:
1044 kfree_sensitive(ks);
1045 kfree_sensitive(es);
1046 skcipher_request_free(req);
1047 return r;
1048 }
1049
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1050 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1051 struct dm_crypt_request *dmreq)
1052 {
1053 int r;
1054
1055 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1056 r = crypt_iv_elephant(cc, dmreq);
1057 if (r)
1058 return r;
1059 }
1060
1061 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1062 }
1063
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1064 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1065 struct dm_crypt_request *dmreq)
1066 {
1067 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1068 return crypt_iv_elephant(cc, dmreq);
1069
1070 return 0;
1071 }
1072
crypt_iv_elephant_init(struct crypt_config * cc)1073 static int crypt_iv_elephant_init(struct crypt_config *cc)
1074 {
1075 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1076 int key_offset = cc->key_size - cc->key_extra_size;
1077
1078 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1079 }
1080
crypt_iv_elephant_wipe(struct crypt_config * cc)1081 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1082 {
1083 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1084 u8 key[ELEPHANT_MAX_KEY_SIZE];
1085
1086 memset(key, 0, cc->key_extra_size);
1087 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1088 }
1089
1090 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1091 .generator = crypt_iv_plain_gen
1092 };
1093
1094 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1095 .generator = crypt_iv_plain64_gen
1096 };
1097
1098 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1099 .generator = crypt_iv_plain64be_gen
1100 };
1101
1102 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1103 .generator = crypt_iv_essiv_gen
1104 };
1105
1106 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1107 .ctr = crypt_iv_benbi_ctr,
1108 .dtr = crypt_iv_benbi_dtr,
1109 .generator = crypt_iv_benbi_gen
1110 };
1111
1112 static const struct crypt_iv_operations crypt_iv_null_ops = {
1113 .generator = crypt_iv_null_gen
1114 };
1115
1116 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1117 .ctr = crypt_iv_lmk_ctr,
1118 .dtr = crypt_iv_lmk_dtr,
1119 .init = crypt_iv_lmk_init,
1120 .wipe = crypt_iv_lmk_wipe,
1121 .generator = crypt_iv_lmk_gen,
1122 .post = crypt_iv_lmk_post
1123 };
1124
1125 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1126 .ctr = crypt_iv_tcw_ctr,
1127 .dtr = crypt_iv_tcw_dtr,
1128 .init = crypt_iv_tcw_init,
1129 .wipe = crypt_iv_tcw_wipe,
1130 .generator = crypt_iv_tcw_gen,
1131 .post = crypt_iv_tcw_post
1132 };
1133
1134 static const struct crypt_iv_operations crypt_iv_random_ops = {
1135 .generator = crypt_iv_random_gen
1136 };
1137
1138 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1139 .ctr = crypt_iv_eboiv_ctr,
1140 .generator = crypt_iv_eboiv_gen
1141 };
1142
1143 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1144 .ctr = crypt_iv_elephant_ctr,
1145 .dtr = crypt_iv_elephant_dtr,
1146 .init = crypt_iv_elephant_init,
1147 .wipe = crypt_iv_elephant_wipe,
1148 .generator = crypt_iv_elephant_gen,
1149 .post = crypt_iv_elephant_post
1150 };
1151
1152 /*
1153 * Integrity extensions
1154 */
crypt_integrity_aead(struct crypt_config * cc)1155 static bool crypt_integrity_aead(struct crypt_config *cc)
1156 {
1157 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1158 }
1159
crypt_integrity_hmac(struct crypt_config * cc)1160 static bool crypt_integrity_hmac(struct crypt_config *cc)
1161 {
1162 return crypt_integrity_aead(cc) && cc->key_mac_size;
1163 }
1164
1165 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1166 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1167 struct scatterlist *sg)
1168 {
1169 if (unlikely(crypt_integrity_aead(cc)))
1170 return &sg[2];
1171
1172 return sg;
1173 }
1174
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1175 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1176 {
1177 struct bio_integrity_payload *bip;
1178 unsigned int tag_len;
1179 int ret;
1180
1181 if (!bio_sectors(bio) || !io->cc->tuple_size)
1182 return 0;
1183
1184 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1185 if (IS_ERR(bip))
1186 return PTR_ERR(bip);
1187
1188 tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1189
1190 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1191
1192 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1193 tag_len, offset_in_page(io->integrity_metadata));
1194 if (unlikely(ret != tag_len))
1195 return -ENOMEM;
1196
1197 return 0;
1198 }
1199
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1200 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1201 {
1202 #ifdef CONFIG_BLK_DEV_INTEGRITY
1203 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1204 struct mapped_device *md = dm_table_get_md(ti->table);
1205
1206 /* We require an underlying device with non-PI metadata */
1207 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1208 ti->error = "Integrity profile not supported.";
1209 return -EINVAL;
1210 }
1211
1212 if (bi->tuple_size < cc->used_tag_size) {
1213 ti->error = "Integrity profile tag size mismatch.";
1214 return -EINVAL;
1215 }
1216 cc->tuple_size = bi->tuple_size;
1217 if (1 << bi->interval_exp != cc->sector_size) {
1218 ti->error = "Integrity profile sector size mismatch.";
1219 return -EINVAL;
1220 }
1221
1222 if (crypt_integrity_aead(cc)) {
1223 cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1224 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1225 cc->integrity_tag_size, cc->integrity_iv_size);
1226
1227 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1228 ti->error = "Integrity AEAD auth tag size is not supported.";
1229 return -EINVAL;
1230 }
1231 } else if (cc->integrity_iv_size)
1232 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1233 cc->integrity_iv_size);
1234
1235 if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1236 ti->error = "Not enough space for integrity tag in the profile.";
1237 return -EINVAL;
1238 }
1239
1240 return 0;
1241 #else
1242 ti->error = "Integrity profile not supported.";
1243 return -EINVAL;
1244 #endif
1245 }
1246
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1247 static void crypt_convert_init(struct crypt_config *cc,
1248 struct convert_context *ctx,
1249 struct bio *bio_out, struct bio *bio_in,
1250 sector_t sector)
1251 {
1252 ctx->bio_in = bio_in;
1253 ctx->bio_out = bio_out;
1254 if (bio_in)
1255 ctx->iter_in = bio_in->bi_iter;
1256 if (bio_out)
1257 ctx->iter_out = bio_out->bi_iter;
1258 ctx->cc_sector = sector + cc->iv_offset;
1259 init_completion(&ctx->restart);
1260 }
1261
dmreq_of_req(struct crypt_config * cc,void * req)1262 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1263 void *req)
1264 {
1265 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1266 }
1267
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1268 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1269 {
1270 return (void *)((char *)dmreq - cc->dmreq_start);
1271 }
1272
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1273 static u8 *iv_of_dmreq(struct crypt_config *cc,
1274 struct dm_crypt_request *dmreq)
1275 {
1276 if (crypt_integrity_aead(cc))
1277 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1278 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1279 else
1280 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1281 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1282 }
1283
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1284 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1285 struct dm_crypt_request *dmreq)
1286 {
1287 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1288 }
1289
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1290 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1291 struct dm_crypt_request *dmreq)
1292 {
1293 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1294
1295 return (__le64 *) ptr;
1296 }
1297
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1298 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1299 struct dm_crypt_request *dmreq)
1300 {
1301 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1302 cc->iv_size + sizeof(uint64_t);
1303
1304 return (unsigned int *)ptr;
1305 }
1306
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1307 static void *tag_from_dmreq(struct crypt_config *cc,
1308 struct dm_crypt_request *dmreq)
1309 {
1310 struct convert_context *ctx = dmreq->ctx;
1311 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1312
1313 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1314 cc->tuple_size];
1315 }
1316
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1317 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1318 struct dm_crypt_request *dmreq)
1319 {
1320 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1321 }
1322
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1323 static int crypt_convert_block_aead(struct crypt_config *cc,
1324 struct convert_context *ctx,
1325 struct aead_request *req,
1326 unsigned int tag_offset)
1327 {
1328 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1329 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1330 struct dm_crypt_request *dmreq;
1331 u8 *iv, *org_iv, *tag_iv, *tag;
1332 __le64 *sector;
1333 int r = 0;
1334
1335 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1336
1337 /* Reject unexpected unaligned bio. */
1338 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1339 return -EIO;
1340
1341 dmreq = dmreq_of_req(cc, req);
1342 dmreq->iv_sector = ctx->cc_sector;
1343 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1344 dmreq->iv_sector >>= cc->sector_shift;
1345 dmreq->ctx = ctx;
1346
1347 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1348
1349 sector = org_sector_of_dmreq(cc, dmreq);
1350 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1351
1352 iv = iv_of_dmreq(cc, dmreq);
1353 org_iv = org_iv_of_dmreq(cc, dmreq);
1354 tag = tag_from_dmreq(cc, dmreq);
1355 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1356
1357 /* AEAD request:
1358 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1359 * | (authenticated) | (auth+encryption) | |
1360 * | sector_LE | IV | sector in/out | tag in/out |
1361 */
1362 sg_init_table(dmreq->sg_in, 4);
1363 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1364 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1365 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1366 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1367
1368 sg_init_table(dmreq->sg_out, 4);
1369 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1370 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1371 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1372 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1373
1374 if (cc->iv_gen_ops) {
1375 /* For READs use IV stored in integrity metadata */
1376 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1377 memcpy(org_iv, tag_iv, cc->iv_size);
1378 } else {
1379 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1380 if (r < 0)
1381 return r;
1382 /* Store generated IV in integrity metadata */
1383 if (cc->integrity_iv_size)
1384 memcpy(tag_iv, org_iv, cc->iv_size);
1385 }
1386 /* Working copy of IV, to be modified in crypto API */
1387 memcpy(iv, org_iv, cc->iv_size);
1388 }
1389
1390 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1391 if (bio_data_dir(ctx->bio_in) == WRITE) {
1392 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1393 cc->sector_size, iv);
1394 r = crypto_aead_encrypt(req);
1395 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1396 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1397 cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1398 } else {
1399 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1400 cc->sector_size + cc->integrity_tag_size, iv);
1401 r = crypto_aead_decrypt(req);
1402 }
1403
1404 if (r == -EBADMSG) {
1405 sector_t s = le64_to_cpu(*sector);
1406
1407 ctx->aead_failed = true;
1408 if (ctx->aead_recheck) {
1409 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1410 ctx->bio_in->bi_bdev, s);
1411 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1412 ctx->bio_in, s, 0);
1413 }
1414 }
1415
1416 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1417 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1418
1419 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1420 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1421
1422 return r;
1423 }
1424
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1425 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1426 struct convert_context *ctx,
1427 struct skcipher_request *req,
1428 unsigned int tag_offset)
1429 {
1430 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1431 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1432 struct scatterlist *sg_in, *sg_out;
1433 struct dm_crypt_request *dmreq;
1434 u8 *iv, *org_iv, *tag_iv;
1435 __le64 *sector;
1436 int r = 0;
1437
1438 /* Reject unexpected unaligned bio. */
1439 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1440 return -EIO;
1441
1442 dmreq = dmreq_of_req(cc, req);
1443 dmreq->iv_sector = ctx->cc_sector;
1444 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1445 dmreq->iv_sector >>= cc->sector_shift;
1446 dmreq->ctx = ctx;
1447
1448 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1449
1450 iv = iv_of_dmreq(cc, dmreq);
1451 org_iv = org_iv_of_dmreq(cc, dmreq);
1452 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1453
1454 sector = org_sector_of_dmreq(cc, dmreq);
1455 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1456
1457 /* For skcipher we use only the first sg item */
1458 sg_in = &dmreq->sg_in[0];
1459 sg_out = &dmreq->sg_out[0];
1460
1461 sg_init_table(sg_in, 1);
1462 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1463
1464 sg_init_table(sg_out, 1);
1465 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1466
1467 if (cc->iv_gen_ops) {
1468 /* For READs use IV stored in integrity metadata */
1469 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1470 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1471 } else {
1472 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1473 if (r < 0)
1474 return r;
1475 /* Data can be already preprocessed in generator */
1476 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1477 sg_in = sg_out;
1478 /* Store generated IV in integrity metadata */
1479 if (cc->integrity_iv_size)
1480 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1481 }
1482 /* Working copy of IV, to be modified in crypto API */
1483 memcpy(iv, org_iv, cc->iv_size);
1484 }
1485
1486 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1487
1488 if (bio_data_dir(ctx->bio_in) == WRITE)
1489 r = crypto_skcipher_encrypt(req);
1490 else
1491 r = crypto_skcipher_decrypt(req);
1492
1493 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1494 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1495
1496 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1497 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1498
1499 return r;
1500 }
1501
1502 static void kcryptd_async_done(void *async_req, int error);
1503
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1504 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1505 struct convert_context *ctx)
1506 {
1507 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1508
1509 if (!ctx->r.req) {
1510 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1511 if (!ctx->r.req)
1512 return -ENOMEM;
1513 }
1514
1515 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1516
1517 /*
1518 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1519 * requests if driver request queue is full.
1520 */
1521 skcipher_request_set_callback(ctx->r.req,
1522 CRYPTO_TFM_REQ_MAY_BACKLOG,
1523 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1524
1525 return 0;
1526 }
1527
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1528 static int crypt_alloc_req_aead(struct crypt_config *cc,
1529 struct convert_context *ctx)
1530 {
1531 if (!ctx->r.req_aead) {
1532 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1533 if (!ctx->r.req_aead)
1534 return -ENOMEM;
1535 }
1536
1537 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1538
1539 /*
1540 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1541 * requests if driver request queue is full.
1542 */
1543 aead_request_set_callback(ctx->r.req_aead,
1544 CRYPTO_TFM_REQ_MAY_BACKLOG,
1545 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1546
1547 return 0;
1548 }
1549
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1550 static int crypt_alloc_req(struct crypt_config *cc,
1551 struct convert_context *ctx)
1552 {
1553 if (crypt_integrity_aead(cc))
1554 return crypt_alloc_req_aead(cc, ctx);
1555 else
1556 return crypt_alloc_req_skcipher(cc, ctx);
1557 }
1558
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1559 static void crypt_free_req_skcipher(struct crypt_config *cc,
1560 struct skcipher_request *req, struct bio *base_bio)
1561 {
1562 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1563
1564 if ((struct skcipher_request *)(io + 1) != req)
1565 mempool_free(req, &cc->req_pool);
1566 }
1567
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1568 static void crypt_free_req_aead(struct crypt_config *cc,
1569 struct aead_request *req, struct bio *base_bio)
1570 {
1571 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1572
1573 if ((struct aead_request *)(io + 1) != req)
1574 mempool_free(req, &cc->req_pool);
1575 }
1576
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1577 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1578 {
1579 if (crypt_integrity_aead(cc))
1580 crypt_free_req_aead(cc, req, base_bio);
1581 else
1582 crypt_free_req_skcipher(cc, req, base_bio);
1583 }
1584
1585 /*
1586 * Encrypt / decrypt data from one bio to another one (can be the same one)
1587 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1588 static blk_status_t crypt_convert(struct crypt_config *cc,
1589 struct convert_context *ctx, bool atomic, bool reset_pending)
1590 {
1591 unsigned int tag_offset = 0;
1592 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1593 int r;
1594
1595 /*
1596 * if reset_pending is set we are dealing with the bio for the first time,
1597 * else we're continuing to work on the previous bio, so don't mess with
1598 * the cc_pending counter
1599 */
1600 if (reset_pending)
1601 atomic_set(&ctx->cc_pending, 1);
1602
1603 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1604
1605 r = crypt_alloc_req(cc, ctx);
1606 if (r) {
1607 complete(&ctx->restart);
1608 return BLK_STS_DEV_RESOURCE;
1609 }
1610
1611 atomic_inc(&ctx->cc_pending);
1612
1613 if (crypt_integrity_aead(cc))
1614 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1615 else
1616 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1617
1618 switch (r) {
1619 /*
1620 * The request was queued by a crypto driver
1621 * but the driver request queue is full, let's wait.
1622 */
1623 case -EBUSY:
1624 if (in_interrupt()) {
1625 if (try_wait_for_completion(&ctx->restart)) {
1626 /*
1627 * we don't have to block to wait for completion,
1628 * so proceed
1629 */
1630 } else {
1631 /*
1632 * we can't wait for completion without blocking
1633 * exit and continue processing in a workqueue
1634 */
1635 ctx->r.req = NULL;
1636 ctx->cc_sector += sector_step;
1637 tag_offset++;
1638 return BLK_STS_DEV_RESOURCE;
1639 }
1640 } else {
1641 wait_for_completion(&ctx->restart);
1642 }
1643 reinit_completion(&ctx->restart);
1644 fallthrough;
1645 /*
1646 * The request is queued and processed asynchronously,
1647 * completion function kcryptd_async_done() will be called.
1648 */
1649 case -EINPROGRESS:
1650 ctx->r.req = NULL;
1651 ctx->cc_sector += sector_step;
1652 tag_offset++;
1653 continue;
1654 /*
1655 * The request was already processed (synchronously).
1656 */
1657 case 0:
1658 atomic_dec(&ctx->cc_pending);
1659 ctx->cc_sector += sector_step;
1660 tag_offset++;
1661 if (!atomic)
1662 cond_resched();
1663 continue;
1664 /*
1665 * There was a data integrity error.
1666 */
1667 case -EBADMSG:
1668 atomic_dec(&ctx->cc_pending);
1669 return BLK_STS_PROTECTION;
1670 /*
1671 * There was an error while processing the request.
1672 */
1673 default:
1674 atomic_dec(&ctx->cc_pending);
1675 return BLK_STS_IOERR;
1676 }
1677 }
1678
1679 return 0;
1680 }
1681
1682 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1683
1684 /*
1685 * Generate a new unfragmented bio with the given size
1686 * This should never violate the device limitations (but if it did then block
1687 * core should split the bio as needed).
1688 *
1689 * This function may be called concurrently. If we allocate from the mempool
1690 * concurrently, there is a possibility of deadlock. For example, if we have
1691 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1692 * the mempool concurrently, it may deadlock in a situation where both processes
1693 * have allocated 128 pages and the mempool is exhausted.
1694 *
1695 * In order to avoid this scenario we allocate the pages under a mutex.
1696 *
1697 * In order to not degrade performance with excessive locking, we try
1698 * non-blocking allocations without a mutex first but on failure we fallback
1699 * to blocking allocations with a mutex.
1700 *
1701 * In order to reduce allocation overhead, we try to allocate compound pages in
1702 * the first pass. If they are not available, we fall back to the mempool.
1703 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1704 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1705 {
1706 struct crypt_config *cc = io->cc;
1707 struct bio *clone;
1708 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1709 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1710 unsigned int remaining_size;
1711 unsigned int order = MAX_PAGE_ORDER;
1712
1713 retry:
1714 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1715 mutex_lock(&cc->bio_alloc_lock);
1716
1717 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1718 GFP_NOIO, &cc->bs);
1719 clone->bi_private = io;
1720 clone->bi_end_io = crypt_endio;
1721 clone->bi_ioprio = io->base_bio->bi_ioprio;
1722
1723 remaining_size = size;
1724
1725 while (remaining_size) {
1726 struct page *pages;
1727 unsigned size_to_add;
1728 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1729 order = min(order, remaining_order);
1730
1731 while (order > 0) {
1732 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1733 (1 << order) > dm_crypt_pages_per_client))
1734 goto decrease_order;
1735 pages = alloc_pages(gfp_mask
1736 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1737 order);
1738 if (likely(pages != NULL)) {
1739 percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1740 goto have_pages;
1741 }
1742 decrease_order:
1743 order--;
1744 }
1745
1746 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1747 if (!pages) {
1748 crypt_free_buffer_pages(cc, clone);
1749 bio_put(clone);
1750 gfp_mask |= __GFP_DIRECT_RECLAIM;
1751 order = 0;
1752 goto retry;
1753 }
1754
1755 have_pages:
1756 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1757 __bio_add_page(clone, pages, size_to_add, 0);
1758 remaining_size -= size_to_add;
1759 }
1760
1761 /* Allocate space for integrity tags */
1762 if (dm_crypt_integrity_io_alloc(io, clone)) {
1763 crypt_free_buffer_pages(cc, clone);
1764 bio_put(clone);
1765 clone = NULL;
1766 }
1767
1768 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1769 mutex_unlock(&cc->bio_alloc_lock);
1770
1771 return clone;
1772 }
1773
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1774 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1775 {
1776 struct folio_iter fi;
1777
1778 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1779 bio_for_each_folio_all(fi, clone) {
1780 if (folio_test_large(fi.folio)) {
1781 percpu_counter_sub(&cc->n_allocated_pages,
1782 1 << folio_order(fi.folio));
1783 folio_put(fi.folio);
1784 } else {
1785 mempool_free(&fi.folio->page, &cc->page_pool);
1786 }
1787 }
1788 }
1789 }
1790
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1791 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1792 struct bio *bio, sector_t sector)
1793 {
1794 io->cc = cc;
1795 io->base_bio = bio;
1796 io->sector = sector;
1797 io->error = 0;
1798 io->ctx.aead_recheck = false;
1799 io->ctx.aead_failed = false;
1800 io->ctx.r.req = NULL;
1801 io->integrity_metadata = NULL;
1802 io->integrity_metadata_from_pool = false;
1803 atomic_set(&io->io_pending, 0);
1804 }
1805
crypt_inc_pending(struct dm_crypt_io * io)1806 static void crypt_inc_pending(struct dm_crypt_io *io)
1807 {
1808 atomic_inc(&io->io_pending);
1809 }
1810
1811 static void kcryptd_queue_read(struct dm_crypt_io *io);
1812
1813 /*
1814 * One of the bios was finished. Check for completion of
1815 * the whole request and correctly clean up the buffer.
1816 */
crypt_dec_pending(struct dm_crypt_io * io)1817 static void crypt_dec_pending(struct dm_crypt_io *io)
1818 {
1819 struct crypt_config *cc = io->cc;
1820 struct bio *base_bio = io->base_bio;
1821 blk_status_t error = io->error;
1822
1823 if (!atomic_dec_and_test(&io->io_pending))
1824 return;
1825
1826 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1827 cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1828 io->ctx.aead_recheck = true;
1829 io->ctx.aead_failed = false;
1830 io->error = 0;
1831 kcryptd_queue_read(io);
1832 return;
1833 }
1834
1835 if (io->ctx.r.req)
1836 crypt_free_req(cc, io->ctx.r.req, base_bio);
1837
1838 if (unlikely(io->integrity_metadata_from_pool))
1839 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1840 else
1841 kfree(io->integrity_metadata);
1842
1843 base_bio->bi_status = error;
1844
1845 bio_endio(base_bio);
1846 }
1847
1848 /*
1849 * kcryptd/kcryptd_io:
1850 *
1851 * Needed because it would be very unwise to do decryption in an
1852 * interrupt context.
1853 *
1854 * kcryptd performs the actual encryption or decryption.
1855 *
1856 * kcryptd_io performs the IO submission.
1857 *
1858 * They must be separated as otherwise the final stages could be
1859 * starved by new requests which can block in the first stages due
1860 * to memory allocation.
1861 *
1862 * The work is done per CPU global for all dm-crypt instances.
1863 * They should not depend on each other and do not block.
1864 */
crypt_endio(struct bio * clone)1865 static void crypt_endio(struct bio *clone)
1866 {
1867 struct dm_crypt_io *io = clone->bi_private;
1868 struct crypt_config *cc = io->cc;
1869 unsigned int rw = bio_data_dir(clone);
1870 blk_status_t error = clone->bi_status;
1871
1872 if (io->ctx.aead_recheck && !error) {
1873 kcryptd_queue_crypt(io);
1874 return;
1875 }
1876
1877 /*
1878 * free the processed pages
1879 */
1880 if (rw == WRITE || io->ctx.aead_recheck)
1881 crypt_free_buffer_pages(cc, clone);
1882
1883 bio_put(clone);
1884
1885 if (rw == READ && !error) {
1886 kcryptd_queue_crypt(io);
1887 return;
1888 }
1889
1890 if (unlikely(error))
1891 io->error = error;
1892
1893 crypt_dec_pending(io);
1894 }
1895
1896 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1897
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1898 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1899 {
1900 struct crypt_config *cc = io->cc;
1901 struct bio *clone;
1902
1903 if (io->ctx.aead_recheck) {
1904 if (!(gfp & __GFP_DIRECT_RECLAIM))
1905 return 1;
1906 crypt_inc_pending(io);
1907 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1908 if (unlikely(!clone)) {
1909 crypt_dec_pending(io);
1910 return 1;
1911 }
1912 clone->bi_iter.bi_sector = cc->start + io->sector;
1913 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1914 io->saved_bi_iter = clone->bi_iter;
1915 dm_submit_bio_remap(io->base_bio, clone);
1916 return 0;
1917 }
1918
1919 /*
1920 * We need the original biovec array in order to decrypt the whole bio
1921 * data *afterwards* -- thanks to immutable biovecs we don't need to
1922 * worry about the block layer modifying the biovec array; so leverage
1923 * bio_alloc_clone().
1924 */
1925 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1926 if (!clone)
1927 return 1;
1928 clone->bi_private = io;
1929 clone->bi_end_io = crypt_endio;
1930
1931 crypt_inc_pending(io);
1932
1933 clone->bi_iter.bi_sector = cc->start + io->sector;
1934
1935 if (dm_crypt_integrity_io_alloc(io, clone)) {
1936 crypt_dec_pending(io);
1937 bio_put(clone);
1938 return 1;
1939 }
1940
1941 dm_submit_bio_remap(io->base_bio, clone);
1942 return 0;
1943 }
1944
kcryptd_io_read_work(struct work_struct * work)1945 static void kcryptd_io_read_work(struct work_struct *work)
1946 {
1947 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1948
1949 crypt_inc_pending(io);
1950 if (kcryptd_io_read(io, GFP_NOIO))
1951 io->error = BLK_STS_RESOURCE;
1952 crypt_dec_pending(io);
1953 }
1954
kcryptd_queue_read(struct dm_crypt_io * io)1955 static void kcryptd_queue_read(struct dm_crypt_io *io)
1956 {
1957 struct crypt_config *cc = io->cc;
1958
1959 INIT_WORK(&io->work, kcryptd_io_read_work);
1960 queue_work(cc->io_queue, &io->work);
1961 }
1962
kcryptd_io_write(struct dm_crypt_io * io)1963 static void kcryptd_io_write(struct dm_crypt_io *io)
1964 {
1965 struct bio *clone = io->ctx.bio_out;
1966
1967 dm_submit_bio_remap(io->base_bio, clone);
1968 }
1969
1970 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1971
dmcrypt_write(void * data)1972 static int dmcrypt_write(void *data)
1973 {
1974 struct crypt_config *cc = data;
1975 struct dm_crypt_io *io;
1976
1977 while (1) {
1978 struct rb_root write_tree;
1979 struct blk_plug plug;
1980
1981 spin_lock_irq(&cc->write_thread_lock);
1982 continue_locked:
1983
1984 if (!RB_EMPTY_ROOT(&cc->write_tree))
1985 goto pop_from_list;
1986
1987 set_current_state(TASK_INTERRUPTIBLE);
1988
1989 spin_unlock_irq(&cc->write_thread_lock);
1990
1991 if (unlikely(kthread_should_stop())) {
1992 set_current_state(TASK_RUNNING);
1993 break;
1994 }
1995
1996 schedule();
1997
1998 spin_lock_irq(&cc->write_thread_lock);
1999 goto continue_locked;
2000
2001 pop_from_list:
2002 write_tree = cc->write_tree;
2003 cc->write_tree = RB_ROOT;
2004 spin_unlock_irq(&cc->write_thread_lock);
2005
2006 BUG_ON(rb_parent(write_tree.rb_node));
2007
2008 /*
2009 * Note: we cannot walk the tree here with rb_next because
2010 * the structures may be freed when kcryptd_io_write is called.
2011 */
2012 blk_start_plug(&plug);
2013 do {
2014 io = crypt_io_from_node(rb_first(&write_tree));
2015 rb_erase(&io->rb_node, &write_tree);
2016 kcryptd_io_write(io);
2017 cond_resched();
2018 } while (!RB_EMPTY_ROOT(&write_tree));
2019 blk_finish_plug(&plug);
2020 }
2021 return 0;
2022 }
2023
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)2024 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2025 {
2026 struct bio *clone = io->ctx.bio_out;
2027 struct crypt_config *cc = io->cc;
2028 unsigned long flags;
2029 sector_t sector;
2030 struct rb_node **rbp, *parent;
2031
2032 if (unlikely(io->error)) {
2033 crypt_free_buffer_pages(cc, clone);
2034 bio_put(clone);
2035 crypt_dec_pending(io);
2036 return;
2037 }
2038
2039 /* crypt_convert should have filled the clone bio */
2040 BUG_ON(io->ctx.iter_out.bi_size);
2041
2042 clone->bi_iter.bi_sector = cc->start + io->sector;
2043
2044 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2045 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2046 dm_submit_bio_remap(io->base_bio, clone);
2047 return;
2048 }
2049
2050 spin_lock_irqsave(&cc->write_thread_lock, flags);
2051 if (RB_EMPTY_ROOT(&cc->write_tree))
2052 wake_up_process(cc->write_thread);
2053 rbp = &cc->write_tree.rb_node;
2054 parent = NULL;
2055 sector = io->sector;
2056 while (*rbp) {
2057 parent = *rbp;
2058 if (sector < crypt_io_from_node(parent)->sector)
2059 rbp = &(*rbp)->rb_left;
2060 else
2061 rbp = &(*rbp)->rb_right;
2062 }
2063 rb_link_node(&io->rb_node, parent, rbp);
2064 rb_insert_color(&io->rb_node, &cc->write_tree);
2065 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2066 }
2067
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2068 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2069 struct convert_context *ctx)
2070
2071 {
2072 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2073 return false;
2074
2075 /*
2076 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2077 * constraints so they do not need to be issued inline by
2078 * kcryptd_crypt_write_convert().
2079 */
2080 switch (bio_op(ctx->bio_in)) {
2081 case REQ_OP_WRITE:
2082 case REQ_OP_WRITE_ZEROES:
2083 return true;
2084 default:
2085 return false;
2086 }
2087 }
2088
kcryptd_crypt_write_continue(struct work_struct * work)2089 static void kcryptd_crypt_write_continue(struct work_struct *work)
2090 {
2091 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2092 struct crypt_config *cc = io->cc;
2093 struct convert_context *ctx = &io->ctx;
2094 int crypt_finished;
2095 sector_t sector = io->sector;
2096 blk_status_t r;
2097
2098 wait_for_completion(&ctx->restart);
2099 reinit_completion(&ctx->restart);
2100
2101 r = crypt_convert(cc, &io->ctx, true, false);
2102 if (r)
2103 io->error = r;
2104 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2105 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2106 /* Wait for completion signaled by kcryptd_async_done() */
2107 wait_for_completion(&ctx->restart);
2108 crypt_finished = 1;
2109 }
2110
2111 /* Encryption was already finished, submit io now */
2112 if (crypt_finished) {
2113 kcryptd_crypt_write_io_submit(io, 0);
2114 io->sector = sector;
2115 }
2116
2117 crypt_dec_pending(io);
2118 }
2119
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2120 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2121 {
2122 struct crypt_config *cc = io->cc;
2123 struct convert_context *ctx = &io->ctx;
2124 struct bio *clone;
2125 int crypt_finished;
2126 sector_t sector = io->sector;
2127 blk_status_t r;
2128
2129 /*
2130 * Prevent io from disappearing until this function completes.
2131 */
2132 crypt_inc_pending(io);
2133 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2134
2135 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2136 if (unlikely(!clone)) {
2137 io->error = BLK_STS_IOERR;
2138 goto dec;
2139 }
2140
2141 io->ctx.bio_out = clone;
2142 io->ctx.iter_out = clone->bi_iter;
2143
2144 if (crypt_integrity_aead(cc)) {
2145 bio_copy_data(clone, io->base_bio);
2146 io->ctx.bio_in = clone;
2147 io->ctx.iter_in = clone->bi_iter;
2148 }
2149
2150 sector += bio_sectors(clone);
2151
2152 crypt_inc_pending(io);
2153 r = crypt_convert(cc, ctx,
2154 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2155 /*
2156 * Crypto API backlogged the request, because its queue was full
2157 * and we're in softirq context, so continue from a workqueue
2158 * (TODO: is it actually possible to be in softirq in the write path?)
2159 */
2160 if (r == BLK_STS_DEV_RESOURCE) {
2161 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2162 queue_work(cc->crypt_queue, &io->work);
2163 return;
2164 }
2165 if (r)
2166 io->error = r;
2167 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2168 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2169 /* Wait for completion signaled by kcryptd_async_done() */
2170 wait_for_completion(&ctx->restart);
2171 crypt_finished = 1;
2172 }
2173
2174 /* Encryption was already finished, submit io now */
2175 if (crypt_finished) {
2176 kcryptd_crypt_write_io_submit(io, 0);
2177 io->sector = sector;
2178 }
2179
2180 dec:
2181 crypt_dec_pending(io);
2182 }
2183
kcryptd_crypt_read_done(struct dm_crypt_io * io)2184 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2185 {
2186 if (io->ctx.aead_recheck) {
2187 if (!io->error) {
2188 io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2189 bio_copy_data(io->base_bio, io->ctx.bio_in);
2190 }
2191 crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2192 bio_put(io->ctx.bio_in);
2193 }
2194 crypt_dec_pending(io);
2195 }
2196
kcryptd_crypt_read_continue(struct work_struct * work)2197 static void kcryptd_crypt_read_continue(struct work_struct *work)
2198 {
2199 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2200 struct crypt_config *cc = io->cc;
2201 blk_status_t r;
2202
2203 wait_for_completion(&io->ctx.restart);
2204 reinit_completion(&io->ctx.restart);
2205
2206 r = crypt_convert(cc, &io->ctx, true, false);
2207 if (r)
2208 io->error = r;
2209
2210 if (atomic_dec_and_test(&io->ctx.cc_pending))
2211 kcryptd_crypt_read_done(io);
2212
2213 crypt_dec_pending(io);
2214 }
2215
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2216 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2217 {
2218 struct crypt_config *cc = io->cc;
2219 blk_status_t r;
2220
2221 crypt_inc_pending(io);
2222
2223 if (io->ctx.aead_recheck) {
2224 io->ctx.cc_sector = io->sector + cc->iv_offset;
2225 r = crypt_convert(cc, &io->ctx,
2226 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2227 } else {
2228 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2229 io->sector);
2230
2231 r = crypt_convert(cc, &io->ctx,
2232 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2233 }
2234 /*
2235 * Crypto API backlogged the request, because its queue was full
2236 * and we're in softirq context, so continue from a workqueue
2237 */
2238 if (r == BLK_STS_DEV_RESOURCE) {
2239 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2240 queue_work(cc->crypt_queue, &io->work);
2241 return;
2242 }
2243 if (r)
2244 io->error = r;
2245
2246 if (atomic_dec_and_test(&io->ctx.cc_pending))
2247 kcryptd_crypt_read_done(io);
2248
2249 crypt_dec_pending(io);
2250 }
2251
kcryptd_async_done(void * data,int error)2252 static void kcryptd_async_done(void *data, int error)
2253 {
2254 struct dm_crypt_request *dmreq = data;
2255 struct convert_context *ctx = dmreq->ctx;
2256 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2257 struct crypt_config *cc = io->cc;
2258
2259 /*
2260 * A request from crypto driver backlog is going to be processed now,
2261 * finish the completion and continue in crypt_convert().
2262 * (Callback will be called for the second time for this request.)
2263 */
2264 if (error == -EINPROGRESS) {
2265 complete(&ctx->restart);
2266 return;
2267 }
2268
2269 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2270 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2271
2272 if (error == -EBADMSG) {
2273 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2274
2275 ctx->aead_failed = true;
2276 if (ctx->aead_recheck) {
2277 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2278 ctx->bio_in->bi_bdev, s);
2279 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2280 ctx->bio_in, s, 0);
2281 }
2282 io->error = BLK_STS_PROTECTION;
2283 } else if (error < 0)
2284 io->error = BLK_STS_IOERR;
2285
2286 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2287
2288 if (!atomic_dec_and_test(&ctx->cc_pending))
2289 return;
2290
2291 /*
2292 * The request is fully completed: for inline writes, let
2293 * kcryptd_crypt_write_convert() do the IO submission.
2294 */
2295 if (bio_data_dir(io->base_bio) == READ) {
2296 kcryptd_crypt_read_done(io);
2297 return;
2298 }
2299
2300 if (kcryptd_crypt_write_inline(cc, ctx)) {
2301 complete(&ctx->restart);
2302 return;
2303 }
2304
2305 kcryptd_crypt_write_io_submit(io, 1);
2306 }
2307
kcryptd_crypt(struct work_struct * work)2308 static void kcryptd_crypt(struct work_struct *work)
2309 {
2310 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2311
2312 if (bio_data_dir(io->base_bio) == READ)
2313 kcryptd_crypt_read_convert(io);
2314 else
2315 kcryptd_crypt_write_convert(io);
2316 }
2317
kcryptd_queue_crypt(struct dm_crypt_io * io)2318 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2319 {
2320 struct crypt_config *cc = io->cc;
2321
2322 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2323 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2324 /*
2325 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2326 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2327 * it is being executed with irqs disabled.
2328 */
2329 if (in_hardirq() || irqs_disabled()) {
2330 INIT_WORK(&io->work, kcryptd_crypt);
2331 queue_work(system_bh_wq, &io->work);
2332 return;
2333 } else {
2334 kcryptd_crypt(&io->work);
2335 return;
2336 }
2337 }
2338
2339 INIT_WORK(&io->work, kcryptd_crypt);
2340 queue_work(cc->crypt_queue, &io->work);
2341 }
2342
crypt_free_tfms_aead(struct crypt_config * cc)2343 static void crypt_free_tfms_aead(struct crypt_config *cc)
2344 {
2345 if (!cc->cipher_tfm.tfms_aead)
2346 return;
2347
2348 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2349 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2350 cc->cipher_tfm.tfms_aead[0] = NULL;
2351 }
2352
2353 kfree(cc->cipher_tfm.tfms_aead);
2354 cc->cipher_tfm.tfms_aead = NULL;
2355 }
2356
crypt_free_tfms_skcipher(struct crypt_config * cc)2357 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2358 {
2359 unsigned int i;
2360
2361 if (!cc->cipher_tfm.tfms)
2362 return;
2363
2364 for (i = 0; i < cc->tfms_count; i++)
2365 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2366 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2367 cc->cipher_tfm.tfms[i] = NULL;
2368 }
2369
2370 kfree(cc->cipher_tfm.tfms);
2371 cc->cipher_tfm.tfms = NULL;
2372 }
2373
crypt_free_tfms(struct crypt_config * cc)2374 static void crypt_free_tfms(struct crypt_config *cc)
2375 {
2376 if (crypt_integrity_aead(cc))
2377 crypt_free_tfms_aead(cc);
2378 else
2379 crypt_free_tfms_skcipher(cc);
2380 }
2381
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2382 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2383 {
2384 unsigned int i;
2385 int err;
2386
2387 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2388 sizeof(struct crypto_skcipher *),
2389 GFP_KERNEL);
2390 if (!cc->cipher_tfm.tfms)
2391 return -ENOMEM;
2392
2393 for (i = 0; i < cc->tfms_count; i++) {
2394 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2395 CRYPTO_ALG_ALLOCATES_MEMORY);
2396 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2397 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2398 crypt_free_tfms(cc);
2399 return err;
2400 }
2401 }
2402
2403 /*
2404 * dm-crypt performance can vary greatly depending on which crypto
2405 * algorithm implementation is used. Help people debug performance
2406 * problems by logging the ->cra_driver_name.
2407 */
2408 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2409 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2410 return 0;
2411 }
2412
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2413 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2414 {
2415 int err;
2416
2417 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2418 if (!cc->cipher_tfm.tfms)
2419 return -ENOMEM;
2420
2421 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2422 CRYPTO_ALG_ALLOCATES_MEMORY);
2423 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2424 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2425 crypt_free_tfms(cc);
2426 return err;
2427 }
2428
2429 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2430 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2431 return 0;
2432 }
2433
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2434 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2435 {
2436 if (crypt_integrity_aead(cc))
2437 return crypt_alloc_tfms_aead(cc, ciphermode);
2438 else
2439 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2440 }
2441
crypt_subkey_size(struct crypt_config * cc)2442 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2443 {
2444 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2445 }
2446
crypt_authenckey_size(struct crypt_config * cc)2447 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2448 {
2449 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2450 }
2451
2452 /*
2453 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2454 * the key must be for some reason in special format.
2455 * This funcion converts cc->key to this special format.
2456 */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2457 static void crypt_copy_authenckey(char *p, const void *key,
2458 unsigned int enckeylen, unsigned int authkeylen)
2459 {
2460 struct crypto_authenc_key_param *param;
2461 struct rtattr *rta;
2462
2463 rta = (struct rtattr *)p;
2464 param = RTA_DATA(rta);
2465 param->enckeylen = cpu_to_be32(enckeylen);
2466 rta->rta_len = RTA_LENGTH(sizeof(*param));
2467 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2468 p += RTA_SPACE(sizeof(*param));
2469 memcpy(p, key + enckeylen, authkeylen);
2470 p += authkeylen;
2471 memcpy(p, key, enckeylen);
2472 }
2473
crypt_setkey(struct crypt_config * cc)2474 static int crypt_setkey(struct crypt_config *cc)
2475 {
2476 unsigned int subkey_size;
2477 int err = 0, i, r;
2478
2479 /* Ignore extra keys (which are used for IV etc) */
2480 subkey_size = crypt_subkey_size(cc);
2481
2482 if (crypt_integrity_hmac(cc)) {
2483 if (subkey_size < cc->key_mac_size)
2484 return -EINVAL;
2485
2486 crypt_copy_authenckey(cc->authenc_key, cc->key,
2487 subkey_size - cc->key_mac_size,
2488 cc->key_mac_size);
2489 }
2490
2491 for (i = 0; i < cc->tfms_count; i++) {
2492 if (crypt_integrity_hmac(cc))
2493 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2494 cc->authenc_key, crypt_authenckey_size(cc));
2495 else if (crypt_integrity_aead(cc))
2496 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2497 cc->key + (i * subkey_size),
2498 subkey_size);
2499 else
2500 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2501 cc->key + (i * subkey_size),
2502 subkey_size);
2503 if (r)
2504 err = r;
2505 }
2506
2507 if (crypt_integrity_hmac(cc))
2508 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2509
2510 return err;
2511 }
2512
2513 #ifdef CONFIG_KEYS
2514
contains_whitespace(const char * str)2515 static bool contains_whitespace(const char *str)
2516 {
2517 while (*str)
2518 if (isspace(*str++))
2519 return true;
2520 return false;
2521 }
2522
set_key_user(struct crypt_config * cc,struct key * key)2523 static int set_key_user(struct crypt_config *cc, struct key *key)
2524 {
2525 const struct user_key_payload *ukp;
2526
2527 ukp = user_key_payload_locked(key);
2528 if (!ukp)
2529 return -EKEYREVOKED;
2530
2531 if (cc->key_size != ukp->datalen)
2532 return -EINVAL;
2533
2534 memcpy(cc->key, ukp->data, cc->key_size);
2535
2536 return 0;
2537 }
2538
set_key_encrypted(struct crypt_config * cc,struct key * key)2539 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2540 {
2541 const struct encrypted_key_payload *ekp;
2542
2543 ekp = key->payload.data[0];
2544 if (!ekp)
2545 return -EKEYREVOKED;
2546
2547 if (cc->key_size != ekp->decrypted_datalen)
2548 return -EINVAL;
2549
2550 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2551
2552 return 0;
2553 }
2554
set_key_trusted(struct crypt_config * cc,struct key * key)2555 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2556 {
2557 const struct trusted_key_payload *tkp;
2558
2559 tkp = key->payload.data[0];
2560 if (!tkp)
2561 return -EKEYREVOKED;
2562
2563 if (cc->key_size != tkp->key_len)
2564 return -EINVAL;
2565
2566 memcpy(cc->key, tkp->key, cc->key_size);
2567
2568 return 0;
2569 }
2570
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2571 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2572 {
2573 char *new_key_string, *key_desc;
2574 int ret;
2575 struct key_type *type;
2576 struct key *key;
2577 int (*set_key)(struct crypt_config *cc, struct key *key);
2578
2579 /*
2580 * Reject key_string with whitespace. dm core currently lacks code for
2581 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2582 */
2583 if (contains_whitespace(key_string)) {
2584 DMERR("whitespace chars not allowed in key string");
2585 return -EINVAL;
2586 }
2587
2588 /* look for next ':' separating key_type from key_description */
2589 key_desc = strchr(key_string, ':');
2590 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2591 return -EINVAL;
2592
2593 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2594 type = &key_type_logon;
2595 set_key = set_key_user;
2596 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2597 type = &key_type_user;
2598 set_key = set_key_user;
2599 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2600 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2601 type = &key_type_encrypted;
2602 set_key = set_key_encrypted;
2603 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2604 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2605 type = &key_type_trusted;
2606 set_key = set_key_trusted;
2607 } else {
2608 return -EINVAL;
2609 }
2610
2611 new_key_string = kstrdup(key_string, GFP_KERNEL);
2612 if (!new_key_string)
2613 return -ENOMEM;
2614
2615 key = request_key(type, key_desc + 1, NULL);
2616 if (IS_ERR(key)) {
2617 ret = PTR_ERR(key);
2618 goto free_new_key_string;
2619 }
2620
2621 down_read(&key->sem);
2622 ret = set_key(cc, key);
2623 up_read(&key->sem);
2624 key_put(key);
2625 if (ret < 0)
2626 goto free_new_key_string;
2627
2628 /* clear the flag since following operations may invalidate previously valid key */
2629 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2630
2631 ret = crypt_setkey(cc);
2632 if (ret)
2633 goto free_new_key_string;
2634
2635 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2636 kfree_sensitive(cc->key_string);
2637 cc->key_string = new_key_string;
2638 return 0;
2639
2640 free_new_key_string:
2641 kfree_sensitive(new_key_string);
2642 return ret;
2643 }
2644
get_key_size(char ** key_string)2645 static int get_key_size(char **key_string)
2646 {
2647 char *colon, dummy;
2648 int ret;
2649
2650 if (*key_string[0] != ':')
2651 return strlen(*key_string) >> 1;
2652
2653 /* look for next ':' in key string */
2654 colon = strpbrk(*key_string + 1, ":");
2655 if (!colon)
2656 return -EINVAL;
2657
2658 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2659 return -EINVAL;
2660
2661 *key_string = colon;
2662
2663 /* remaining key string should be :<logon|user>:<key_desc> */
2664
2665 return ret;
2666 }
2667
2668 #else
2669
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2670 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2671 {
2672 return -EINVAL;
2673 }
2674
get_key_size(char ** key_string)2675 static int get_key_size(char **key_string)
2676 {
2677 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2678 }
2679
2680 #endif /* CONFIG_KEYS */
2681
crypt_set_key(struct crypt_config * cc,char * key)2682 static int crypt_set_key(struct crypt_config *cc, char *key)
2683 {
2684 int r = -EINVAL;
2685 int key_string_len = strlen(key);
2686
2687 /* Hyphen (which gives a key_size of zero) means there is no key. */
2688 if (!cc->key_size && strcmp(key, "-"))
2689 goto out;
2690
2691 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2692 if (key[0] == ':') {
2693 r = crypt_set_keyring_key(cc, key + 1);
2694 goto out;
2695 }
2696
2697 /* clear the flag since following operations may invalidate previously valid key */
2698 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2699
2700 /* wipe references to any kernel keyring key */
2701 kfree_sensitive(cc->key_string);
2702 cc->key_string = NULL;
2703
2704 /* Decode key from its hex representation. */
2705 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2706 goto out;
2707
2708 r = crypt_setkey(cc);
2709 if (!r)
2710 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2711
2712 out:
2713 /* Hex key string not needed after here, so wipe it. */
2714 memset(key, '0', key_string_len);
2715
2716 return r;
2717 }
2718
crypt_wipe_key(struct crypt_config * cc)2719 static int crypt_wipe_key(struct crypt_config *cc)
2720 {
2721 int r;
2722
2723 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2724 get_random_bytes(&cc->key, cc->key_size);
2725
2726 /* Wipe IV private keys */
2727 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2728 r = cc->iv_gen_ops->wipe(cc);
2729 if (r)
2730 return r;
2731 }
2732
2733 kfree_sensitive(cc->key_string);
2734 cc->key_string = NULL;
2735 r = crypt_setkey(cc);
2736 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2737
2738 return r;
2739 }
2740
crypt_calculate_pages_per_client(void)2741 static void crypt_calculate_pages_per_client(void)
2742 {
2743 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2744
2745 if (!dm_crypt_clients_n)
2746 return;
2747
2748 pages /= dm_crypt_clients_n;
2749 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2750 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2751 dm_crypt_pages_per_client = pages;
2752 }
2753
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2754 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2755 {
2756 struct crypt_config *cc = pool_data;
2757 struct page *page;
2758
2759 /*
2760 * Note, percpu_counter_read_positive() may over (and under) estimate
2761 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2762 * but avoids potential spinlock contention of an exact result.
2763 */
2764 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2765 likely(gfp_mask & __GFP_NORETRY))
2766 return NULL;
2767
2768 page = alloc_page(gfp_mask);
2769 if (likely(page != NULL))
2770 percpu_counter_add(&cc->n_allocated_pages, 1);
2771
2772 return page;
2773 }
2774
crypt_page_free(void * page,void * pool_data)2775 static void crypt_page_free(void *page, void *pool_data)
2776 {
2777 struct crypt_config *cc = pool_data;
2778
2779 __free_page(page);
2780 percpu_counter_sub(&cc->n_allocated_pages, 1);
2781 }
2782
crypt_dtr(struct dm_target * ti)2783 static void crypt_dtr(struct dm_target *ti)
2784 {
2785 struct crypt_config *cc = ti->private;
2786
2787 ti->private = NULL;
2788
2789 if (!cc)
2790 return;
2791
2792 if (cc->write_thread)
2793 kthread_stop(cc->write_thread);
2794
2795 if (cc->io_queue)
2796 destroy_workqueue(cc->io_queue);
2797 if (cc->crypt_queue)
2798 destroy_workqueue(cc->crypt_queue);
2799
2800 if (cc->workqueue_id)
2801 ida_free(&workqueue_ida, cc->workqueue_id);
2802
2803 crypt_free_tfms(cc);
2804
2805 bioset_exit(&cc->bs);
2806
2807 mempool_exit(&cc->page_pool);
2808 mempool_exit(&cc->req_pool);
2809 mempool_exit(&cc->tag_pool);
2810
2811 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2812 percpu_counter_destroy(&cc->n_allocated_pages);
2813
2814 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2815 cc->iv_gen_ops->dtr(cc);
2816
2817 if (cc->dev)
2818 dm_put_device(ti, cc->dev);
2819
2820 kfree_sensitive(cc->cipher_string);
2821 kfree_sensitive(cc->key_string);
2822 kfree_sensitive(cc->cipher_auth);
2823 kfree_sensitive(cc->authenc_key);
2824
2825 mutex_destroy(&cc->bio_alloc_lock);
2826
2827 /* Must zero key material before freeing */
2828 kfree_sensitive(cc);
2829
2830 spin_lock(&dm_crypt_clients_lock);
2831 WARN_ON(!dm_crypt_clients_n);
2832 dm_crypt_clients_n--;
2833 crypt_calculate_pages_per_client();
2834 spin_unlock(&dm_crypt_clients_lock);
2835
2836 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2837 }
2838
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2839 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2840 {
2841 struct crypt_config *cc = ti->private;
2842
2843 if (crypt_integrity_aead(cc))
2844 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2845 else
2846 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2847
2848 if (cc->iv_size)
2849 /* at least a 64 bit sector number should fit in our buffer */
2850 cc->iv_size = max(cc->iv_size,
2851 (unsigned int)(sizeof(u64) / sizeof(u8)));
2852 else if (ivmode) {
2853 DMWARN("Selected cipher does not support IVs");
2854 ivmode = NULL;
2855 }
2856
2857 /* Choose ivmode, see comments at iv code. */
2858 if (ivmode == NULL)
2859 cc->iv_gen_ops = NULL;
2860 else if (strcmp(ivmode, "plain") == 0)
2861 cc->iv_gen_ops = &crypt_iv_plain_ops;
2862 else if (strcmp(ivmode, "plain64") == 0)
2863 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2864 else if (strcmp(ivmode, "plain64be") == 0)
2865 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2866 else if (strcmp(ivmode, "essiv") == 0)
2867 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2868 else if (strcmp(ivmode, "benbi") == 0)
2869 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2870 else if (strcmp(ivmode, "null") == 0)
2871 cc->iv_gen_ops = &crypt_iv_null_ops;
2872 else if (strcmp(ivmode, "eboiv") == 0)
2873 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2874 else if (strcmp(ivmode, "elephant") == 0) {
2875 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2876 cc->key_parts = 2;
2877 cc->key_extra_size = cc->key_size / 2;
2878 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2879 return -EINVAL;
2880 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2881 } else if (strcmp(ivmode, "lmk") == 0) {
2882 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2883 /*
2884 * Version 2 and 3 is recognised according
2885 * to length of provided multi-key string.
2886 * If present (version 3), last key is used as IV seed.
2887 * All keys (including IV seed) are always the same size.
2888 */
2889 if (cc->key_size % cc->key_parts) {
2890 cc->key_parts++;
2891 cc->key_extra_size = cc->key_size / cc->key_parts;
2892 }
2893 } else if (strcmp(ivmode, "tcw") == 0) {
2894 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2895 cc->key_parts += 2; /* IV + whitening */
2896 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2897 } else if (strcmp(ivmode, "random") == 0) {
2898 cc->iv_gen_ops = &crypt_iv_random_ops;
2899 /* Need storage space in integrity fields. */
2900 cc->integrity_iv_size = cc->iv_size;
2901 } else {
2902 ti->error = "Invalid IV mode";
2903 return -EINVAL;
2904 }
2905
2906 return 0;
2907 }
2908
2909 /*
2910 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2911 * The HMAC is needed to calculate tag size (HMAC digest size).
2912 * This should be probably done by crypto-api calls (once available...)
2913 */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2914 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2915 {
2916 char *start, *end, *mac_alg = NULL;
2917 struct crypto_ahash *mac;
2918
2919 if (!strstarts(cipher_api, "authenc("))
2920 return 0;
2921
2922 start = strchr(cipher_api, '(');
2923 end = strchr(cipher_api, ',');
2924 if (!start || !end || ++start > end)
2925 return -EINVAL;
2926
2927 mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2928 if (!mac_alg)
2929 return -ENOMEM;
2930
2931 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2932 kfree(mac_alg);
2933
2934 if (IS_ERR(mac))
2935 return PTR_ERR(mac);
2936
2937 if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2938 cc->key_mac_size = crypto_ahash_digestsize(mac);
2939 crypto_free_ahash(mac);
2940
2941 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2942 if (!cc->authenc_key)
2943 return -ENOMEM;
2944
2945 return 0;
2946 }
2947
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2948 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2949 char **ivmode, char **ivopts)
2950 {
2951 struct crypt_config *cc = ti->private;
2952 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2953 int ret = -EINVAL;
2954
2955 cc->tfms_count = 1;
2956
2957 /*
2958 * New format (capi: prefix)
2959 * capi:cipher_api_spec-iv:ivopts
2960 */
2961 tmp = &cipher_in[strlen("capi:")];
2962
2963 /* Separate IV options if present, it can contain another '-' in hash name */
2964 *ivopts = strrchr(tmp, ':');
2965 if (*ivopts) {
2966 **ivopts = '\0';
2967 (*ivopts)++;
2968 }
2969 /* Parse IV mode */
2970 *ivmode = strrchr(tmp, '-');
2971 if (*ivmode) {
2972 **ivmode = '\0';
2973 (*ivmode)++;
2974 }
2975 /* The rest is crypto API spec */
2976 cipher_api = tmp;
2977
2978 /* Alloc AEAD, can be used only in new format. */
2979 if (crypt_integrity_aead(cc)) {
2980 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2981 if (ret < 0) {
2982 ti->error = "Invalid AEAD cipher spec";
2983 return ret;
2984 }
2985 }
2986
2987 if (*ivmode && !strcmp(*ivmode, "lmk"))
2988 cc->tfms_count = 64;
2989
2990 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2991 if (!*ivopts) {
2992 ti->error = "Digest algorithm missing for ESSIV mode";
2993 return -EINVAL;
2994 }
2995 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2996 cipher_api, *ivopts);
2997 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2998 ti->error = "Cannot allocate cipher string";
2999 return -ENOMEM;
3000 }
3001 cipher_api = buf;
3002 }
3003
3004 cc->key_parts = cc->tfms_count;
3005
3006 /* Allocate cipher */
3007 ret = crypt_alloc_tfms(cc, cipher_api);
3008 if (ret < 0) {
3009 ti->error = "Error allocating crypto tfm";
3010 return ret;
3011 }
3012
3013 if (crypt_integrity_aead(cc))
3014 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
3015 else
3016 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
3017
3018 return 0;
3019 }
3020
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)3021 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
3022 char **ivmode, char **ivopts)
3023 {
3024 struct crypt_config *cc = ti->private;
3025 char *tmp, *cipher, *chainmode, *keycount;
3026 char *cipher_api = NULL;
3027 int ret = -EINVAL;
3028 char dummy;
3029
3030 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3031 ti->error = "Bad cipher specification";
3032 return -EINVAL;
3033 }
3034
3035 /*
3036 * Legacy dm-crypt cipher specification
3037 * cipher[:keycount]-mode-iv:ivopts
3038 */
3039 tmp = cipher_in;
3040 keycount = strsep(&tmp, "-");
3041 cipher = strsep(&keycount, ":");
3042
3043 if (!keycount)
3044 cc->tfms_count = 1;
3045 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3046 !is_power_of_2(cc->tfms_count)) {
3047 ti->error = "Bad cipher key count specification";
3048 return -EINVAL;
3049 }
3050 cc->key_parts = cc->tfms_count;
3051
3052 chainmode = strsep(&tmp, "-");
3053 *ivmode = strsep(&tmp, ":");
3054 *ivopts = tmp;
3055
3056 /*
3057 * For compatibility with the original dm-crypt mapping format, if
3058 * only the cipher name is supplied, use cbc-plain.
3059 */
3060 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3061 chainmode = "cbc";
3062 *ivmode = "plain";
3063 }
3064
3065 if (strcmp(chainmode, "ecb") && !*ivmode) {
3066 ti->error = "IV mechanism required";
3067 return -EINVAL;
3068 }
3069
3070 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3071 if (!cipher_api)
3072 goto bad_mem;
3073
3074 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3075 if (!*ivopts) {
3076 ti->error = "Digest algorithm missing for ESSIV mode";
3077 kfree(cipher_api);
3078 return -EINVAL;
3079 }
3080 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3081 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3082 } else {
3083 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3084 "%s(%s)", chainmode, cipher);
3085 }
3086 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3087 kfree(cipher_api);
3088 goto bad_mem;
3089 }
3090
3091 /* Allocate cipher */
3092 ret = crypt_alloc_tfms(cc, cipher_api);
3093 if (ret < 0) {
3094 ti->error = "Error allocating crypto tfm";
3095 kfree(cipher_api);
3096 return ret;
3097 }
3098 kfree(cipher_api);
3099
3100 return 0;
3101 bad_mem:
3102 ti->error = "Cannot allocate cipher strings";
3103 return -ENOMEM;
3104 }
3105
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3106 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3107 {
3108 struct crypt_config *cc = ti->private;
3109 char *ivmode = NULL, *ivopts = NULL;
3110 int ret;
3111
3112 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3113 if (!cc->cipher_string) {
3114 ti->error = "Cannot allocate cipher strings";
3115 return -ENOMEM;
3116 }
3117
3118 if (strstarts(cipher_in, "capi:"))
3119 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3120 else
3121 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3122 if (ret)
3123 return ret;
3124
3125 /* Initialize IV */
3126 ret = crypt_ctr_ivmode(ti, ivmode);
3127 if (ret < 0)
3128 return ret;
3129
3130 /* Initialize and set key */
3131 ret = crypt_set_key(cc, key);
3132 if (ret < 0) {
3133 ti->error = "Error decoding and setting key";
3134 return ret;
3135 }
3136
3137 /* Allocate IV */
3138 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3139 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3140 if (ret < 0) {
3141 ti->error = "Error creating IV";
3142 return ret;
3143 }
3144 }
3145
3146 /* Initialize IV (set keys for ESSIV etc) */
3147 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3148 ret = cc->iv_gen_ops->init(cc);
3149 if (ret < 0) {
3150 ti->error = "Error initialising IV";
3151 return ret;
3152 }
3153 }
3154
3155 /* wipe the kernel key payload copy */
3156 if (cc->key_string)
3157 memset(cc->key, 0, cc->key_size * sizeof(u8));
3158
3159 return ret;
3160 }
3161
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3162 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3163 {
3164 struct crypt_config *cc = ti->private;
3165 struct dm_arg_set as;
3166 static const struct dm_arg _args[] = {
3167 {0, 9, "Invalid number of feature args"},
3168 };
3169 unsigned int opt_params, val;
3170 const char *opt_string, *sval;
3171 char dummy;
3172 int ret;
3173
3174 /* Optional parameters */
3175 as.argc = argc;
3176 as.argv = argv;
3177
3178 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3179 if (ret)
3180 return ret;
3181
3182 while (opt_params--) {
3183 opt_string = dm_shift_arg(&as);
3184 if (!opt_string) {
3185 ti->error = "Not enough feature arguments";
3186 return -EINVAL;
3187 }
3188
3189 if (!strcasecmp(opt_string, "allow_discards"))
3190 ti->num_discard_bios = 1;
3191
3192 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3193 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3194 else if (!strcasecmp(opt_string, "high_priority"))
3195 set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3196
3197 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3198 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3199 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3200 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3201 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3202 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3203 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3204 if (val == 0 || val > MAX_TAG_SIZE) {
3205 ti->error = "Invalid integrity arguments";
3206 return -EINVAL;
3207 }
3208 cc->used_tag_size = val;
3209 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3210 if (!strcasecmp(sval, "aead")) {
3211 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3212 } else if (strcasecmp(sval, "none")) {
3213 ti->error = "Unknown integrity profile";
3214 return -EINVAL;
3215 }
3216
3217 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3218 if (!cc->cipher_auth)
3219 return -ENOMEM;
3220 } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3221 if (!val) {
3222 ti->error = "Invalid integrity_key_size argument";
3223 return -EINVAL;
3224 }
3225 cc->key_mac_size = val;
3226 set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3227 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3228 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3229 cc->sector_size > 4096 ||
3230 (cc->sector_size & (cc->sector_size - 1))) {
3231 ti->error = "Invalid feature value for sector_size";
3232 return -EINVAL;
3233 }
3234 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3235 ti->error = "Device size is not multiple of sector_size feature";
3236 return -EINVAL;
3237 }
3238 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3239 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3240 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3241 else {
3242 ti->error = "Invalid feature arguments";
3243 return -EINVAL;
3244 }
3245 }
3246
3247 return 0;
3248 }
3249
3250 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3251 static int crypt_report_zones(struct dm_target *ti,
3252 struct dm_report_zones_args *args, unsigned int nr_zones)
3253 {
3254 struct crypt_config *cc = ti->private;
3255
3256 return dm_report_zones(cc->dev->bdev, cc->start,
3257 cc->start + dm_target_offset(ti, args->next_sector),
3258 args, nr_zones);
3259 }
3260 #else
3261 #define crypt_report_zones NULL
3262 #endif
3263
3264 /*
3265 * Construct an encryption mapping:
3266 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3267 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3268 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3269 {
3270 struct crypt_config *cc;
3271 const char *devname = dm_table_device_name(ti->table);
3272 int key_size, wq_id;
3273 unsigned int align_mask;
3274 unsigned int common_wq_flags;
3275 unsigned long long tmpll;
3276 int ret;
3277 size_t iv_size_padding, additional_req_size;
3278 char dummy;
3279
3280 if (argc < 5) {
3281 ti->error = "Not enough arguments";
3282 return -EINVAL;
3283 }
3284
3285 key_size = get_key_size(&argv[1]);
3286 if (key_size < 0) {
3287 ti->error = "Cannot parse key size";
3288 return -EINVAL;
3289 }
3290
3291 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3292 if (!cc) {
3293 ti->error = "Cannot allocate encryption context";
3294 return -ENOMEM;
3295 }
3296 cc->key_size = key_size;
3297 cc->sector_size = (1 << SECTOR_SHIFT);
3298 cc->sector_shift = 0;
3299
3300 ti->private = cc;
3301
3302 spin_lock(&dm_crypt_clients_lock);
3303 dm_crypt_clients_n++;
3304 crypt_calculate_pages_per_client();
3305 spin_unlock(&dm_crypt_clients_lock);
3306
3307 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3308 if (ret < 0)
3309 goto bad;
3310
3311 /* Optional parameters need to be read before cipher constructor */
3312 if (argc > 5) {
3313 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3314 if (ret)
3315 goto bad;
3316 }
3317
3318 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3319 if (ret < 0)
3320 goto bad;
3321
3322 if (crypt_integrity_aead(cc)) {
3323 cc->dmreq_start = sizeof(struct aead_request);
3324 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3325 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3326 } else {
3327 cc->dmreq_start = sizeof(struct skcipher_request);
3328 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3329 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3330 }
3331 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3332
3333 if (align_mask < CRYPTO_MINALIGN) {
3334 /* Allocate the padding exactly */
3335 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3336 & align_mask;
3337 } else {
3338 /*
3339 * If the cipher requires greater alignment than kmalloc
3340 * alignment, we don't know the exact position of the
3341 * initialization vector. We must assume worst case.
3342 */
3343 iv_size_padding = align_mask;
3344 }
3345
3346 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3347 additional_req_size = sizeof(struct dm_crypt_request) +
3348 iv_size_padding + cc->iv_size +
3349 cc->iv_size +
3350 sizeof(uint64_t) +
3351 sizeof(unsigned int);
3352
3353 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3354 if (ret) {
3355 ti->error = "Cannot allocate crypt request mempool";
3356 goto bad;
3357 }
3358
3359 cc->per_bio_data_size = ti->per_io_data_size =
3360 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3361 ARCH_DMA_MINALIGN);
3362
3363 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3364 if (ret) {
3365 ti->error = "Cannot allocate page mempool";
3366 goto bad;
3367 }
3368
3369 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3370 if (ret) {
3371 ti->error = "Cannot allocate crypt bioset";
3372 goto bad;
3373 }
3374
3375 mutex_init(&cc->bio_alloc_lock);
3376
3377 ret = -EINVAL;
3378 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3379 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3380 ti->error = "Invalid iv_offset sector";
3381 goto bad;
3382 }
3383 cc->iv_offset = tmpll;
3384
3385 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3386 if (ret) {
3387 ti->error = "Device lookup failed";
3388 goto bad;
3389 }
3390
3391 ret = -EINVAL;
3392 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3393 ti->error = "Invalid device sector";
3394 goto bad;
3395 }
3396 cc->start = tmpll;
3397
3398 if (bdev_is_zoned(cc->dev->bdev)) {
3399 /*
3400 * For zoned block devices, we need to preserve the issuer write
3401 * ordering. To do so, disable write workqueues and force inline
3402 * encryption completion.
3403 */
3404 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3405 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3406
3407 /*
3408 * All zone append writes to a zone of a zoned block device will
3409 * have the same BIO sector, the start of the zone. When the
3410 * cypher IV mode uses sector values, all data targeting a
3411 * zone will be encrypted using the first sector numbers of the
3412 * zone. This will not result in write errors but will
3413 * cause most reads to fail as reads will use the sector values
3414 * for the actual data locations, resulting in IV mismatch.
3415 * To avoid this problem, ask DM core to emulate zone append
3416 * operations with regular writes.
3417 */
3418 DMDEBUG("Zone append operations will be emulated");
3419 ti->emulate_zone_append = true;
3420 }
3421
3422 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3423 ret = crypt_integrity_ctr(cc, ti);
3424 if (ret)
3425 goto bad;
3426
3427 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3428 if (!cc->tag_pool_max_sectors)
3429 cc->tag_pool_max_sectors = 1;
3430
3431 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3432 cc->tag_pool_max_sectors * cc->tuple_size);
3433 if (ret) {
3434 ti->error = "Cannot allocate integrity tags mempool";
3435 goto bad;
3436 }
3437
3438 cc->tag_pool_max_sectors <<= cc->sector_shift;
3439 }
3440
3441 wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3442 if (wq_id < 0) {
3443 ti->error = "Couldn't get workqueue id";
3444 ret = wq_id;
3445 goto bad;
3446 }
3447 cc->workqueue_id = wq_id;
3448
3449 ret = -ENOMEM;
3450 common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3451 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3452 common_wq_flags |= WQ_HIGHPRI;
3453
3454 cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3455 if (!cc->io_queue) {
3456 ti->error = "Couldn't create kcryptd io queue";
3457 goto bad;
3458 }
3459
3460 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3461 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3462 common_wq_flags | WQ_CPU_INTENSIVE,
3463 1, devname, wq_id);
3464 } else {
3465 /*
3466 * While crypt_queue is certainly CPU intensive, the use of
3467 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3468 */
3469 cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3470 common_wq_flags | WQ_UNBOUND,
3471 num_online_cpus(), devname, wq_id);
3472 }
3473 if (!cc->crypt_queue) {
3474 ti->error = "Couldn't create kcryptd queue";
3475 goto bad;
3476 }
3477
3478 spin_lock_init(&cc->write_thread_lock);
3479 cc->write_tree = RB_ROOT;
3480
3481 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3482 if (IS_ERR(cc->write_thread)) {
3483 ret = PTR_ERR(cc->write_thread);
3484 cc->write_thread = NULL;
3485 ti->error = "Couldn't spawn write thread";
3486 goto bad;
3487 }
3488 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3489 set_user_nice(cc->write_thread, MIN_NICE);
3490
3491 ti->num_flush_bios = 1;
3492 ti->limit_swap_bios = true;
3493 ti->accounts_remapped_io = true;
3494
3495 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3496 return 0;
3497
3498 bad:
3499 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3500 crypt_dtr(ti);
3501 return ret;
3502 }
3503
crypt_map(struct dm_target * ti,struct bio * bio)3504 static int crypt_map(struct dm_target *ti, struct bio *bio)
3505 {
3506 struct dm_crypt_io *io;
3507 struct crypt_config *cc = ti->private;
3508 unsigned max_sectors;
3509
3510 /*
3511 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3512 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3513 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3514 */
3515 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3516 bio_op(bio) == REQ_OP_DISCARD)) {
3517 bio_set_dev(bio, cc->dev->bdev);
3518 if (bio_sectors(bio))
3519 bio->bi_iter.bi_sector = cc->start +
3520 dm_target_offset(ti, bio->bi_iter.bi_sector);
3521 return DM_MAPIO_REMAPPED;
3522 }
3523
3524 /*
3525 * Check if bio is too large, split as needed.
3526 */
3527 max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3528 if (unlikely(bio_sectors(bio) > max_sectors))
3529 dm_accept_partial_bio(bio, max_sectors);
3530
3531 /*
3532 * Ensure that bio is a multiple of internal sector encryption size
3533 * and is aligned to this size as defined in IO hints.
3534 */
3535 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3536 return DM_MAPIO_KILL;
3537
3538 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3539 return DM_MAPIO_KILL;
3540
3541 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3542 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3543
3544 if (cc->tuple_size) {
3545 unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3546
3547 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3548 io->integrity_metadata = NULL;
3549 else
3550 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3551
3552 if (unlikely(!io->integrity_metadata)) {
3553 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3554 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3555 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3556 io->integrity_metadata_from_pool = true;
3557 }
3558 }
3559
3560 if (crypt_integrity_aead(cc))
3561 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3562 else
3563 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3564
3565 if (bio_data_dir(io->base_bio) == READ) {
3566 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3567 kcryptd_queue_read(io);
3568 } else
3569 kcryptd_queue_crypt(io);
3570
3571 return DM_MAPIO_SUBMITTED;
3572 }
3573
hex2asc(unsigned char c)3574 static char hex2asc(unsigned char c)
3575 {
3576 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3577 }
3578
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3579 static void crypt_status(struct dm_target *ti, status_type_t type,
3580 unsigned int status_flags, char *result, unsigned int maxlen)
3581 {
3582 struct crypt_config *cc = ti->private;
3583 unsigned int i, sz = 0;
3584 int num_feature_args = 0;
3585
3586 switch (type) {
3587 case STATUSTYPE_INFO:
3588 result[0] = '\0';
3589 break;
3590
3591 case STATUSTYPE_TABLE:
3592 DMEMIT("%s ", cc->cipher_string);
3593
3594 if (cc->key_size > 0) {
3595 if (cc->key_string)
3596 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3597 else {
3598 for (i = 0; i < cc->key_size; i++) {
3599 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3600 hex2asc(cc->key[i] & 0xf));
3601 }
3602 }
3603 } else
3604 DMEMIT("-");
3605
3606 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3607 cc->dev->name, (unsigned long long)cc->start);
3608
3609 num_feature_args += !!ti->num_discard_bios;
3610 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3611 num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3612 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3613 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3614 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3615 num_feature_args += !!cc->used_tag_size;
3616 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3617 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3618 num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3619 if (num_feature_args) {
3620 DMEMIT(" %d", num_feature_args);
3621 if (ti->num_discard_bios)
3622 DMEMIT(" allow_discards");
3623 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3624 DMEMIT(" same_cpu_crypt");
3625 if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3626 DMEMIT(" high_priority");
3627 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3628 DMEMIT(" submit_from_crypt_cpus");
3629 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3630 DMEMIT(" no_read_workqueue");
3631 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3632 DMEMIT(" no_write_workqueue");
3633 if (cc->used_tag_size)
3634 DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3635 if (cc->sector_size != (1 << SECTOR_SHIFT))
3636 DMEMIT(" sector_size:%d", cc->sector_size);
3637 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3638 DMEMIT(" iv_large_sectors");
3639 if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3640 DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3641 }
3642 break;
3643
3644 case STATUSTYPE_IMA:
3645 DMEMIT_TARGET_NAME_VERSION(ti->type);
3646 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3647 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3648 DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3649 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3650 'y' : 'n');
3651 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3652 'y' : 'n');
3653 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3654 'y' : 'n');
3655 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3656 'y' : 'n');
3657
3658 if (cc->used_tag_size)
3659 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3660 cc->used_tag_size, cc->cipher_auth);
3661 if (cc->sector_size != (1 << SECTOR_SHIFT))
3662 DMEMIT(",sector_size=%d", cc->sector_size);
3663 if (cc->cipher_string)
3664 DMEMIT(",cipher_string=%s", cc->cipher_string);
3665
3666 DMEMIT(",key_size=%u", cc->key_size);
3667 DMEMIT(",key_parts=%u", cc->key_parts);
3668 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3669 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3670 DMEMIT(";");
3671 break;
3672 }
3673 }
3674
crypt_postsuspend(struct dm_target * ti)3675 static void crypt_postsuspend(struct dm_target *ti)
3676 {
3677 struct crypt_config *cc = ti->private;
3678
3679 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3680 }
3681
crypt_preresume(struct dm_target * ti)3682 static int crypt_preresume(struct dm_target *ti)
3683 {
3684 struct crypt_config *cc = ti->private;
3685
3686 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3687 DMERR("aborting resume - crypt key is not set.");
3688 return -EAGAIN;
3689 }
3690
3691 return 0;
3692 }
3693
crypt_resume(struct dm_target * ti)3694 static void crypt_resume(struct dm_target *ti)
3695 {
3696 struct crypt_config *cc = ti->private;
3697
3698 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3699 }
3700
3701 /* Message interface
3702 * key set <key>
3703 * key wipe
3704 */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3705 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3706 char *result, unsigned int maxlen)
3707 {
3708 struct crypt_config *cc = ti->private;
3709 int key_size, ret = -EINVAL;
3710
3711 if (argc < 2)
3712 goto error;
3713
3714 if (!strcasecmp(argv[0], "key")) {
3715 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3716 DMWARN("not suspended during key manipulation.");
3717 return -EINVAL;
3718 }
3719 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3720 /* The key size may not be changed. */
3721 key_size = get_key_size(&argv[2]);
3722 if (key_size < 0 || cc->key_size != key_size) {
3723 memset(argv[2], '0', strlen(argv[2]));
3724 return -EINVAL;
3725 }
3726
3727 ret = crypt_set_key(cc, argv[2]);
3728 if (ret)
3729 return ret;
3730 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3731 ret = cc->iv_gen_ops->init(cc);
3732 /* wipe the kernel key payload copy */
3733 if (cc->key_string)
3734 memset(cc->key, 0, cc->key_size * sizeof(u8));
3735 return ret;
3736 }
3737 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3738 return crypt_wipe_key(cc);
3739 }
3740
3741 error:
3742 DMWARN("unrecognised message received.");
3743 return -EINVAL;
3744 }
3745
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3746 static int crypt_iterate_devices(struct dm_target *ti,
3747 iterate_devices_callout_fn fn, void *data)
3748 {
3749 struct crypt_config *cc = ti->private;
3750
3751 return fn(ti, cc->dev, cc->start, ti->len, data);
3752 }
3753
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3754 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3755 {
3756 struct crypt_config *cc = ti->private;
3757
3758 limits->logical_block_size =
3759 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3760 limits->physical_block_size =
3761 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3762 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3763 limits->dma_alignment = limits->logical_block_size - 1;
3764 }
3765
3766 static struct target_type crypt_target = {
3767 .name = "crypt",
3768 .version = {1, 28, 0},
3769 .module = THIS_MODULE,
3770 .ctr = crypt_ctr,
3771 .dtr = crypt_dtr,
3772 .features = DM_TARGET_ZONED_HM,
3773 .report_zones = crypt_report_zones,
3774 .map = crypt_map,
3775 .status = crypt_status,
3776 .postsuspend = crypt_postsuspend,
3777 .preresume = crypt_preresume,
3778 .resume = crypt_resume,
3779 .message = crypt_message,
3780 .iterate_devices = crypt_iterate_devices,
3781 .io_hints = crypt_io_hints,
3782 };
3783 module_dm(crypt);
3784
3785 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3786 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3787 MODULE_LICENSE("GPL");
3788