xref: /linux/drivers/usb/gadget/udc/pxa27x_udc.c (revision 07cb1ec0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Handles the Intel 27x USB Device Controller (UDC)
4  *
5  * Inspired by original driver by Frank Becker, David Brownell, and others.
6  * Copyright (C) 2008 Robert Jarzmik
7  */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/list.h>
16 #include <linux/interrupt.h>
17 #include <linux/proc_fs.h>
18 #include <linux/clk.h>
19 #include <linux/irq.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/slab.h>
23 #include <linux/prefetch.h>
24 #include <linux/byteorder/generic.h>
25 #include <linux/platform_data/pxa2xx_udc.h>
26 #include <linux/of.h>
27 
28 #include <linux/usb.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb/phy.h>
32 
33 #include "pxa27x_udc.h"
34 
35 /*
36  * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
37  * series processors.
38  *
39  * Such controller drivers work with a gadget driver.  The gadget driver
40  * returns descriptors, implements configuration and data protocols used
41  * by the host to interact with this device, and allocates endpoints to
42  * the different protocol interfaces.  The controller driver virtualizes
43  * usb hardware so that the gadget drivers will be more portable.
44  *
45  * This UDC hardware wants to implement a bit too much USB protocol. The
46  * biggest issues are:  that the endpoints have to be set up before the
47  * controller can be enabled (minor, and not uncommon); and each endpoint
48  * can only have one configuration, interface and alternative interface
49  * number (major, and very unusual). Once set up, these cannot be changed
50  * without a controller reset.
51  *
52  * The workaround is to setup all combinations necessary for the gadgets which
53  * will work with this driver. This is done in pxa_udc structure, statically.
54  * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
55  * (You could modify this if needed.  Some drivers have a "fifo_mode" module
56  * parameter to facilitate such changes.)
57  *
58  * The combinations have been tested with these gadgets :
59  *  - zero gadget
60  *  - file storage gadget
61  *  - ether gadget
62  *
63  * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
64  * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
65  *
66  * All the requests are handled the same way :
67  *  - the drivers tries to handle the request directly to the IO
68  *  - if the IO fifo is not big enough, the remaining is send/received in
69  *    interrupt handling.
70  */
71 
72 #define	DRIVER_VERSION	"2008-04-18"
73 #define	DRIVER_DESC	"PXA 27x USB Device Controller driver"
74 
75 static const char driver_name[] = "pxa27x_udc";
76 static struct pxa_udc *the_controller;
77 
78 static void handle_ep(struct pxa_ep *ep);
79 
80 /*
81  * Debug filesystem
82  */
83 #ifdef CONFIG_USB_GADGET_DEBUG_FS
84 
85 #include <linux/debugfs.h>
86 #include <linux/uaccess.h>
87 #include <linux/seq_file.h>
88 
state_dbg_show(struct seq_file * s,void * p)89 static int state_dbg_show(struct seq_file *s, void *p)
90 {
91 	struct pxa_udc *udc = s->private;
92 	u32 tmp;
93 
94 	if (!udc->driver)
95 		return -ENODEV;
96 
97 	/* basic device status */
98 	seq_printf(s, DRIVER_DESC "\n"
99 		   "%s version: %s\n"
100 		   "Gadget driver: %s\n",
101 		   driver_name, DRIVER_VERSION,
102 		   udc->driver ? udc->driver->driver.name : "(none)");
103 
104 	tmp = udc_readl(udc, UDCCR);
105 	seq_printf(s,
106 		   "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
107 		   tmp,
108 		   (tmp & UDCCR_OEN) ? " oen":"",
109 		   (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
110 		   (tmp & UDCCR_AHNP) ? " rem" : "",
111 		   (tmp & UDCCR_BHNP) ? " rstir" : "",
112 		   (tmp & UDCCR_DWRE) ? " dwre" : "",
113 		   (tmp & UDCCR_SMAC) ? " smac" : "",
114 		   (tmp & UDCCR_EMCE) ? " emce" : "",
115 		   (tmp & UDCCR_UDR) ? " udr" : "",
116 		   (tmp & UDCCR_UDA) ? " uda" : "",
117 		   (tmp & UDCCR_UDE) ? " ude" : "",
118 		   (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
119 		   (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
120 		   (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
121 	/* registers for device and ep0 */
122 	seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
123 		   udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
124 	seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
125 		   udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
126 	seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
127 	seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
128 		   udc->stats.irqs_reset, udc->stats.irqs_suspend,
129 		   udc->stats.irqs_resume, udc->stats.irqs_reconfig);
130 
131 	return 0;
132 }
133 DEFINE_SHOW_ATTRIBUTE(state_dbg);
134 
queues_dbg_show(struct seq_file * s,void * p)135 static int queues_dbg_show(struct seq_file *s, void *p)
136 {
137 	struct pxa_udc *udc = s->private;
138 	struct pxa_ep *ep;
139 	struct pxa27x_request *req;
140 	int i, maxpkt;
141 
142 	if (!udc->driver)
143 		return -ENODEV;
144 
145 	/* dump endpoint queues */
146 	for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
147 		ep = &udc->pxa_ep[i];
148 		maxpkt = ep->fifo_size;
149 		seq_printf(s,  "%-12s max_pkt=%d %s\n",
150 			   EPNAME(ep), maxpkt, "pio");
151 
152 		if (list_empty(&ep->queue)) {
153 			seq_puts(s, "\t(nothing queued)\n");
154 			continue;
155 		}
156 
157 		list_for_each_entry(req, &ep->queue, queue) {
158 			seq_printf(s,  "\treq %p len %d/%d buf %p\n",
159 				   &req->req, req->req.actual,
160 				   req->req.length, req->req.buf);
161 		}
162 	}
163 
164 	return 0;
165 }
166 DEFINE_SHOW_ATTRIBUTE(queues_dbg);
167 
eps_dbg_show(struct seq_file * s,void * p)168 static int eps_dbg_show(struct seq_file *s, void *p)
169 {
170 	struct pxa_udc *udc = s->private;
171 	struct pxa_ep *ep;
172 	int i;
173 	u32 tmp;
174 
175 	if (!udc->driver)
176 		return -ENODEV;
177 
178 	ep = &udc->pxa_ep[0];
179 	tmp = udc_ep_readl(ep, UDCCSR);
180 	seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
181 		   tmp,
182 		   (tmp & UDCCSR0_SA) ? " sa" : "",
183 		   (tmp & UDCCSR0_RNE) ? " rne" : "",
184 		   (tmp & UDCCSR0_FST) ? " fst" : "",
185 		   (tmp & UDCCSR0_SST) ? " sst" : "",
186 		   (tmp & UDCCSR0_DME) ? " dme" : "",
187 		   (tmp & UDCCSR0_IPR) ? " ipr" : "",
188 		   (tmp & UDCCSR0_OPC) ? " opc" : "");
189 	for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
190 		ep = &udc->pxa_ep[i];
191 		tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
192 		seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
193 			   EPNAME(ep),
194 			   ep->stats.in_bytes, ep->stats.in_ops,
195 			   ep->stats.out_bytes, ep->stats.out_ops,
196 			   ep->stats.irqs,
197 			   tmp, udc_ep_readl(ep, UDCCSR),
198 			   udc_ep_readl(ep, UDCBCR));
199 	}
200 
201 	return 0;
202 }
203 DEFINE_SHOW_ATTRIBUTE(eps_dbg);
204 
pxa_init_debugfs(struct pxa_udc * udc)205 static void pxa_init_debugfs(struct pxa_udc *udc)
206 {
207 	struct dentry *root;
208 
209 	root = debugfs_create_dir(udc->gadget.name, usb_debug_root);
210 	debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops);
211 	debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops);
212 	debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops);
213 }
214 
pxa_cleanup_debugfs(struct pxa_udc * udc)215 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
216 {
217 	debugfs_lookup_and_remove(udc->gadget.name, usb_debug_root);
218 }
219 
220 #else
pxa_init_debugfs(struct pxa_udc * udc)221 static inline void pxa_init_debugfs(struct pxa_udc *udc)
222 {
223 }
224 
pxa_cleanup_debugfs(struct pxa_udc * udc)225 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
226 {
227 }
228 #endif
229 
230 /**
231  * is_match_usb_pxa - check if usb_ep and pxa_ep match
232  * @udc_usb_ep: usb endpoint
233  * @ep: pxa endpoint
234  * @config: configuration required in pxa_ep
235  * @interface: interface required in pxa_ep
236  * @altsetting: altsetting required in pxa_ep
237  *
238  * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
239  */
is_match_usb_pxa(struct udc_usb_ep * udc_usb_ep,struct pxa_ep * ep,int config,int interface,int altsetting)240 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
241 		int config, int interface, int altsetting)
242 {
243 	if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
244 		return 0;
245 	if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
246 		return 0;
247 	if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
248 		return 0;
249 	if ((ep->config != config) || (ep->interface != interface)
250 			|| (ep->alternate != altsetting))
251 		return 0;
252 	return 1;
253 }
254 
255 /**
256  * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
257  * @udc: pxa udc
258  * @udc_usb_ep: udc_usb_ep structure
259  *
260  * Match udc_usb_ep and all pxa_ep available, to see if one matches.
261  * This is necessary because of the strong pxa hardware restriction requiring
262  * that once pxa endpoints are initialized, their configuration is freezed, and
263  * no change can be made to their address, direction, or in which configuration,
264  * interface or altsetting they are active ... which differs from more usual
265  * models which have endpoints be roughly just addressable fifos, and leave
266  * configuration events up to gadget drivers (like all control messages).
267  *
268  * Note that there is still a blurred point here :
269  *   - we rely on UDCCR register "active interface" and "active altsetting".
270  *     This is a nonsense in regard of USB spec, where multiple interfaces are
271  *     active at the same time.
272  *   - if we knew for sure that the pxa can handle multiple interface at the
273  *     same time, assuming Intel's Developer Guide is wrong, this function
274  *     should be reviewed, and a cache of couples (iface, altsetting) should
275  *     be kept in the pxa_udc structure. In this case this function would match
276  *     against the cache of couples instead of the "last altsetting" set up.
277  *
278  * Returns the matched pxa_ep structure or NULL if none found
279  */
find_pxa_ep(struct pxa_udc * udc,struct udc_usb_ep * udc_usb_ep)280 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
281 		struct udc_usb_ep *udc_usb_ep)
282 {
283 	int i;
284 	struct pxa_ep *ep;
285 	int cfg = udc->config;
286 	int iface = udc->last_interface;
287 	int alt = udc->last_alternate;
288 
289 	if (udc_usb_ep == &udc->udc_usb_ep[0])
290 		return &udc->pxa_ep[0];
291 
292 	for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
293 		ep = &udc->pxa_ep[i];
294 		if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
295 			return ep;
296 	}
297 	return NULL;
298 }
299 
300 /**
301  * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
302  * @udc: pxa udc
303  *
304  * Context: interrupt handler
305  *
306  * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
307  * previously set up (and is not NULL). The update is necessary is a
308  * configuration change or altsetting change was issued by the USB host.
309  */
update_pxa_ep_matches(struct pxa_udc * udc)310 static void update_pxa_ep_matches(struct pxa_udc *udc)
311 {
312 	int i;
313 	struct udc_usb_ep *udc_usb_ep;
314 
315 	for (i = 1; i < NR_USB_ENDPOINTS; i++) {
316 		udc_usb_ep = &udc->udc_usb_ep[i];
317 		if (udc_usb_ep->pxa_ep)
318 			udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
319 	}
320 }
321 
322 /**
323  * pio_irq_enable - Enables irq generation for one endpoint
324  * @ep: udc endpoint
325  */
pio_irq_enable(struct pxa_ep * ep)326 static void pio_irq_enable(struct pxa_ep *ep)
327 {
328 	struct pxa_udc *udc = ep->dev;
329 	int index = EPIDX(ep);
330 	u32 udcicr0 = udc_readl(udc, UDCICR0);
331 	u32 udcicr1 = udc_readl(udc, UDCICR1);
332 
333 	if (index < 16)
334 		udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
335 	else
336 		udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
337 }
338 
339 /**
340  * pio_irq_disable - Disables irq generation for one endpoint
341  * @ep: udc endpoint
342  */
pio_irq_disable(struct pxa_ep * ep)343 static void pio_irq_disable(struct pxa_ep *ep)
344 {
345 	struct pxa_udc *udc = ep->dev;
346 	int index = EPIDX(ep);
347 	u32 udcicr0 = udc_readl(udc, UDCICR0);
348 	u32 udcicr1 = udc_readl(udc, UDCICR1);
349 
350 	if (index < 16)
351 		udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
352 	else
353 		udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
354 }
355 
356 /**
357  * udc_set_mask_UDCCR - set bits in UDCCR
358  * @udc: udc device
359  * @mask: bits to set in UDCCR
360  *
361  * Sets bits in UDCCR, leaving DME and FST bits as they were.
362  */
udc_set_mask_UDCCR(struct pxa_udc * udc,int mask)363 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
364 {
365 	u32 udccr = udc_readl(udc, UDCCR);
366 	udc_writel(udc, UDCCR,
367 			(udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
368 }
369 
370 /**
371  * udc_clear_mask_UDCCR - clears bits in UDCCR
372  * @udc: udc device
373  * @mask: bit to clear in UDCCR
374  *
375  * Clears bits in UDCCR, leaving DME and FST bits as they were.
376  */
udc_clear_mask_UDCCR(struct pxa_udc * udc,int mask)377 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
378 {
379 	u32 udccr = udc_readl(udc, UDCCR);
380 	udc_writel(udc, UDCCR,
381 			(udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
382 }
383 
384 /**
385  * ep_write_UDCCSR - set bits in UDCCSR
386  * @ep: udc endpoint
387  * @mask: bits to set in UDCCR
388  *
389  * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
390  *
391  * A specific case is applied to ep0 : the ACM bit is always set to 1, for
392  * SET_INTERFACE and SET_CONFIGURATION.
393  */
ep_write_UDCCSR(struct pxa_ep * ep,int mask)394 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
395 {
396 	if (is_ep0(ep))
397 		mask |= UDCCSR0_ACM;
398 	udc_ep_writel(ep, UDCCSR, mask);
399 }
400 
401 /**
402  * ep_count_bytes_remain - get how many bytes in udc endpoint
403  * @ep: udc endpoint
404  *
405  * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
406  */
ep_count_bytes_remain(struct pxa_ep * ep)407 static int ep_count_bytes_remain(struct pxa_ep *ep)
408 {
409 	if (ep->dir_in)
410 		return -EOPNOTSUPP;
411 	return udc_ep_readl(ep, UDCBCR) & 0x3ff;
412 }
413 
414 /**
415  * ep_is_empty - checks if ep has byte ready for reading
416  * @ep: udc endpoint
417  *
418  * If endpoint is the control endpoint, checks if there are bytes in the
419  * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
420  * are ready for reading on OUT endpoint.
421  *
422  * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
423  */
ep_is_empty(struct pxa_ep * ep)424 static int ep_is_empty(struct pxa_ep *ep)
425 {
426 	int ret;
427 
428 	if (!is_ep0(ep) && ep->dir_in)
429 		return -EOPNOTSUPP;
430 	if (is_ep0(ep))
431 		ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
432 	else
433 		ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
434 	return ret;
435 }
436 
437 /**
438  * ep_is_full - checks if ep has place to write bytes
439  * @ep: udc endpoint
440  *
441  * If endpoint is not the control endpoint and is an IN endpoint, checks if
442  * there is place to write bytes into the endpoint.
443  *
444  * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
445  */
ep_is_full(struct pxa_ep * ep)446 static int ep_is_full(struct pxa_ep *ep)
447 {
448 	if (is_ep0(ep))
449 		return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
450 	if (!ep->dir_in)
451 		return -EOPNOTSUPP;
452 	return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
453 }
454 
455 /**
456  * epout_has_pkt - checks if OUT endpoint fifo has a packet available
457  * @ep: pxa endpoint
458  *
459  * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
460  */
epout_has_pkt(struct pxa_ep * ep)461 static int epout_has_pkt(struct pxa_ep *ep)
462 {
463 	if (!is_ep0(ep) && ep->dir_in)
464 		return -EOPNOTSUPP;
465 	if (is_ep0(ep))
466 		return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
467 	return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
468 }
469 
470 /**
471  * set_ep0state - Set ep0 automata state
472  * @udc: udc device
473  * @state: state
474  */
set_ep0state(struct pxa_udc * udc,int state)475 static void set_ep0state(struct pxa_udc *udc, int state)
476 {
477 	struct pxa_ep *ep = &udc->pxa_ep[0];
478 	char *old_stname = EP0_STNAME(udc);
479 
480 	udc->ep0state = state;
481 	ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
482 		EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
483 		udc_ep_readl(ep, UDCBCR));
484 }
485 
486 /**
487  * ep0_idle - Put control endpoint into idle state
488  * @dev: udc device
489  */
ep0_idle(struct pxa_udc * dev)490 static void ep0_idle(struct pxa_udc *dev)
491 {
492 	set_ep0state(dev, WAIT_FOR_SETUP);
493 }
494 
495 /**
496  * inc_ep_stats_reqs - Update ep stats counts
497  * @ep: physical endpoint
498  * @is_in: ep direction (USB_DIR_IN or 0)
499  *
500  */
inc_ep_stats_reqs(struct pxa_ep * ep,int is_in)501 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
502 {
503 	if (is_in)
504 		ep->stats.in_ops++;
505 	else
506 		ep->stats.out_ops++;
507 }
508 
509 /**
510  * inc_ep_stats_bytes - Update ep stats counts
511  * @ep: physical endpoint
512  * @count: bytes transferred on endpoint
513  * @is_in: ep direction (USB_DIR_IN or 0)
514  */
inc_ep_stats_bytes(struct pxa_ep * ep,int count,int is_in)515 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
516 {
517 	if (is_in)
518 		ep->stats.in_bytes += count;
519 	else
520 		ep->stats.out_bytes += count;
521 }
522 
523 /**
524  * pxa_ep_setup - Sets up an usb physical endpoint
525  * @ep: pxa27x physical endpoint
526  *
527  * Find the physical pxa27x ep, and setup its UDCCR
528  */
pxa_ep_setup(struct pxa_ep * ep)529 static void pxa_ep_setup(struct pxa_ep *ep)
530 {
531 	u32 new_udccr;
532 
533 	new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
534 		| ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
535 		| ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
536 		| ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
537 		| ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
538 		| ((ep->dir_in) ? UDCCONR_ED : 0)
539 		| ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
540 		| UDCCONR_EE;
541 
542 	udc_ep_writel(ep, UDCCR, new_udccr);
543 }
544 
545 /**
546  * pxa_eps_setup - Sets up all usb physical endpoints
547  * @dev: udc device
548  *
549  * Setup all pxa physical endpoints, except ep0
550  */
pxa_eps_setup(struct pxa_udc * dev)551 static void pxa_eps_setup(struct pxa_udc *dev)
552 {
553 	unsigned int i;
554 
555 	dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
556 
557 	for (i = 1; i < NR_PXA_ENDPOINTS; i++)
558 		pxa_ep_setup(&dev->pxa_ep[i]);
559 }
560 
561 /**
562  * pxa_ep_alloc_request - Allocate usb request
563  * @_ep: usb endpoint
564  * @gfp_flags:
565  *
566  * For the pxa27x, these can just wrap kmalloc/kfree.  gadget drivers
567  * must still pass correctly initialized endpoints, since other controller
568  * drivers may care about how it's currently set up (dma issues etc).
569   */
570 static struct usb_request *
pxa_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)571 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
572 {
573 	struct pxa27x_request *req;
574 
575 	req = kzalloc(sizeof *req, gfp_flags);
576 	if (!req)
577 		return NULL;
578 
579 	INIT_LIST_HEAD(&req->queue);
580 	req->in_use = 0;
581 	req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
582 
583 	return &req->req;
584 }
585 
586 /**
587  * pxa_ep_free_request - Free usb request
588  * @_ep: usb endpoint
589  * @_req: usb request
590  *
591  * Wrapper around kfree to free _req
592  */
pxa_ep_free_request(struct usb_ep * _ep,struct usb_request * _req)593 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
594 {
595 	struct pxa27x_request *req;
596 
597 	req = container_of(_req, struct pxa27x_request, req);
598 	WARN_ON(!list_empty(&req->queue));
599 	kfree(req);
600 }
601 
602 /**
603  * ep_add_request - add a request to the endpoint's queue
604  * @ep: usb endpoint
605  * @req: usb request
606  *
607  * Context: ep->lock held
608  *
609  * Queues the request in the endpoint's queue, and enables the interrupts
610  * on the endpoint.
611  */
ep_add_request(struct pxa_ep * ep,struct pxa27x_request * req)612 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
613 {
614 	if (unlikely(!req))
615 		return;
616 	ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
617 		req->req.length, udc_ep_readl(ep, UDCCSR));
618 
619 	req->in_use = 1;
620 	list_add_tail(&req->queue, &ep->queue);
621 	pio_irq_enable(ep);
622 }
623 
624 /**
625  * ep_del_request - removes a request from the endpoint's queue
626  * @ep: usb endpoint
627  * @req: usb request
628  *
629  * Context: ep->lock held
630  *
631  * Unqueue the request from the endpoint's queue. If there are no more requests
632  * on the endpoint, and if it's not the control endpoint, interrupts are
633  * disabled on the endpoint.
634  */
ep_del_request(struct pxa_ep * ep,struct pxa27x_request * req)635 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
636 {
637 	if (unlikely(!req))
638 		return;
639 	ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
640 		req->req.length, udc_ep_readl(ep, UDCCSR));
641 
642 	list_del_init(&req->queue);
643 	req->in_use = 0;
644 	if (!is_ep0(ep) && list_empty(&ep->queue))
645 		pio_irq_disable(ep);
646 }
647 
648 /**
649  * req_done - Complete an usb request
650  * @ep: pxa physical endpoint
651  * @req: pxa request
652  * @status: usb request status sent to gadget API
653  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
654  *
655  * Context: ep->lock held if flags not NULL, else ep->lock released
656  *
657  * Retire a pxa27x usb request. Endpoint must be locked.
658  */
req_done(struct pxa_ep * ep,struct pxa27x_request * req,int status,unsigned long * pflags)659 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
660 	unsigned long *pflags)
661 {
662 	unsigned long	flags;
663 
664 	ep_del_request(ep, req);
665 	if (likely(req->req.status == -EINPROGRESS))
666 		req->req.status = status;
667 	else
668 		status = req->req.status;
669 
670 	if (status && status != -ESHUTDOWN)
671 		ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
672 			&req->req, status,
673 			req->req.actual, req->req.length);
674 
675 	if (pflags)
676 		spin_unlock_irqrestore(&ep->lock, *pflags);
677 	local_irq_save(flags);
678 	usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
679 	local_irq_restore(flags);
680 	if (pflags)
681 		spin_lock_irqsave(&ep->lock, *pflags);
682 }
683 
684 /**
685  * ep_end_out_req - Ends endpoint OUT request
686  * @ep: physical endpoint
687  * @req: pxa request
688  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
689  *
690  * Context: ep->lock held or released (see req_done())
691  *
692  * Ends endpoint OUT request (completes usb request).
693  */
ep_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)694 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
695 	unsigned long *pflags)
696 {
697 	inc_ep_stats_reqs(ep, !USB_DIR_IN);
698 	req_done(ep, req, 0, pflags);
699 }
700 
701 /**
702  * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
703  * @ep: physical endpoint
704  * @req: pxa request
705  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
706  *
707  * Context: ep->lock held or released (see req_done())
708  *
709  * Ends control endpoint OUT request (completes usb request), and puts
710  * control endpoint into idle state
711  */
ep0_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)712 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
713 	unsigned long *pflags)
714 {
715 	set_ep0state(ep->dev, OUT_STATUS_STAGE);
716 	ep_end_out_req(ep, req, pflags);
717 	ep0_idle(ep->dev);
718 }
719 
720 /**
721  * ep_end_in_req - Ends endpoint IN request
722  * @ep: physical endpoint
723  * @req: pxa request
724  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
725  *
726  * Context: ep->lock held or released (see req_done())
727  *
728  * Ends endpoint IN request (completes usb request).
729  */
ep_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)730 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
731 	unsigned long *pflags)
732 {
733 	inc_ep_stats_reqs(ep, USB_DIR_IN);
734 	req_done(ep, req, 0, pflags);
735 }
736 
737 /**
738  * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
739  * @ep: physical endpoint
740  * @req: pxa request
741  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
742  *
743  * Context: ep->lock held or released (see req_done())
744  *
745  * Ends control endpoint IN request (completes usb request), and puts
746  * control endpoint into status state
747  */
ep0_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)748 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
749 	unsigned long *pflags)
750 {
751 	set_ep0state(ep->dev, IN_STATUS_STAGE);
752 	ep_end_in_req(ep, req, pflags);
753 }
754 
755 /**
756  * nuke - Dequeue all requests
757  * @ep: pxa endpoint
758  * @status: usb request status
759  *
760  * Context: ep->lock released
761  *
762  * Dequeues all requests on an endpoint. As a side effect, interrupts will be
763  * disabled on that endpoint (because no more requests).
764  */
nuke(struct pxa_ep * ep,int status)765 static void nuke(struct pxa_ep *ep, int status)
766 {
767 	struct pxa27x_request	*req;
768 	unsigned long		flags;
769 
770 	spin_lock_irqsave(&ep->lock, flags);
771 	while (!list_empty(&ep->queue)) {
772 		req = list_entry(ep->queue.next, struct pxa27x_request, queue);
773 		req_done(ep, req, status, &flags);
774 	}
775 	spin_unlock_irqrestore(&ep->lock, flags);
776 }
777 
778 /**
779  * read_packet - transfer 1 packet from an OUT endpoint into request
780  * @ep: pxa physical endpoint
781  * @req: usb request
782  *
783  * Takes bytes from OUT endpoint and transfers them info the usb request.
784  * If there is less space in request than bytes received in OUT endpoint,
785  * bytes are left in the OUT endpoint.
786  *
787  * Returns how many bytes were actually transferred
788  */
read_packet(struct pxa_ep * ep,struct pxa27x_request * req)789 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
790 {
791 	u32 *buf;
792 	int bytes_ep, bufferspace, count, i;
793 
794 	bytes_ep = ep_count_bytes_remain(ep);
795 	bufferspace = req->req.length - req->req.actual;
796 
797 	buf = (u32 *)(req->req.buf + req->req.actual);
798 	prefetchw(buf);
799 
800 	if (likely(!ep_is_empty(ep)))
801 		count = min(bytes_ep, bufferspace);
802 	else /* zlp */
803 		count = 0;
804 
805 	for (i = count; i > 0; i -= 4)
806 		*buf++ = udc_ep_readl(ep, UDCDR);
807 	req->req.actual += count;
808 
809 	ep_write_UDCCSR(ep, UDCCSR_PC);
810 
811 	return count;
812 }
813 
814 /**
815  * write_packet - transfer 1 packet from request into an IN endpoint
816  * @ep: pxa physical endpoint
817  * @req: usb request
818  * @max: max bytes that fit into endpoint
819  *
820  * Takes bytes from usb request, and transfers them into the physical
821  * endpoint. If there are no bytes to transfer, doesn't write anything
822  * to physical endpoint.
823  *
824  * Returns how many bytes were actually transferred.
825  */
write_packet(struct pxa_ep * ep,struct pxa27x_request * req,unsigned int max)826 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
827 			unsigned int max)
828 {
829 	int length, count, remain, i;
830 	u32 *buf;
831 	u8 *buf_8;
832 
833 	buf = (u32 *)(req->req.buf + req->req.actual);
834 	prefetch(buf);
835 
836 	length = min(req->req.length - req->req.actual, max);
837 	req->req.actual += length;
838 
839 	remain = length & 0x3;
840 	count = length & ~(0x3);
841 	for (i = count; i > 0 ; i -= 4)
842 		udc_ep_writel(ep, UDCDR, *buf++);
843 
844 	buf_8 = (u8 *)buf;
845 	for (i = remain; i > 0; i--)
846 		udc_ep_writeb(ep, UDCDR, *buf_8++);
847 
848 	ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
849 		udc_ep_readl(ep, UDCCSR));
850 
851 	return length;
852 }
853 
854 /**
855  * read_fifo - Transfer packets from OUT endpoint into usb request
856  * @ep: pxa physical endpoint
857  * @req: usb request
858  *
859  * Context: interrupt handler
860  *
861  * Unload as many packets as possible from the fifo we use for usb OUT
862  * transfers and put them into the request. Caller should have made sure
863  * there's at least one packet ready.
864  * Doesn't complete the request, that's the caller's job
865  *
866  * Returns 1 if the request completed, 0 otherwise
867  */
read_fifo(struct pxa_ep * ep,struct pxa27x_request * req)868 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
869 {
870 	int count, is_short, completed = 0;
871 
872 	while (epout_has_pkt(ep)) {
873 		count = read_packet(ep, req);
874 		inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
875 
876 		is_short = (count < ep->fifo_size);
877 		ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
878 			udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
879 			&req->req, req->req.actual, req->req.length);
880 
881 		/* completion */
882 		if (is_short || req->req.actual == req->req.length) {
883 			completed = 1;
884 			break;
885 		}
886 		/* finished that packet.  the next one may be waiting... */
887 	}
888 	return completed;
889 }
890 
891 /**
892  * write_fifo - transfer packets from usb request into an IN endpoint
893  * @ep: pxa physical endpoint
894  * @req: pxa usb request
895  *
896  * Write to an IN endpoint fifo, as many packets as possible.
897  * irqs will use this to write the rest later.
898  * caller guarantees at least one packet buffer is ready (or a zlp).
899  * Doesn't complete the request, that's the caller's job
900  *
901  * Returns 1 if request fully transferred, 0 if partial transfer
902  */
write_fifo(struct pxa_ep * ep,struct pxa27x_request * req)903 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
904 {
905 	unsigned max;
906 	int count, is_short, is_last = 0, completed = 0, totcount = 0;
907 	u32 udccsr;
908 
909 	max = ep->fifo_size;
910 	do {
911 		udccsr = udc_ep_readl(ep, UDCCSR);
912 		if (udccsr & UDCCSR_PC) {
913 			ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
914 				udccsr);
915 			ep_write_UDCCSR(ep, UDCCSR_PC);
916 		}
917 		if (udccsr & UDCCSR_TRN) {
918 			ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
919 				udccsr);
920 			ep_write_UDCCSR(ep, UDCCSR_TRN);
921 		}
922 
923 		count = write_packet(ep, req, max);
924 		inc_ep_stats_bytes(ep, count, USB_DIR_IN);
925 		totcount += count;
926 
927 		/* last packet is usually short (or a zlp) */
928 		if (unlikely(count < max)) {
929 			is_last = 1;
930 			is_short = 1;
931 		} else {
932 			if (likely(req->req.length > req->req.actual)
933 					|| req->req.zero)
934 				is_last = 0;
935 			else
936 				is_last = 1;
937 			/* interrupt/iso maxpacket may not fill the fifo */
938 			is_short = unlikely(max < ep->fifo_size);
939 		}
940 
941 		if (is_short)
942 			ep_write_UDCCSR(ep, UDCCSR_SP);
943 
944 		/* requests complete when all IN data is in the FIFO */
945 		if (is_last) {
946 			completed = 1;
947 			break;
948 		}
949 	} while (!ep_is_full(ep));
950 
951 	ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
952 			totcount, is_last ? "/L" : "", is_short ? "/S" : "",
953 			req->req.length - req->req.actual, &req->req);
954 
955 	return completed;
956 }
957 
958 /**
959  * read_ep0_fifo - Transfer packets from control endpoint into usb request
960  * @ep: control endpoint
961  * @req: pxa usb request
962  *
963  * Special ep0 version of the above read_fifo. Reads as many bytes from control
964  * endpoint as can be read, and stores them into usb request (limited by request
965  * maximum length).
966  *
967  * Returns 0 if usb request only partially filled, 1 if fully filled
968  */
read_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)969 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
970 {
971 	int count, is_short, completed = 0;
972 
973 	while (epout_has_pkt(ep)) {
974 		count = read_packet(ep, req);
975 		ep_write_UDCCSR(ep, UDCCSR0_OPC);
976 		inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
977 
978 		is_short = (count < ep->fifo_size);
979 		ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
980 			udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
981 			&req->req, req->req.actual, req->req.length);
982 
983 		if (is_short || req->req.actual >= req->req.length) {
984 			completed = 1;
985 			break;
986 		}
987 	}
988 
989 	return completed;
990 }
991 
992 /**
993  * write_ep0_fifo - Send a request to control endpoint (ep0 in)
994  * @ep: control endpoint
995  * @req: request
996  *
997  * Context: interrupt handler
998  *
999  * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1000  * If the request doesn't fit, the remaining part will be sent from irq.
1001  * The request is considered fully written only if either :
1002  *   - last write transferred all remaining bytes, but fifo was not fully filled
1003  *   - last write was a 0 length write
1004  *
1005  * Returns 1 if request fully written, 0 if request only partially sent
1006  */
write_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)1007 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1008 {
1009 	unsigned	count;
1010 	int		is_last, is_short;
1011 
1012 	count = write_packet(ep, req, EP0_FIFO_SIZE);
1013 	inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1014 
1015 	is_short = (count < EP0_FIFO_SIZE);
1016 	is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1017 
1018 	/* Sends either a short packet or a 0 length packet */
1019 	if (unlikely(is_short))
1020 		ep_write_UDCCSR(ep, UDCCSR0_IPR);
1021 
1022 	ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1023 		count, is_short ? "/S" : "", is_last ? "/L" : "",
1024 		req->req.length - req->req.actual,
1025 		&req->req, udc_ep_readl(ep, UDCCSR));
1026 
1027 	return is_last;
1028 }
1029 
1030 /**
1031  * pxa_ep_queue - Queue a request into an IN endpoint
1032  * @_ep: usb endpoint
1033  * @_req: usb request
1034  * @gfp_flags: flags
1035  *
1036  * Context: thread context or from the interrupt handler in the
1037  * special case of ep0 setup :
1038  *   (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1039  *
1040  * Returns 0 if succedeed, error otherwise
1041  */
pxa_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1042 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1043 			gfp_t gfp_flags)
1044 {
1045 	struct udc_usb_ep	*udc_usb_ep;
1046 	struct pxa_ep		*ep;
1047 	struct pxa27x_request	*req;
1048 	struct pxa_udc		*dev;
1049 	unsigned long		flags;
1050 	int			rc = 0;
1051 	int			is_first_req;
1052 	unsigned		length;
1053 	int			recursion_detected;
1054 
1055 	req = container_of(_req, struct pxa27x_request, req);
1056 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1057 
1058 	if (unlikely(!_req || !_req->complete || !_req->buf))
1059 		return -EINVAL;
1060 
1061 	if (unlikely(!_ep))
1062 		return -EINVAL;
1063 
1064 	ep = udc_usb_ep->pxa_ep;
1065 	if (unlikely(!ep))
1066 		return -EINVAL;
1067 
1068 	dev = ep->dev;
1069 	if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1070 		ep_dbg(ep, "bogus device state\n");
1071 		return -ESHUTDOWN;
1072 	}
1073 
1074 	/* iso is always one packet per request, that's the only way
1075 	 * we can report per-packet status.  that also helps with dma.
1076 	 */
1077 	if (unlikely(EPXFERTYPE_is_ISO(ep)
1078 			&& req->req.length > ep->fifo_size))
1079 		return -EMSGSIZE;
1080 
1081 	spin_lock_irqsave(&ep->lock, flags);
1082 	recursion_detected = ep->in_handle_ep;
1083 
1084 	is_first_req = list_empty(&ep->queue);
1085 	ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1086 			_req, is_first_req ? "yes" : "no",
1087 			_req->length, _req->buf);
1088 
1089 	if (!ep->enabled) {
1090 		_req->status = -ESHUTDOWN;
1091 		rc = -ESHUTDOWN;
1092 		goto out_locked;
1093 	}
1094 
1095 	if (req->in_use) {
1096 		ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1097 		goto out_locked;
1098 	}
1099 
1100 	length = _req->length;
1101 	_req->status = -EINPROGRESS;
1102 	_req->actual = 0;
1103 
1104 	ep_add_request(ep, req);
1105 	spin_unlock_irqrestore(&ep->lock, flags);
1106 
1107 	if (is_ep0(ep)) {
1108 		switch (dev->ep0state) {
1109 		case WAIT_ACK_SET_CONF_INTERF:
1110 			if (length == 0) {
1111 				ep_end_in_req(ep, req, NULL);
1112 			} else {
1113 				ep_err(ep, "got a request of %d bytes while"
1114 					"in state WAIT_ACK_SET_CONF_INTERF\n",
1115 					length);
1116 				ep_del_request(ep, req);
1117 				rc = -EL2HLT;
1118 			}
1119 			ep0_idle(ep->dev);
1120 			break;
1121 		case IN_DATA_STAGE:
1122 			if (!ep_is_full(ep))
1123 				if (write_ep0_fifo(ep, req))
1124 					ep0_end_in_req(ep, req, NULL);
1125 			break;
1126 		case OUT_DATA_STAGE:
1127 			if ((length == 0) || !epout_has_pkt(ep))
1128 				if (read_ep0_fifo(ep, req))
1129 					ep0_end_out_req(ep, req, NULL);
1130 			break;
1131 		default:
1132 			ep_err(ep, "odd state %s to send me a request\n",
1133 				EP0_STNAME(ep->dev));
1134 			ep_del_request(ep, req);
1135 			rc = -EL2HLT;
1136 			break;
1137 		}
1138 	} else {
1139 		if (!recursion_detected)
1140 			handle_ep(ep);
1141 	}
1142 
1143 out:
1144 	return rc;
1145 out_locked:
1146 	spin_unlock_irqrestore(&ep->lock, flags);
1147 	goto out;
1148 }
1149 
1150 /**
1151  * pxa_ep_dequeue - Dequeue one request
1152  * @_ep: usb endpoint
1153  * @_req: usb request
1154  *
1155  * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1156  */
pxa_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1157 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1158 {
1159 	struct pxa_ep		*ep;
1160 	struct udc_usb_ep	*udc_usb_ep;
1161 	struct pxa27x_request	*req = NULL, *iter;
1162 	unsigned long		flags;
1163 	int			rc = -EINVAL;
1164 
1165 	if (!_ep)
1166 		return rc;
1167 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1168 	ep = udc_usb_ep->pxa_ep;
1169 	if (!ep || is_ep0(ep))
1170 		return rc;
1171 
1172 	spin_lock_irqsave(&ep->lock, flags);
1173 
1174 	/* make sure it's actually queued on this endpoint */
1175 	list_for_each_entry(iter, &ep->queue, queue) {
1176 		if (&iter->req != _req)
1177 			continue;
1178 		req = iter;
1179 		rc = 0;
1180 		break;
1181 	}
1182 
1183 	spin_unlock_irqrestore(&ep->lock, flags);
1184 	if (!rc)
1185 		req_done(ep, req, -ECONNRESET, NULL);
1186 	return rc;
1187 }
1188 
1189 /**
1190  * pxa_ep_set_halt - Halts operations on one endpoint
1191  * @_ep: usb endpoint
1192  * @value:
1193  *
1194  * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1195  */
pxa_ep_set_halt(struct usb_ep * _ep,int value)1196 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1197 {
1198 	struct pxa_ep		*ep;
1199 	struct udc_usb_ep	*udc_usb_ep;
1200 	unsigned long flags;
1201 	int rc;
1202 
1203 
1204 	if (!_ep)
1205 		return -EINVAL;
1206 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1207 	ep = udc_usb_ep->pxa_ep;
1208 	if (!ep || is_ep0(ep))
1209 		return -EINVAL;
1210 
1211 	if (value == 0) {
1212 		/*
1213 		 * This path (reset toggle+halt) is needed to implement
1214 		 * SET_INTERFACE on normal hardware.  but it can't be
1215 		 * done from software on the PXA UDC, and the hardware
1216 		 * forgets to do it as part of SET_INTERFACE automagic.
1217 		 */
1218 		ep_dbg(ep, "only host can clear halt\n");
1219 		return -EROFS;
1220 	}
1221 
1222 	spin_lock_irqsave(&ep->lock, flags);
1223 
1224 	rc = -EAGAIN;
1225 	if (ep->dir_in	&& (ep_is_full(ep) || !list_empty(&ep->queue)))
1226 		goto out;
1227 
1228 	/* FST, FEF bits are the same for control and non control endpoints */
1229 	rc = 0;
1230 	ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1231 	if (is_ep0(ep))
1232 		set_ep0state(ep->dev, STALL);
1233 
1234 out:
1235 	spin_unlock_irqrestore(&ep->lock, flags);
1236 	return rc;
1237 }
1238 
1239 /**
1240  * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1241  * @_ep: usb endpoint
1242  *
1243  * Returns number of bytes in OUT fifos. Broken for IN fifos.
1244  */
pxa_ep_fifo_status(struct usb_ep * _ep)1245 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1246 {
1247 	struct pxa_ep		*ep;
1248 	struct udc_usb_ep	*udc_usb_ep;
1249 
1250 	if (!_ep)
1251 		return -ENODEV;
1252 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1253 	ep = udc_usb_ep->pxa_ep;
1254 	if (!ep || is_ep0(ep))
1255 		return -ENODEV;
1256 
1257 	if (ep->dir_in)
1258 		return -EOPNOTSUPP;
1259 	if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1260 		return 0;
1261 	else
1262 		return ep_count_bytes_remain(ep) + 1;
1263 }
1264 
1265 /**
1266  * pxa_ep_fifo_flush - Flushes one endpoint
1267  * @_ep: usb endpoint
1268  *
1269  * Discards all data in one endpoint(IN or OUT), except control endpoint.
1270  */
pxa_ep_fifo_flush(struct usb_ep * _ep)1271 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1272 {
1273 	struct pxa_ep		*ep;
1274 	struct udc_usb_ep	*udc_usb_ep;
1275 	unsigned long		flags;
1276 
1277 	if (!_ep)
1278 		return;
1279 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1280 	ep = udc_usb_ep->pxa_ep;
1281 	if (!ep || is_ep0(ep))
1282 		return;
1283 
1284 	spin_lock_irqsave(&ep->lock, flags);
1285 
1286 	if (unlikely(!list_empty(&ep->queue)))
1287 		ep_dbg(ep, "called while queue list not empty\n");
1288 	ep_dbg(ep, "called\n");
1289 
1290 	/* for OUT, just read and discard the FIFO contents. */
1291 	if (!ep->dir_in) {
1292 		while (!ep_is_empty(ep))
1293 			udc_ep_readl(ep, UDCDR);
1294 	} else {
1295 		/* most IN status is the same, but ISO can't stall */
1296 		ep_write_UDCCSR(ep,
1297 				UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1298 				| (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1299 	}
1300 
1301 	spin_unlock_irqrestore(&ep->lock, flags);
1302 }
1303 
1304 /**
1305  * pxa_ep_enable - Enables usb endpoint
1306  * @_ep: usb endpoint
1307  * @desc: usb endpoint descriptor
1308  *
1309  * Nothing much to do here, as ep configuration is done once and for all
1310  * before udc is enabled. After udc enable, no physical endpoint configuration
1311  * can be changed.
1312  * Function makes sanity checks and flushes the endpoint.
1313  */
pxa_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)1314 static int pxa_ep_enable(struct usb_ep *_ep,
1315 	const struct usb_endpoint_descriptor *desc)
1316 {
1317 	struct pxa_ep		*ep;
1318 	struct udc_usb_ep	*udc_usb_ep;
1319 	struct pxa_udc		*udc;
1320 
1321 	if (!_ep || !desc)
1322 		return -EINVAL;
1323 
1324 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1325 	if (udc_usb_ep->pxa_ep) {
1326 		ep = udc_usb_ep->pxa_ep;
1327 		ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1328 			_ep->name);
1329 	} else {
1330 		ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1331 	}
1332 
1333 	if (!ep || is_ep0(ep)) {
1334 		dev_err(udc_usb_ep->dev->dev,
1335 			"unable to match pxa_ep for ep %s\n",
1336 			_ep->name);
1337 		return -EINVAL;
1338 	}
1339 
1340 	if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1341 			|| (ep->type != usb_endpoint_type(desc))) {
1342 		ep_err(ep, "type mismatch\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1347 		ep_err(ep, "bad maxpacket\n");
1348 		return -ERANGE;
1349 	}
1350 
1351 	udc_usb_ep->pxa_ep = ep;
1352 	udc = ep->dev;
1353 
1354 	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1355 		ep_err(ep, "bogus device state\n");
1356 		return -ESHUTDOWN;
1357 	}
1358 
1359 	ep->enabled = 1;
1360 
1361 	/* flush fifo (mostly for OUT buffers) */
1362 	pxa_ep_fifo_flush(_ep);
1363 
1364 	ep_dbg(ep, "enabled\n");
1365 	return 0;
1366 }
1367 
1368 /**
1369  * pxa_ep_disable - Disable usb endpoint
1370  * @_ep: usb endpoint
1371  *
1372  * Same as for pxa_ep_enable, no physical endpoint configuration can be
1373  * changed.
1374  * Function flushes the endpoint and related requests.
1375  */
pxa_ep_disable(struct usb_ep * _ep)1376 static int pxa_ep_disable(struct usb_ep *_ep)
1377 {
1378 	struct pxa_ep		*ep;
1379 	struct udc_usb_ep	*udc_usb_ep;
1380 
1381 	if (!_ep)
1382 		return -EINVAL;
1383 
1384 	udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1385 	ep = udc_usb_ep->pxa_ep;
1386 	if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1387 		return -EINVAL;
1388 
1389 	ep->enabled = 0;
1390 	nuke(ep, -ESHUTDOWN);
1391 
1392 	pxa_ep_fifo_flush(_ep);
1393 	udc_usb_ep->pxa_ep = NULL;
1394 
1395 	ep_dbg(ep, "disabled\n");
1396 	return 0;
1397 }
1398 
1399 static const struct usb_ep_ops pxa_ep_ops = {
1400 	.enable		= pxa_ep_enable,
1401 	.disable	= pxa_ep_disable,
1402 
1403 	.alloc_request	= pxa_ep_alloc_request,
1404 	.free_request	= pxa_ep_free_request,
1405 
1406 	.queue		= pxa_ep_queue,
1407 	.dequeue	= pxa_ep_dequeue,
1408 
1409 	.set_halt	= pxa_ep_set_halt,
1410 	.fifo_status	= pxa_ep_fifo_status,
1411 	.fifo_flush	= pxa_ep_fifo_flush,
1412 };
1413 
1414 /**
1415  * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1416  * @udc: udc device
1417  * @on: 0 if disconnect pullup resistor, 1 otherwise
1418  * Context: any
1419  *
1420  * Handle D+ pullup resistor, make the device visible to the usb bus, and
1421  * declare it as a full speed usb device
1422  */
dplus_pullup(struct pxa_udc * udc,int on)1423 static void dplus_pullup(struct pxa_udc *udc, int on)
1424 {
1425 	if (udc->gpiod) {
1426 		gpiod_set_value(udc->gpiod, on);
1427 	} else if (udc->udc_command) {
1428 		if (on)
1429 			udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1430 		else
1431 			udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1432 	}
1433 	udc->pullup_on = on;
1434 }
1435 
1436 /**
1437  * pxa_udc_get_frame - Returns usb frame number
1438  * @_gadget: usb gadget
1439  */
pxa_udc_get_frame(struct usb_gadget * _gadget)1440 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1441 {
1442 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1443 
1444 	return (udc_readl(udc, UDCFNR) & 0x7ff);
1445 }
1446 
1447 /**
1448  * pxa_udc_wakeup - Force udc device out of suspend
1449  * @_gadget: usb gadget
1450  *
1451  * Returns 0 if successful, error code otherwise
1452  */
pxa_udc_wakeup(struct usb_gadget * _gadget)1453 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1454 {
1455 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1456 
1457 	/* host may not have enabled remote wakeup */
1458 	if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1459 		return -EHOSTUNREACH;
1460 	udc_set_mask_UDCCR(udc, UDCCR_UDR);
1461 	return 0;
1462 }
1463 
1464 static void udc_enable(struct pxa_udc *udc);
1465 static void udc_disable(struct pxa_udc *udc);
1466 
1467 /**
1468  * should_enable_udc - Tells if UDC should be enabled
1469  * @udc: udc device
1470  * Context: any
1471  *
1472  * The UDC should be enabled if :
1473  *  - the pullup resistor is connected
1474  *  - and a gadget driver is bound
1475  *  - and vbus is sensed (or no vbus sense is available)
1476  *
1477  * Returns 1 if UDC should be enabled, 0 otherwise
1478  */
should_enable_udc(struct pxa_udc * udc)1479 static int should_enable_udc(struct pxa_udc *udc)
1480 {
1481 	int put_on;
1482 
1483 	put_on = ((udc->pullup_on) && (udc->driver));
1484 	put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1485 	return put_on;
1486 }
1487 
1488 /**
1489  * should_disable_udc - Tells if UDC should be disabled
1490  * @udc: udc device
1491  * Context: any
1492  *
1493  * The UDC should be disabled if :
1494  *  - the pullup resistor is not connected
1495  *  - or no gadget driver is bound
1496  *  - or no vbus is sensed (when vbus sesing is available)
1497  *
1498  * Returns 1 if UDC should be disabled
1499  */
should_disable_udc(struct pxa_udc * udc)1500 static int should_disable_udc(struct pxa_udc *udc)
1501 {
1502 	int put_off;
1503 
1504 	put_off = ((!udc->pullup_on) || (!udc->driver));
1505 	put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1506 	return put_off;
1507 }
1508 
1509 /**
1510  * pxa_udc_pullup - Offer manual D+ pullup control
1511  * @_gadget: usb gadget using the control
1512  * @is_active: 0 if disconnect, else connect D+ pullup resistor
1513  *
1514  * Context: task context, might sleep
1515  *
1516  * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1517  */
pxa_udc_pullup(struct usb_gadget * _gadget,int is_active)1518 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1519 {
1520 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1521 
1522 	if (!udc->gpiod && !udc->udc_command)
1523 		return -EOPNOTSUPP;
1524 
1525 	dplus_pullup(udc, is_active);
1526 
1527 	if (should_enable_udc(udc))
1528 		udc_enable(udc);
1529 	if (should_disable_udc(udc))
1530 		udc_disable(udc);
1531 	return 0;
1532 }
1533 
1534 /**
1535  * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1536  * @_gadget: usb gadget
1537  * @is_active: 0 if should disable the udc, 1 if should enable
1538  *
1539  * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1540  * udc, and deactivates D+ pullup resistor.
1541  *
1542  * Returns 0
1543  */
pxa_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1544 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1545 {
1546 	struct pxa_udc *udc = to_gadget_udc(_gadget);
1547 
1548 	udc->vbus_sensed = is_active;
1549 	if (should_enable_udc(udc))
1550 		udc_enable(udc);
1551 	if (should_disable_udc(udc))
1552 		udc_disable(udc);
1553 
1554 	return 0;
1555 }
1556 
1557 /**
1558  * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1559  * @_gadget: usb gadget
1560  * @mA: current drawn
1561  *
1562  * Context: task context, might sleep
1563  *
1564  * Called after a configuration was chosen by a USB host, to inform how much
1565  * current can be drawn by the device from VBus line.
1566  *
1567  * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1568  */
pxa_udc_vbus_draw(struct usb_gadget * _gadget,unsigned mA)1569 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1570 {
1571 	struct pxa_udc *udc;
1572 
1573 	udc = to_gadget_udc(_gadget);
1574 	if (!IS_ERR_OR_NULL(udc->transceiver))
1575 		return usb_phy_set_power(udc->transceiver, mA);
1576 	return -EOPNOTSUPP;
1577 }
1578 
1579 /**
1580  * pxa_udc_phy_event - Called by phy upon VBus event
1581  * @nb: notifier block
1582  * @action: phy action, is vbus connect or disconnect
1583  * @data: the usb_gadget structure in pxa_udc
1584  *
1585  * Called by the USB Phy when a cable connect or disconnect is sensed.
1586  *
1587  * Returns 0
1588  */
pxa_udc_phy_event(struct notifier_block * nb,unsigned long action,void * data)1589 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1590 			     void *data)
1591 {
1592 	struct usb_gadget *gadget = data;
1593 
1594 	switch (action) {
1595 	case USB_EVENT_VBUS:
1596 		usb_gadget_vbus_connect(gadget);
1597 		return NOTIFY_OK;
1598 	case USB_EVENT_NONE:
1599 		usb_gadget_vbus_disconnect(gadget);
1600 		return NOTIFY_OK;
1601 	default:
1602 		return NOTIFY_DONE;
1603 	}
1604 }
1605 
1606 static struct notifier_block pxa27x_udc_phy = {
1607 	.notifier_call = pxa_udc_phy_event,
1608 };
1609 
1610 static int pxa27x_udc_start(struct usb_gadget *g,
1611 		struct usb_gadget_driver *driver);
1612 static int pxa27x_udc_stop(struct usb_gadget *g);
1613 
1614 static const struct usb_gadget_ops pxa_udc_ops = {
1615 	.get_frame	= pxa_udc_get_frame,
1616 	.wakeup		= pxa_udc_wakeup,
1617 	.pullup		= pxa_udc_pullup,
1618 	.vbus_session	= pxa_udc_vbus_session,
1619 	.vbus_draw	= pxa_udc_vbus_draw,
1620 	.udc_start	= pxa27x_udc_start,
1621 	.udc_stop	= pxa27x_udc_stop,
1622 };
1623 
1624 /**
1625  * udc_disable - disable udc device controller
1626  * @udc: udc device
1627  * Context: any
1628  *
1629  * Disables the udc device : disables clocks, udc interrupts, control endpoint
1630  * interrupts.
1631  */
udc_disable(struct pxa_udc * udc)1632 static void udc_disable(struct pxa_udc *udc)
1633 {
1634 	if (!udc->enabled)
1635 		return;
1636 
1637 	udc_writel(udc, UDCICR0, 0);
1638 	udc_writel(udc, UDCICR1, 0);
1639 
1640 	udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1641 
1642 	ep0_idle(udc);
1643 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1644 	clk_disable(udc->clk);
1645 
1646 	udc->enabled = 0;
1647 }
1648 
1649 /**
1650  * udc_init_data - Initialize udc device data structures
1651  * @dev: udc device
1652  *
1653  * Initializes gadget endpoint list, endpoints locks. No action is taken
1654  * on the hardware.
1655  */
udc_init_data(struct pxa_udc * dev)1656 static void udc_init_data(struct pxa_udc *dev)
1657 {
1658 	int i;
1659 	struct pxa_ep *ep;
1660 
1661 	/* device/ep0 records init */
1662 	INIT_LIST_HEAD(&dev->gadget.ep_list);
1663 	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1664 	dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1665 	dev->gadget.quirk_altset_not_supp = 1;
1666 	ep0_idle(dev);
1667 
1668 	/* PXA endpoints init */
1669 	for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1670 		ep = &dev->pxa_ep[i];
1671 
1672 		ep->enabled = is_ep0(ep);
1673 		INIT_LIST_HEAD(&ep->queue);
1674 		spin_lock_init(&ep->lock);
1675 	}
1676 
1677 	/* USB endpoints init */
1678 	for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1679 		list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1680 				&dev->gadget.ep_list);
1681 		usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1682 					   dev->udc_usb_ep[i].usb_ep.maxpacket);
1683 	}
1684 }
1685 
1686 /**
1687  * udc_enable - Enables the udc device
1688  * @udc: udc device
1689  *
1690  * Enables the udc device : enables clocks, udc interrupts, control endpoint
1691  * interrupts, sets usb as UDC client and setups endpoints.
1692  */
udc_enable(struct pxa_udc * udc)1693 static void udc_enable(struct pxa_udc *udc)
1694 {
1695 	if (udc->enabled)
1696 		return;
1697 
1698 	clk_enable(udc->clk);
1699 	udc_writel(udc, UDCICR0, 0);
1700 	udc_writel(udc, UDCICR1, 0);
1701 	udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1702 
1703 	ep0_idle(udc);
1704 	udc->gadget.speed = USB_SPEED_FULL;
1705 	memset(&udc->stats, 0, sizeof(udc->stats));
1706 
1707 	pxa_eps_setup(udc);
1708 	udc_set_mask_UDCCR(udc, UDCCR_UDE);
1709 	ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1710 	udelay(2);
1711 	if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1712 		dev_err(udc->dev, "Configuration errors, udc disabled\n");
1713 
1714 	/*
1715 	 * Caller must be able to sleep in order to cope with startup transients
1716 	 */
1717 	msleep(100);
1718 
1719 	/* enable suspend/resume and reset irqs */
1720 	udc_writel(udc, UDCICR1,
1721 			UDCICR1_IECC | UDCICR1_IERU
1722 			| UDCICR1_IESU | UDCICR1_IERS);
1723 
1724 	/* enable ep0 irqs */
1725 	pio_irq_enable(&udc->pxa_ep[0]);
1726 
1727 	udc->enabled = 1;
1728 }
1729 
1730 /**
1731  * pxa27x_udc_start - Register gadget driver
1732  * @g: gadget
1733  * @driver: gadget driver
1734  *
1735  * When a driver is successfully registered, it will receive control requests
1736  * including set_configuration(), which enables non-control requests.  Then
1737  * usb traffic follows until a disconnect is reported.  Then a host may connect
1738  * again, or the driver might get unbound.
1739  *
1740  * Note that the udc is not automatically enabled. Check function
1741  * should_enable_udc().
1742  *
1743  * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1744  */
pxa27x_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1745 static int pxa27x_udc_start(struct usb_gadget *g,
1746 		struct usb_gadget_driver *driver)
1747 {
1748 	struct pxa_udc *udc = to_pxa(g);
1749 	int retval;
1750 
1751 	/* first hook up the driver ... */
1752 	udc->driver = driver;
1753 
1754 	if (!IS_ERR_OR_NULL(udc->transceiver)) {
1755 		retval = otg_set_peripheral(udc->transceiver->otg,
1756 						&udc->gadget);
1757 		if (retval) {
1758 			dev_err(udc->dev, "can't bind to transceiver\n");
1759 			goto fail;
1760 		}
1761 	}
1762 
1763 	if (should_enable_udc(udc))
1764 		udc_enable(udc);
1765 	return 0;
1766 
1767 fail:
1768 	udc->driver = NULL;
1769 	return retval;
1770 }
1771 
1772 /**
1773  * stop_activity - Stops udc endpoints
1774  * @udc: udc device
1775  *
1776  * Disables all udc endpoints (even control endpoint), report disconnect to
1777  * the gadget user.
1778  */
stop_activity(struct pxa_udc * udc)1779 static void stop_activity(struct pxa_udc *udc)
1780 {
1781 	int i;
1782 
1783 	udc->gadget.speed = USB_SPEED_UNKNOWN;
1784 
1785 	for (i = 0; i < NR_USB_ENDPOINTS; i++)
1786 		pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1787 }
1788 
1789 /**
1790  * pxa27x_udc_stop - Unregister the gadget driver
1791  * @g: gadget
1792  *
1793  * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1794  */
pxa27x_udc_stop(struct usb_gadget * g)1795 static int pxa27x_udc_stop(struct usb_gadget *g)
1796 {
1797 	struct pxa_udc *udc = to_pxa(g);
1798 
1799 	stop_activity(udc);
1800 	udc_disable(udc);
1801 
1802 	udc->driver = NULL;
1803 
1804 	if (!IS_ERR_OR_NULL(udc->transceiver))
1805 		return otg_set_peripheral(udc->transceiver->otg, NULL);
1806 	return 0;
1807 }
1808 
1809 /**
1810  * handle_ep0_ctrl_req - handle control endpoint control request
1811  * @udc: udc device
1812  * @req: control request
1813  */
handle_ep0_ctrl_req(struct pxa_udc * udc,struct pxa27x_request * req)1814 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1815 				struct pxa27x_request *req)
1816 {
1817 	struct pxa_ep *ep = &udc->pxa_ep[0];
1818 	union {
1819 		struct usb_ctrlrequest	r;
1820 		u32			word[2];
1821 	} u;
1822 	int i;
1823 	int have_extrabytes = 0;
1824 	unsigned long flags;
1825 
1826 	nuke(ep, -EPROTO);
1827 	spin_lock_irqsave(&ep->lock, flags);
1828 
1829 	/*
1830 	 * In the PXA320 manual, in the section about Back-to-Back setup
1831 	 * packets, it describes this situation.  The solution is to set OPC to
1832 	 * get rid of the status packet, and then continue with the setup
1833 	 * packet. Generalize to pxa27x CPUs.
1834 	 */
1835 	if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1836 		ep_write_UDCCSR(ep, UDCCSR0_OPC);
1837 
1838 	/* read SETUP packet */
1839 	for (i = 0; i < 2; i++) {
1840 		if (unlikely(ep_is_empty(ep)))
1841 			goto stall;
1842 		u.word[i] = udc_ep_readl(ep, UDCDR);
1843 	}
1844 
1845 	have_extrabytes = !ep_is_empty(ep);
1846 	while (!ep_is_empty(ep)) {
1847 		i = udc_ep_readl(ep, UDCDR);
1848 		ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1849 	}
1850 
1851 	ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1852 		u.r.bRequestType, u.r.bRequest,
1853 		le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1854 		le16_to_cpu(u.r.wLength));
1855 	if (unlikely(have_extrabytes))
1856 		goto stall;
1857 
1858 	if (u.r.bRequestType & USB_DIR_IN)
1859 		set_ep0state(udc, IN_DATA_STAGE);
1860 	else
1861 		set_ep0state(udc, OUT_DATA_STAGE);
1862 
1863 	/* Tell UDC to enter Data Stage */
1864 	ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1865 
1866 	spin_unlock_irqrestore(&ep->lock, flags);
1867 	i = udc->driver->setup(&udc->gadget, &u.r);
1868 	spin_lock_irqsave(&ep->lock, flags);
1869 	if (i < 0)
1870 		goto stall;
1871 out:
1872 	spin_unlock_irqrestore(&ep->lock, flags);
1873 	return;
1874 stall:
1875 	ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1876 		udc_ep_readl(ep, UDCCSR), i);
1877 	ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1878 	set_ep0state(udc, STALL);
1879 	goto out;
1880 }
1881 
1882 /**
1883  * handle_ep0 - Handle control endpoint data transfers
1884  * @udc: udc device
1885  * @fifo_irq: 1 if triggered by fifo service type irq
1886  * @opc_irq: 1 if triggered by output packet complete type irq
1887  *
1888  * Context : interrupt handler
1889  *
1890  * Tries to transfer all pending request data into the endpoint and/or
1891  * transfer all pending data in the endpoint into usb requests.
1892  * Handles states of ep0 automata.
1893  *
1894  * PXA27x hardware handles several standard usb control requests without
1895  * driver notification.  The requests fully handled by hardware are :
1896  *  SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1897  *  GET_STATUS
1898  * The requests handled by hardware, but with irq notification are :
1899  *  SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1900  * The remaining standard requests really handled by handle_ep0 are :
1901  *  GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1902  * Requests standardized outside of USB 2.0 chapter 9 are handled more
1903  * uniformly, by gadget drivers.
1904  *
1905  * The control endpoint state machine is _not_ USB spec compliant, it's even
1906  * hardly compliant with Intel PXA270 developers guide.
1907  * The key points which inferred this state machine are :
1908  *   - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1909  *     software.
1910  *   - on every OUT packet received, UDCCSR0_OPC is raised and held until
1911  *     cleared by software.
1912  *   - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1913  *     before reading ep0.
1914  *     This is true only for PXA27x. This is not true anymore for PXA3xx family
1915  *     (check Back-to-Back setup packet in developers guide).
1916  *   - irq can be called on a "packet complete" event (opc_irq=1), while
1917  *     UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1918  *     from experimentation).
1919  *   - as UDCCSR0_SA can be activated while in irq handling, and clearing
1920  *     UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1921  *     => we never actually read the "status stage" packet of an IN data stage
1922  *     => this is not documented in Intel documentation
1923  *   - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1924  *     STAGE. The driver add STATUS STAGE to send last zero length packet in
1925  *     OUT_STATUS_STAGE.
1926  *   - special attention was needed for IN_STATUS_STAGE. If a packet complete
1927  *     event is detected, we terminate the status stage without ackowledging the
1928  *     packet (not to risk to loose a potential SETUP packet)
1929  */
handle_ep0(struct pxa_udc * udc,int fifo_irq,int opc_irq)1930 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1931 {
1932 	u32			udccsr0;
1933 	struct pxa_ep		*ep = &udc->pxa_ep[0];
1934 	struct pxa27x_request	*req = NULL;
1935 	int			completed = 0;
1936 
1937 	if (!list_empty(&ep->queue))
1938 		req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1939 
1940 	udccsr0 = udc_ep_readl(ep, UDCCSR);
1941 	ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1942 		EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1943 		(fifo_irq << 1 | opc_irq));
1944 
1945 	if (udccsr0 & UDCCSR0_SST) {
1946 		ep_dbg(ep, "clearing stall status\n");
1947 		nuke(ep, -EPIPE);
1948 		ep_write_UDCCSR(ep, UDCCSR0_SST);
1949 		ep0_idle(udc);
1950 	}
1951 
1952 	if (udccsr0 & UDCCSR0_SA) {
1953 		nuke(ep, 0);
1954 		set_ep0state(udc, SETUP_STAGE);
1955 	}
1956 
1957 	switch (udc->ep0state) {
1958 	case WAIT_FOR_SETUP:
1959 		/*
1960 		 * Hardware bug : beware, we cannot clear OPC, since we would
1961 		 * miss a potential OPC irq for a setup packet.
1962 		 * So, we only do ... nothing, and hope for a next irq with
1963 		 * UDCCSR0_SA set.
1964 		 */
1965 		break;
1966 	case SETUP_STAGE:
1967 		udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
1968 		if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
1969 			handle_ep0_ctrl_req(udc, req);
1970 		break;
1971 	case IN_DATA_STAGE:			/* GET_DESCRIPTOR */
1972 		if (epout_has_pkt(ep))
1973 			ep_write_UDCCSR(ep, UDCCSR0_OPC);
1974 		if (req && !ep_is_full(ep))
1975 			completed = write_ep0_fifo(ep, req);
1976 		if (completed)
1977 			ep0_end_in_req(ep, req, NULL);
1978 		break;
1979 	case OUT_DATA_STAGE:			/* SET_DESCRIPTOR */
1980 		if (epout_has_pkt(ep) && req)
1981 			completed = read_ep0_fifo(ep, req);
1982 		if (completed)
1983 			ep0_end_out_req(ep, req, NULL);
1984 		break;
1985 	case STALL:
1986 		ep_write_UDCCSR(ep, UDCCSR0_FST);
1987 		break;
1988 	case IN_STATUS_STAGE:
1989 		/*
1990 		 * Hardware bug : beware, we cannot clear OPC, since we would
1991 		 * miss a potential PC irq for a setup packet.
1992 		 * So, we only put the ep0 into WAIT_FOR_SETUP state.
1993 		 */
1994 		if (opc_irq)
1995 			ep0_idle(udc);
1996 		break;
1997 	case OUT_STATUS_STAGE:
1998 	case WAIT_ACK_SET_CONF_INTERF:
1999 		ep_warn(ep, "should never get in %s state here!!!\n",
2000 				EP0_STNAME(ep->dev));
2001 		ep0_idle(udc);
2002 		break;
2003 	}
2004 }
2005 
2006 /**
2007  * handle_ep - Handle endpoint data tranfers
2008  * @ep: pxa physical endpoint
2009  *
2010  * Tries to transfer all pending request data into the endpoint and/or
2011  * transfer all pending data in the endpoint into usb requests.
2012  *
2013  * Is always called from the interrupt handler. ep->lock must not be held.
2014  */
handle_ep(struct pxa_ep * ep)2015 static void handle_ep(struct pxa_ep *ep)
2016 {
2017 	struct pxa27x_request	*req;
2018 	int completed;
2019 	u32 udccsr;
2020 	int is_in = ep->dir_in;
2021 	int loop = 0;
2022 	unsigned long		flags;
2023 
2024 	spin_lock_irqsave(&ep->lock, flags);
2025 	if (ep->in_handle_ep)
2026 		goto recursion_detected;
2027 	ep->in_handle_ep = 1;
2028 
2029 	do {
2030 		completed = 0;
2031 		udccsr = udc_ep_readl(ep, UDCCSR);
2032 
2033 		if (likely(!list_empty(&ep->queue)))
2034 			req = list_entry(ep->queue.next,
2035 					struct pxa27x_request, queue);
2036 		else
2037 			req = NULL;
2038 
2039 		ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2040 				req, udccsr, loop++);
2041 
2042 		if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2043 			udc_ep_writel(ep, UDCCSR,
2044 					udccsr & (UDCCSR_SST | UDCCSR_TRN));
2045 		if (!req)
2046 			break;
2047 
2048 		if (unlikely(is_in)) {
2049 			if (likely(!ep_is_full(ep)))
2050 				completed = write_fifo(ep, req);
2051 		} else {
2052 			if (likely(epout_has_pkt(ep)))
2053 				completed = read_fifo(ep, req);
2054 		}
2055 
2056 		if (completed) {
2057 			if (is_in)
2058 				ep_end_in_req(ep, req, &flags);
2059 			else
2060 				ep_end_out_req(ep, req, &flags);
2061 		}
2062 	} while (completed);
2063 
2064 	ep->in_handle_ep = 0;
2065 recursion_detected:
2066 	spin_unlock_irqrestore(&ep->lock, flags);
2067 }
2068 
2069 /**
2070  * pxa27x_change_configuration - Handle SET_CONF usb request notification
2071  * @udc: udc device
2072  * @config: usb configuration
2073  *
2074  * Post the request to upper level.
2075  * Don't use any pxa specific harware configuration capabilities
2076  */
pxa27x_change_configuration(struct pxa_udc * udc,int config)2077 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2078 {
2079 	struct usb_ctrlrequest req ;
2080 
2081 	dev_dbg(udc->dev, "config=%d\n", config);
2082 
2083 	udc->config = config;
2084 	udc->last_interface = 0;
2085 	udc->last_alternate = 0;
2086 
2087 	req.bRequestType = 0;
2088 	req.bRequest = USB_REQ_SET_CONFIGURATION;
2089 	req.wValue = config;
2090 	req.wIndex = 0;
2091 	req.wLength = 0;
2092 
2093 	set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2094 	udc->driver->setup(&udc->gadget, &req);
2095 	ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2096 }
2097 
2098 /**
2099  * pxa27x_change_interface - Handle SET_INTERF usb request notification
2100  * @udc: udc device
2101  * @iface: interface number
2102  * @alt: alternate setting number
2103  *
2104  * Post the request to upper level.
2105  * Don't use any pxa specific harware configuration capabilities
2106  */
pxa27x_change_interface(struct pxa_udc * udc,int iface,int alt)2107 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2108 {
2109 	struct usb_ctrlrequest  req;
2110 
2111 	dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2112 
2113 	udc->last_interface = iface;
2114 	udc->last_alternate = alt;
2115 
2116 	req.bRequestType = USB_RECIP_INTERFACE;
2117 	req.bRequest = USB_REQ_SET_INTERFACE;
2118 	req.wValue = alt;
2119 	req.wIndex = iface;
2120 	req.wLength = 0;
2121 
2122 	set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2123 	udc->driver->setup(&udc->gadget, &req);
2124 	ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2125 }
2126 
2127 /*
2128  * irq_handle_data - Handle data transfer
2129  * @irq: irq IRQ number
2130  * @udc: dev pxa_udc device structure
2131  *
2132  * Called from irq handler, transferts data to or from endpoint to queue
2133  */
irq_handle_data(int irq,struct pxa_udc * udc)2134 static void irq_handle_data(int irq, struct pxa_udc *udc)
2135 {
2136 	int i;
2137 	struct pxa_ep *ep;
2138 	u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2139 	u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2140 
2141 	if (udcisr0 & UDCISR_INT_MASK) {
2142 		udc->pxa_ep[0].stats.irqs++;
2143 		udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2144 		handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2145 				!!(udcisr0 & UDCICR_PKTCOMPL));
2146 	}
2147 
2148 	udcisr0 >>= 2;
2149 	for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2150 		if (!(udcisr0 & UDCISR_INT_MASK))
2151 			continue;
2152 
2153 		udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2154 
2155 		WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2156 		if (i < ARRAY_SIZE(udc->pxa_ep)) {
2157 			ep = &udc->pxa_ep[i];
2158 			ep->stats.irqs++;
2159 			handle_ep(ep);
2160 		}
2161 	}
2162 
2163 	for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2164 		udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2165 		if (!(udcisr1 & UDCISR_INT_MASK))
2166 			continue;
2167 
2168 		WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2169 		if (i < ARRAY_SIZE(udc->pxa_ep)) {
2170 			ep = &udc->pxa_ep[i];
2171 			ep->stats.irqs++;
2172 			handle_ep(ep);
2173 		}
2174 	}
2175 
2176 }
2177 
2178 /**
2179  * irq_udc_suspend - Handle IRQ "UDC Suspend"
2180  * @udc: udc device
2181  */
irq_udc_suspend(struct pxa_udc * udc)2182 static void irq_udc_suspend(struct pxa_udc *udc)
2183 {
2184 	udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2185 	udc->stats.irqs_suspend++;
2186 
2187 	if (udc->gadget.speed != USB_SPEED_UNKNOWN
2188 			&& udc->driver && udc->driver->suspend)
2189 		udc->driver->suspend(&udc->gadget);
2190 	ep0_idle(udc);
2191 }
2192 
2193 /**
2194   * irq_udc_resume - Handle IRQ "UDC Resume"
2195   * @udc: udc device
2196   */
irq_udc_resume(struct pxa_udc * udc)2197 static void irq_udc_resume(struct pxa_udc *udc)
2198 {
2199 	udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2200 	udc->stats.irqs_resume++;
2201 
2202 	if (udc->gadget.speed != USB_SPEED_UNKNOWN
2203 			&& udc->driver && udc->driver->resume)
2204 		udc->driver->resume(&udc->gadget);
2205 }
2206 
2207 /**
2208  * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2209  * @udc: udc device
2210  */
irq_udc_reconfig(struct pxa_udc * udc)2211 static void irq_udc_reconfig(struct pxa_udc *udc)
2212 {
2213 	unsigned config, interface, alternate, config_change;
2214 	u32 udccr = udc_readl(udc, UDCCR);
2215 
2216 	udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2217 	udc->stats.irqs_reconfig++;
2218 
2219 	config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2220 	config_change = (config != udc->config);
2221 	pxa27x_change_configuration(udc, config);
2222 
2223 	interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2224 	alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2225 	pxa27x_change_interface(udc, interface, alternate);
2226 
2227 	if (config_change)
2228 		update_pxa_ep_matches(udc);
2229 	udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2230 }
2231 
2232 /**
2233  * irq_udc_reset - Handle IRQ "UDC Reset"
2234  * @udc: udc device
2235  */
irq_udc_reset(struct pxa_udc * udc)2236 static void irq_udc_reset(struct pxa_udc *udc)
2237 {
2238 	u32 udccr = udc_readl(udc, UDCCR);
2239 	struct pxa_ep *ep = &udc->pxa_ep[0];
2240 
2241 	dev_info(udc->dev, "USB reset\n");
2242 	udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2243 	udc->stats.irqs_reset++;
2244 
2245 	if ((udccr & UDCCR_UDA) == 0) {
2246 		dev_dbg(udc->dev, "USB reset start\n");
2247 		stop_activity(udc);
2248 	}
2249 	udc->gadget.speed = USB_SPEED_FULL;
2250 	memset(&udc->stats, 0, sizeof udc->stats);
2251 
2252 	nuke(ep, -EPROTO);
2253 	ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2254 	ep0_idle(udc);
2255 }
2256 
2257 /**
2258  * pxa_udc_irq - Main irq handler
2259  * @irq: irq number
2260  * @_dev: udc device
2261  *
2262  * Handles all udc interrupts
2263  */
pxa_udc_irq(int irq,void * _dev)2264 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2265 {
2266 	struct pxa_udc *udc = _dev;
2267 	u32 udcisr0 = udc_readl(udc, UDCISR0);
2268 	u32 udcisr1 = udc_readl(udc, UDCISR1);
2269 	u32 udccr = udc_readl(udc, UDCCR);
2270 	u32 udcisr1_spec;
2271 
2272 	dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2273 		 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2274 
2275 	udcisr1_spec = udcisr1 & 0xf8000000;
2276 	if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2277 		irq_udc_suspend(udc);
2278 	if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2279 		irq_udc_resume(udc);
2280 	if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2281 		irq_udc_reconfig(udc);
2282 	if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2283 		irq_udc_reset(udc);
2284 
2285 	if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2286 		irq_handle_data(irq, udc);
2287 
2288 	return IRQ_HANDLED;
2289 }
2290 
2291 static struct pxa_udc memory = {
2292 	.gadget = {
2293 		.ops		= &pxa_udc_ops,
2294 		.ep0		= &memory.udc_usb_ep[0].usb_ep,
2295 		.name		= driver_name,
2296 		.dev = {
2297 			.init_name	= "gadget",
2298 		},
2299 	},
2300 
2301 	.udc_usb_ep = {
2302 		USB_EP_CTRL,
2303 		USB_EP_OUT_BULK(1),
2304 		USB_EP_IN_BULK(2),
2305 		USB_EP_IN_ISO(3),
2306 		USB_EP_OUT_ISO(4),
2307 		USB_EP_IN_INT(5),
2308 	},
2309 
2310 	.pxa_ep = {
2311 		PXA_EP_CTRL,
2312 		/* Endpoints for gadget zero */
2313 		PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2314 		PXA_EP_IN_BULK(2,  2, 3, 0, 0),
2315 		/* Endpoints for ether gadget, file storage gadget */
2316 		PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2317 		PXA_EP_IN_BULK(4,  2, 1, 0, 0),
2318 		PXA_EP_IN_ISO(5,   3, 1, 0, 0),
2319 		PXA_EP_OUT_ISO(6,  4, 1, 0, 0),
2320 		PXA_EP_IN_INT(7,   5, 1, 0, 0),
2321 		/* Endpoints for RNDIS, serial */
2322 		PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2323 		PXA_EP_IN_BULK(9,  2, 2, 0, 0),
2324 		PXA_EP_IN_INT(10,  5, 2, 0, 0),
2325 		/*
2326 		 * All the following endpoints are only for completion.  They
2327 		 * won't never work, as multiple interfaces are really broken on
2328 		 * the pxa.
2329 		*/
2330 		PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2331 		PXA_EP_IN_BULK(12,  2, 2, 1, 0),
2332 		/* Endpoint for CDC Ether */
2333 		PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2334 		PXA_EP_IN_BULK(14,  2, 1, 1, 1),
2335 	}
2336 };
2337 
2338 #if defined(CONFIG_OF)
2339 static const struct of_device_id udc_pxa_dt_ids[] = {
2340 	{ .compatible = "marvell,pxa270-udc" },
2341 	{}
2342 };
2343 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2344 #endif
2345 
2346 /**
2347  * pxa_udc_probe - probes the udc device
2348  * @pdev: platform device
2349  *
2350  * Perform basic init : allocates udc clock, creates sysfs files, requests
2351  * irq.
2352  */
pxa_udc_probe(struct platform_device * pdev)2353 static int pxa_udc_probe(struct platform_device *pdev)
2354 {
2355 	struct pxa_udc *udc = &memory;
2356 	int retval = 0, gpio;
2357 	struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2358 	unsigned long gpio_flags;
2359 
2360 	if (mach) {
2361 		gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2362 		gpio = mach->gpio_pullup;
2363 		if (gpio_is_valid(gpio)) {
2364 			retval = devm_gpio_request_one(&pdev->dev, gpio,
2365 						       gpio_flags,
2366 						       "USB D+ pullup");
2367 			if (retval)
2368 				return retval;
2369 			udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2370 		}
2371 		udc->udc_command = mach->udc_command;
2372 	} else {
2373 		udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2374 	}
2375 
2376 	udc->regs = devm_platform_ioremap_resource(pdev, 0);
2377 	if (IS_ERR(udc->regs))
2378 		return PTR_ERR(udc->regs);
2379 	udc->irq = platform_get_irq(pdev, 0);
2380 	if (udc->irq < 0)
2381 		return udc->irq;
2382 
2383 	udc->dev = &pdev->dev;
2384 	if (of_have_populated_dt()) {
2385 		udc->transceiver =
2386 			devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2387 		if (IS_ERR(udc->transceiver))
2388 			return PTR_ERR(udc->transceiver);
2389 	} else {
2390 		udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2391 	}
2392 
2393 	if (IS_ERR(udc->gpiod)) {
2394 		dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2395 			PTR_ERR(udc->gpiod));
2396 		return PTR_ERR(udc->gpiod);
2397 	}
2398 	if (udc->gpiod)
2399 		gpiod_direction_output(udc->gpiod, 0);
2400 
2401 	udc->clk = devm_clk_get(&pdev->dev, NULL);
2402 	if (IS_ERR(udc->clk))
2403 		return PTR_ERR(udc->clk);
2404 
2405 	retval = clk_prepare(udc->clk);
2406 	if (retval)
2407 		return retval;
2408 
2409 	udc->vbus_sensed = 0;
2410 
2411 	the_controller = udc;
2412 	platform_set_drvdata(pdev, udc);
2413 	udc_init_data(udc);
2414 
2415 	/* irq setup after old hardware state is cleaned up */
2416 	retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2417 				  IRQF_SHARED, driver_name, udc);
2418 	if (retval != 0) {
2419 		dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2420 			driver_name, udc->irq, retval);
2421 		goto err;
2422 	}
2423 
2424 	if (!IS_ERR_OR_NULL(udc->transceiver))
2425 		usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2426 	retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2427 	if (retval)
2428 		goto err_add_gadget;
2429 
2430 	pxa_init_debugfs(udc);
2431 	if (should_enable_udc(udc))
2432 		udc_enable(udc);
2433 	return 0;
2434 
2435 err_add_gadget:
2436 	if (!IS_ERR_OR_NULL(udc->transceiver))
2437 		usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2438 err:
2439 	clk_unprepare(udc->clk);
2440 	return retval;
2441 }
2442 
2443 /**
2444  * pxa_udc_remove - removes the udc device driver
2445  * @_dev: platform device
2446  */
pxa_udc_remove(struct platform_device * _dev)2447 static void pxa_udc_remove(struct platform_device *_dev)
2448 {
2449 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2450 
2451 	usb_del_gadget_udc(&udc->gadget);
2452 	pxa_cleanup_debugfs(udc);
2453 
2454 	if (!IS_ERR_OR_NULL(udc->transceiver)) {
2455 		usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2456 		usb_put_phy(udc->transceiver);
2457 	}
2458 
2459 	udc->transceiver = NULL;
2460 	the_controller = NULL;
2461 	clk_unprepare(udc->clk);
2462 }
2463 
pxa_udc_shutdown(struct platform_device * _dev)2464 static void pxa_udc_shutdown(struct platform_device *_dev)
2465 {
2466 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2467 
2468 	if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2469 		udc_disable(udc);
2470 }
2471 
2472 #ifdef CONFIG_PM
2473 /**
2474  * pxa_udc_suspend - Suspend udc device
2475  * @_dev: platform device
2476  * @state: suspend state
2477  *
2478  * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2479  * device.
2480  */
pxa_udc_suspend(struct platform_device * _dev,pm_message_t state)2481 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2482 {
2483 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2484 	struct pxa_ep *ep;
2485 
2486 	ep = &udc->pxa_ep[0];
2487 	udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2488 
2489 	udc_disable(udc);
2490 	udc->pullup_resume = udc->pullup_on;
2491 	dplus_pullup(udc, 0);
2492 
2493 	if (udc->driver)
2494 		udc->driver->disconnect(&udc->gadget);
2495 
2496 	return 0;
2497 }
2498 
2499 /**
2500  * pxa_udc_resume - Resume udc device
2501  * @_dev: platform device
2502  *
2503  * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2504  * device.
2505  */
pxa_udc_resume(struct platform_device * _dev)2506 static int pxa_udc_resume(struct platform_device *_dev)
2507 {
2508 	struct pxa_udc *udc = platform_get_drvdata(_dev);
2509 	struct pxa_ep *ep;
2510 
2511 	ep = &udc->pxa_ep[0];
2512 	udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2513 
2514 	dplus_pullup(udc, udc->pullup_resume);
2515 	if (should_enable_udc(udc))
2516 		udc_enable(udc);
2517 	/*
2518 	 * We do not handle OTG yet.
2519 	 *
2520 	 * OTGPH bit is set when sleep mode is entered.
2521 	 * it indicates that OTG pad is retaining its state.
2522 	 * Upon exit from sleep mode and before clearing OTGPH,
2523 	 * Software must configure the USB OTG pad, UDC, and UHC
2524 	 * to the state they were in before entering sleep mode.
2525 	 */
2526 	pxa27x_clear_otgph();
2527 
2528 	return 0;
2529 }
2530 #endif
2531 
2532 /* work with hotplug and coldplug */
2533 MODULE_ALIAS("platform:pxa27x-udc");
2534 
2535 static struct platform_driver udc_driver = {
2536 	.driver		= {
2537 		.name	= "pxa27x-udc",
2538 		.of_match_table = of_match_ptr(udc_pxa_dt_ids),
2539 	},
2540 	.probe		= pxa_udc_probe,
2541 	.remove_new	= pxa_udc_remove,
2542 	.shutdown	= pxa_udc_shutdown,
2543 #ifdef CONFIG_PM
2544 	.suspend	= pxa_udc_suspend,
2545 	.resume		= pxa_udc_resume
2546 #endif
2547 };
2548 
2549 module_platform_driver(udc_driver);
2550 
2551 MODULE_DESCRIPTION(DRIVER_DESC);
2552 MODULE_AUTHOR("Robert Jarzmik");
2553 MODULE_LICENSE("GPL");
2554