1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41 struct scrub_ctx;
42
43 /*
44 * The following value only influences the performance.
45 *
46 * This determines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49 #define SCRUB_STRIPES_PER_GROUP 8
50
51 /*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57 #define SCRUB_GROUPS_PER_SCTX 16
58
59 #define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69 bool is_metadata;
70
71 union {
72 /*
73 * Csum pointer for data csum verification. Should point to a
74 * sector csum inside scrub_stripe::csums.
75 *
76 * NULL if this data sector has no csum.
77 */
78 u8 *csum;
79
80 /*
81 * Extra info for metadata verification. All sectors inside a
82 * tree block share the same generation.
83 */
84 u64 generation;
85 };
86 };
87
88 enum scrub_stripe_flags {
89 /* Set when @mirror_num, @dev, @physical and @logical are set. */
90 SCRUB_STRIPE_FLAG_INITIALIZED,
91
92 /* Set when the read-repair is finished. */
93 SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95 /*
96 * Set for data stripes if it's triggered from P/Q stripe.
97 * During such scrub, we should not report errors in data stripes, nor
98 * update the accounting.
99 */
100 SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102
103 #define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105 /*
106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107 */
108 struct scrub_stripe {
109 struct scrub_ctx *sctx;
110 struct btrfs_block_group *bg;
111
112 struct page *pages[SCRUB_STRIPE_PAGES];
113 struct scrub_sector_verification *sectors;
114
115 struct btrfs_device *dev;
116 u64 logical;
117 u64 physical;
118
119 u16 mirror_num;
120
121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 u16 nr_sectors;
123
124 /*
125 * How many data/meta extents are in this stripe. Only for scrub status
126 * reporting purposes.
127 */
128 u16 nr_data_extents;
129 u16 nr_meta_extents;
130
131 atomic_t pending_io;
132 wait_queue_head_t io_wait;
133 wait_queue_head_t repair_wait;
134
135 /*
136 * Indicate the states of the stripe. Bits are defined in
137 * scrub_stripe_flags enum.
138 */
139 unsigned long state;
140
141 /* Indicate which sectors are covered by extent items. */
142 unsigned long extent_sector_bitmap;
143
144 /*
145 * The errors hit during the initial read of the stripe.
146 *
147 * Would be utilized for error reporting and repair.
148 *
149 * The remaining init_nr_* records the number of errors hit, only used
150 * by error reporting.
151 */
152 unsigned long init_error_bitmap;
153 unsigned int init_nr_io_errors;
154 unsigned int init_nr_csum_errors;
155 unsigned int init_nr_meta_errors;
156
157 /*
158 * The following error bitmaps are all for the current status.
159 * Every time we submit a new read, these bitmaps may be updated.
160 *
161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 *
163 * IO and csum errors can happen for both metadata and data.
164 */
165 unsigned long error_bitmap;
166 unsigned long io_error_bitmap;
167 unsigned long csum_error_bitmap;
168 unsigned long meta_error_bitmap;
169
170 /* For writeback (repair or replace) error reporting. */
171 unsigned long write_error_bitmap;
172
173 /* Writeback can be concurrent, thus we need to protect the bitmap. */
174 spinlock_t write_error_lock;
175
176 /*
177 * Checksum for the whole stripe if this stripe is inside a data block
178 * group.
179 */
180 u8 *csums;
181
182 struct work_struct work;
183 };
184
185 struct scrub_ctx {
186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
187 struct scrub_stripe *raid56_data_stripes;
188 struct btrfs_fs_info *fs_info;
189 struct btrfs_path extent_path;
190 struct btrfs_path csum_path;
191 int first_free;
192 int cur_stripe;
193 atomic_t cancel_req;
194 int readonly;
195
196 /* State of IO submission throttling affecting the associated device */
197 ktime_t throttle_deadline;
198 u64 throttle_sent;
199
200 int is_dev_replace;
201 u64 write_pointer;
202
203 struct mutex wr_lock;
204 struct btrfs_device *wr_tgtdev;
205
206 /*
207 * statistics
208 */
209 struct btrfs_scrub_progress stat;
210 spinlock_t stat_lock;
211
212 /*
213 * Use a ref counter to avoid use-after-free issues. Scrub workers
214 * decrement bios_in_flight and workers_pending and then do a wakeup
215 * on the list_wait wait queue. We must ensure the main scrub task
216 * doesn't free the scrub context before or while the workers are
217 * doing the wakeup() call.
218 */
219 refcount_t refs;
220 };
221
222 struct scrub_warning {
223 struct btrfs_path *path;
224 u64 extent_item_size;
225 const char *errstr;
226 u64 physical;
227 u64 logical;
228 struct btrfs_device *dev;
229 };
230
release_scrub_stripe(struct scrub_stripe * stripe)231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233 if (!stripe)
234 return;
235
236 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237 if (stripe->pages[i])
238 __free_page(stripe->pages[i]);
239 stripe->pages[i] = NULL;
240 }
241 kfree(stripe->sectors);
242 kfree(stripe->csums);
243 stripe->sectors = NULL;
244 stripe->csums = NULL;
245 stripe->sctx = NULL;
246 stripe->state = 0;
247 }
248
init_scrub_stripe(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe)249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250 struct scrub_stripe *stripe)
251 {
252 int ret;
253
254 memset(stripe, 0, sizeof(*stripe));
255
256 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257 stripe->state = 0;
258
259 init_waitqueue_head(&stripe->io_wait);
260 init_waitqueue_head(&stripe->repair_wait);
261 atomic_set(&stripe->pending_io, 0);
262 spin_lock_init(&stripe->write_error_lock);
263
264 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
265 if (ret < 0)
266 goto error;
267
268 stripe->sectors = kcalloc(stripe->nr_sectors,
269 sizeof(struct scrub_sector_verification),
270 GFP_KERNEL);
271 if (!stripe->sectors)
272 goto error;
273
274 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275 fs_info->csum_size, GFP_KERNEL);
276 if (!stripe->csums)
277 goto error;
278 return 0;
279 error:
280 release_scrub_stripe(stripe);
281 return -ENOMEM;
282 }
283
wait_scrub_stripe_io(struct scrub_stripe * stripe)284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293 while (atomic_read(&fs_info->scrub_pause_req)) {
294 mutex_unlock(&fs_info->scrub_lock);
295 wait_event(fs_info->scrub_pause_wait,
296 atomic_read(&fs_info->scrub_pause_req) == 0);
297 mutex_lock(&fs_info->scrub_lock);
298 }
299 }
300
scrub_pause_on(struct btrfs_fs_info * fs_info)301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303 atomic_inc(&fs_info->scrubs_paused);
304 wake_up(&fs_info->scrub_pause_wait);
305 }
306
scrub_pause_off(struct btrfs_fs_info * fs_info)307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309 mutex_lock(&fs_info->scrub_lock);
310 __scrub_blocked_if_needed(fs_info);
311 atomic_dec(&fs_info->scrubs_paused);
312 mutex_unlock(&fs_info->scrub_lock);
313
314 wake_up(&fs_info->scrub_pause_wait);
315 }
316
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319 scrub_pause_on(fs_info);
320 scrub_pause_off(fs_info);
321 }
322
scrub_free_ctx(struct scrub_ctx * sctx)323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325 int i;
326
327 if (!sctx)
328 return;
329
330 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331 release_scrub_stripe(&sctx->stripes[i]);
332
333 kvfree(sctx);
334 }
335
scrub_put_ctx(struct scrub_ctx * sctx)336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338 if (refcount_dec_and_test(&sctx->refs))
339 scrub_free_ctx(sctx);
340 }
341
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343 struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345 struct scrub_ctx *sctx;
346 int i;
347
348 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
349 * kvzalloc().
350 */
351 sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352 if (!sctx)
353 goto nomem;
354 refcount_set(&sctx->refs, 1);
355 sctx->is_dev_replace = is_dev_replace;
356 sctx->fs_info = fs_info;
357 sctx->extent_path.search_commit_root = 1;
358 sctx->extent_path.skip_locking = 1;
359 sctx->csum_path.search_commit_root = 1;
360 sctx->csum_path.skip_locking = 1;
361 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362 int ret;
363
364 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365 if (ret < 0)
366 goto nomem;
367 sctx->stripes[i].sctx = sctx;
368 }
369 sctx->first_free = 0;
370 atomic_set(&sctx->cancel_req, 0);
371
372 spin_lock_init(&sctx->stat_lock);
373 sctx->throttle_deadline = 0;
374
375 mutex_init(&sctx->wr_lock);
376 if (is_dev_replace) {
377 WARN_ON(!fs_info->dev_replace.tgtdev);
378 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379 }
380
381 return sctx;
382
383 nomem:
384 scrub_free_ctx(sctx);
385 return ERR_PTR(-ENOMEM);
386 }
387
scrub_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389 u64 root, void *warn_ctx)
390 {
391 u32 nlink;
392 int ret;
393 int i;
394 unsigned nofs_flag;
395 struct extent_buffer *eb;
396 struct btrfs_inode_item *inode_item;
397 struct scrub_warning *swarn = warn_ctx;
398 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399 struct inode_fs_paths *ipath = NULL;
400 struct btrfs_root *local_root;
401 struct btrfs_key key;
402
403 local_root = btrfs_get_fs_root(fs_info, root, true);
404 if (IS_ERR(local_root)) {
405 ret = PTR_ERR(local_root);
406 goto err;
407 }
408
409 /*
410 * this makes the path point to (inum INODE_ITEM ioff)
411 */
412 key.objectid = inum;
413 key.type = BTRFS_INODE_ITEM_KEY;
414 key.offset = 0;
415
416 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417 if (ret) {
418 btrfs_put_root(local_root);
419 btrfs_release_path(swarn->path);
420 goto err;
421 }
422
423 eb = swarn->path->nodes[0];
424 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425 struct btrfs_inode_item);
426 nlink = btrfs_inode_nlink(eb, inode_item);
427 btrfs_release_path(swarn->path);
428
429 /*
430 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431 * uses GFP_NOFS in this context, so we keep it consistent but it does
432 * not seem to be strictly necessary.
433 */
434 nofs_flag = memalloc_nofs_save();
435 ipath = init_ipath(4096, local_root, swarn->path);
436 memalloc_nofs_restore(nofs_flag);
437 if (IS_ERR(ipath)) {
438 btrfs_put_root(local_root);
439 ret = PTR_ERR(ipath);
440 ipath = NULL;
441 goto err;
442 }
443 ret = paths_from_inode(inum, ipath);
444
445 if (ret < 0)
446 goto err;
447
448 /*
449 * we deliberately ignore the bit ipath might have been too small to
450 * hold all of the paths here
451 */
452 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453 btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455 swarn->errstr, swarn->logical,
456 btrfs_dev_name(swarn->dev),
457 swarn->physical,
458 root, inum, offset,
459 fs_info->sectorsize, nlink,
460 (char *)(unsigned long)ipath->fspath->val[i]);
461
462 btrfs_put_root(local_root);
463 free_ipath(ipath);
464 return 0;
465
466 err:
467 btrfs_warn_in_rcu(fs_info,
468 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469 swarn->errstr, swarn->logical,
470 btrfs_dev_name(swarn->dev),
471 swarn->physical,
472 root, inum, offset, ret);
473
474 free_ipath(ipath);
475 return 0;
476 }
477
scrub_print_common_warning(const char * errstr,struct btrfs_device * dev,bool is_super,u64 logical,u64 physical)478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479 bool is_super, u64 logical, u64 physical)
480 {
481 struct btrfs_fs_info *fs_info = dev->fs_info;
482 struct btrfs_path *path;
483 struct btrfs_key found_key;
484 struct extent_buffer *eb;
485 struct btrfs_extent_item *ei;
486 struct scrub_warning swarn;
487 u64 flags = 0;
488 u32 item_size;
489 int ret;
490
491 /* Super block error, no need to search extent tree. */
492 if (is_super) {
493 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494 errstr, btrfs_dev_name(dev), physical);
495 return;
496 }
497 path = btrfs_alloc_path();
498 if (!path)
499 return;
500
501 swarn.physical = physical;
502 swarn.logical = logical;
503 swarn.errstr = errstr;
504 swarn.dev = NULL;
505
506 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507 &flags);
508 if (ret < 0)
509 goto out;
510
511 swarn.extent_item_size = found_key.offset;
512
513 eb = path->nodes[0];
514 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515 item_size = btrfs_item_size(eb, path->slots[0]);
516
517 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518 unsigned long ptr = 0;
519 u8 ref_level;
520 u64 ref_root;
521
522 while (true) {
523 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524 item_size, &ref_root,
525 &ref_level);
526 if (ret < 0) {
527 btrfs_warn(fs_info,
528 "failed to resolve tree backref for logical %llu: %d",
529 swarn.logical, ret);
530 break;
531 }
532 if (ret > 0)
533 break;
534 btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536 errstr, swarn.logical, btrfs_dev_name(dev),
537 swarn.physical, (ref_level ? "node" : "leaf"),
538 ref_level, ref_root);
539 }
540 btrfs_release_path(path);
541 } else {
542 struct btrfs_backref_walk_ctx ctx = { 0 };
543
544 btrfs_release_path(path);
545
546 ctx.bytenr = found_key.objectid;
547 ctx.extent_item_pos = swarn.logical - found_key.objectid;
548 ctx.fs_info = fs_info;
549
550 swarn.path = path;
551 swarn.dev = dev;
552
553 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554 }
555
556 out:
557 btrfs_free_path(path);
558 }
559
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562 int ret = 0;
563 u64 length;
564
565 if (!btrfs_is_zoned(sctx->fs_info))
566 return 0;
567
568 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569 return 0;
570
571 if (sctx->write_pointer < physical) {
572 length = physical - sctx->write_pointer;
573
574 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575 sctx->write_pointer, length);
576 if (!ret)
577 sctx->write_pointer = physical;
578 }
579 return ret;
580 }
581
scrub_stripe_get_page(struct scrub_stripe * stripe,int sector_nr)582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586
587 return stripe->pages[page_index];
588 }
589
scrub_stripe_get_page_offset(struct scrub_stripe * stripe,int sector_nr)590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591 int sector_nr)
592 {
593 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594
595 return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597
scrub_verify_one_metadata(struct scrub_stripe * stripe,int sector_nr)598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606 u8 on_disk_csum[BTRFS_CSUM_SIZE];
607 u8 calculated_csum[BTRFS_CSUM_SIZE];
608 struct btrfs_header *header;
609
610 /*
611 * Here we don't have a good way to attach the pages (and subpages)
612 * to a dummy extent buffer, thus we have to directly grab the members
613 * from pages.
614 */
615 header = (struct btrfs_header *)(page_address(first_page) + first_off);
616 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617
618 if (logical != btrfs_stack_header_bytenr(header)) {
619 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621 btrfs_warn_rl(fs_info,
622 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623 logical, stripe->mirror_num,
624 btrfs_stack_header_bytenr(header), logical);
625 return;
626 }
627 if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628 BTRFS_FSID_SIZE) != 0) {
629 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631 btrfs_warn_rl(fs_info,
632 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
633 logical, stripe->mirror_num,
634 header->fsid, fs_info->fs_devices->fsid);
635 return;
636 }
637 if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638 BTRFS_UUID_SIZE) != 0) {
639 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641 btrfs_warn_rl(fs_info,
642 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643 logical, stripe->mirror_num,
644 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645 return;
646 }
647
648 /* Now check tree block csum. */
649 shash->tfm = fs_info->csum_shash;
650 crypto_shash_init(shash);
651 crypto_shash_update(shash, page_address(first_page) + first_off +
652 BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653
654 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655 struct page *page = scrub_stripe_get_page(stripe, i);
656 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657
658 crypto_shash_update(shash, page_address(page) + page_off,
659 fs_info->sectorsize);
660 }
661
662 crypto_shash_final(shash, calculated_csum);
663 if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666 btrfs_warn_rl(fs_info,
667 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668 logical, stripe->mirror_num,
669 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671 return;
672 }
673 if (stripe->sectors[sector_nr].generation !=
674 btrfs_stack_header_generation(header)) {
675 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677 btrfs_warn_rl(fs_info,
678 "tree block %llu mirror %u has bad generation, has %llu want %llu",
679 logical, stripe->mirror_num,
680 btrfs_stack_header_generation(header),
681 stripe->sectors[sector_nr].generation);
682 return;
683 }
684 bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685 bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686 bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688
scrub_verify_one_sector(struct scrub_stripe * stripe,int sector_nr)689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696 u8 csum_buf[BTRFS_CSUM_SIZE];
697 int ret;
698
699 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700
701 /* Sector not utilized, skip it. */
702 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703 return;
704
705 /* IO error, no need to check. */
706 if (test_bit(sector_nr, &stripe->io_error_bitmap))
707 return;
708
709 /* Metadata, verify the full tree block. */
710 if (sector->is_metadata) {
711 /*
712 * Check if the tree block crosses the stripe boundary. If
713 * crossed the boundary, we cannot verify it but only give a
714 * warning.
715 *
716 * This can only happen on a very old filesystem where chunks
717 * are not ensured to be stripe aligned.
718 */
719 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720 btrfs_warn_rl(fs_info,
721 "tree block at %llu crosses stripe boundary %llu",
722 stripe->logical +
723 (sector_nr << fs_info->sectorsize_bits),
724 stripe->logical);
725 return;
726 }
727 scrub_verify_one_metadata(stripe, sector_nr);
728 return;
729 }
730
731 /*
732 * Data is easier, we just verify the data csum (if we have it). For
733 * cases without csum, we have no other choice but to trust it.
734 */
735 if (!sector->csum) {
736 clear_bit(sector_nr, &stripe->error_bitmap);
737 return;
738 }
739
740 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741 if (ret < 0) {
742 set_bit(sector_nr, &stripe->csum_error_bitmap);
743 set_bit(sector_nr, &stripe->error_bitmap);
744 } else {
745 clear_bit(sector_nr, &stripe->csum_error_bitmap);
746 clear_bit(sector_nr, &stripe->error_bitmap);
747 }
748 }
749
750 /* Verify specified sectors of a stripe. */
scrub_verify_one_stripe(struct scrub_stripe * stripe,unsigned long bitmap)751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755 int sector_nr;
756
757 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758 scrub_verify_one_sector(stripe, sector_nr);
759 if (stripe->sectors[sector_nr].is_metadata)
760 sector_nr += sectors_per_tree - 1;
761 }
762 }
763
calc_sector_number(struct scrub_stripe * stripe,struct bio_vec * first_bvec)764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766 int i;
767
768 for (i = 0; i < stripe->nr_sectors; i++) {
769 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770 scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771 break;
772 }
773 ASSERT(i < stripe->nr_sectors);
774 return i;
775 }
776
777 /*
778 * Repair read is different to the regular read:
779 *
780 * - Only reads the failed sectors
781 * - May have extra blocksize limits
782 */
scrub_repair_read_endio(struct btrfs_bio * bbio)783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785 struct scrub_stripe *stripe = bbio->private;
786 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787 struct bio_vec *bvec;
788 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789 u32 bio_size = 0;
790 int i;
791
792 ASSERT(sector_nr < stripe->nr_sectors);
793
794 bio_for_each_bvec_all(bvec, &bbio->bio, i)
795 bio_size += bvec->bv_len;
796
797 if (bbio->bio.bi_status) {
798 bitmap_set(&stripe->io_error_bitmap, sector_nr,
799 bio_size >> fs_info->sectorsize_bits);
800 bitmap_set(&stripe->error_bitmap, sector_nr,
801 bio_size >> fs_info->sectorsize_bits);
802 } else {
803 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804 bio_size >> fs_info->sectorsize_bits);
805 }
806 bio_put(&bbio->bio);
807 if (atomic_dec_and_test(&stripe->pending_io))
808 wake_up(&stripe->io_wait);
809 }
810
calc_next_mirror(int mirror,int num_copies)811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813 ASSERT(mirror <= num_copies);
814 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816
scrub_stripe_submit_repair_read(struct scrub_stripe * stripe,int mirror,int blocksize,bool wait)817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818 int mirror, int blocksize, bool wait)
819 {
820 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821 struct btrfs_bio *bbio = NULL;
822 const unsigned long old_error_bitmap = stripe->error_bitmap;
823 int i;
824
825 ASSERT(stripe->mirror_num >= 1);
826 ASSERT(atomic_read(&stripe->pending_io) == 0);
827
828 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829 struct page *page;
830 int pgoff;
831 int ret;
832
833 page = scrub_stripe_get_page(stripe, i);
834 pgoff = scrub_stripe_get_page_offset(stripe, i);
835
836 /* The current sector cannot be merged, submit the bio. */
837 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838 bbio->bio.bi_iter.bi_size >= blocksize)) {
839 ASSERT(bbio->bio.bi_iter.bi_size);
840 atomic_inc(&stripe->pending_io);
841 btrfs_submit_bbio(bbio, mirror);
842 if (wait)
843 wait_scrub_stripe_io(stripe);
844 bbio = NULL;
845 }
846
847 if (!bbio) {
848 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849 fs_info, scrub_repair_read_endio, stripe);
850 bbio->bio.bi_iter.bi_sector = (stripe->logical +
851 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852 }
853
854 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855 ASSERT(ret == fs_info->sectorsize);
856 }
857 if (bbio) {
858 ASSERT(bbio->bio.bi_iter.bi_size);
859 atomic_inc(&stripe->pending_io);
860 btrfs_submit_bbio(bbio, mirror);
861 if (wait)
862 wait_scrub_stripe_io(stripe);
863 }
864 }
865
scrub_stripe_report_errors(struct scrub_ctx * sctx,struct scrub_stripe * stripe)866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867 struct scrub_stripe *stripe)
868 {
869 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870 DEFAULT_RATELIMIT_BURST);
871 struct btrfs_fs_info *fs_info = sctx->fs_info;
872 struct btrfs_device *dev = NULL;
873 u64 physical = 0;
874 int nr_data_sectors = 0;
875 int nr_meta_sectors = 0;
876 int nr_nodatacsum_sectors = 0;
877 int nr_repaired_sectors = 0;
878 int sector_nr;
879
880 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881 return;
882
883 /*
884 * Init needed infos for error reporting.
885 *
886 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887 * thus no need for dev/physical, error reporting still needs dev and physical.
888 */
889 if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890 u64 mapped_len = fs_info->sectorsize;
891 struct btrfs_io_context *bioc = NULL;
892 int stripe_index = stripe->mirror_num - 1;
893 int ret;
894
895 /* For scrub, our mirror_num should always start at 1. */
896 ASSERT(stripe->mirror_num >= 1);
897 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898 stripe->logical, &mapped_len, &bioc,
899 NULL, NULL);
900 /*
901 * If we failed, dev will be NULL, and later detailed reports
902 * will just be skipped.
903 */
904 if (ret < 0)
905 goto skip;
906 physical = bioc->stripes[stripe_index].physical;
907 dev = bioc->stripes[stripe_index].dev;
908 btrfs_put_bioc(bioc);
909 }
910
911 skip:
912 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913 bool repaired = false;
914
915 if (stripe->sectors[sector_nr].is_metadata) {
916 nr_meta_sectors++;
917 } else {
918 nr_data_sectors++;
919 if (!stripe->sectors[sector_nr].csum)
920 nr_nodatacsum_sectors++;
921 }
922
923 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924 !test_bit(sector_nr, &stripe->error_bitmap)) {
925 nr_repaired_sectors++;
926 repaired = true;
927 }
928
929 /* Good sector from the beginning, nothing need to be done. */
930 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931 continue;
932
933 /*
934 * Report error for the corrupted sectors. If repaired, just
935 * output the message of repaired message.
936 */
937 if (repaired) {
938 if (dev) {
939 btrfs_err_rl_in_rcu(fs_info,
940 "fixed up error at logical %llu on dev %s physical %llu",
941 stripe->logical, btrfs_dev_name(dev),
942 physical);
943 } else {
944 btrfs_err_rl_in_rcu(fs_info,
945 "fixed up error at logical %llu on mirror %u",
946 stripe->logical, stripe->mirror_num);
947 }
948 continue;
949 }
950
951 /* The remaining are all for unrepaired. */
952 if (dev) {
953 btrfs_err_rl_in_rcu(fs_info,
954 "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955 stripe->logical, btrfs_dev_name(dev),
956 physical);
957 } else {
958 btrfs_err_rl_in_rcu(fs_info,
959 "unable to fixup (regular) error at logical %llu on mirror %u",
960 stripe->logical, stripe->mirror_num);
961 }
962
963 if (test_bit(sector_nr, &stripe->io_error_bitmap))
964 if (__ratelimit(&rs) && dev)
965 scrub_print_common_warning("i/o error", dev, false,
966 stripe->logical, physical);
967 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968 if (__ratelimit(&rs) && dev)
969 scrub_print_common_warning("checksum error", dev, false,
970 stripe->logical, physical);
971 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972 if (__ratelimit(&rs) && dev)
973 scrub_print_common_warning("header error", dev, false,
974 stripe->logical, physical);
975 }
976
977 spin_lock(&sctx->stat_lock);
978 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982 sctx->stat.no_csum += nr_nodatacsum_sectors;
983 sctx->stat.read_errors += stripe->init_nr_io_errors;
984 sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985 sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986 sctx->stat.uncorrectable_errors +=
987 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988 sctx->stat.corrected_errors += nr_repaired_sectors;
989 spin_unlock(&sctx->stat_lock);
990 }
991
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993 unsigned long write_bitmap, bool dev_replace);
994
995 /*
996 * The main entrance for all read related scrub work, including:
997 *
998 * - Wait for the initial read to finish
999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 * possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
scrub_stripe_read_repair_worker(struct work_struct * work)1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011 struct scrub_ctx *sctx = stripe->sctx;
1012 struct btrfs_fs_info *fs_info = sctx->fs_info;
1013 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014 stripe->bg->length);
1015 unsigned long repaired;
1016 int mirror;
1017 int i;
1018
1019 ASSERT(stripe->mirror_num > 0);
1020
1021 wait_scrub_stripe_io(stripe);
1022 scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023 /* Save the initial failed bitmap for later repair and report usage. */
1024 stripe->init_error_bitmap = stripe->error_bitmap;
1025 stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026 stripe->nr_sectors);
1027 stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028 stripe->nr_sectors);
1029 stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030 stripe->nr_sectors);
1031
1032 if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033 goto out;
1034
1035 /*
1036 * Try all remaining mirrors.
1037 *
1038 * Here we still try to read as large block as possible, as this is
1039 * faster and we have extra safety nets to rely on.
1040 */
1041 for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042 mirror != stripe->mirror_num;
1043 mirror = calc_next_mirror(mirror, num_copies)) {
1044 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046 scrub_stripe_submit_repair_read(stripe, mirror,
1047 BTRFS_STRIPE_LEN, false);
1048 wait_scrub_stripe_io(stripe);
1049 scrub_verify_one_stripe(stripe, old_error_bitmap);
1050 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051 goto out;
1052 }
1053
1054 /*
1055 * Last safety net, try re-checking all mirrors, including the failed
1056 * one, sector-by-sector.
1057 *
1058 * As if one sector failed the drive's internal csum, the whole read
1059 * containing the offending sector would be marked as error.
1060 * Thus here we do sector-by-sector read.
1061 *
1062 * This can be slow, thus we only try it as the last resort.
1063 */
1064
1065 for (i = 0, mirror = stripe->mirror_num;
1066 i < num_copies;
1067 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070 scrub_stripe_submit_repair_read(stripe, mirror,
1071 fs_info->sectorsize, true);
1072 wait_scrub_stripe_io(stripe);
1073 scrub_verify_one_stripe(stripe, old_error_bitmap);
1074 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075 goto out;
1076 }
1077 out:
1078 /*
1079 * Submit the repaired sectors. For zoned case, we cannot do repair
1080 * in-place, but queue the bg to be relocated.
1081 */
1082 bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083 stripe->nr_sectors);
1084 if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085 if (btrfs_is_zoned(fs_info)) {
1086 btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087 } else {
1088 scrub_write_sectors(sctx, stripe, repaired, false);
1089 wait_scrub_stripe_io(stripe);
1090 }
1091 }
1092
1093 scrub_stripe_report_errors(sctx, stripe);
1094 set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095 wake_up(&stripe->repair_wait);
1096 }
1097
scrub_read_endio(struct btrfs_bio * bbio)1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100 struct scrub_stripe *stripe = bbio->private;
1101 struct bio_vec *bvec;
1102 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103 int num_sectors;
1104 u32 bio_size = 0;
1105 int i;
1106
1107 ASSERT(sector_nr < stripe->nr_sectors);
1108 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109 bio_size += bvec->bv_len;
1110 num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112 if (bbio->bio.bi_status) {
1113 bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114 bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115 } else {
1116 bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117 }
1118 bio_put(&bbio->bio);
1119 if (atomic_dec_and_test(&stripe->pending_io)) {
1120 wake_up(&stripe->io_wait);
1121 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123 }
1124 }
1125
scrub_write_endio(struct btrfs_bio * bbio)1126 static void scrub_write_endio(struct btrfs_bio *bbio)
1127 {
1128 struct scrub_stripe *stripe = bbio->private;
1129 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130 struct bio_vec *bvec;
1131 int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132 u32 bio_size = 0;
1133 int i;
1134
1135 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136 bio_size += bvec->bv_len;
1137
1138 if (bbio->bio.bi_status) {
1139 unsigned long flags;
1140
1141 spin_lock_irqsave(&stripe->write_error_lock, flags);
1142 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143 bio_size >> fs_info->sectorsize_bits);
1144 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145 }
1146 bio_put(&bbio->bio);
1147
1148 if (atomic_dec_and_test(&stripe->pending_io))
1149 wake_up(&stripe->io_wait);
1150 }
1151
scrub_submit_write_bio(struct scrub_ctx * sctx,struct scrub_stripe * stripe,struct btrfs_bio * bbio,bool dev_replace)1152 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153 struct scrub_stripe *stripe,
1154 struct btrfs_bio *bbio, bool dev_replace)
1155 {
1156 struct btrfs_fs_info *fs_info = sctx->fs_info;
1157 u32 bio_len = bbio->bio.bi_iter.bi_size;
1158 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159 stripe->logical;
1160
1161 fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162 atomic_inc(&stripe->pending_io);
1163 btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164 if (!btrfs_is_zoned(fs_info))
1165 return;
1166 /*
1167 * For zoned writeback, queue depth must be 1, thus we must wait for
1168 * the write to finish before the next write.
1169 */
1170 wait_scrub_stripe_io(stripe);
1171
1172 /*
1173 * And also need to update the write pointer if write finished
1174 * successfully.
1175 */
1176 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177 &stripe->write_error_bitmap))
1178 sctx->write_pointer += bio_len;
1179 }
1180
1181 /*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 * Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 * Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
scrub_write_sectors(struct scrub_ctx * sctx,struct scrub_stripe * stripe,unsigned long write_bitmap,bool dev_replace)1194 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195 unsigned long write_bitmap, bool dev_replace)
1196 {
1197 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198 struct btrfs_bio *bbio = NULL;
1199 int sector_nr;
1200
1201 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204 int ret;
1205
1206 /* We should only writeback sectors covered by an extent. */
1207 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1208
1209 /* Cannot merge with previous sector, submit the current one. */
1210 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212 bbio = NULL;
1213 }
1214 if (!bbio) {
1215 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216 fs_info, scrub_write_endio, stripe);
1217 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218 (sector_nr << fs_info->sectorsize_bits)) >>
1219 SECTOR_SHIFT;
1220 }
1221 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222 ASSERT(ret == fs_info->sectorsize);
1223 }
1224 if (bbio)
1225 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1226 }
1227
1228 /*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
scrub_throttle_dev_io(struct scrub_ctx * sctx,struct btrfs_device * device,unsigned int bio_size)1232 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233 unsigned int bio_size)
1234 {
1235 const int time_slice = 1000;
1236 s64 delta;
1237 ktime_t now;
1238 u32 div;
1239 u64 bwlimit;
1240
1241 bwlimit = READ_ONCE(device->scrub_speed_max);
1242 if (bwlimit == 0)
1243 return;
1244
1245 /*
1246 * Slice is divided into intervals when the IO is submitted, adjust by
1247 * bwlimit and maximum of 64 intervals.
1248 */
1249 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250 div = min_t(u32, 64, div);
1251
1252 /* Start new epoch, set deadline */
1253 now = ktime_get();
1254 if (sctx->throttle_deadline == 0) {
1255 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256 sctx->throttle_sent = 0;
1257 }
1258
1259 /* Still in the time to send? */
1260 if (ktime_before(now, sctx->throttle_deadline)) {
1261 /* If current bio is within the limit, send it */
1262 sctx->throttle_sent += bio_size;
1263 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264 return;
1265
1266 /* We're over the limit, sleep until the rest of the slice */
1267 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268 } else {
1269 /* New request after deadline, start new epoch */
1270 delta = 0;
1271 }
1272
1273 if (delta) {
1274 long timeout;
1275
1276 timeout = div_u64(delta * HZ, 1000);
1277 schedule_timeout_interruptible(timeout);
1278 }
1279
1280 /* Next call will start the deadline period */
1281 sctx->throttle_deadline = 0;
1282 }
1283
1284 /*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
get_raid56_logic_offset(u64 physical,int num,struct btrfs_chunk_map * map,u64 * offset,u64 * stripe_start)1291 static int get_raid56_logic_offset(u64 physical, int num,
1292 struct btrfs_chunk_map *map, u64 *offset,
1293 u64 *stripe_start)
1294 {
1295 int i;
1296 int j = 0;
1297 u64 last_offset;
1298 const int data_stripes = nr_data_stripes(map);
1299
1300 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301 if (stripe_start)
1302 *stripe_start = last_offset;
1303
1304 *offset = last_offset;
1305 for (i = 0; i < data_stripes; i++) {
1306 u32 stripe_nr;
1307 u32 stripe_index;
1308 u32 rot;
1309
1310 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1311
1312 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1313
1314 /* Work out the disk rotation on this stripe-set */
1315 rot = stripe_nr % map->num_stripes;
1316 /* calculate which stripe this data locates */
1317 rot += i;
1318 stripe_index = rot % map->num_stripes;
1319 if (stripe_index == num)
1320 return 0;
1321 if (stripe_index < num)
1322 j++;
1323 }
1324 *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325 return 1;
1326 }
1327
1328 /*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)1333 static int compare_extent_item_range(struct btrfs_path *path,
1334 u64 search_start, u64 search_len)
1335 {
1336 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337 u64 len;
1338 struct btrfs_key key;
1339
1340 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342 key.type == BTRFS_METADATA_ITEM_KEY);
1343 if (key.type == BTRFS_METADATA_ITEM_KEY)
1344 len = fs_info->nodesize;
1345 else
1346 len = key.offset;
1347
1348 if (key.objectid + len <= search_start)
1349 return -1;
1350 if (key.objectid >= search_start + search_len)
1351 return 1;
1352 return 0;
1353 }
1354
1355 /*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)1371 static int find_first_extent_item(struct btrfs_root *extent_root,
1372 struct btrfs_path *path,
1373 u64 search_start, u64 search_len)
1374 {
1375 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376 struct btrfs_key key;
1377 int ret;
1378
1379 /* Continue using the existing path */
1380 if (path->nodes[0])
1381 goto search_forward;
1382
1383 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384 key.type = BTRFS_METADATA_ITEM_KEY;
1385 else
1386 key.type = BTRFS_EXTENT_ITEM_KEY;
1387 key.objectid = search_start;
1388 key.offset = (u64)-1;
1389
1390 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391 if (ret < 0)
1392 return ret;
1393 if (ret == 0) {
1394 /*
1395 * Key with offset -1 found, there would have to exist an extent
1396 * item with such offset, but this is out of the valid range.
1397 */
1398 btrfs_release_path(path);
1399 return -EUCLEAN;
1400 }
1401
1402 /*
1403 * Here we intentionally pass 0 as @min_objectid, as there could be
1404 * an extent item starting before @search_start.
1405 */
1406 ret = btrfs_previous_extent_item(extent_root, path, 0);
1407 if (ret < 0)
1408 return ret;
1409 /*
1410 * No matter whether we have found an extent item, the next loop will
1411 * properly do every check on the key.
1412 */
1413 search_forward:
1414 while (true) {
1415 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416 if (key.objectid >= search_start + search_len)
1417 break;
1418 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419 key.type != BTRFS_EXTENT_ITEM_KEY)
1420 goto next;
1421
1422 ret = compare_extent_item_range(path, search_start, search_len);
1423 if (ret == 0)
1424 return ret;
1425 if (ret > 0)
1426 break;
1427 next:
1428 ret = btrfs_next_item(extent_root, path);
1429 if (ret) {
1430 /* Either no more items or a fatal error. */
1431 btrfs_release_path(path);
1432 return ret;
1433 }
1434 }
1435 btrfs_release_path(path);
1436 return 1;
1437 }
1438
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)1439 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441 {
1442 struct btrfs_key key;
1443 struct btrfs_extent_item *ei;
1444
1445 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447 key.type == BTRFS_EXTENT_ITEM_KEY);
1448 *extent_start_ret = key.objectid;
1449 if (key.type == BTRFS_METADATA_ITEM_KEY)
1450 *size_ret = path->nodes[0]->fs_info->nodesize;
1451 else
1452 *size_ret = key.offset;
1453 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454 *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455 *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1456 }
1457
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)1458 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459 u64 physical, u64 physical_end)
1460 {
1461 struct btrfs_fs_info *fs_info = sctx->fs_info;
1462 int ret = 0;
1463
1464 if (!btrfs_is_zoned(fs_info))
1465 return 0;
1466
1467 mutex_lock(&sctx->wr_lock);
1468 if (sctx->write_pointer < physical_end) {
1469 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470 physical,
1471 sctx->write_pointer);
1472 if (ret)
1473 btrfs_err(fs_info,
1474 "zoned: failed to recover write pointer");
1475 }
1476 mutex_unlock(&sctx->wr_lock);
1477 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478
1479 return ret;
1480 }
1481
fill_one_extent_info(struct btrfs_fs_info * fs_info,struct scrub_stripe * stripe,u64 extent_start,u64 extent_len,u64 extent_flags,u64 extent_gen)1482 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483 struct scrub_stripe *stripe,
1484 u64 extent_start, u64 extent_len,
1485 u64 extent_flags, u64 extent_gen)
1486 {
1487 for (u64 cur_logical = max(stripe->logical, extent_start);
1488 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489 extent_start + extent_len);
1490 cur_logical += fs_info->sectorsize) {
1491 const int nr_sector = (cur_logical - stripe->logical) >>
1492 fs_info->sectorsize_bits;
1493 struct scrub_sector_verification *sector =
1494 &stripe->sectors[nr_sector];
1495
1496 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498 sector->is_metadata = true;
1499 sector->generation = extent_gen;
1500 }
1501 }
1502 }
1503
scrub_stripe_reset_bitmaps(struct scrub_stripe * stripe)1504 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505 {
1506 stripe->extent_sector_bitmap = 0;
1507 stripe->init_error_bitmap = 0;
1508 stripe->init_nr_io_errors = 0;
1509 stripe->init_nr_csum_errors = 0;
1510 stripe->init_nr_meta_errors = 0;
1511 stripe->error_bitmap = 0;
1512 stripe->io_error_bitmap = 0;
1513 stripe->csum_error_bitmap = 0;
1514 stripe->meta_error_bitmap = 0;
1515 }
1516
1517 /*
1518 * Locate one stripe which has at least one extent in its range.
1519 *
1520 * Return 0 if found such stripe, and store its info into @stripe.
1521 * Return >0 if there is no such stripe in the specified range.
1522 * Return <0 for error.
1523 */
scrub_find_fill_first_stripe(struct btrfs_block_group * bg,struct btrfs_path * extent_path,struct btrfs_path * csum_path,struct btrfs_device * dev,u64 physical,int mirror_num,u64 logical_start,u32 logical_len,struct scrub_stripe * stripe)1524 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525 struct btrfs_path *extent_path,
1526 struct btrfs_path *csum_path,
1527 struct btrfs_device *dev, u64 physical,
1528 int mirror_num, u64 logical_start,
1529 u32 logical_len,
1530 struct scrub_stripe *stripe)
1531 {
1532 struct btrfs_fs_info *fs_info = bg->fs_info;
1533 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535 const u64 logical_end = logical_start + logical_len;
1536 u64 cur_logical = logical_start;
1537 u64 stripe_end;
1538 u64 extent_start;
1539 u64 extent_len;
1540 u64 extent_flags;
1541 u64 extent_gen;
1542 int ret;
1543
1544 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1545 stripe->nr_sectors);
1546 scrub_stripe_reset_bitmaps(stripe);
1547
1548 /* The range must be inside the bg. */
1549 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1550
1551 ret = find_first_extent_item(extent_root, extent_path, logical_start,
1552 logical_len);
1553 /* Either error or not found. */
1554 if (ret)
1555 goto out;
1556 get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1557 &extent_gen);
1558 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1559 stripe->nr_meta_extents++;
1560 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1561 stripe->nr_data_extents++;
1562 cur_logical = max(extent_start, cur_logical);
1563
1564 /*
1565 * Round down to stripe boundary.
1566 *
1567 * The extra calculation against bg->start is to handle block groups
1568 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1569 */
1570 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1571 bg->start;
1572 stripe->physical = physical + stripe->logical - logical_start;
1573 stripe->dev = dev;
1574 stripe->bg = bg;
1575 stripe->mirror_num = mirror_num;
1576 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1577
1578 /* Fill the first extent info into stripe->sectors[] array. */
1579 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1580 extent_flags, extent_gen);
1581 cur_logical = extent_start + extent_len;
1582
1583 /* Fill the extent info for the remaining sectors. */
1584 while (cur_logical <= stripe_end) {
1585 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1586 stripe_end - cur_logical + 1);
1587 if (ret < 0)
1588 goto out;
1589 if (ret > 0) {
1590 ret = 0;
1591 break;
1592 }
1593 get_extent_info(extent_path, &extent_start, &extent_len,
1594 &extent_flags, &extent_gen);
1595 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1596 stripe->nr_meta_extents++;
1597 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1598 stripe->nr_data_extents++;
1599 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1600 extent_flags, extent_gen);
1601 cur_logical = extent_start + extent_len;
1602 }
1603
1604 /* Now fill the data csum. */
1605 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1606 int sector_nr;
1607 unsigned long csum_bitmap = 0;
1608
1609 /* Csum space should have already been allocated. */
1610 ASSERT(stripe->csums);
1611
1612 /*
1613 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1614 * should contain at most 16 sectors.
1615 */
1616 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1617
1618 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1619 stripe->logical, stripe_end,
1620 stripe->csums, &csum_bitmap);
1621 if (ret < 0)
1622 goto out;
1623 if (ret > 0)
1624 ret = 0;
1625
1626 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1627 stripe->sectors[sector_nr].csum = stripe->csums +
1628 sector_nr * fs_info->csum_size;
1629 }
1630 }
1631 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1632 out:
1633 return ret;
1634 }
1635
scrub_reset_stripe(struct scrub_stripe * stripe)1636 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1637 {
1638 scrub_stripe_reset_bitmaps(stripe);
1639
1640 stripe->nr_meta_extents = 0;
1641 stripe->nr_data_extents = 0;
1642 stripe->state = 0;
1643
1644 for (int i = 0; i < stripe->nr_sectors; i++) {
1645 stripe->sectors[i].is_metadata = false;
1646 stripe->sectors[i].csum = NULL;
1647 stripe->sectors[i].generation = 0;
1648 }
1649 }
1650
stripe_length(const struct scrub_stripe * stripe)1651 static u32 stripe_length(const struct scrub_stripe *stripe)
1652 {
1653 ASSERT(stripe->bg);
1654
1655 return min(BTRFS_STRIPE_LEN,
1656 stripe->bg->start + stripe->bg->length - stripe->logical);
1657 }
1658
scrub_submit_extent_sector_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1659 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1660 struct scrub_stripe *stripe)
1661 {
1662 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1663 struct btrfs_bio *bbio = NULL;
1664 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1665 u64 stripe_len = BTRFS_STRIPE_LEN;
1666 int mirror = stripe->mirror_num;
1667 int i;
1668
1669 atomic_inc(&stripe->pending_io);
1670
1671 for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1672 struct page *page = scrub_stripe_get_page(stripe, i);
1673 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1674
1675 /* We're beyond the chunk boundary, no need to read anymore. */
1676 if (i >= nr_sectors)
1677 break;
1678
1679 /* The current sector cannot be merged, submit the bio. */
1680 if (bbio &&
1681 ((i > 0 &&
1682 !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1683 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1684 ASSERT(bbio->bio.bi_iter.bi_size);
1685 atomic_inc(&stripe->pending_io);
1686 btrfs_submit_bbio(bbio, mirror);
1687 bbio = NULL;
1688 }
1689
1690 if (!bbio) {
1691 struct btrfs_io_stripe io_stripe = {};
1692 struct btrfs_io_context *bioc = NULL;
1693 const u64 logical = stripe->logical +
1694 (i << fs_info->sectorsize_bits);
1695 int err;
1696
1697 io_stripe.rst_search_commit_root = true;
1698 stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1699 /*
1700 * For RST cases, we need to manually split the bbio to
1701 * follow the RST boundary.
1702 */
1703 err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1704 &stripe_len, &bioc, &io_stripe, &mirror);
1705 btrfs_put_bioc(bioc);
1706 if (err < 0) {
1707 set_bit(i, &stripe->io_error_bitmap);
1708 set_bit(i, &stripe->error_bitmap);
1709 continue;
1710 }
1711
1712 bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1713 fs_info, scrub_read_endio, stripe);
1714 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1715 }
1716
1717 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1718 }
1719
1720 if (bbio) {
1721 ASSERT(bbio->bio.bi_iter.bi_size);
1722 atomic_inc(&stripe->pending_io);
1723 btrfs_submit_bbio(bbio, mirror);
1724 }
1725
1726 if (atomic_dec_and_test(&stripe->pending_io)) {
1727 wake_up(&stripe->io_wait);
1728 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1729 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1730 }
1731 }
1732
scrub_submit_initial_read(struct scrub_ctx * sctx,struct scrub_stripe * stripe)1733 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1734 struct scrub_stripe *stripe)
1735 {
1736 struct btrfs_fs_info *fs_info = sctx->fs_info;
1737 struct btrfs_bio *bbio;
1738 unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1739 int mirror = stripe->mirror_num;
1740
1741 ASSERT(stripe->bg);
1742 ASSERT(stripe->mirror_num > 0);
1743 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1744
1745 if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1746 scrub_submit_extent_sector_read(sctx, stripe);
1747 return;
1748 }
1749
1750 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1751 scrub_read_endio, stripe);
1752
1753 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1754 /* Read the whole range inside the chunk boundary. */
1755 for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1756 struct page *page = scrub_stripe_get_page(stripe, cur);
1757 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1758 int ret;
1759
1760 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1761 /* We should have allocated enough bio vectors. */
1762 ASSERT(ret == fs_info->sectorsize);
1763 }
1764 atomic_inc(&stripe->pending_io);
1765
1766 /*
1767 * For dev-replace, either user asks to avoid the source dev, or
1768 * the device is missing, we try the next mirror instead.
1769 */
1770 if (sctx->is_dev_replace &&
1771 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1772 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1773 !stripe->dev->bdev)) {
1774 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1775 stripe->bg->length);
1776
1777 mirror = calc_next_mirror(mirror, num_copies);
1778 }
1779 btrfs_submit_bbio(bbio, mirror);
1780 }
1781
stripe_has_metadata_error(struct scrub_stripe * stripe)1782 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1783 {
1784 int i;
1785
1786 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1787 if (stripe->sectors[i].is_metadata) {
1788 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1789
1790 btrfs_err(fs_info,
1791 "stripe %llu has unrepaired metadata sector at %llu",
1792 stripe->logical,
1793 stripe->logical + (i << fs_info->sectorsize_bits));
1794 return true;
1795 }
1796 }
1797 return false;
1798 }
1799
submit_initial_group_read(struct scrub_ctx * sctx,unsigned int first_slot,unsigned int nr_stripes)1800 static void submit_initial_group_read(struct scrub_ctx *sctx,
1801 unsigned int first_slot,
1802 unsigned int nr_stripes)
1803 {
1804 struct blk_plug plug;
1805
1806 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1807 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1808
1809 scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1810 btrfs_stripe_nr_to_offset(nr_stripes));
1811 blk_start_plug(&plug);
1812 for (int i = 0; i < nr_stripes; i++) {
1813 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1814
1815 /* Those stripes should be initialized. */
1816 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1817 scrub_submit_initial_read(sctx, stripe);
1818 }
1819 blk_finish_plug(&plug);
1820 }
1821
flush_scrub_stripes(struct scrub_ctx * sctx)1822 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1823 {
1824 struct btrfs_fs_info *fs_info = sctx->fs_info;
1825 struct scrub_stripe *stripe;
1826 const int nr_stripes = sctx->cur_stripe;
1827 int ret = 0;
1828
1829 if (!nr_stripes)
1830 return 0;
1831
1832 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1833
1834 /* Submit the stripes which are populated but not submitted. */
1835 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1836 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1837
1838 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1839 }
1840
1841 for (int i = 0; i < nr_stripes; i++) {
1842 stripe = &sctx->stripes[i];
1843
1844 wait_event(stripe->repair_wait,
1845 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1846 }
1847
1848 /* Submit for dev-replace. */
1849 if (sctx->is_dev_replace) {
1850 /*
1851 * For dev-replace, if we know there is something wrong with
1852 * metadata, we should immediately abort.
1853 */
1854 for (int i = 0; i < nr_stripes; i++) {
1855 if (stripe_has_metadata_error(&sctx->stripes[i])) {
1856 ret = -EIO;
1857 goto out;
1858 }
1859 }
1860 for (int i = 0; i < nr_stripes; i++) {
1861 unsigned long good;
1862
1863 stripe = &sctx->stripes[i];
1864
1865 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1866
1867 bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1868 &stripe->error_bitmap, stripe->nr_sectors);
1869 scrub_write_sectors(sctx, stripe, good, true);
1870 }
1871 }
1872
1873 /* Wait for the above writebacks to finish. */
1874 for (int i = 0; i < nr_stripes; i++) {
1875 stripe = &sctx->stripes[i];
1876
1877 wait_scrub_stripe_io(stripe);
1878 spin_lock(&sctx->stat_lock);
1879 sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1880 spin_unlock(&sctx->stat_lock);
1881 scrub_reset_stripe(stripe);
1882 }
1883 out:
1884 sctx->cur_stripe = 0;
1885 return ret;
1886 }
1887
raid56_scrub_wait_endio(struct bio * bio)1888 static void raid56_scrub_wait_endio(struct bio *bio)
1889 {
1890 complete(bio->bi_private);
1891 }
1892
queue_scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * dev,int mirror_num,u64 logical,u32 length,u64 physical,u64 * found_logical_ret)1893 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1894 struct btrfs_device *dev, int mirror_num,
1895 u64 logical, u32 length, u64 physical,
1896 u64 *found_logical_ret)
1897 {
1898 struct scrub_stripe *stripe;
1899 int ret;
1900
1901 /*
1902 * There should always be one slot left, as caller filling the last
1903 * slot should flush them all.
1904 */
1905 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1906
1907 /* @found_logical_ret must be specified. */
1908 ASSERT(found_logical_ret);
1909
1910 stripe = &sctx->stripes[sctx->cur_stripe];
1911 scrub_reset_stripe(stripe);
1912 ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1913 &sctx->csum_path, dev, physical,
1914 mirror_num, logical, length, stripe);
1915 /* Either >0 as no more extents or <0 for error. */
1916 if (ret)
1917 return ret;
1918 *found_logical_ret = stripe->logical;
1919 sctx->cur_stripe++;
1920
1921 /* We filled one group, submit it. */
1922 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1923 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1924
1925 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1926 }
1927
1928 /* Last slot used, flush them all. */
1929 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1930 return flush_scrub_stripes(sctx);
1931 return 0;
1932 }
1933
scrub_raid56_parity_stripe(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 full_stripe_start)1934 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1935 struct btrfs_device *scrub_dev,
1936 struct btrfs_block_group *bg,
1937 struct btrfs_chunk_map *map,
1938 u64 full_stripe_start)
1939 {
1940 DECLARE_COMPLETION_ONSTACK(io_done);
1941 struct btrfs_fs_info *fs_info = sctx->fs_info;
1942 struct btrfs_raid_bio *rbio;
1943 struct btrfs_io_context *bioc = NULL;
1944 struct btrfs_path extent_path = { 0 };
1945 struct btrfs_path csum_path = { 0 };
1946 struct bio *bio;
1947 struct scrub_stripe *stripe;
1948 bool all_empty = true;
1949 const int data_stripes = nr_data_stripes(map);
1950 unsigned long extent_bitmap = 0;
1951 u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1952 int ret;
1953
1954 ASSERT(sctx->raid56_data_stripes);
1955
1956 /*
1957 * For data stripe search, we cannot re-use the same extent/csum paths,
1958 * as the data stripe bytenr may be smaller than previous extent. Thus
1959 * we have to use our own extent/csum paths.
1960 */
1961 extent_path.search_commit_root = 1;
1962 extent_path.skip_locking = 1;
1963 csum_path.search_commit_root = 1;
1964 csum_path.skip_locking = 1;
1965
1966 for (int i = 0; i < data_stripes; i++) {
1967 int stripe_index;
1968 int rot;
1969 u64 physical;
1970
1971 stripe = &sctx->raid56_data_stripes[i];
1972 rot = div_u64(full_stripe_start - bg->start,
1973 data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1974 stripe_index = (i + rot) % map->num_stripes;
1975 physical = map->stripes[stripe_index].physical +
1976 btrfs_stripe_nr_to_offset(rot);
1977
1978 scrub_reset_stripe(stripe);
1979 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1980 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1981 map->stripes[stripe_index].dev, physical, 1,
1982 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1983 BTRFS_STRIPE_LEN, stripe);
1984 if (ret < 0)
1985 goto out;
1986 /*
1987 * No extent in this data stripe, need to manually mark them
1988 * initialized to make later read submission happy.
1989 */
1990 if (ret > 0) {
1991 stripe->logical = full_stripe_start +
1992 btrfs_stripe_nr_to_offset(i);
1993 stripe->dev = map->stripes[stripe_index].dev;
1994 stripe->mirror_num = 1;
1995 set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1996 }
1997 }
1998
1999 /* Check if all data stripes are empty. */
2000 for (int i = 0; i < data_stripes; i++) {
2001 stripe = &sctx->raid56_data_stripes[i];
2002 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2003 all_empty = false;
2004 break;
2005 }
2006 }
2007 if (all_empty) {
2008 ret = 0;
2009 goto out;
2010 }
2011
2012 for (int i = 0; i < data_stripes; i++) {
2013 stripe = &sctx->raid56_data_stripes[i];
2014 scrub_submit_initial_read(sctx, stripe);
2015 }
2016 for (int i = 0; i < data_stripes; i++) {
2017 stripe = &sctx->raid56_data_stripes[i];
2018
2019 wait_event(stripe->repair_wait,
2020 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
2021 }
2022 /* For now, no zoned support for RAID56. */
2023 ASSERT(!btrfs_is_zoned(sctx->fs_info));
2024
2025 /*
2026 * Now all data stripes are properly verified. Check if we have any
2027 * unrepaired, if so abort immediately or we could further corrupt the
2028 * P/Q stripes.
2029 *
2030 * During the loop, also populate extent_bitmap.
2031 */
2032 for (int i = 0; i < data_stripes; i++) {
2033 unsigned long error;
2034
2035 stripe = &sctx->raid56_data_stripes[i];
2036
2037 /*
2038 * We should only check the errors where there is an extent.
2039 * As we may hit an empty data stripe while it's missing.
2040 */
2041 bitmap_and(&error, &stripe->error_bitmap,
2042 &stripe->extent_sector_bitmap, stripe->nr_sectors);
2043 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2044 btrfs_err(fs_info,
2045 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2046 full_stripe_start, i, stripe->nr_sectors,
2047 &error);
2048 ret = -EIO;
2049 goto out;
2050 }
2051 bitmap_or(&extent_bitmap, &extent_bitmap,
2052 &stripe->extent_sector_bitmap, stripe->nr_sectors);
2053 }
2054
2055 /* Now we can check and regenerate the P/Q stripe. */
2056 bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2057 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2058 bio->bi_private = &io_done;
2059 bio->bi_end_io = raid56_scrub_wait_endio;
2060
2061 btrfs_bio_counter_inc_blocked(fs_info);
2062 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2063 &length, &bioc, NULL, NULL);
2064 if (ret < 0) {
2065 btrfs_put_bioc(bioc);
2066 btrfs_bio_counter_dec(fs_info);
2067 goto out;
2068 }
2069 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2070 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2071 btrfs_put_bioc(bioc);
2072 if (!rbio) {
2073 ret = -ENOMEM;
2074 btrfs_bio_counter_dec(fs_info);
2075 goto out;
2076 }
2077 /* Use the recovered stripes as cache to avoid read them from disk again. */
2078 for (int i = 0; i < data_stripes; i++) {
2079 stripe = &sctx->raid56_data_stripes[i];
2080
2081 raid56_parity_cache_data_pages(rbio, stripe->pages,
2082 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2083 }
2084 raid56_parity_submit_scrub_rbio(rbio);
2085 wait_for_completion_io(&io_done);
2086 ret = blk_status_to_errno(bio->bi_status);
2087 bio_put(bio);
2088 btrfs_bio_counter_dec(fs_info);
2089
2090 btrfs_release_path(&extent_path);
2091 btrfs_release_path(&csum_path);
2092 out:
2093 return ret;
2094 }
2095
2096 /*
2097 * Scrub one range which can only has simple mirror based profile.
2098 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2099 * RAID0/RAID10).
2100 *
2101 * Since we may need to handle a subset of block group, we need @logical_start
2102 * and @logical_length parameter.
2103 */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)2104 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2105 struct btrfs_block_group *bg,
2106 struct btrfs_chunk_map *map,
2107 u64 logical_start, u64 logical_length,
2108 struct btrfs_device *device,
2109 u64 physical, int mirror_num)
2110 {
2111 struct btrfs_fs_info *fs_info = sctx->fs_info;
2112 const u64 logical_end = logical_start + logical_length;
2113 u64 cur_logical = logical_start;
2114 int ret = 0;
2115
2116 /* The range must be inside the bg */
2117 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2118
2119 /* Go through each extent items inside the logical range */
2120 while (cur_logical < logical_end) {
2121 u64 found_logical = U64_MAX;
2122 u64 cur_physical = physical + cur_logical - logical_start;
2123
2124 /* Canceled? */
2125 if (atomic_read(&fs_info->scrub_cancel_req) ||
2126 atomic_read(&sctx->cancel_req)) {
2127 ret = -ECANCELED;
2128 break;
2129 }
2130 /* Paused? */
2131 if (atomic_read(&fs_info->scrub_pause_req)) {
2132 /* Push queued extents */
2133 scrub_blocked_if_needed(fs_info);
2134 }
2135 /* Block group removed? */
2136 spin_lock(&bg->lock);
2137 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2138 spin_unlock(&bg->lock);
2139 ret = 0;
2140 break;
2141 }
2142 spin_unlock(&bg->lock);
2143
2144 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2145 cur_logical, logical_end - cur_logical,
2146 cur_physical, &found_logical);
2147 if (ret > 0) {
2148 /* No more extent, just update the accounting */
2149 spin_lock(&sctx->stat_lock);
2150 sctx->stat.last_physical = physical + logical_length;
2151 spin_unlock(&sctx->stat_lock);
2152 ret = 0;
2153 break;
2154 }
2155 if (ret < 0)
2156 break;
2157
2158 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2159 ASSERT(found_logical != U64_MAX);
2160 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2161
2162 /* Don't hold CPU for too long time */
2163 cond_resched();
2164 }
2165 return ret;
2166 }
2167
2168 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct btrfs_chunk_map * map)2169 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2170 {
2171 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2172 BTRFS_BLOCK_GROUP_RAID10));
2173
2174 return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2175 }
2176
2177 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct btrfs_chunk_map * map,struct btrfs_block_group * bg,int stripe_index)2178 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2179 struct btrfs_block_group *bg,
2180 int stripe_index)
2181 {
2182 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2183 BTRFS_BLOCK_GROUP_RAID10));
2184 ASSERT(stripe_index < map->num_stripes);
2185
2186 /*
2187 * (stripe_index / sub_stripes) gives how many data stripes we need to
2188 * skip.
2189 */
2190 return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2191 bg->start;
2192 }
2193
2194 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct btrfs_chunk_map * map,int stripe_index)2195 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2196 {
2197 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2198 BTRFS_BLOCK_GROUP_RAID10));
2199 ASSERT(stripe_index < map->num_stripes);
2200
2201 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2202 return stripe_index % map->sub_stripes + 1;
2203 }
2204
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * device,int stripe_index)2205 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2206 struct btrfs_block_group *bg,
2207 struct btrfs_chunk_map *map,
2208 struct btrfs_device *device,
2209 int stripe_index)
2210 {
2211 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2212 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2213 const u64 orig_physical = map->stripes[stripe_index].physical;
2214 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2215 u64 cur_logical = orig_logical;
2216 u64 cur_physical = orig_physical;
2217 int ret = 0;
2218
2219 while (cur_logical < bg->start + bg->length) {
2220 /*
2221 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2222 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2223 * this stripe.
2224 */
2225 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2226 BTRFS_STRIPE_LEN, device, cur_physical,
2227 mirror_num);
2228 if (ret)
2229 return ret;
2230 /* Skip to next stripe which belongs to the target device */
2231 cur_logical += logical_increment;
2232 /* For physical offset, we just go to next stripe */
2233 cur_physical += BTRFS_STRIPE_LEN;
2234 }
2235 return ret;
2236 }
2237
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct btrfs_device * scrub_dev,int stripe_index)2238 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2239 struct btrfs_block_group *bg,
2240 struct btrfs_chunk_map *map,
2241 struct btrfs_device *scrub_dev,
2242 int stripe_index)
2243 {
2244 struct btrfs_fs_info *fs_info = sctx->fs_info;
2245 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2246 const u64 chunk_logical = bg->start;
2247 int ret;
2248 int ret2;
2249 u64 physical = map->stripes[stripe_index].physical;
2250 const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2251 const u64 physical_end = physical + dev_stripe_len;
2252 u64 logical;
2253 u64 logic_end;
2254 /* The logical increment after finishing one stripe */
2255 u64 increment;
2256 /* Offset inside the chunk */
2257 u64 offset;
2258 u64 stripe_logical;
2259 int stop_loop = 0;
2260
2261 /* Extent_path should be released by now. */
2262 ASSERT(sctx->extent_path.nodes[0] == NULL);
2263
2264 scrub_blocked_if_needed(fs_info);
2265
2266 if (sctx->is_dev_replace &&
2267 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2268 mutex_lock(&sctx->wr_lock);
2269 sctx->write_pointer = physical;
2270 mutex_unlock(&sctx->wr_lock);
2271 }
2272
2273 /* Prepare the extra data stripes used by RAID56. */
2274 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2275 ASSERT(sctx->raid56_data_stripes == NULL);
2276
2277 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2278 sizeof(struct scrub_stripe),
2279 GFP_KERNEL);
2280 if (!sctx->raid56_data_stripes) {
2281 ret = -ENOMEM;
2282 goto out;
2283 }
2284 for (int i = 0; i < nr_data_stripes(map); i++) {
2285 ret = init_scrub_stripe(fs_info,
2286 &sctx->raid56_data_stripes[i]);
2287 if (ret < 0)
2288 goto out;
2289 sctx->raid56_data_stripes[i].bg = bg;
2290 sctx->raid56_data_stripes[i].sctx = sctx;
2291 }
2292 }
2293 /*
2294 * There used to be a big double loop to handle all profiles using the
2295 * same routine, which grows larger and more gross over time.
2296 *
2297 * So here we handle each profile differently, so simpler profiles
2298 * have simpler scrubbing function.
2299 */
2300 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2301 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2302 /*
2303 * Above check rules out all complex profile, the remaining
2304 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2305 * mirrored duplication without stripe.
2306 *
2307 * Only @physical and @mirror_num needs to calculated using
2308 * @stripe_index.
2309 */
2310 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2311 scrub_dev, map->stripes[stripe_index].physical,
2312 stripe_index + 1);
2313 offset = 0;
2314 goto out;
2315 }
2316 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2317 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2318 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2319 goto out;
2320 }
2321
2322 /* Only RAID56 goes through the old code */
2323 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2324 ret = 0;
2325
2326 /* Calculate the logical end of the stripe */
2327 get_raid56_logic_offset(physical_end, stripe_index,
2328 map, &logic_end, NULL);
2329 logic_end += chunk_logical;
2330
2331 /* Initialize @offset in case we need to go to out: label */
2332 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2333 increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2334
2335 /*
2336 * Due to the rotation, for RAID56 it's better to iterate each stripe
2337 * using their physical offset.
2338 */
2339 while (physical < physical_end) {
2340 ret = get_raid56_logic_offset(physical, stripe_index, map,
2341 &logical, &stripe_logical);
2342 logical += chunk_logical;
2343 if (ret) {
2344 /* it is parity strip */
2345 stripe_logical += chunk_logical;
2346 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2347 map, stripe_logical);
2348 spin_lock(&sctx->stat_lock);
2349 sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2350 physical_end);
2351 spin_unlock(&sctx->stat_lock);
2352 if (ret)
2353 goto out;
2354 goto next;
2355 }
2356
2357 /*
2358 * Now we're at a data stripe, scrub each extents in the range.
2359 *
2360 * At this stage, if we ignore the repair part, inside each data
2361 * stripe it is no different than SINGLE profile.
2362 * We can reuse scrub_simple_mirror() here, as the repair part
2363 * is still based on @mirror_num.
2364 */
2365 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2366 scrub_dev, physical, 1);
2367 if (ret < 0)
2368 goto out;
2369 next:
2370 logical += increment;
2371 physical += BTRFS_STRIPE_LEN;
2372 spin_lock(&sctx->stat_lock);
2373 if (stop_loop)
2374 sctx->stat.last_physical =
2375 map->stripes[stripe_index].physical + dev_stripe_len;
2376 else
2377 sctx->stat.last_physical = physical;
2378 spin_unlock(&sctx->stat_lock);
2379 if (stop_loop)
2380 break;
2381 }
2382 out:
2383 ret2 = flush_scrub_stripes(sctx);
2384 if (!ret)
2385 ret = ret2;
2386 btrfs_release_path(&sctx->extent_path);
2387 btrfs_release_path(&sctx->csum_path);
2388
2389 if (sctx->raid56_data_stripes) {
2390 for (int i = 0; i < nr_data_stripes(map); i++)
2391 release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2392 kfree(sctx->raid56_data_stripes);
2393 sctx->raid56_data_stripes = NULL;
2394 }
2395
2396 if (sctx->is_dev_replace && ret >= 0) {
2397 int ret2;
2398
2399 ret2 = sync_write_pointer_for_zoned(sctx,
2400 chunk_logical + offset,
2401 map->stripes[stripe_index].physical,
2402 physical_end);
2403 if (ret2)
2404 ret = ret2;
2405 }
2406
2407 return ret < 0 ? ret : 0;
2408 }
2409
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)2410 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2411 struct btrfs_block_group *bg,
2412 struct btrfs_device *scrub_dev,
2413 u64 dev_offset,
2414 u64 dev_extent_len)
2415 {
2416 struct btrfs_fs_info *fs_info = sctx->fs_info;
2417 struct btrfs_chunk_map *map;
2418 int i;
2419 int ret = 0;
2420
2421 map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2422 if (!map) {
2423 /*
2424 * Might have been an unused block group deleted by the cleaner
2425 * kthread or relocation.
2426 */
2427 spin_lock(&bg->lock);
2428 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2429 ret = -EINVAL;
2430 spin_unlock(&bg->lock);
2431
2432 return ret;
2433 }
2434 if (map->start != bg->start)
2435 goto out;
2436 if (map->chunk_len < dev_extent_len)
2437 goto out;
2438
2439 for (i = 0; i < map->num_stripes; ++i) {
2440 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2441 map->stripes[i].physical == dev_offset) {
2442 ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2443 if (ret)
2444 goto out;
2445 }
2446 }
2447 out:
2448 btrfs_free_chunk_map(map);
2449
2450 return ret;
2451 }
2452
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)2453 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2454 struct btrfs_block_group *cache)
2455 {
2456 struct btrfs_fs_info *fs_info = cache->fs_info;
2457
2458 if (!btrfs_is_zoned(fs_info))
2459 return 0;
2460
2461 btrfs_wait_block_group_reservations(cache);
2462 btrfs_wait_nocow_writers(cache);
2463 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2464
2465 return btrfs_commit_current_transaction(root);
2466 }
2467
2468 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)2469 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2470 struct btrfs_device *scrub_dev, u64 start, u64 end)
2471 {
2472 struct btrfs_dev_extent *dev_extent = NULL;
2473 struct btrfs_path *path;
2474 struct btrfs_fs_info *fs_info = sctx->fs_info;
2475 struct btrfs_root *root = fs_info->dev_root;
2476 u64 chunk_offset;
2477 int ret = 0;
2478 int ro_set;
2479 int slot;
2480 struct extent_buffer *l;
2481 struct btrfs_key key;
2482 struct btrfs_key found_key;
2483 struct btrfs_block_group *cache;
2484 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2485
2486 path = btrfs_alloc_path();
2487 if (!path)
2488 return -ENOMEM;
2489
2490 path->reada = READA_FORWARD;
2491 path->search_commit_root = 1;
2492 path->skip_locking = 1;
2493
2494 key.objectid = scrub_dev->devid;
2495 key.offset = 0ull;
2496 key.type = BTRFS_DEV_EXTENT_KEY;
2497
2498 while (1) {
2499 u64 dev_extent_len;
2500
2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 if (ret < 0)
2503 break;
2504 if (ret > 0) {
2505 if (path->slots[0] >=
2506 btrfs_header_nritems(path->nodes[0])) {
2507 ret = btrfs_next_leaf(root, path);
2508 if (ret < 0)
2509 break;
2510 if (ret > 0) {
2511 ret = 0;
2512 break;
2513 }
2514 } else {
2515 ret = 0;
2516 }
2517 }
2518
2519 l = path->nodes[0];
2520 slot = path->slots[0];
2521
2522 btrfs_item_key_to_cpu(l, &found_key, slot);
2523
2524 if (found_key.objectid != scrub_dev->devid)
2525 break;
2526
2527 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2528 break;
2529
2530 if (found_key.offset >= end)
2531 break;
2532
2533 if (found_key.offset < key.offset)
2534 break;
2535
2536 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2537 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2538
2539 if (found_key.offset + dev_extent_len <= start)
2540 goto skip;
2541
2542 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2543
2544 /*
2545 * get a reference on the corresponding block group to prevent
2546 * the chunk from going away while we scrub it
2547 */
2548 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2549
2550 /* some chunks are removed but not committed to disk yet,
2551 * continue scrubbing */
2552 if (!cache)
2553 goto skip;
2554
2555 ASSERT(cache->start <= chunk_offset);
2556 /*
2557 * We are using the commit root to search for device extents, so
2558 * that means we could have found a device extent item from a
2559 * block group that was deleted in the current transaction. The
2560 * logical start offset of the deleted block group, stored at
2561 * @chunk_offset, might be part of the logical address range of
2562 * a new block group (which uses different physical extents).
2563 * In this case btrfs_lookup_block_group() has returned the new
2564 * block group, and its start address is less than @chunk_offset.
2565 *
2566 * We skip such new block groups, because it's pointless to
2567 * process them, as we won't find their extents because we search
2568 * for them using the commit root of the extent tree. For a device
2569 * replace it's also fine to skip it, we won't miss copying them
2570 * to the target device because we have the write duplication
2571 * setup through the regular write path (by btrfs_map_block()),
2572 * and we have committed a transaction when we started the device
2573 * replace, right after setting up the device replace state.
2574 */
2575 if (cache->start < chunk_offset) {
2576 btrfs_put_block_group(cache);
2577 goto skip;
2578 }
2579
2580 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2581 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2582 btrfs_put_block_group(cache);
2583 goto skip;
2584 }
2585 }
2586
2587 /*
2588 * Make sure that while we are scrubbing the corresponding block
2589 * group doesn't get its logical address and its device extents
2590 * reused for another block group, which can possibly be of a
2591 * different type and different profile. We do this to prevent
2592 * false error detections and crashes due to bogus attempts to
2593 * repair extents.
2594 */
2595 spin_lock(&cache->lock);
2596 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2597 spin_unlock(&cache->lock);
2598 btrfs_put_block_group(cache);
2599 goto skip;
2600 }
2601 btrfs_freeze_block_group(cache);
2602 spin_unlock(&cache->lock);
2603
2604 /*
2605 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2606 * to avoid deadlock caused by:
2607 * btrfs_inc_block_group_ro()
2608 * -> btrfs_wait_for_commit()
2609 * -> btrfs_commit_transaction()
2610 * -> btrfs_scrub_pause()
2611 */
2612 scrub_pause_on(fs_info);
2613
2614 /*
2615 * Don't do chunk preallocation for scrub.
2616 *
2617 * This is especially important for SYSTEM bgs, or we can hit
2618 * -EFBIG from btrfs_finish_chunk_alloc() like:
2619 * 1. The only SYSTEM bg is marked RO.
2620 * Since SYSTEM bg is small, that's pretty common.
2621 * 2. New SYSTEM bg will be allocated
2622 * Due to regular version will allocate new chunk.
2623 * 3. New SYSTEM bg is empty and will get cleaned up
2624 * Before cleanup really happens, it's marked RO again.
2625 * 4. Empty SYSTEM bg get scrubbed
2626 * We go back to 2.
2627 *
2628 * This can easily boost the amount of SYSTEM chunks if cleaner
2629 * thread can't be triggered fast enough, and use up all space
2630 * of btrfs_super_block::sys_chunk_array
2631 *
2632 * While for dev replace, we need to try our best to mark block
2633 * group RO, to prevent race between:
2634 * - Write duplication
2635 * Contains latest data
2636 * - Scrub copy
2637 * Contains data from commit tree
2638 *
2639 * If target block group is not marked RO, nocow writes can
2640 * be overwritten by scrub copy, causing data corruption.
2641 * So for dev-replace, it's not allowed to continue if a block
2642 * group is not RO.
2643 */
2644 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2645 if (!ret && sctx->is_dev_replace) {
2646 ret = finish_extent_writes_for_zoned(root, cache);
2647 if (ret) {
2648 btrfs_dec_block_group_ro(cache);
2649 scrub_pause_off(fs_info);
2650 btrfs_put_block_group(cache);
2651 break;
2652 }
2653 }
2654
2655 if (ret == 0) {
2656 ro_set = 1;
2657 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2658 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2659 /*
2660 * btrfs_inc_block_group_ro return -ENOSPC when it
2661 * failed in creating new chunk for metadata.
2662 * It is not a problem for scrub, because
2663 * metadata are always cowed, and our scrub paused
2664 * commit_transactions.
2665 *
2666 * For RAID56 chunks, we have to mark them read-only
2667 * for scrub, as later we would use our own cache
2668 * out of RAID56 realm.
2669 * Thus we want the RAID56 bg to be marked RO to
2670 * prevent RMW from screwing up out cache.
2671 */
2672 ro_set = 0;
2673 } else if (ret == -ETXTBSY) {
2674 btrfs_warn(fs_info,
2675 "skipping scrub of block group %llu due to active swapfile",
2676 cache->start);
2677 scrub_pause_off(fs_info);
2678 ret = 0;
2679 goto skip_unfreeze;
2680 } else {
2681 btrfs_warn(fs_info,
2682 "failed setting block group ro: %d", ret);
2683 btrfs_unfreeze_block_group(cache);
2684 btrfs_put_block_group(cache);
2685 scrub_pause_off(fs_info);
2686 break;
2687 }
2688
2689 /*
2690 * Now the target block is marked RO, wait for nocow writes to
2691 * finish before dev-replace.
2692 * COW is fine, as COW never overwrites extents in commit tree.
2693 */
2694 if (sctx->is_dev_replace) {
2695 btrfs_wait_nocow_writers(cache);
2696 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2697 }
2698
2699 scrub_pause_off(fs_info);
2700 down_write(&dev_replace->rwsem);
2701 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2702 dev_replace->cursor_left = found_key.offset;
2703 dev_replace->item_needs_writeback = 1;
2704 up_write(&dev_replace->rwsem);
2705
2706 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2707 dev_extent_len);
2708 if (sctx->is_dev_replace &&
2709 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2710 cache, found_key.offset))
2711 ro_set = 0;
2712
2713 down_write(&dev_replace->rwsem);
2714 dev_replace->cursor_left = dev_replace->cursor_right;
2715 dev_replace->item_needs_writeback = 1;
2716 up_write(&dev_replace->rwsem);
2717
2718 if (ro_set)
2719 btrfs_dec_block_group_ro(cache);
2720
2721 /*
2722 * We might have prevented the cleaner kthread from deleting
2723 * this block group if it was already unused because we raced
2724 * and set it to RO mode first. So add it back to the unused
2725 * list, otherwise it might not ever be deleted unless a manual
2726 * balance is triggered or it becomes used and unused again.
2727 */
2728 spin_lock(&cache->lock);
2729 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2730 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2731 spin_unlock(&cache->lock);
2732 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2733 btrfs_discard_queue_work(&fs_info->discard_ctl,
2734 cache);
2735 else
2736 btrfs_mark_bg_unused(cache);
2737 } else {
2738 spin_unlock(&cache->lock);
2739 }
2740 skip_unfreeze:
2741 btrfs_unfreeze_block_group(cache);
2742 btrfs_put_block_group(cache);
2743 if (ret)
2744 break;
2745 if (sctx->is_dev_replace &&
2746 atomic64_read(&dev_replace->num_write_errors) > 0) {
2747 ret = -EIO;
2748 break;
2749 }
2750 if (sctx->stat.malloc_errors > 0) {
2751 ret = -ENOMEM;
2752 break;
2753 }
2754 skip:
2755 key.offset = found_key.offset + dev_extent_len;
2756 btrfs_release_path(path);
2757 }
2758
2759 btrfs_free_path(path);
2760
2761 return ret;
2762 }
2763
scrub_one_super(struct scrub_ctx * sctx,struct btrfs_device * dev,struct page * page,u64 physical,u64 generation)2764 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2765 struct page *page, u64 physical, u64 generation)
2766 {
2767 struct btrfs_fs_info *fs_info = sctx->fs_info;
2768 struct bio_vec bvec;
2769 struct bio bio;
2770 struct btrfs_super_block *sb = page_address(page);
2771 int ret;
2772
2773 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2774 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2775 __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2776 ret = submit_bio_wait(&bio);
2777 bio_uninit(&bio);
2778
2779 if (ret < 0)
2780 return ret;
2781 ret = btrfs_check_super_csum(fs_info, sb);
2782 if (ret != 0) {
2783 btrfs_err_rl(fs_info,
2784 "super block at physical %llu devid %llu has bad csum",
2785 physical, dev->devid);
2786 return -EIO;
2787 }
2788 if (btrfs_super_generation(sb) != generation) {
2789 btrfs_err_rl(fs_info,
2790 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2791 physical, dev->devid,
2792 btrfs_super_generation(sb), generation);
2793 return -EUCLEAN;
2794 }
2795
2796 return btrfs_validate_super(fs_info, sb, -1);
2797 }
2798
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)2799 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2800 struct btrfs_device *scrub_dev)
2801 {
2802 int i;
2803 u64 bytenr;
2804 u64 gen;
2805 int ret = 0;
2806 struct page *page;
2807 struct btrfs_fs_info *fs_info = sctx->fs_info;
2808
2809 if (BTRFS_FS_ERROR(fs_info))
2810 return -EROFS;
2811
2812 page = alloc_page(GFP_KERNEL);
2813 if (!page) {
2814 spin_lock(&sctx->stat_lock);
2815 sctx->stat.malloc_errors++;
2816 spin_unlock(&sctx->stat_lock);
2817 return -ENOMEM;
2818 }
2819
2820 /* Seed devices of a new filesystem has their own generation. */
2821 if (scrub_dev->fs_devices != fs_info->fs_devices)
2822 gen = scrub_dev->generation;
2823 else
2824 gen = btrfs_get_last_trans_committed(fs_info);
2825
2826 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2827 ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2828 if (ret == -ENOENT)
2829 break;
2830
2831 if (ret) {
2832 spin_lock(&sctx->stat_lock);
2833 sctx->stat.super_errors++;
2834 spin_unlock(&sctx->stat_lock);
2835 continue;
2836 }
2837
2838 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2839 scrub_dev->commit_total_bytes)
2840 break;
2841 if (!btrfs_check_super_location(scrub_dev, bytenr))
2842 continue;
2843
2844 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2845 if (ret) {
2846 spin_lock(&sctx->stat_lock);
2847 sctx->stat.super_errors++;
2848 spin_unlock(&sctx->stat_lock);
2849 }
2850 }
2851 __free_page(page);
2852 return 0;
2853 }
2854
scrub_workers_put(struct btrfs_fs_info * fs_info)2855 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2856 {
2857 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2858 &fs_info->scrub_lock)) {
2859 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2860
2861 fs_info->scrub_workers = NULL;
2862 mutex_unlock(&fs_info->scrub_lock);
2863
2864 if (scrub_workers)
2865 destroy_workqueue(scrub_workers);
2866 }
2867 }
2868
2869 /*
2870 * get a reference count on fs_info->scrub_workers. start worker if necessary
2871 */
scrub_workers_get(struct btrfs_fs_info * fs_info)2872 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2873 {
2874 struct workqueue_struct *scrub_workers = NULL;
2875 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2876 int max_active = fs_info->thread_pool_size;
2877 int ret = -ENOMEM;
2878
2879 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2880 return 0;
2881
2882 scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2883 if (!scrub_workers)
2884 return -ENOMEM;
2885
2886 mutex_lock(&fs_info->scrub_lock);
2887 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2888 ASSERT(fs_info->scrub_workers == NULL);
2889 fs_info->scrub_workers = scrub_workers;
2890 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2891 mutex_unlock(&fs_info->scrub_lock);
2892 return 0;
2893 }
2894 /* Other thread raced in and created the workers for us */
2895 refcount_inc(&fs_info->scrub_workers_refcnt);
2896 mutex_unlock(&fs_info->scrub_lock);
2897
2898 ret = 0;
2899
2900 destroy_workqueue(scrub_workers);
2901 return ret;
2902 }
2903
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)2904 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2905 u64 end, struct btrfs_scrub_progress *progress,
2906 int readonly, int is_dev_replace)
2907 {
2908 struct btrfs_dev_lookup_args args = { .devid = devid };
2909 struct scrub_ctx *sctx;
2910 int ret;
2911 struct btrfs_device *dev;
2912 unsigned int nofs_flag;
2913 bool need_commit = false;
2914
2915 if (btrfs_fs_closing(fs_info))
2916 return -EAGAIN;
2917
2918 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2919 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2920
2921 /*
2922 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2923 * value (max nodesize / min sectorsize), thus nodesize should always
2924 * be fine.
2925 */
2926 ASSERT(fs_info->nodesize <=
2927 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2928
2929 /* Allocate outside of device_list_mutex */
2930 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2931 if (IS_ERR(sctx))
2932 return PTR_ERR(sctx);
2933
2934 ret = scrub_workers_get(fs_info);
2935 if (ret)
2936 goto out_free_ctx;
2937
2938 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2939 dev = btrfs_find_device(fs_info->fs_devices, &args);
2940 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2941 !is_dev_replace)) {
2942 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2943 ret = -ENODEV;
2944 goto out;
2945 }
2946
2947 if (!is_dev_replace && !readonly &&
2948 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2949 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2950 btrfs_err_in_rcu(fs_info,
2951 "scrub on devid %llu: filesystem on %s is not writable",
2952 devid, btrfs_dev_name(dev));
2953 ret = -EROFS;
2954 goto out;
2955 }
2956
2957 mutex_lock(&fs_info->scrub_lock);
2958 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2959 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2960 mutex_unlock(&fs_info->scrub_lock);
2961 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2962 ret = -EIO;
2963 goto out;
2964 }
2965
2966 down_read(&fs_info->dev_replace.rwsem);
2967 if (dev->scrub_ctx ||
2968 (!is_dev_replace &&
2969 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2970 up_read(&fs_info->dev_replace.rwsem);
2971 mutex_unlock(&fs_info->scrub_lock);
2972 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2973 ret = -EINPROGRESS;
2974 goto out;
2975 }
2976 up_read(&fs_info->dev_replace.rwsem);
2977
2978 sctx->readonly = readonly;
2979 dev->scrub_ctx = sctx;
2980 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2981
2982 /*
2983 * checking @scrub_pause_req here, we can avoid
2984 * race between committing transaction and scrubbing.
2985 */
2986 __scrub_blocked_if_needed(fs_info);
2987 atomic_inc(&fs_info->scrubs_running);
2988 mutex_unlock(&fs_info->scrub_lock);
2989
2990 /*
2991 * In order to avoid deadlock with reclaim when there is a transaction
2992 * trying to pause scrub, make sure we use GFP_NOFS for all the
2993 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2994 * invoked by our callees. The pausing request is done when the
2995 * transaction commit starts, and it blocks the transaction until scrub
2996 * is paused (done at specific points at scrub_stripe() or right above
2997 * before incrementing fs_info->scrubs_running).
2998 */
2999 nofs_flag = memalloc_nofs_save();
3000 if (!is_dev_replace) {
3001 u64 old_super_errors;
3002
3003 spin_lock(&sctx->stat_lock);
3004 old_super_errors = sctx->stat.super_errors;
3005 spin_unlock(&sctx->stat_lock);
3006
3007 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3008 /*
3009 * by holding device list mutex, we can
3010 * kick off writing super in log tree sync.
3011 */
3012 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3013 ret = scrub_supers(sctx, dev);
3014 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3015
3016 spin_lock(&sctx->stat_lock);
3017 /*
3018 * Super block errors found, but we can not commit transaction
3019 * at current context, since btrfs_commit_transaction() needs
3020 * to pause the current running scrub (hold by ourselves).
3021 */
3022 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3023 need_commit = true;
3024 spin_unlock(&sctx->stat_lock);
3025 }
3026
3027 if (!ret)
3028 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3029 memalloc_nofs_restore(nofs_flag);
3030
3031 atomic_dec(&fs_info->scrubs_running);
3032 wake_up(&fs_info->scrub_pause_wait);
3033
3034 if (progress)
3035 memcpy(progress, &sctx->stat, sizeof(*progress));
3036
3037 if (!is_dev_replace)
3038 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3039 ret ? "not finished" : "finished", devid, ret);
3040
3041 mutex_lock(&fs_info->scrub_lock);
3042 dev->scrub_ctx = NULL;
3043 mutex_unlock(&fs_info->scrub_lock);
3044
3045 scrub_workers_put(fs_info);
3046 scrub_put_ctx(sctx);
3047
3048 /*
3049 * We found some super block errors before, now try to force a
3050 * transaction commit, as scrub has finished.
3051 */
3052 if (need_commit) {
3053 struct btrfs_trans_handle *trans;
3054
3055 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3056 if (IS_ERR(trans)) {
3057 ret = PTR_ERR(trans);
3058 btrfs_err(fs_info,
3059 "scrub: failed to start transaction to fix super block errors: %d", ret);
3060 return ret;
3061 }
3062 ret = btrfs_commit_transaction(trans);
3063 if (ret < 0)
3064 btrfs_err(fs_info,
3065 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3066 }
3067 return ret;
3068 out:
3069 scrub_workers_put(fs_info);
3070 out_free_ctx:
3071 scrub_free_ctx(sctx);
3072
3073 return ret;
3074 }
3075
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3076 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3077 {
3078 mutex_lock(&fs_info->scrub_lock);
3079 atomic_inc(&fs_info->scrub_pause_req);
3080 while (atomic_read(&fs_info->scrubs_paused) !=
3081 atomic_read(&fs_info->scrubs_running)) {
3082 mutex_unlock(&fs_info->scrub_lock);
3083 wait_event(fs_info->scrub_pause_wait,
3084 atomic_read(&fs_info->scrubs_paused) ==
3085 atomic_read(&fs_info->scrubs_running));
3086 mutex_lock(&fs_info->scrub_lock);
3087 }
3088 mutex_unlock(&fs_info->scrub_lock);
3089 }
3090
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3091 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3092 {
3093 atomic_dec(&fs_info->scrub_pause_req);
3094 wake_up(&fs_info->scrub_pause_wait);
3095 }
3096
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3097 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3098 {
3099 mutex_lock(&fs_info->scrub_lock);
3100 if (!atomic_read(&fs_info->scrubs_running)) {
3101 mutex_unlock(&fs_info->scrub_lock);
3102 return -ENOTCONN;
3103 }
3104
3105 atomic_inc(&fs_info->scrub_cancel_req);
3106 while (atomic_read(&fs_info->scrubs_running)) {
3107 mutex_unlock(&fs_info->scrub_lock);
3108 wait_event(fs_info->scrub_pause_wait,
3109 atomic_read(&fs_info->scrubs_running) == 0);
3110 mutex_lock(&fs_info->scrub_lock);
3111 }
3112 atomic_dec(&fs_info->scrub_cancel_req);
3113 mutex_unlock(&fs_info->scrub_lock);
3114
3115 return 0;
3116 }
3117
btrfs_scrub_cancel_dev(struct btrfs_device * dev)3118 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3119 {
3120 struct btrfs_fs_info *fs_info = dev->fs_info;
3121 struct scrub_ctx *sctx;
3122
3123 mutex_lock(&fs_info->scrub_lock);
3124 sctx = dev->scrub_ctx;
3125 if (!sctx) {
3126 mutex_unlock(&fs_info->scrub_lock);
3127 return -ENOTCONN;
3128 }
3129 atomic_inc(&sctx->cancel_req);
3130 while (dev->scrub_ctx) {
3131 mutex_unlock(&fs_info->scrub_lock);
3132 wait_event(fs_info->scrub_pause_wait,
3133 dev->scrub_ctx == NULL);
3134 mutex_lock(&fs_info->scrub_lock);
3135 }
3136 mutex_unlock(&fs_info->scrub_lock);
3137
3138 return 0;
3139 }
3140
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3141 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3142 struct btrfs_scrub_progress *progress)
3143 {
3144 struct btrfs_dev_lookup_args args = { .devid = devid };
3145 struct btrfs_device *dev;
3146 struct scrub_ctx *sctx = NULL;
3147
3148 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3149 dev = btrfs_find_device(fs_info->fs_devices, &args);
3150 if (dev)
3151 sctx = dev->scrub_ctx;
3152 if (sctx)
3153 memcpy(progress, &sctx->stat, sizeof(*progress));
3154 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3155
3156 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3157 }
3158