xref: /linux/fs/smb/client/compress.c (revision 3dfea293)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2024, SUSE LLC
4  *
5  * Authors: Enzo Matsumiya <ematsumiya@suse.de>
6  *
7  * This file implements I/O compression support for SMB2 messages (SMB 3.1.1 only).
8  * See compress/ for implementation details of each algorithm.
9  *
10  * References:
11  * MS-SMB2 "3.1.4.4 Compressing the Message"
12  * MS-SMB2 "3.1.5.3 Decompressing the Chained Message"
13  * MS-XCA - for details of the supported algorithms
14  */
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/uio.h>
18 #include <linux/sort.h>
19 
20 #include "cifsglob.h"
21 #include "../common/smb2pdu.h"
22 #include "cifsproto.h"
23 #include "smb2proto.h"
24 
25 #include "compress/lz77.h"
26 #include "compress.h"
27 
28 /*
29  * The heuristic_*() functions below try to determine data compressibility.
30  *
31  * Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing
32  * unused parts.
33  *
34  * Read that file for better and more detailed explanation of the calculations.
35  *
36  * The algorithms are ran in a collected sample of the input (uncompressed) data.
37  * The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M.
38  *
39  * Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible)
40  * to "need more analysis" (likely uncompressible).
41  */
42 
43 struct bucket {
44 	unsigned int count;
45 };
46 
47 /**
48  * has_low_entropy() - Compute Shannon entropy of the sampled data.
49  * @bkt:	Bytes counts of the sample.
50  * @slen:	Size of the sample.
51  *
52  * Return: true if the level (percentage of number of bits that would be required to
53  *	   compress the data) is below the minimum threshold.
54  *
55  * Note:
56  * There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a
57  * possibility of compression, but compressing, or even further analysing, it would waste so much
58  * resources that it's simply not worth it.
59  *
60  * Also Shannon entropy is the last computed heuristic; if we got this far and ended up
61  * with uncertainty, just stay on the safe side and call it uncompressible.
62  */
has_low_entropy(struct bucket * bkt,size_t slen)63 static bool has_low_entropy(struct bucket *bkt, size_t slen)
64 {
65 	const size_t threshold = 65, max_entropy = 8 * ilog2(16);
66 	size_t i, p, p2, len, sum = 0;
67 
68 #define pow4(n) (n * n * n * n)
69 	len = ilog2(pow4(slen));
70 
71 	for (i = 0; i < 256 && bkt[i].count > 0; i++) {
72 		p = bkt[i].count;
73 		p2 = ilog2(pow4(p));
74 		sum += p * (len - p2);
75 	}
76 
77 	sum /= slen;
78 
79 	return ((sum * 100 / max_entropy) <= threshold);
80 }
81 
82 #define BYTE_DIST_BAD		0
83 #define BYTE_DIST_GOOD		1
84 #define BYTE_DIST_MAYBE		2
85 /**
86  * calc_byte_distribution() - Compute byte distribution on the sampled data.
87  * @bkt:	Byte counts of the sample.
88  * @slen:	Size of the sample.
89  *
90  * Return:
91  * BYTE_DIST_BAD:	A "hard no" for compression -- a computed uniform distribution of
92  *			the bytes (e.g. random or encrypted data).
93  * BYTE_DIST_GOOD:	High probability (normal (Gaussian) distribution) of the data being
94  *			compressible.
95  * BYTE_DIST_MAYBE:	When computed byte distribution resulted in "low > n < high"
96  *			grounds.  has_low_entropy() should be used for a final decision.
97  */
calc_byte_distribution(struct bucket * bkt,size_t slen)98 static int calc_byte_distribution(struct bucket *bkt, size_t slen)
99 {
100 	const size_t low = 64, high = 200, threshold = slen * 90 / 100;
101 	size_t sum = 0;
102 	int i;
103 
104 	for (i = 0; i < low; i++)
105 		sum += bkt[i].count;
106 
107 	if (sum > threshold)
108 		return BYTE_DIST_BAD;
109 
110 	for (; i < high && bkt[i].count > 0; i++) {
111 		sum += bkt[i].count;
112 		if (sum > threshold)
113 			break;
114 	}
115 
116 	if (i <= low)
117 		return BYTE_DIST_GOOD;
118 
119 	if (i >= high)
120 		return BYTE_DIST_BAD;
121 
122 	return BYTE_DIST_MAYBE;
123 }
124 
is_mostly_ascii(const struct bucket * bkt)125 static bool is_mostly_ascii(const struct bucket *bkt)
126 {
127 	size_t count = 0;
128 	int i;
129 
130 	for (i = 0; i < 256; i++)
131 		if (bkt[i].count > 0)
132 			/* Too many non-ASCII (0-63) bytes. */
133 			if (++count > 64)
134 				return false;
135 
136 	return true;
137 }
138 
has_repeated_data(const u8 * sample,size_t len)139 static bool has_repeated_data(const u8 *sample, size_t len)
140 {
141 	size_t s = len / 2;
142 
143 	return (!memcmp(&sample[0], &sample[s], s));
144 }
145 
cmp_bkt(const void * _a,const void * _b)146 static int cmp_bkt(const void *_a, const void *_b)
147 {
148 	const struct bucket *a = _a, *b = _b;
149 
150 	/* Reverse sort. */
151 	if (a->count > b->count)
152 		return -1;
153 
154 	return 1;
155 }
156 
157 /*
158  * TODO:
159  * Support other iter types, if required.
160  * Only ITER_XARRAY is supported for now.
161  */
collect_sample(const struct iov_iter * iter,ssize_t max,u8 * sample)162 static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample)
163 {
164 	struct folio *folios[16], *folio;
165 	unsigned int nr, i, j, npages;
166 	loff_t start = iter->xarray_start + iter->iov_offset;
167 	pgoff_t last, index = start / PAGE_SIZE;
168 	size_t len, off, foff;
169 	void *p;
170 	int s = 0;
171 
172 	last = (start + max - 1) / PAGE_SIZE;
173 	do {
174 		nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios),
175 				XA_PRESENT);
176 		if (nr == 0)
177 			return -EIO;
178 
179 		for (i = 0; i < nr; i++) {
180 			folio = folios[i];
181 			npages = folio_nr_pages(folio);
182 			foff = start - folio_pos(folio);
183 			off = foff % PAGE_SIZE;
184 
185 			for (j = foff / PAGE_SIZE; j < npages; j++) {
186 				size_t len2;
187 
188 				len = min_t(size_t, max, PAGE_SIZE - off);
189 				len2 = min_t(size_t, len, SZ_2K);
190 
191 				p = kmap_local_page(folio_page(folio, j));
192 				memcpy(&sample[s], p, len2);
193 				kunmap_local(p);
194 
195 				s += len2;
196 
197 				if (len2 < SZ_2K || s >= max - SZ_2K)
198 					return s;
199 
200 				max -= len;
201 				if (max <= 0)
202 					return s;
203 
204 				start += len;
205 				off = 0;
206 				index++;
207 			}
208 		}
209 	} while (nr == ARRAY_SIZE(folios));
210 
211 	return s;
212 }
213 
214 /**
215  * is_compressible() - Determines if a chunk of data is compressible.
216  * @data: Iterator containing uncompressed data.
217  *
218  * Return: true if @data is compressible, false otherwise.
219  *
220  * Tests shows that this function is quite reliable in predicting data compressibility,
221  * matching close to 1:1 with the behaviour of LZ77 compression success and failures.
222  */
is_compressible(const struct iov_iter * data)223 static bool is_compressible(const struct iov_iter *data)
224 {
225 	const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M;
226 	struct bucket *bkt = NULL;
227 	size_t len;
228 	u8 *sample;
229 	bool ret = false;
230 	int i;
231 
232 	/* Preventive double check -- already checked in should_compress(). */
233 	len = iov_iter_count(data);
234 	if (unlikely(len < read_size))
235 		return ret;
236 
237 	if (len - read_size > max)
238 		len = max;
239 
240 	sample = kvzalloc(len, GFP_KERNEL);
241 	if (!sample) {
242 		WARN_ON_ONCE(1);
243 
244 		return ret;
245 	}
246 
247 	/* Sample 2K bytes per page of the uncompressed data. */
248 	i = collect_sample(data, len, sample);
249 	if (i <= 0) {
250 		WARN_ON_ONCE(1);
251 
252 		goto out;
253 	}
254 
255 	len = i;
256 	ret = true;
257 
258 	if (has_repeated_data(sample, len))
259 		goto out;
260 
261 	bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL);
262 	if (!bkt) {
263 		WARN_ON_ONCE(1);
264 		ret = false;
265 
266 		goto out;
267 	}
268 
269 	for (i = 0; i < len; i++)
270 		bkt[sample[i]].count++;
271 
272 	if (is_mostly_ascii(bkt))
273 		goto out;
274 
275 	/* Sort in descending order */
276 	sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL);
277 
278 	i = calc_byte_distribution(bkt, len);
279 	if (i != BYTE_DIST_MAYBE) {
280 		ret = !!i;
281 
282 		goto out;
283 	}
284 
285 	ret = has_low_entropy(bkt, len);
286 out:
287 	kvfree(sample);
288 	kfree(bkt);
289 
290 	return ret;
291 }
292 
should_compress(const struct cifs_tcon * tcon,const struct smb_rqst * rq)293 bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq)
294 {
295 	const struct smb2_hdr *shdr = rq->rq_iov->iov_base;
296 
297 	if (unlikely(!tcon || !tcon->ses || !tcon->ses->server))
298 		return false;
299 
300 	if (!tcon->ses->server->compression.enabled)
301 		return false;
302 
303 	if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
304 		return false;
305 
306 	if (shdr->Command == SMB2_WRITE) {
307 		const struct smb2_write_req *wreq = rq->rq_iov->iov_base;
308 
309 		if (le32_to_cpu(wreq->Length) < SMB_COMPRESS_MIN_LEN)
310 			return false;
311 
312 		return is_compressible(&rq->rq_iter);
313 	}
314 
315 	return (shdr->Command == SMB2_READ);
316 }
317 
smb_compress(struct TCP_Server_Info * server,struct smb_rqst * rq,compress_send_fn send_fn)318 int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn)
319 {
320 	struct iov_iter iter;
321 	u32 slen, dlen;
322 	void *src, *dst = NULL;
323 	int ret;
324 
325 	if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base)
326 		return -EINVAL;
327 
328 	if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req))
329 		return -EINVAL;
330 
331 	slen = iov_iter_count(&rq->rq_iter);
332 	src = kvzalloc(slen, GFP_KERNEL);
333 	if (!src) {
334 		ret = -ENOMEM;
335 		goto err_free;
336 	}
337 
338 	/* Keep the original iter intact. */
339 	iter = rq->rq_iter;
340 
341 	if (!copy_from_iter_full(src, slen, &iter)) {
342 		ret = -EIO;
343 		goto err_free;
344 	}
345 
346 	/*
347 	 * This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8
348 	 * of @slen.
349 	 */
350 	dlen = slen;
351 	dst = kvzalloc(dlen, GFP_KERNEL);
352 	if (!dst) {
353 		ret = -ENOMEM;
354 		goto err_free;
355 	}
356 
357 	ret = lz77_compress(src, slen, dst, &dlen);
358 	if (!ret) {
359 		struct smb2_compression_hdr hdr = { 0 };
360 		struct smb_rqst comp_rq = { .rq_nvec = 3, };
361 		struct kvec iov[3];
362 
363 		hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
364 		hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen);
365 		hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77;
366 		hdr.Flags = SMB2_COMPRESSION_FLAG_NONE;
367 		hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len);
368 
369 		iov[0].iov_base = &hdr;
370 		iov[0].iov_len = sizeof(hdr);
371 		iov[1] = rq->rq_iov[0];
372 		iov[2].iov_base = dst;
373 		iov[2].iov_len = dlen;
374 
375 		comp_rq.rq_iov = iov;
376 
377 		ret = send_fn(server, 1, &comp_rq);
378 	} else if (ret == -EMSGSIZE || dlen >= slen) {
379 		ret = send_fn(server, 1, rq);
380 	}
381 err_free:
382 	kvfree(dst);
383 	kvfree(src);
384 
385 	return ret;
386 }
387