1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag.h"
26 #include "xfs_ag_resv.h"
27 #include "xfs_quota.h"
28 #include "xfs_qm.h"
29 #include "xfs_defer.h"
30 #include "xfs_errortag.h"
31 #include "xfs_error.h"
32 #include "xfs_reflink.h"
33 #include "xfs_health.h"
34 #include "xfs_buf_mem.h"
35 #include "xfs_da_format.h"
36 #include "xfs_da_btree.h"
37 #include "xfs_attr.h"
38 #include "xfs_dir2.h"
39 #include "scrub/scrub.h"
40 #include "scrub/common.h"
41 #include "scrub/trace.h"
42 #include "scrub/repair.h"
43 #include "scrub/bitmap.h"
44 #include "scrub/stats.h"
45 #include "scrub/xfile.h"
46 #include "scrub/attr_repair.h"
47
48 /*
49 * Attempt to repair some metadata, if the metadata is corrupt and userspace
50 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
51 * and will set *fixed to true if it thinks it repaired anything.
52 */
53 int
xrep_attempt(struct xfs_scrub * sc,struct xchk_stats_run * run)54 xrep_attempt(
55 struct xfs_scrub *sc,
56 struct xchk_stats_run *run)
57 {
58 u64 repair_start;
59 int error = 0;
60
61 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
62
63 xchk_ag_btcur_free(&sc->sa);
64
65 /* Repair whatever's broken. */
66 ASSERT(sc->ops->repair);
67 run->repair_attempted = true;
68 repair_start = xchk_stats_now();
69 error = sc->ops->repair(sc);
70 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
71 run->repair_ns += xchk_stats_elapsed_ns(repair_start);
72 switch (error) {
73 case 0:
74 /*
75 * Repair succeeded. Commit the fixes and perform a second
76 * scrub so that we can tell userspace if we fixed the problem.
77 */
78 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
79 sc->flags |= XREP_ALREADY_FIXED;
80 run->repair_succeeded = true;
81 return -EAGAIN;
82 case -ECHRNG:
83 sc->flags |= XCHK_NEED_DRAIN;
84 run->retries++;
85 return -EAGAIN;
86 case -EDEADLOCK:
87 /* Tell the caller to try again having grabbed all the locks. */
88 if (!(sc->flags & XCHK_TRY_HARDER)) {
89 sc->flags |= XCHK_TRY_HARDER;
90 run->retries++;
91 return -EAGAIN;
92 }
93 /*
94 * We tried harder but still couldn't grab all the resources
95 * we needed to fix it. The corruption has not been fixed,
96 * so exit to userspace with the scan's output flags unchanged.
97 */
98 return 0;
99 default:
100 /*
101 * EAGAIN tells the caller to re-scrub, so we cannot return
102 * that here.
103 */
104 ASSERT(error != -EAGAIN);
105 return error;
106 }
107 }
108
109 /*
110 * Complain about unfixable problems in the filesystem. We don't log
111 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
112 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
113 * administrator isn't running xfs_scrub in no-repairs mode.
114 *
115 * Use this helper function because _ratelimited silently declares a static
116 * structure to track rate limiting information.
117 */
118 void
xrep_failure(struct xfs_mount * mp)119 xrep_failure(
120 struct xfs_mount *mp)
121 {
122 xfs_alert_ratelimited(mp,
123 "Corruption not fixed during online repair. Unmount and run xfs_repair.");
124 }
125
126 /*
127 * Repair probe -- userspace uses this to probe if we're willing to repair a
128 * given mountpoint.
129 */
130 int
xrep_probe(struct xfs_scrub * sc)131 xrep_probe(
132 struct xfs_scrub *sc)
133 {
134 int error = 0;
135
136 if (xchk_should_terminate(sc, &error))
137 return error;
138
139 return 0;
140 }
141
142 /*
143 * Roll a transaction, keeping the AG headers locked and reinitializing
144 * the btree cursors.
145 */
146 int
xrep_roll_ag_trans(struct xfs_scrub * sc)147 xrep_roll_ag_trans(
148 struct xfs_scrub *sc)
149 {
150 int error;
151
152 /*
153 * Keep the AG header buffers locked while we roll the transaction.
154 * Ensure that both AG buffers are dirty and held when we roll the
155 * transaction so that they move forward in the log without losing the
156 * bli (and hence the bli type) when the transaction commits.
157 *
158 * Normal code would never hold clean buffers across a roll, but repair
159 * needs both buffers to maintain a total lock on the AG.
160 */
161 if (sc->sa.agi_bp) {
162 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
163 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
164 }
165
166 if (sc->sa.agf_bp) {
167 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
168 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
169 }
170
171 /*
172 * Roll the transaction. We still hold the AG header buffers locked
173 * regardless of whether or not that succeeds. On failure, the buffers
174 * will be released during teardown on our way out of the kernel. If
175 * successful, join the buffers to the new transaction and move on.
176 */
177 error = xfs_trans_roll(&sc->tp);
178 if (error)
179 return error;
180
181 /* Join the AG headers to the new transaction. */
182 if (sc->sa.agi_bp)
183 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
184 if (sc->sa.agf_bp)
185 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
186
187 return 0;
188 }
189
190 /* Roll the scrub transaction, holding the primary metadata locked. */
191 int
xrep_roll_trans(struct xfs_scrub * sc)192 xrep_roll_trans(
193 struct xfs_scrub *sc)
194 {
195 if (!sc->ip)
196 return xrep_roll_ag_trans(sc);
197 return xfs_trans_roll_inode(&sc->tp, sc->ip);
198 }
199
200 /* Finish all deferred work attached to the repair transaction. */
201 int
xrep_defer_finish(struct xfs_scrub * sc)202 xrep_defer_finish(
203 struct xfs_scrub *sc)
204 {
205 int error;
206
207 /*
208 * Keep the AG header buffers locked while we complete deferred work
209 * items. Ensure that both AG buffers are dirty and held when we roll
210 * the transaction so that they move forward in the log without losing
211 * the bli (and hence the bli type) when the transaction commits.
212 *
213 * Normal code would never hold clean buffers across a roll, but repair
214 * needs both buffers to maintain a total lock on the AG.
215 */
216 if (sc->sa.agi_bp) {
217 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
218 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
219 }
220
221 if (sc->sa.agf_bp) {
222 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
223 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
224 }
225
226 /*
227 * Finish all deferred work items. We still hold the AG header buffers
228 * locked regardless of whether or not that succeeds. On failure, the
229 * buffers will be released during teardown on our way out of the
230 * kernel. If successful, join the buffers to the new transaction
231 * and move on.
232 */
233 error = xfs_defer_finish(&sc->tp);
234 if (error)
235 return error;
236
237 /*
238 * Release the hold that we set above because defer_finish won't do
239 * that for us. The defer roll code redirties held buffers after each
240 * roll, so the AG header buffers should be ready for logging.
241 */
242 if (sc->sa.agi_bp)
243 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
244 if (sc->sa.agf_bp)
245 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
246
247 return 0;
248 }
249
250 /*
251 * Does the given AG have enough space to rebuild a btree? Neither AG
252 * reservation can be critical, and we must have enough space (factoring
253 * in AG reservations) to construct a whole btree.
254 */
255 bool
xrep_ag_has_space(struct xfs_perag * pag,xfs_extlen_t nr_blocks,enum xfs_ag_resv_type type)256 xrep_ag_has_space(
257 struct xfs_perag *pag,
258 xfs_extlen_t nr_blocks,
259 enum xfs_ag_resv_type type)
260 {
261 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
262 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
263 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
264 }
265
266 /*
267 * Figure out how many blocks to reserve for an AG repair. We calculate the
268 * worst case estimate for the number of blocks we'd need to rebuild one of
269 * any type of per-AG btree.
270 */
271 xfs_extlen_t
xrep_calc_ag_resblks(struct xfs_scrub * sc)272 xrep_calc_ag_resblks(
273 struct xfs_scrub *sc)
274 {
275 struct xfs_mount *mp = sc->mp;
276 struct xfs_scrub_metadata *sm = sc->sm;
277 struct xfs_perag *pag;
278 struct xfs_buf *bp;
279 xfs_agino_t icount = NULLAGINO;
280 xfs_extlen_t aglen = NULLAGBLOCK;
281 xfs_extlen_t usedlen;
282 xfs_extlen_t freelen;
283 xfs_extlen_t bnobt_sz;
284 xfs_extlen_t inobt_sz;
285 xfs_extlen_t rmapbt_sz;
286 xfs_extlen_t refcbt_sz;
287 int error;
288
289 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
290 return 0;
291
292 pag = xfs_perag_get(mp, sm->sm_agno);
293 if (xfs_perag_initialised_agi(pag)) {
294 /* Use in-core icount if possible. */
295 icount = pag->pagi_count;
296 } else {
297 /* Try to get the actual counters from disk. */
298 error = xfs_ialloc_read_agi(pag, NULL, 0, &bp);
299 if (!error) {
300 icount = pag->pagi_count;
301 xfs_buf_relse(bp);
302 }
303 }
304
305 /* Now grab the block counters from the AGF. */
306 error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
307 if (error) {
308 aglen = pag->block_count;
309 freelen = aglen;
310 usedlen = aglen;
311 } else {
312 struct xfs_agf *agf = bp->b_addr;
313
314 aglen = be32_to_cpu(agf->agf_length);
315 freelen = be32_to_cpu(agf->agf_freeblks);
316 usedlen = aglen - freelen;
317 xfs_buf_relse(bp);
318 }
319
320 /* If the icount is impossible, make some worst-case assumptions. */
321 if (icount == NULLAGINO ||
322 !xfs_verify_agino(pag, icount)) {
323 icount = pag->agino_max - pag->agino_min + 1;
324 }
325
326 /* If the block counts are impossible, make worst-case assumptions. */
327 if (aglen == NULLAGBLOCK ||
328 aglen != pag->block_count ||
329 freelen >= aglen) {
330 aglen = pag->block_count;
331 freelen = aglen;
332 usedlen = aglen;
333 }
334 xfs_perag_put(pag);
335
336 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
337 freelen, usedlen);
338
339 /*
340 * Figure out how many blocks we'd need worst case to rebuild
341 * each type of btree. Note that we can only rebuild the
342 * bnobt/cntbt or inobt/finobt as pairs.
343 */
344 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
345 if (xfs_has_sparseinodes(mp))
346 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
347 XFS_INODES_PER_HOLEMASK_BIT);
348 else
349 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
350 XFS_INODES_PER_CHUNK);
351 if (xfs_has_finobt(mp))
352 inobt_sz *= 2;
353 if (xfs_has_reflink(mp))
354 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
355 else
356 refcbt_sz = 0;
357 if (xfs_has_rmapbt(mp)) {
358 /*
359 * Guess how many blocks we need to rebuild the rmapbt.
360 * For non-reflink filesystems we can't have more records than
361 * used blocks. However, with reflink it's possible to have
362 * more than one rmap record per AG block. We don't know how
363 * many rmaps there could be in the AG, so we start off with
364 * what we hope is an generous over-estimation.
365 */
366 if (xfs_has_reflink(mp))
367 rmapbt_sz = xfs_rmapbt_calc_size(mp,
368 (unsigned long long)aglen * 2);
369 else
370 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
371 } else {
372 rmapbt_sz = 0;
373 }
374
375 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
376 inobt_sz, rmapbt_sz, refcbt_sz);
377
378 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
379 }
380
381 /*
382 * Reconstructing per-AG Btrees
383 *
384 * When a space btree is corrupt, we don't bother trying to fix it. Instead,
385 * we scan secondary space metadata to derive the records that should be in
386 * the damaged btree, initialize a fresh btree root, and insert the records.
387 * Note that for rebuilding the rmapbt we scan all the primary data to
388 * generate the new records.
389 *
390 * However, that leaves the matter of removing all the metadata describing the
391 * old broken structure. For primary metadata we use the rmap data to collect
392 * every extent with a matching rmap owner (bitmap); we then iterate all other
393 * metadata structures with the same rmap owner to collect the extents that
394 * cannot be removed (sublist). We then subtract sublist from bitmap to
395 * derive the blocks that were used by the old btree. These blocks can be
396 * reaped.
397 *
398 * For rmapbt reconstructions we must use different tactics for extent
399 * collection. First we iterate all primary metadata (this excludes the old
400 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
401 * records are collected as bitmap. The bnobt records are collected as
402 * sublist. As with the other btrees we subtract sublist from bitmap, and the
403 * result (since the rmapbt lives in the free space) are the blocks from the
404 * old rmapbt.
405 */
406
407 /* Ensure the freelist is the correct size. */
408 int
xrep_fix_freelist(struct xfs_scrub * sc,int alloc_flags)409 xrep_fix_freelist(
410 struct xfs_scrub *sc,
411 int alloc_flags)
412 {
413 struct xfs_alloc_arg args = {0};
414
415 args.mp = sc->mp;
416 args.tp = sc->tp;
417 args.agno = sc->sa.pag->pag_agno;
418 args.alignment = 1;
419 args.pag = sc->sa.pag;
420
421 return xfs_alloc_fix_freelist(&args, alloc_flags);
422 }
423
424 /*
425 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
426 *
427 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
428 * the AG headers by using the rmap data to rummage through the AG looking for
429 * btree roots. This is not guaranteed to work if the AG is heavily damaged
430 * or the rmap data are corrupt.
431 *
432 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
433 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
434 * AGI is being rebuilt. It must maintain these locks until it's safe for
435 * other threads to change the btrees' shapes. The caller provides
436 * information about the btrees to look for by passing in an array of
437 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
438 * The (root, height) fields will be set on return if anything is found. The
439 * last element of the array should have a NULL buf_ops to mark the end of the
440 * array.
441 *
442 * For every rmapbt record matching any of the rmap owners in btree_info,
443 * read each block referenced by the rmap record. If the block is a btree
444 * block from this filesystem matching any of the magic numbers and has a
445 * level higher than what we've already seen, remember the block and the
446 * height of the tree required to have such a block. When the call completes,
447 * we return the highest block we've found for each btree description; those
448 * should be the roots.
449 */
450
451 struct xrep_findroot {
452 struct xfs_scrub *sc;
453 struct xfs_buf *agfl_bp;
454 struct xfs_agf *agf;
455 struct xrep_find_ag_btree *btree_info;
456 };
457
458 /* See if our block is in the AGFL. */
459 STATIC int
xrep_findroot_agfl_walk(struct xfs_mount * mp,xfs_agblock_t bno,void * priv)460 xrep_findroot_agfl_walk(
461 struct xfs_mount *mp,
462 xfs_agblock_t bno,
463 void *priv)
464 {
465 xfs_agblock_t *agbno = priv;
466
467 return (*agbno == bno) ? -ECANCELED : 0;
468 }
469
470 /* Does this block match the btree information passed in? */
471 STATIC int
xrep_findroot_block(struct xrep_findroot * ri,struct xrep_find_ag_btree * fab,uint64_t owner,xfs_agblock_t agbno,bool * done_with_block)472 xrep_findroot_block(
473 struct xrep_findroot *ri,
474 struct xrep_find_ag_btree *fab,
475 uint64_t owner,
476 xfs_agblock_t agbno,
477 bool *done_with_block)
478 {
479 struct xfs_mount *mp = ri->sc->mp;
480 struct xfs_buf *bp;
481 struct xfs_btree_block *btblock;
482 xfs_daddr_t daddr;
483 int block_level;
484 int error = 0;
485
486 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
487
488 /*
489 * Blocks in the AGFL have stale contents that might just happen to
490 * have a matching magic and uuid. We don't want to pull these blocks
491 * in as part of a tree root, so we have to filter out the AGFL stuff
492 * here. If the AGFL looks insane we'll just refuse to repair.
493 */
494 if (owner == XFS_RMAP_OWN_AG) {
495 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
496 xrep_findroot_agfl_walk, &agbno);
497 if (error == -ECANCELED)
498 return 0;
499 if (error)
500 return error;
501 }
502
503 /*
504 * Read the buffer into memory so that we can see if it's a match for
505 * our btree type. We have no clue if it is beforehand, and we want to
506 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
507 * will cause needless disk reads in subsequent calls to this function)
508 * and logging metadata verifier failures.
509 *
510 * Therefore, pass in NULL buffer ops. If the buffer was already in
511 * memory from some other caller it will already have b_ops assigned.
512 * If it was in memory from a previous unsuccessful findroot_block
513 * call, the buffer won't have b_ops but it should be clean and ready
514 * for us to try to verify if the read call succeeds. The same applies
515 * if the buffer wasn't in memory at all.
516 *
517 * Note: If we never match a btree type with this buffer, it will be
518 * left in memory with NULL b_ops. This shouldn't be a problem unless
519 * the buffer gets written.
520 */
521 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
522 mp->m_bsize, 0, &bp, NULL);
523 if (error)
524 return error;
525
526 /* Ensure the block magic matches the btree type we're looking for. */
527 btblock = XFS_BUF_TO_BLOCK(bp);
528 ASSERT(fab->buf_ops->magic[1] != 0);
529 if (btblock->bb_magic != fab->buf_ops->magic[1])
530 goto out;
531
532 /*
533 * If the buffer already has ops applied and they're not the ones for
534 * this btree type, we know this block doesn't match the btree and we
535 * can bail out.
536 *
537 * If the buffer ops match ours, someone else has already validated
538 * the block for us, so we can move on to checking if this is a root
539 * block candidate.
540 *
541 * If the buffer does not have ops, nobody has successfully validated
542 * the contents and the buffer cannot be dirty. If the magic, uuid,
543 * and structure match this btree type then we'll move on to checking
544 * if it's a root block candidate. If there is no match, bail out.
545 */
546 if (bp->b_ops) {
547 if (bp->b_ops != fab->buf_ops)
548 goto out;
549 } else {
550 ASSERT(!xfs_trans_buf_is_dirty(bp));
551 if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
552 &mp->m_sb.sb_meta_uuid))
553 goto out;
554 /*
555 * Read verifiers can reference b_ops, so we set the pointer
556 * here. If the verifier fails we'll reset the buffer state
557 * to what it was before we touched the buffer.
558 */
559 bp->b_ops = fab->buf_ops;
560 fab->buf_ops->verify_read(bp);
561 if (bp->b_error) {
562 bp->b_ops = NULL;
563 bp->b_error = 0;
564 goto out;
565 }
566
567 /*
568 * Some read verifiers will (re)set b_ops, so we must be
569 * careful not to change b_ops after running the verifier.
570 */
571 }
572
573 /*
574 * This block passes the magic/uuid and verifier tests for this btree
575 * type. We don't need the caller to try the other tree types.
576 */
577 *done_with_block = true;
578
579 /*
580 * Compare this btree block's level to the height of the current
581 * candidate root block.
582 *
583 * If the level matches the root we found previously, throw away both
584 * blocks because there can't be two candidate roots.
585 *
586 * If level is lower in the tree than the root we found previously,
587 * ignore this block.
588 */
589 block_level = xfs_btree_get_level(btblock);
590 if (block_level + 1 == fab->height) {
591 fab->root = NULLAGBLOCK;
592 goto out;
593 } else if (block_level < fab->height) {
594 goto out;
595 }
596
597 /*
598 * This is the highest block in the tree that we've found so far.
599 * Update the btree height to reflect what we've learned from this
600 * block.
601 */
602 fab->height = block_level + 1;
603
604 /*
605 * If this block doesn't have sibling pointers, then it's the new root
606 * block candidate. Otherwise, the root will be found farther up the
607 * tree.
608 */
609 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
610 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
611 fab->root = agbno;
612 else
613 fab->root = NULLAGBLOCK;
614
615 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
616 be32_to_cpu(btblock->bb_magic), fab->height - 1);
617 out:
618 xfs_trans_brelse(ri->sc->tp, bp);
619 return error;
620 }
621
622 /*
623 * Do any of the blocks in this rmap record match one of the btrees we're
624 * looking for?
625 */
626 STATIC int
xrep_findroot_rmap(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)627 xrep_findroot_rmap(
628 struct xfs_btree_cur *cur,
629 const struct xfs_rmap_irec *rec,
630 void *priv)
631 {
632 struct xrep_findroot *ri = priv;
633 struct xrep_find_ag_btree *fab;
634 xfs_agblock_t b;
635 bool done;
636 int error = 0;
637
638 /* Ignore anything that isn't AG metadata. */
639 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
640 return 0;
641
642 /* Otherwise scan each block + btree type. */
643 for (b = 0; b < rec->rm_blockcount; b++) {
644 done = false;
645 for (fab = ri->btree_info; fab->buf_ops; fab++) {
646 if (rec->rm_owner != fab->rmap_owner)
647 continue;
648 error = xrep_findroot_block(ri, fab,
649 rec->rm_owner, rec->rm_startblock + b,
650 &done);
651 if (error)
652 return error;
653 if (done)
654 break;
655 }
656 }
657
658 return 0;
659 }
660
661 /* Find the roots of the per-AG btrees described in btree_info. */
662 int
xrep_find_ag_btree_roots(struct xfs_scrub * sc,struct xfs_buf * agf_bp,struct xrep_find_ag_btree * btree_info,struct xfs_buf * agfl_bp)663 xrep_find_ag_btree_roots(
664 struct xfs_scrub *sc,
665 struct xfs_buf *agf_bp,
666 struct xrep_find_ag_btree *btree_info,
667 struct xfs_buf *agfl_bp)
668 {
669 struct xfs_mount *mp = sc->mp;
670 struct xrep_findroot ri;
671 struct xrep_find_ag_btree *fab;
672 struct xfs_btree_cur *cur;
673 int error;
674
675 ASSERT(xfs_buf_islocked(agf_bp));
676 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
677
678 ri.sc = sc;
679 ri.btree_info = btree_info;
680 ri.agf = agf_bp->b_addr;
681 ri.agfl_bp = agfl_bp;
682 for (fab = btree_info; fab->buf_ops; fab++) {
683 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
684 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
685 fab->root = NULLAGBLOCK;
686 fab->height = 0;
687 }
688
689 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
690 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
691 xfs_btree_del_cursor(cur, error);
692
693 return error;
694 }
695
696 #ifdef CONFIG_XFS_QUOTA
697 /* Update some quota flags in the superblock. */
698 void
xrep_update_qflags(struct xfs_scrub * sc,unsigned int clear_flags,unsigned int set_flags)699 xrep_update_qflags(
700 struct xfs_scrub *sc,
701 unsigned int clear_flags,
702 unsigned int set_flags)
703 {
704 struct xfs_mount *mp = sc->mp;
705 struct xfs_buf *bp;
706
707 mutex_lock(&mp->m_quotainfo->qi_quotaofflock);
708 if ((mp->m_qflags & clear_flags) == 0 &&
709 (mp->m_qflags & set_flags) == set_flags)
710 goto no_update;
711
712 mp->m_qflags &= ~clear_flags;
713 mp->m_qflags |= set_flags;
714
715 spin_lock(&mp->m_sb_lock);
716 mp->m_sb.sb_qflags &= ~clear_flags;
717 mp->m_sb.sb_qflags |= set_flags;
718 spin_unlock(&mp->m_sb_lock);
719
720 /*
721 * Update the quota flags in the ondisk superblock without touching
722 * the summary counters. We have not quiesced inode chunk allocation,
723 * so we cannot coordinate with updates to the icount and ifree percpu
724 * counters.
725 */
726 bp = xfs_trans_getsb(sc->tp);
727 xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
728 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
729 xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1);
730
731 no_update:
732 mutex_unlock(&mp->m_quotainfo->qi_quotaofflock);
733 }
734
735 /* Force a quotacheck the next time we mount. */
736 void
xrep_force_quotacheck(struct xfs_scrub * sc,xfs_dqtype_t type)737 xrep_force_quotacheck(
738 struct xfs_scrub *sc,
739 xfs_dqtype_t type)
740 {
741 uint flag;
742
743 flag = xfs_quota_chkd_flag(type);
744 if (!(flag & sc->mp->m_qflags))
745 return;
746
747 xrep_update_qflags(sc, flag, 0);
748 }
749
750 /*
751 * Attach dquots to this inode, or schedule quotacheck to fix them.
752 *
753 * This function ensures that the appropriate dquots are attached to an inode.
754 * We cannot allow the dquot code to allocate an on-disk dquot block here
755 * because we're already in transaction context. The on-disk dquot should
756 * already exist anyway. If the quota code signals corruption or missing quota
757 * information, schedule quotacheck, which will repair corruptions in the quota
758 * metadata.
759 */
760 int
xrep_ino_dqattach(struct xfs_scrub * sc)761 xrep_ino_dqattach(
762 struct xfs_scrub *sc)
763 {
764 int error;
765
766 ASSERT(sc->tp != NULL);
767 ASSERT(sc->ip != NULL);
768
769 error = xfs_qm_dqattach(sc->ip);
770 switch (error) {
771 case -EFSBADCRC:
772 case -EFSCORRUPTED:
773 case -ENOENT:
774 xfs_err_ratelimited(sc->mp,
775 "inode %llu repair encountered quota error %d, quotacheck forced.",
776 (unsigned long long)sc->ip->i_ino, error);
777 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
778 xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
779 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
780 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
781 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
782 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
783 fallthrough;
784 case -ESRCH:
785 error = 0;
786 break;
787 default:
788 break;
789 }
790
791 return error;
792 }
793 #endif /* CONFIG_XFS_QUOTA */
794
795 /*
796 * Ensure that the inode being repaired is ready to handle a certain number of
797 * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode
798 * being repaired and have joined it to the scrub transaction.
799 */
800 int
xrep_ino_ensure_extent_count(struct xfs_scrub * sc,int whichfork,xfs_extnum_t nextents)801 xrep_ino_ensure_extent_count(
802 struct xfs_scrub *sc,
803 int whichfork,
804 xfs_extnum_t nextents)
805 {
806 xfs_extnum_t max_extents;
807 bool inode_has_nrext64;
808
809 inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
810 max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
811 if (nextents <= max_extents)
812 return 0;
813 if (inode_has_nrext64)
814 return -EFSCORRUPTED;
815 if (!xfs_has_large_extent_counts(sc->mp))
816 return -EFSCORRUPTED;
817
818 max_extents = xfs_iext_max_nextents(true, whichfork);
819 if (nextents > max_extents)
820 return -EFSCORRUPTED;
821
822 sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
823 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
824 return 0;
825 }
826
827 /*
828 * Initialize all the btree cursors for an AG repair except for the btree that
829 * we're rebuilding.
830 */
831 void
xrep_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)832 xrep_ag_btcur_init(
833 struct xfs_scrub *sc,
834 struct xchk_ag *sa)
835 {
836 struct xfs_mount *mp = sc->mp;
837
838 /* Set up a bnobt cursor for cross-referencing. */
839 if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
840 sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
841 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
842 sc->sa.pag);
843 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
844 sc->sa.pag);
845 }
846
847 /* Set up a inobt cursor for cross-referencing. */
848 if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
849 sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
850 sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
851 sa->agi_bp);
852 if (xfs_has_finobt(mp))
853 sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag,
854 sc->tp, sa->agi_bp);
855 }
856
857 /* Set up a rmapbt cursor for cross-referencing. */
858 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
859 xfs_has_rmapbt(mp))
860 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
861 sc->sa.pag);
862
863 /* Set up a refcountbt cursor for cross-referencing. */
864 if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
865 xfs_has_reflink(mp))
866 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
867 sa->agf_bp, sc->sa.pag);
868 }
869
870 /*
871 * Reinitialize the in-core AG state after a repair by rereading the AGF
872 * buffer. We had better get the same AGF buffer as the one that's attached
873 * to the scrub context.
874 */
875 int
xrep_reinit_pagf(struct xfs_scrub * sc)876 xrep_reinit_pagf(
877 struct xfs_scrub *sc)
878 {
879 struct xfs_perag *pag = sc->sa.pag;
880 struct xfs_buf *bp;
881 int error;
882
883 ASSERT(pag);
884 ASSERT(xfs_perag_initialised_agf(pag));
885
886 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
887 error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
888 if (error)
889 return error;
890
891 if (bp != sc->sa.agf_bp) {
892 ASSERT(bp == sc->sa.agf_bp);
893 return -EFSCORRUPTED;
894 }
895
896 return 0;
897 }
898
899 /*
900 * Reinitialize the in-core AG state after a repair by rereading the AGI
901 * buffer. We had better get the same AGI buffer as the one that's attached
902 * to the scrub context.
903 */
904 int
xrep_reinit_pagi(struct xfs_scrub * sc)905 xrep_reinit_pagi(
906 struct xfs_scrub *sc)
907 {
908 struct xfs_perag *pag = sc->sa.pag;
909 struct xfs_buf *bp;
910 int error;
911
912 ASSERT(pag);
913 ASSERT(xfs_perag_initialised_agi(pag));
914
915 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
916 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp);
917 if (error)
918 return error;
919
920 if (bp != sc->sa.agi_bp) {
921 ASSERT(bp == sc->sa.agi_bp);
922 return -EFSCORRUPTED;
923 }
924
925 return 0;
926 }
927
928 /*
929 * Given an active reference to a perag structure, load AG headers and cursors.
930 * This should only be called to scan an AG while repairing file-based metadata.
931 */
932 int
xrep_ag_init(struct xfs_scrub * sc,struct xfs_perag * pag,struct xchk_ag * sa)933 xrep_ag_init(
934 struct xfs_scrub *sc,
935 struct xfs_perag *pag,
936 struct xchk_ag *sa)
937 {
938 int error;
939
940 ASSERT(!sa->pag);
941
942 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp);
943 if (error)
944 return error;
945
946 error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
947 if (error)
948 return error;
949
950 /* Grab our own passive reference from the caller's ref. */
951 sa->pag = xfs_perag_hold(pag);
952 xrep_ag_btcur_init(sc, sa);
953 return 0;
954 }
955
956 /* Reinitialize the per-AG block reservation for the AG we just fixed. */
957 int
xrep_reset_perag_resv(struct xfs_scrub * sc)958 xrep_reset_perag_resv(
959 struct xfs_scrub *sc)
960 {
961 int error;
962
963 if (!(sc->flags & XREP_RESET_PERAG_RESV))
964 return 0;
965
966 ASSERT(sc->sa.pag != NULL);
967 ASSERT(sc->ops->type == ST_PERAG);
968 ASSERT(sc->tp);
969
970 sc->flags &= ~XREP_RESET_PERAG_RESV;
971 xfs_ag_resv_free(sc->sa.pag);
972 error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
973 if (error == -ENOSPC) {
974 xfs_err(sc->mp,
975 "Insufficient free space to reset per-AG reservation for AG %u after repair.",
976 sc->sa.pag->pag_agno);
977 error = 0;
978 }
979
980 return error;
981 }
982
983 /* Decide if we are going to call the repair function for a scrub type. */
984 bool
xrep_will_attempt(struct xfs_scrub * sc)985 xrep_will_attempt(
986 struct xfs_scrub *sc)
987 {
988 /* Userspace asked us to rebuild the structure regardless. */
989 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
990 return true;
991
992 /* Let debug users force us into the repair routines. */
993 if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
994 return true;
995
996 /* Metadata is corrupt or failed cross-referencing. */
997 if (xchk_needs_repair(sc->sm))
998 return true;
999
1000 return false;
1001 }
1002
1003 /* Try to fix some part of a metadata inode by calling another scrubber. */
1004 STATIC int
xrep_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)1005 xrep_metadata_inode_subtype(
1006 struct xfs_scrub *sc,
1007 unsigned int scrub_type)
1008 {
1009 struct xfs_scrub_subord *sub;
1010 int error;
1011
1012 /*
1013 * Let's see if the inode needs repair. Use a subordinate scrub context
1014 * to call the scrub and repair functions so that we can hang on to the
1015 * resources that we already acquired instead of using the standard
1016 * setup/teardown routines.
1017 */
1018 sub = xchk_scrub_create_subord(sc, scrub_type);
1019 error = sub->sc.ops->scrub(&sub->sc);
1020 if (error)
1021 goto out;
1022 if (!xrep_will_attempt(&sub->sc))
1023 goto out;
1024
1025 /*
1026 * Repair some part of the inode. This will potentially join the inode
1027 * to the transaction.
1028 */
1029 error = sub->sc.ops->repair(&sub->sc);
1030 if (error)
1031 goto out;
1032
1033 /*
1034 * Finish all deferred intent items and then roll the transaction so
1035 * that the inode will not be joined to the transaction when we exit
1036 * the function.
1037 */
1038 error = xfs_defer_finish(&sub->sc.tp);
1039 if (error)
1040 goto out;
1041 error = xfs_trans_roll(&sub->sc.tp);
1042 if (error)
1043 goto out;
1044
1045 /*
1046 * Clear the corruption flags and re-check the metadata that we just
1047 * repaired.
1048 */
1049 sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1050 error = sub->sc.ops->scrub(&sub->sc);
1051 if (error)
1052 goto out;
1053
1054 /* If corruption persists, the repair has failed. */
1055 if (xchk_needs_repair(sub->sc.sm)) {
1056 error = -EFSCORRUPTED;
1057 goto out;
1058 }
1059 out:
1060 xchk_scrub_free_subord(sub);
1061 return error;
1062 }
1063
1064 /*
1065 * Repair the ondisk forks of a metadata inode. The caller must ensure that
1066 * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1067 * The inode must not be joined to the transaction before the call, and will
1068 * not be afterwards.
1069 */
1070 int
xrep_metadata_inode_forks(struct xfs_scrub * sc)1071 xrep_metadata_inode_forks(
1072 struct xfs_scrub *sc)
1073 {
1074 bool dirty = false;
1075 int error;
1076
1077 /* Repair the inode record and the data fork. */
1078 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1079 if (error)
1080 return error;
1081
1082 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1083 if (error)
1084 return error;
1085
1086 /* Make sure the attr fork looks ok before we delete it. */
1087 if (xfs_inode_hasattr(sc->ip)) {
1088 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1089 if (error)
1090 return error;
1091 }
1092
1093 /* Clear the reflink flag since metadata never shares. */
1094 if (xfs_is_reflink_inode(sc->ip)) {
1095 dirty = true;
1096 xfs_trans_ijoin(sc->tp, sc->ip, 0);
1097 error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1098 if (error)
1099 return error;
1100 }
1101
1102 /* Clear the attr forks since metadata shouldn't have that. */
1103 if (xfs_inode_hasattr(sc->ip)) {
1104 if (!dirty) {
1105 dirty = true;
1106 xfs_trans_ijoin(sc->tp, sc->ip, 0);
1107 }
1108 error = xrep_xattr_reset_fork(sc);
1109 if (error)
1110 return error;
1111 }
1112
1113 /*
1114 * If we modified the inode, roll the transaction but don't rejoin the
1115 * inode to the new transaction because xrep_bmap_data can do that.
1116 */
1117 if (dirty) {
1118 error = xfs_trans_roll(&sc->tp);
1119 if (error)
1120 return error;
1121 dirty = false;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /*
1128 * Set up an in-memory buffer cache so that we can use the xfbtree. Allocating
1129 * a shmem file might take loks, so we cannot be in transaction context. Park
1130 * our resources in the scrub context and let the teardown function take care
1131 * of them at the right time.
1132 */
1133 int
xrep_setup_xfbtree(struct xfs_scrub * sc,const char * descr)1134 xrep_setup_xfbtree(
1135 struct xfs_scrub *sc,
1136 const char *descr)
1137 {
1138 ASSERT(sc->tp == NULL);
1139
1140 return xmbuf_alloc(sc->mp, descr, &sc->xmbtp);
1141 }
1142
1143 /*
1144 * Create a dummy transaction for use in a live update hook function. This
1145 * function MUST NOT be called from regular repair code because the current
1146 * process' transaction is saved via the cookie.
1147 */
1148 int
xrep_trans_alloc_hook_dummy(struct xfs_mount * mp,void ** cookiep,struct xfs_trans ** tpp)1149 xrep_trans_alloc_hook_dummy(
1150 struct xfs_mount *mp,
1151 void **cookiep,
1152 struct xfs_trans **tpp)
1153 {
1154 int error;
1155
1156 *cookiep = current->journal_info;
1157 current->journal_info = NULL;
1158
1159 error = xfs_trans_alloc_empty(mp, tpp);
1160 if (!error)
1161 return 0;
1162
1163 current->journal_info = *cookiep;
1164 *cookiep = NULL;
1165 return error;
1166 }
1167
1168 /* Cancel a dummy transaction used by a live update hook function. */
1169 void
xrep_trans_cancel_hook_dummy(void ** cookiep,struct xfs_trans * tp)1170 xrep_trans_cancel_hook_dummy(
1171 void **cookiep,
1172 struct xfs_trans *tp)
1173 {
1174 xfs_trans_cancel(tp);
1175 current->journal_info = *cookiep;
1176 *cookiep = NULL;
1177 }
1178
1179 /*
1180 * See if this buffer can pass the given ->verify_struct() function.
1181 *
1182 * If the buffer already has ops attached and they're not the ones that were
1183 * passed in, we reject the buffer. Otherwise, we perform the structure test
1184 * (note that we do not check CRCs) and return the outcome of the test. The
1185 * buffer ops and error state are left unchanged.
1186 */
1187 bool
xrep_buf_verify_struct(struct xfs_buf * bp,const struct xfs_buf_ops * ops)1188 xrep_buf_verify_struct(
1189 struct xfs_buf *bp,
1190 const struct xfs_buf_ops *ops)
1191 {
1192 const struct xfs_buf_ops *old_ops = bp->b_ops;
1193 xfs_failaddr_t fa;
1194 int old_error;
1195
1196 if (old_ops) {
1197 if (old_ops != ops)
1198 return false;
1199 }
1200
1201 old_error = bp->b_error;
1202 bp->b_ops = ops;
1203 fa = bp->b_ops->verify_struct(bp);
1204 bp->b_ops = old_ops;
1205 bp->b_error = old_error;
1206
1207 return fa == NULL;
1208 }
1209