xref: /linux/mm/kasan/common.c (revision b8c8ba73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/slab.h>
26 #include <linux/stackdepot.h>
27 #include <linux/stacktrace.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/bug.h>
31 
32 #include "kasan.h"
33 #include "../slab.h"
34 
kasan_addr_to_slab(const void * addr)35 struct slab *kasan_addr_to_slab(const void *addr)
36 {
37 	if (virt_addr_valid(addr))
38 		return virt_to_slab(addr);
39 	return NULL;
40 }
41 
kasan_save_stack(gfp_t flags,depot_flags_t depot_flags)42 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
43 {
44 	unsigned long entries[KASAN_STACK_DEPTH];
45 	unsigned int nr_entries;
46 
47 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
48 	return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
49 }
50 
kasan_set_track(struct kasan_track * track,depot_stack_handle_t stack)51 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
52 {
53 #ifdef CONFIG_KASAN_EXTRA_INFO
54 	u32 cpu = raw_smp_processor_id();
55 	u64 ts_nsec = local_clock();
56 
57 	track->cpu = cpu;
58 	track->timestamp = ts_nsec >> 9;
59 #endif /* CONFIG_KASAN_EXTRA_INFO */
60 	track->pid = current->pid;
61 	track->stack = stack;
62 }
63 
kasan_save_track(struct kasan_track * track,gfp_t flags)64 void kasan_save_track(struct kasan_track *track, gfp_t flags)
65 {
66 	depot_stack_handle_t stack;
67 
68 	stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
69 	kasan_set_track(track, stack);
70 }
71 
72 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)73 void kasan_enable_current(void)
74 {
75 	current->kasan_depth++;
76 }
77 EXPORT_SYMBOL(kasan_enable_current);
78 
kasan_disable_current(void)79 void kasan_disable_current(void)
80 {
81 	current->kasan_depth--;
82 }
83 EXPORT_SYMBOL(kasan_disable_current);
84 
85 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
86 
__kasan_unpoison_range(const void * address,size_t size)87 void __kasan_unpoison_range(const void *address, size_t size)
88 {
89 	if (is_kfence_address(address))
90 		return;
91 
92 	kasan_unpoison(address, size, false);
93 }
94 
95 #ifdef CONFIG_KASAN_STACK
96 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)97 void kasan_unpoison_task_stack(struct task_struct *task)
98 {
99 	void *base = task_stack_page(task);
100 
101 	kasan_unpoison(base, THREAD_SIZE, false);
102 }
103 
104 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)105 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
106 {
107 	/*
108 	 * Calculate the task stack base address.  Avoid using 'current'
109 	 * because this function is called by early resume code which hasn't
110 	 * yet set up the percpu register (%gs).
111 	 */
112 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
113 
114 	kasan_unpoison(base, watermark - base, false);
115 }
116 #endif /* CONFIG_KASAN_STACK */
117 
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)118 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
119 {
120 	u8 tag;
121 	unsigned long i;
122 
123 	if (unlikely(PageHighMem(page)))
124 		return false;
125 
126 	if (!kasan_sample_page_alloc(order))
127 		return false;
128 
129 	tag = kasan_random_tag();
130 	kasan_unpoison(set_tag(page_address(page), tag),
131 		       PAGE_SIZE << order, init);
132 	for (i = 0; i < (1 << order); i++)
133 		page_kasan_tag_set(page + i, tag);
134 
135 	return true;
136 }
137 
__kasan_poison_pages(struct page * page,unsigned int order,bool init)138 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
139 {
140 	if (likely(!PageHighMem(page)))
141 		kasan_poison(page_address(page), PAGE_SIZE << order,
142 			     KASAN_PAGE_FREE, init);
143 }
144 
__kasan_poison_slab(struct slab * slab)145 void __kasan_poison_slab(struct slab *slab)
146 {
147 	struct page *page = slab_page(slab);
148 	unsigned long i;
149 
150 	for (i = 0; i < compound_nr(page); i++)
151 		page_kasan_tag_reset(page + i);
152 	kasan_poison(page_address(page), page_size(page),
153 		     KASAN_SLAB_REDZONE, false);
154 }
155 
__kasan_unpoison_new_object(struct kmem_cache * cache,void * object)156 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
157 {
158 	kasan_unpoison(object, cache->object_size, false);
159 }
160 
__kasan_poison_new_object(struct kmem_cache * cache,void * object)161 void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
162 {
163 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
164 			KASAN_SLAB_REDZONE, false);
165 }
166 
167 /*
168  * This function assigns a tag to an object considering the following:
169  * 1. A cache might have a constructor, which might save a pointer to a slab
170  *    object somewhere (e.g. in the object itself). We preassign a tag for
171  *    each object in caches with constructors during slab creation and reuse
172  *    the same tag each time a particular object is allocated.
173  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
174  *    accessed after being freed. We preassign tags for objects in these
175  *    caches as well.
176  */
assign_tag(struct kmem_cache * cache,const void * object,bool init)177 static inline u8 assign_tag(struct kmem_cache *cache,
178 					const void *object, bool init)
179 {
180 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
181 		return 0xff;
182 
183 	/*
184 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
185 	 * set, assign a tag when the object is being allocated (init == false).
186 	 */
187 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
188 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
189 
190 	/*
191 	 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
192 	 * assign a random tag during slab creation, otherwise reuse
193 	 * the already assigned tag.
194 	 */
195 	return init ? kasan_random_tag() : get_tag(object);
196 }
197 
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)198 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
199 						const void *object)
200 {
201 	/* Initialize per-object metadata if it is present. */
202 	if (kasan_requires_meta())
203 		kasan_init_object_meta(cache, object);
204 
205 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
206 	object = set_tag(object, assign_tag(cache, object, true));
207 
208 	return (void *)object;
209 }
210 
211 /* Returns true when freeing the object is not safe. */
check_slab_allocation(struct kmem_cache * cache,void * object,unsigned long ip)212 static bool check_slab_allocation(struct kmem_cache *cache, void *object,
213 				  unsigned long ip)
214 {
215 	void *tagged_object = object;
216 
217 	object = kasan_reset_tag(object);
218 
219 	if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
220 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
221 		return true;
222 	}
223 
224 	if (!kasan_byte_accessible(tagged_object)) {
225 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
226 		return true;
227 	}
228 
229 	return false;
230 }
231 
poison_slab_object(struct kmem_cache * cache,void * object,bool init,bool still_accessible)232 static inline void poison_slab_object(struct kmem_cache *cache, void *object,
233 				      bool init, bool still_accessible)
234 {
235 	void *tagged_object = object;
236 
237 	object = kasan_reset_tag(object);
238 
239 	/* RCU slabs could be legally used after free within the RCU period. */
240 	if (unlikely(still_accessible))
241 		return;
242 
243 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
244 			KASAN_SLAB_FREE, init);
245 
246 	if (kasan_stack_collection_enabled())
247 		kasan_save_free_info(cache, tagged_object);
248 }
249 
__kasan_slab_pre_free(struct kmem_cache * cache,void * object,unsigned long ip)250 bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
251 				unsigned long ip)
252 {
253 	if (!kasan_arch_is_ready() || is_kfence_address(object))
254 		return false;
255 	return check_slab_allocation(cache, object, ip);
256 }
257 
__kasan_slab_free(struct kmem_cache * cache,void * object,bool init,bool still_accessible)258 bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
259 		       bool still_accessible)
260 {
261 	if (!kasan_arch_is_ready() || is_kfence_address(object))
262 		return false;
263 
264 	poison_slab_object(cache, object, init, still_accessible);
265 
266 	/*
267 	 * If the object is put into quarantine, do not let slab put the object
268 	 * onto the freelist for now. The object's metadata is kept until the
269 	 * object gets evicted from quarantine.
270 	 */
271 	if (kasan_quarantine_put(cache, object))
272 		return true;
273 
274 	/*
275 	 * Note: Keep per-object metadata to allow KASAN print stack traces for
276 	 * use-after-free-before-realloc bugs.
277 	 */
278 
279 	/* Let slab put the object onto the freelist. */
280 	return false;
281 }
282 
check_page_allocation(void * ptr,unsigned long ip)283 static inline bool check_page_allocation(void *ptr, unsigned long ip)
284 {
285 	if (!kasan_arch_is_ready())
286 		return false;
287 
288 	if (ptr != page_address(virt_to_head_page(ptr))) {
289 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
290 		return true;
291 	}
292 
293 	if (!kasan_byte_accessible(ptr)) {
294 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
295 		return true;
296 	}
297 
298 	return false;
299 }
300 
__kasan_kfree_large(void * ptr,unsigned long ip)301 void __kasan_kfree_large(void *ptr, unsigned long ip)
302 {
303 	check_page_allocation(ptr, ip);
304 
305 	/* The object will be poisoned by kasan_poison_pages(). */
306 }
307 
unpoison_slab_object(struct kmem_cache * cache,void * object,gfp_t flags,bool init)308 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
309 					gfp_t flags, bool init)
310 {
311 	/*
312 	 * Unpoison the whole object. For kmalloc() allocations,
313 	 * poison_kmalloc_redzone() will do precise poisoning.
314 	 */
315 	kasan_unpoison(object, cache->object_size, init);
316 
317 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
318 	if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
319 		kasan_save_alloc_info(cache, object, flags);
320 }
321 
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)322 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
323 					void *object, gfp_t flags, bool init)
324 {
325 	u8 tag;
326 	void *tagged_object;
327 
328 	if (gfpflags_allow_blocking(flags))
329 		kasan_quarantine_reduce();
330 
331 	if (unlikely(object == NULL))
332 		return NULL;
333 
334 	if (is_kfence_address(object))
335 		return (void *)object;
336 
337 	/*
338 	 * Generate and assign random tag for tag-based modes.
339 	 * Tag is ignored in set_tag() for the generic mode.
340 	 */
341 	tag = assign_tag(cache, object, false);
342 	tagged_object = set_tag(object, tag);
343 
344 	/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
345 	unpoison_slab_object(cache, tagged_object, flags, init);
346 
347 	return tagged_object;
348 }
349 
poison_kmalloc_redzone(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)350 static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
351 				const void *object, size_t size, gfp_t flags)
352 {
353 	unsigned long redzone_start;
354 	unsigned long redzone_end;
355 
356 	/*
357 	 * The redzone has byte-level precision for the generic mode.
358 	 * Partially poison the last object granule to cover the unaligned
359 	 * part of the redzone.
360 	 */
361 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
362 		kasan_poison_last_granule((void *)object, size);
363 
364 	/* Poison the aligned part of the redzone. */
365 	redzone_start = round_up((unsigned long)(object + size),
366 				KASAN_GRANULE_SIZE);
367 	redzone_end = round_up((unsigned long)(object + cache->object_size),
368 				KASAN_GRANULE_SIZE);
369 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
370 			   KASAN_SLAB_REDZONE, false);
371 
372 	/*
373 	 * Save alloc info (if possible) for kmalloc() allocations.
374 	 * This also rewrites the alloc info when called from kasan_krealloc().
375 	 */
376 	if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
377 		kasan_save_alloc_info(cache, (void *)object, flags);
378 
379 }
380 
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)381 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
382 					size_t size, gfp_t flags)
383 {
384 	if (gfpflags_allow_blocking(flags))
385 		kasan_quarantine_reduce();
386 
387 	if (unlikely(object == NULL))
388 		return NULL;
389 
390 	if (is_kfence_address(object))
391 		return (void *)object;
392 
393 	/* The object has already been unpoisoned by kasan_slab_alloc(). */
394 	poison_kmalloc_redzone(cache, object, size, flags);
395 
396 	/* Keep the tag that was set by kasan_slab_alloc(). */
397 	return (void *)object;
398 }
399 EXPORT_SYMBOL(__kasan_kmalloc);
400 
poison_kmalloc_large_redzone(const void * ptr,size_t size,gfp_t flags)401 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
402 						gfp_t flags)
403 {
404 	unsigned long redzone_start;
405 	unsigned long redzone_end;
406 
407 	/*
408 	 * The redzone has byte-level precision for the generic mode.
409 	 * Partially poison the last object granule to cover the unaligned
410 	 * part of the redzone.
411 	 */
412 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
413 		kasan_poison_last_granule(ptr, size);
414 
415 	/* Poison the aligned part of the redzone. */
416 	redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
417 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
418 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
419 		     KASAN_PAGE_REDZONE, false);
420 }
421 
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)422 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
423 						gfp_t flags)
424 {
425 	if (gfpflags_allow_blocking(flags))
426 		kasan_quarantine_reduce();
427 
428 	if (unlikely(ptr == NULL))
429 		return NULL;
430 
431 	/* The object has already been unpoisoned by kasan_unpoison_pages(). */
432 	poison_kmalloc_large_redzone(ptr, size, flags);
433 
434 	/* Keep the tag that was set by alloc_pages(). */
435 	return (void *)ptr;
436 }
437 
__kasan_krealloc(const void * object,size_t size,gfp_t flags)438 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
439 {
440 	struct slab *slab;
441 
442 	if (gfpflags_allow_blocking(flags))
443 		kasan_quarantine_reduce();
444 
445 	if (unlikely(object == ZERO_SIZE_PTR))
446 		return (void *)object;
447 
448 	if (is_kfence_address(object))
449 		return (void *)object;
450 
451 	/*
452 	 * Unpoison the object's data.
453 	 * Part of it might already have been unpoisoned, but it's unknown
454 	 * how big that part is.
455 	 */
456 	kasan_unpoison(object, size, false);
457 
458 	slab = virt_to_slab(object);
459 
460 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
461 	if (unlikely(!slab))
462 		poison_kmalloc_large_redzone(object, size, flags);
463 	else
464 		poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
465 
466 	return (void *)object;
467 }
468 
__kasan_mempool_poison_pages(struct page * page,unsigned int order,unsigned long ip)469 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
470 				  unsigned long ip)
471 {
472 	unsigned long *ptr;
473 
474 	if (unlikely(PageHighMem(page)))
475 		return true;
476 
477 	/* Bail out if allocation was excluded due to sampling. */
478 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
479 	    page_kasan_tag(page) == KASAN_TAG_KERNEL)
480 		return true;
481 
482 	ptr = page_address(page);
483 
484 	if (check_page_allocation(ptr, ip))
485 		return false;
486 
487 	kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
488 
489 	return true;
490 }
491 
__kasan_mempool_unpoison_pages(struct page * page,unsigned int order,unsigned long ip)492 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
493 				    unsigned long ip)
494 {
495 	__kasan_unpoison_pages(page, order, false);
496 }
497 
__kasan_mempool_poison_object(void * ptr,unsigned long ip)498 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
499 {
500 	struct folio *folio = virt_to_folio(ptr);
501 	struct slab *slab;
502 
503 	/*
504 	 * This function can be called for large kmalloc allocation that get
505 	 * their memory from page_alloc. Thus, the folio might not be a slab.
506 	 */
507 	if (unlikely(!folio_test_slab(folio))) {
508 		if (check_page_allocation(ptr, ip))
509 			return false;
510 		kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
511 		return true;
512 	}
513 
514 	if (is_kfence_address(ptr) || !kasan_arch_is_ready())
515 		return true;
516 
517 	slab = folio_slab(folio);
518 
519 	if (check_slab_allocation(slab->slab_cache, ptr, ip))
520 		return false;
521 
522 	poison_slab_object(slab->slab_cache, ptr, false, false);
523 	return true;
524 }
525 
__kasan_mempool_unpoison_object(void * ptr,size_t size,unsigned long ip)526 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
527 {
528 	struct slab *slab;
529 	gfp_t flags = 0; /* Might be executing under a lock. */
530 
531 	slab = virt_to_slab(ptr);
532 
533 	/*
534 	 * This function can be called for large kmalloc allocation that get
535 	 * their memory from page_alloc.
536 	 */
537 	if (unlikely(!slab)) {
538 		kasan_unpoison(ptr, size, false);
539 		poison_kmalloc_large_redzone(ptr, size, flags);
540 		return;
541 	}
542 
543 	if (is_kfence_address(ptr))
544 		return;
545 
546 	/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
547 	unpoison_slab_object(slab->slab_cache, ptr, flags, false);
548 
549 	/* Poison the redzone and save alloc info for kmalloc() allocations. */
550 	if (is_kmalloc_cache(slab->slab_cache))
551 		poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
552 }
553 
__kasan_check_byte(const void * address,unsigned long ip)554 bool __kasan_check_byte(const void *address, unsigned long ip)
555 {
556 	if (!kasan_byte_accessible(address)) {
557 		kasan_report(address, 1, false, ip);
558 		return false;
559 	}
560 	return true;
561 }
562