1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6 #include <linux/swap.h>
7 #include <linux/swapops.h>
8
9 /*
10 * We want to know the real level where a entry is located ignoring any
11 * folding of levels which may be happening. For example if p4d is folded then
12 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
13 */
real_depth(int depth)14 static int real_depth(int depth)
15 {
16 if (depth == 3 && PTRS_PER_PMD == 1)
17 depth = 2;
18 if (depth == 2 && PTRS_PER_PUD == 1)
19 depth = 1;
20 if (depth == 1 && PTRS_PER_P4D == 1)
21 depth = 0;
22 return depth;
23 }
24
walk_pte_range_inner(pte_t * pte,unsigned long addr,unsigned long end,struct mm_walk * walk)25 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
26 unsigned long end, struct mm_walk *walk)
27 {
28 const struct mm_walk_ops *ops = walk->ops;
29 int err = 0;
30
31 for (;;) {
32 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
33 if (err)
34 break;
35 if (addr >= end - PAGE_SIZE)
36 break;
37 addr += PAGE_SIZE;
38 pte++;
39 }
40 return err;
41 }
42
walk_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)43 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
44 struct mm_walk *walk)
45 {
46 pte_t *pte;
47 int err = 0;
48 spinlock_t *ptl;
49
50 if (walk->no_vma) {
51 /*
52 * pte_offset_map() might apply user-specific validation.
53 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
54 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
55 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
56 */
57 if (walk->mm == &init_mm || addr >= TASK_SIZE)
58 pte = pte_offset_kernel(pmd, addr);
59 else
60 pte = pte_offset_map(pmd, addr);
61 if (pte) {
62 err = walk_pte_range_inner(pte, addr, end, walk);
63 if (walk->mm != &init_mm && addr < TASK_SIZE)
64 pte_unmap(pte);
65 }
66 } else {
67 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
68 if (pte) {
69 err = walk_pte_range_inner(pte, addr, end, walk);
70 pte_unmap_unlock(pte, ptl);
71 }
72 }
73 if (!pte)
74 walk->action = ACTION_AGAIN;
75 return err;
76 }
77
walk_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,struct mm_walk * walk)78 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
79 struct mm_walk *walk)
80 {
81 pmd_t *pmd;
82 unsigned long next;
83 const struct mm_walk_ops *ops = walk->ops;
84 int err = 0;
85 int depth = real_depth(3);
86
87 pmd = pmd_offset(pud, addr);
88 do {
89 again:
90 next = pmd_addr_end(addr, end);
91 if (pmd_none(*pmd)) {
92 if (ops->pte_hole)
93 err = ops->pte_hole(addr, next, depth, walk);
94 if (err)
95 break;
96 continue;
97 }
98
99 walk->action = ACTION_SUBTREE;
100
101 /*
102 * This implies that each ->pmd_entry() handler
103 * needs to know about pmd_trans_huge() pmds
104 */
105 if (ops->pmd_entry)
106 err = ops->pmd_entry(pmd, addr, next, walk);
107 if (err)
108 break;
109
110 if (walk->action == ACTION_AGAIN)
111 goto again;
112
113 /*
114 * Check this here so we only break down trans_huge
115 * pages when we _need_ to
116 */
117 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
118 walk->action == ACTION_CONTINUE ||
119 !(ops->pte_entry))
120 continue;
121
122 if (walk->vma)
123 split_huge_pmd(walk->vma, pmd, addr);
124
125 err = walk_pte_range(pmd, addr, next, walk);
126 if (err)
127 break;
128
129 if (walk->action == ACTION_AGAIN)
130 goto again;
131
132 } while (pmd++, addr = next, addr != end);
133
134 return err;
135 }
136
walk_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,struct mm_walk * walk)137 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
138 struct mm_walk *walk)
139 {
140 pud_t *pud;
141 unsigned long next;
142 const struct mm_walk_ops *ops = walk->ops;
143 int err = 0;
144 int depth = real_depth(2);
145
146 pud = pud_offset(p4d, addr);
147 do {
148 again:
149 next = pud_addr_end(addr, end);
150 if (pud_none(*pud)) {
151 if (ops->pte_hole)
152 err = ops->pte_hole(addr, next, depth, walk);
153 if (err)
154 break;
155 continue;
156 }
157
158 walk->action = ACTION_SUBTREE;
159
160 if (ops->pud_entry)
161 err = ops->pud_entry(pud, addr, next, walk);
162 if (err)
163 break;
164
165 if (walk->action == ACTION_AGAIN)
166 goto again;
167
168 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
169 walk->action == ACTION_CONTINUE ||
170 !(ops->pmd_entry || ops->pte_entry))
171 continue;
172
173 if (walk->vma)
174 split_huge_pud(walk->vma, pud, addr);
175 if (pud_none(*pud))
176 goto again;
177
178 err = walk_pmd_range(pud, addr, next, walk);
179 if (err)
180 break;
181 } while (pud++, addr = next, addr != end);
182
183 return err;
184 }
185
walk_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,struct mm_walk * walk)186 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
187 struct mm_walk *walk)
188 {
189 p4d_t *p4d;
190 unsigned long next;
191 const struct mm_walk_ops *ops = walk->ops;
192 int err = 0;
193 int depth = real_depth(1);
194
195 p4d = p4d_offset(pgd, addr);
196 do {
197 next = p4d_addr_end(addr, end);
198 if (p4d_none_or_clear_bad(p4d)) {
199 if (ops->pte_hole)
200 err = ops->pte_hole(addr, next, depth, walk);
201 if (err)
202 break;
203 continue;
204 }
205 if (ops->p4d_entry) {
206 err = ops->p4d_entry(p4d, addr, next, walk);
207 if (err)
208 break;
209 }
210 if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
211 err = walk_pud_range(p4d, addr, next, walk);
212 if (err)
213 break;
214 } while (p4d++, addr = next, addr != end);
215
216 return err;
217 }
218
walk_pgd_range(unsigned long addr,unsigned long end,struct mm_walk * walk)219 static int walk_pgd_range(unsigned long addr, unsigned long end,
220 struct mm_walk *walk)
221 {
222 pgd_t *pgd;
223 unsigned long next;
224 const struct mm_walk_ops *ops = walk->ops;
225 int err = 0;
226
227 if (walk->pgd)
228 pgd = walk->pgd + pgd_index(addr);
229 else
230 pgd = pgd_offset(walk->mm, addr);
231 do {
232 next = pgd_addr_end(addr, end);
233 if (pgd_none_or_clear_bad(pgd)) {
234 if (ops->pte_hole)
235 err = ops->pte_hole(addr, next, 0, walk);
236 if (err)
237 break;
238 continue;
239 }
240 if (ops->pgd_entry) {
241 err = ops->pgd_entry(pgd, addr, next, walk);
242 if (err)
243 break;
244 }
245 if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
246 err = walk_p4d_range(pgd, addr, next, walk);
247 if (err)
248 break;
249 } while (pgd++, addr = next, addr != end);
250
251 return err;
252 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
hugetlb_entry_end(struct hstate * h,unsigned long addr,unsigned long end)255 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
256 unsigned long end)
257 {
258 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
259 return boundary < end ? boundary : end;
260 }
261
walk_hugetlb_range(unsigned long addr,unsigned long end,struct mm_walk * walk)262 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
263 struct mm_walk *walk)
264 {
265 struct vm_area_struct *vma = walk->vma;
266 struct hstate *h = hstate_vma(vma);
267 unsigned long next;
268 unsigned long hmask = huge_page_mask(h);
269 unsigned long sz = huge_page_size(h);
270 pte_t *pte;
271 const struct mm_walk_ops *ops = walk->ops;
272 int err = 0;
273
274 hugetlb_vma_lock_read(vma);
275 do {
276 next = hugetlb_entry_end(h, addr, end);
277 pte = hugetlb_walk(vma, addr & hmask, sz);
278 if (pte)
279 err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
280 else if (ops->pte_hole)
281 err = ops->pte_hole(addr, next, -1, walk);
282 if (err)
283 break;
284 } while (addr = next, addr != end);
285 hugetlb_vma_unlock_read(vma);
286
287 return err;
288 }
289
290 #else /* CONFIG_HUGETLB_PAGE */
walk_hugetlb_range(unsigned long addr,unsigned long end,struct mm_walk * walk)291 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
292 struct mm_walk *walk)
293 {
294 return 0;
295 }
296
297 #endif /* CONFIG_HUGETLB_PAGE */
298
299 /*
300 * Decide whether we really walk over the current vma on [@start, @end)
301 * or skip it via the returned value. Return 0 if we do walk over the
302 * current vma, and return 1 if we skip the vma. Negative values means
303 * error, where we abort the current walk.
304 */
walk_page_test(unsigned long start,unsigned long end,struct mm_walk * walk)305 static int walk_page_test(unsigned long start, unsigned long end,
306 struct mm_walk *walk)
307 {
308 struct vm_area_struct *vma = walk->vma;
309 const struct mm_walk_ops *ops = walk->ops;
310
311 if (ops->test_walk)
312 return ops->test_walk(start, end, walk);
313
314 /*
315 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
316 * range, so we don't walk over it as we do for normal vmas. However,
317 * Some callers are interested in handling hole range and they don't
318 * want to just ignore any single address range. Such users certainly
319 * define their ->pte_hole() callbacks, so let's delegate them to handle
320 * vma(VM_PFNMAP).
321 */
322 if (vma->vm_flags & VM_PFNMAP) {
323 int err = 1;
324 if (ops->pte_hole)
325 err = ops->pte_hole(start, end, -1, walk);
326 return err ? err : 1;
327 }
328 return 0;
329 }
330
__walk_page_range(unsigned long start,unsigned long end,struct mm_walk * walk)331 static int __walk_page_range(unsigned long start, unsigned long end,
332 struct mm_walk *walk)
333 {
334 int err = 0;
335 struct vm_area_struct *vma = walk->vma;
336 const struct mm_walk_ops *ops = walk->ops;
337
338 if (ops->pre_vma) {
339 err = ops->pre_vma(start, end, walk);
340 if (err)
341 return err;
342 }
343
344 if (is_vm_hugetlb_page(vma)) {
345 if (ops->hugetlb_entry)
346 err = walk_hugetlb_range(start, end, walk);
347 } else
348 err = walk_pgd_range(start, end, walk);
349
350 if (ops->post_vma)
351 ops->post_vma(walk);
352
353 return err;
354 }
355
process_mm_walk_lock(struct mm_struct * mm,enum page_walk_lock walk_lock)356 static inline void process_mm_walk_lock(struct mm_struct *mm,
357 enum page_walk_lock walk_lock)
358 {
359 if (walk_lock == PGWALK_RDLOCK)
360 mmap_assert_locked(mm);
361 else
362 mmap_assert_write_locked(mm);
363 }
364
process_vma_walk_lock(struct vm_area_struct * vma,enum page_walk_lock walk_lock)365 static inline void process_vma_walk_lock(struct vm_area_struct *vma,
366 enum page_walk_lock walk_lock)
367 {
368 #ifdef CONFIG_PER_VMA_LOCK
369 switch (walk_lock) {
370 case PGWALK_WRLOCK:
371 vma_start_write(vma);
372 break;
373 case PGWALK_WRLOCK_VERIFY:
374 vma_assert_write_locked(vma);
375 break;
376 case PGWALK_RDLOCK:
377 /* PGWALK_RDLOCK is handled by process_mm_walk_lock */
378 break;
379 }
380 #endif
381 }
382
383 /**
384 * walk_page_range - walk page table with caller specific callbacks
385 * @mm: mm_struct representing the target process of page table walk
386 * @start: start address of the virtual address range
387 * @end: end address of the virtual address range
388 * @ops: operation to call during the walk
389 * @private: private data for callbacks' usage
390 *
391 * Recursively walk the page table tree of the process represented by @mm
392 * within the virtual address range [@start, @end). During walking, we can do
393 * some caller-specific works for each entry, by setting up pmd_entry(),
394 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
395 * callbacks, the associated entries/pages are just ignored.
396 * The return values of these callbacks are commonly defined like below:
397 *
398 * - 0 : succeeded to handle the current entry, and if you don't reach the
399 * end address yet, continue to walk.
400 * - >0 : succeeded to handle the current entry, and return to the caller
401 * with caller specific value.
402 * - <0 : failed to handle the current entry, and return to the caller
403 * with error code.
404 *
405 * Before starting to walk page table, some callers want to check whether
406 * they really want to walk over the current vma, typically by checking
407 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
408 * purpose.
409 *
410 * If operations need to be staged before and committed after a vma is walked,
411 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
412 * since it is intended to handle commit-type operations, can't return any
413 * errors.
414 *
415 * struct mm_walk keeps current values of some common data like vma and pmd,
416 * which are useful for the access from callbacks. If you want to pass some
417 * caller-specific data to callbacks, @private should be helpful.
418 *
419 * Locking:
420 * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
421 * because these function traverse vma list and/or access to vma's data.
422 */
walk_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,const struct mm_walk_ops * ops,void * private)423 int walk_page_range(struct mm_struct *mm, unsigned long start,
424 unsigned long end, const struct mm_walk_ops *ops,
425 void *private)
426 {
427 int err = 0;
428 unsigned long next;
429 struct vm_area_struct *vma;
430 struct mm_walk walk = {
431 .ops = ops,
432 .mm = mm,
433 .private = private,
434 };
435
436 if (start >= end)
437 return -EINVAL;
438
439 if (!walk.mm)
440 return -EINVAL;
441
442 process_mm_walk_lock(walk.mm, ops->walk_lock);
443
444 vma = find_vma(walk.mm, start);
445 do {
446 if (!vma) { /* after the last vma */
447 walk.vma = NULL;
448 next = end;
449 if (ops->pte_hole)
450 err = ops->pte_hole(start, next, -1, &walk);
451 } else if (start < vma->vm_start) { /* outside vma */
452 walk.vma = NULL;
453 next = min(end, vma->vm_start);
454 if (ops->pte_hole)
455 err = ops->pte_hole(start, next, -1, &walk);
456 } else { /* inside vma */
457 process_vma_walk_lock(vma, ops->walk_lock);
458 walk.vma = vma;
459 next = min(end, vma->vm_end);
460 vma = find_vma(mm, vma->vm_end);
461
462 err = walk_page_test(start, next, &walk);
463 if (err > 0) {
464 /*
465 * positive return values are purely for
466 * controlling the pagewalk, so should never
467 * be passed to the callers.
468 */
469 err = 0;
470 continue;
471 }
472 if (err < 0)
473 break;
474 err = __walk_page_range(start, next, &walk);
475 }
476 if (err)
477 break;
478 } while (start = next, start < end);
479 return err;
480 }
481
482 /**
483 * walk_page_range_novma - walk a range of pagetables not backed by a vma
484 * @mm: mm_struct representing the target process of page table walk
485 * @start: start address of the virtual address range
486 * @end: end address of the virtual address range
487 * @ops: operation to call during the walk
488 * @pgd: pgd to walk if different from mm->pgd
489 * @private: private data for callbacks' usage
490 *
491 * Similar to walk_page_range() but can walk any page tables even if they are
492 * not backed by VMAs. Because 'unusual' entries may be walked this function
493 * will also not lock the PTEs for the pte_entry() callback. This is useful for
494 * walking the kernel pages tables or page tables for firmware.
495 *
496 * Note: Be careful to walk the kernel pages tables, the caller may be need to
497 * take other effective approache (mmap lock may be insufficient) to prevent
498 * the intermediate kernel page tables belonging to the specified address range
499 * from being freed (e.g. memory hot-remove).
500 */
walk_page_range_novma(struct mm_struct * mm,unsigned long start,unsigned long end,const struct mm_walk_ops * ops,pgd_t * pgd,void * private)501 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
502 unsigned long end, const struct mm_walk_ops *ops,
503 pgd_t *pgd,
504 void *private)
505 {
506 struct mm_walk walk = {
507 .ops = ops,
508 .mm = mm,
509 .pgd = pgd,
510 .private = private,
511 .no_vma = true
512 };
513
514 if (start >= end || !walk.mm)
515 return -EINVAL;
516
517 /*
518 * 1) For walking the user virtual address space:
519 *
520 * The mmap lock protects the page walker from changes to the page
521 * tables during the walk. However a read lock is insufficient to
522 * protect those areas which don't have a VMA as munmap() detaches
523 * the VMAs before downgrading to a read lock and actually tearing
524 * down PTEs/page tables. In which case, the mmap write lock should
525 * be hold.
526 *
527 * 2) For walking the kernel virtual address space:
528 *
529 * The kernel intermediate page tables usually do not be freed, so
530 * the mmap map read lock is sufficient. But there are some exceptions.
531 * E.g. memory hot-remove. In which case, the mmap lock is insufficient
532 * to prevent the intermediate kernel pages tables belonging to the
533 * specified address range from being freed. The caller should take
534 * other actions to prevent this race.
535 */
536 if (mm == &init_mm)
537 mmap_assert_locked(walk.mm);
538 else
539 mmap_assert_write_locked(walk.mm);
540
541 return walk_pgd_range(start, end, &walk);
542 }
543
walk_page_range_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end,const struct mm_walk_ops * ops,void * private)544 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
545 unsigned long end, const struct mm_walk_ops *ops,
546 void *private)
547 {
548 struct mm_walk walk = {
549 .ops = ops,
550 .mm = vma->vm_mm,
551 .vma = vma,
552 .private = private,
553 };
554
555 if (start >= end || !walk.mm)
556 return -EINVAL;
557 if (start < vma->vm_start || end > vma->vm_end)
558 return -EINVAL;
559
560 process_mm_walk_lock(walk.mm, ops->walk_lock);
561 process_vma_walk_lock(vma, ops->walk_lock);
562 return __walk_page_range(start, end, &walk);
563 }
564
walk_page_vma(struct vm_area_struct * vma,const struct mm_walk_ops * ops,void * private)565 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
566 void *private)
567 {
568 struct mm_walk walk = {
569 .ops = ops,
570 .mm = vma->vm_mm,
571 .vma = vma,
572 .private = private,
573 };
574
575 if (!walk.mm)
576 return -EINVAL;
577
578 process_mm_walk_lock(walk.mm, ops->walk_lock);
579 process_vma_walk_lock(vma, ops->walk_lock);
580 return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
581 }
582
583 /**
584 * walk_page_mapping - walk all memory areas mapped into a struct address_space.
585 * @mapping: Pointer to the struct address_space
586 * @first_index: First page offset in the address_space
587 * @nr: Number of incremental page offsets to cover
588 * @ops: operation to call during the walk
589 * @private: private data for callbacks' usage
590 *
591 * This function walks all memory areas mapped into a struct address_space.
592 * The walk is limited to only the given page-size index range, but if
593 * the index boundaries cross a huge page-table entry, that entry will be
594 * included.
595 *
596 * Also see walk_page_range() for additional information.
597 *
598 * Locking:
599 * This function can't require that the struct mm_struct::mmap_lock is held,
600 * since @mapping may be mapped by multiple processes. Instead
601 * @mapping->i_mmap_rwsem must be held. This might have implications in the
602 * callbacks, and it's up tho the caller to ensure that the
603 * struct mm_struct::mmap_lock is not needed.
604 *
605 * Also this means that a caller can't rely on the struct
606 * vm_area_struct::vm_flags to be constant across a call,
607 * except for immutable flags. Callers requiring this shouldn't use
608 * this function.
609 *
610 * Return: 0 on success, negative error code on failure, positive number on
611 * caller defined premature termination.
612 */
walk_page_mapping(struct address_space * mapping,pgoff_t first_index,pgoff_t nr,const struct mm_walk_ops * ops,void * private)613 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
614 pgoff_t nr, const struct mm_walk_ops *ops,
615 void *private)
616 {
617 struct mm_walk walk = {
618 .ops = ops,
619 .private = private,
620 };
621 struct vm_area_struct *vma;
622 pgoff_t vba, vea, cba, cea;
623 unsigned long start_addr, end_addr;
624 int err = 0;
625
626 lockdep_assert_held(&mapping->i_mmap_rwsem);
627 vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
628 first_index + nr - 1) {
629 /* Clip to the vma */
630 vba = vma->vm_pgoff;
631 vea = vba + vma_pages(vma);
632 cba = first_index;
633 cba = max(cba, vba);
634 cea = first_index + nr;
635 cea = min(cea, vea);
636
637 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
638 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
639 if (start_addr >= end_addr)
640 continue;
641
642 walk.vma = vma;
643 walk.mm = vma->vm_mm;
644
645 err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
646 if (err > 0) {
647 err = 0;
648 break;
649 } else if (err < 0)
650 break;
651
652 err = __walk_page_range(start_addr, end_addr, &walk);
653 if (err)
654 break;
655 }
656
657 return err;
658 }
659
660 /**
661 * folio_walk_start - walk the page tables to a folio
662 * @fw: filled with information on success.
663 * @vma: the VMA.
664 * @addr: the virtual address to use for the page table walk.
665 * @flags: flags modifying which folios to walk to.
666 *
667 * Walk the page tables using @addr in a given @vma to a mapped folio and
668 * return the folio, making sure that the page table entry referenced by
669 * @addr cannot change until folio_walk_end() was called.
670 *
671 * As default, this function returns only folios that are not special (e.g., not
672 * the zeropage) and never returns folios that are supposed to be ignored by the
673 * VM as documented by vm_normal_page(). If requested, zeropages will be
674 * returned as well.
675 *
676 * As default, this function only considers present page table entries.
677 * If requested, it will also consider migration entries.
678 *
679 * If this function returns NULL it might either indicate "there is nothing" or
680 * "there is nothing suitable".
681 *
682 * On success, @fw is filled and the function returns the folio while the PTL
683 * is still held and folio_walk_end() must be called to clean up,
684 * releasing any held locks. The returned folio must *not* be used after the
685 * call to folio_walk_end(), unless a short-term folio reference is taken before
686 * that call.
687 *
688 * @fw->page will correspond to the page that is effectively referenced by
689 * @addr. However, for migration entries and shared zeropages @fw->page is
690 * set to NULL. Note that large folios might be mapped by multiple page table
691 * entries, and this function will always only lookup a single entry as
692 * specified by @addr, which might or might not cover more than a single page of
693 * the returned folio.
694 *
695 * This function must *not* be used as a naive replacement for
696 * get_user_pages() / pin_user_pages(), especially not to perform DMA or
697 * to carelessly modify page content. This function may *only* be used to grab
698 * short-term folio references, never to grab long-term folio references.
699 *
700 * Using the page table entry pointers in @fw for reading or modifying the
701 * entry should be avoided where possible: however, there might be valid
702 * use cases.
703 *
704 * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care.
705 * For example, PMD page table sharing might require prior unsharing. Also,
706 * logical hugetlb entries might span multiple physical page table entries,
707 * which *must* be modified in a single operation (set_huge_pte_at(),
708 * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might
709 * not correspond to the first physical entry of a logical hugetlb entry.
710 *
711 * The mmap lock must be held in read mode.
712 *
713 * Return: folio pointer on success, otherwise NULL.
714 */
folio_walk_start(struct folio_walk * fw,struct vm_area_struct * vma,unsigned long addr,folio_walk_flags_t flags)715 struct folio *folio_walk_start(struct folio_walk *fw,
716 struct vm_area_struct *vma, unsigned long addr,
717 folio_walk_flags_t flags)
718 {
719 unsigned long entry_size;
720 bool expose_page = true;
721 struct page *page;
722 pud_t *pudp, pud;
723 pmd_t *pmdp, pmd;
724 pte_t *ptep, pte;
725 spinlock_t *ptl;
726 pgd_t *pgdp;
727 p4d_t *p4dp;
728
729 mmap_assert_locked(vma->vm_mm);
730 vma_pgtable_walk_begin(vma);
731
732 if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end))
733 goto not_found;
734
735 pgdp = pgd_offset(vma->vm_mm, addr);
736 if (pgd_none_or_clear_bad(pgdp))
737 goto not_found;
738
739 p4dp = p4d_offset(pgdp, addr);
740 if (p4d_none_or_clear_bad(p4dp))
741 goto not_found;
742
743 pudp = pud_offset(p4dp, addr);
744 pud = pudp_get(pudp);
745 if (pud_none(pud))
746 goto not_found;
747 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
748 (!pud_present(pud) || pud_leaf(pud))) {
749 ptl = pud_lock(vma->vm_mm, pudp);
750 pud = pudp_get(pudp);
751
752 entry_size = PUD_SIZE;
753 fw->level = FW_LEVEL_PUD;
754 fw->pudp = pudp;
755 fw->pud = pud;
756
757 /*
758 * TODO: FW_MIGRATION support for PUD migration entries
759 * once there are relevant users.
760 */
761 if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) {
762 spin_unlock(ptl);
763 goto not_found;
764 } else if (!pud_leaf(pud)) {
765 spin_unlock(ptl);
766 goto pmd_table;
767 }
768 /*
769 * TODO: vm_normal_page_pud() will be handy once we want to
770 * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs.
771 */
772 page = pud_page(pud);
773 goto found;
774 }
775
776 pmd_table:
777 VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud));
778 pmdp = pmd_offset(pudp, addr);
779 pmd = pmdp_get_lockless(pmdp);
780 if (pmd_none(pmd))
781 goto not_found;
782 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) &&
783 (!pmd_present(pmd) || pmd_leaf(pmd))) {
784 ptl = pmd_lock(vma->vm_mm, pmdp);
785 pmd = pmdp_get(pmdp);
786
787 entry_size = PMD_SIZE;
788 fw->level = FW_LEVEL_PMD;
789 fw->pmdp = pmdp;
790 fw->pmd = pmd;
791
792 if (pmd_none(pmd)) {
793 spin_unlock(ptl);
794 goto not_found;
795 } else if (pmd_present(pmd) && !pmd_leaf(pmd)) {
796 spin_unlock(ptl);
797 goto pte_table;
798 } else if (pmd_present(pmd)) {
799 page = vm_normal_page_pmd(vma, addr, pmd);
800 if (page) {
801 goto found;
802 } else if ((flags & FW_ZEROPAGE) &&
803 is_huge_zero_pmd(pmd)) {
804 page = pfn_to_page(pmd_pfn(pmd));
805 expose_page = false;
806 goto found;
807 }
808 } else if ((flags & FW_MIGRATION) &&
809 is_pmd_migration_entry(pmd)) {
810 swp_entry_t entry = pmd_to_swp_entry(pmd);
811
812 page = pfn_swap_entry_to_page(entry);
813 expose_page = false;
814 goto found;
815 }
816 spin_unlock(ptl);
817 goto not_found;
818 }
819
820 pte_table:
821 VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd));
822 ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl);
823 if (!ptep)
824 goto not_found;
825 pte = ptep_get(ptep);
826
827 entry_size = PAGE_SIZE;
828 fw->level = FW_LEVEL_PTE;
829 fw->ptep = ptep;
830 fw->pte = pte;
831
832 if (pte_present(pte)) {
833 page = vm_normal_page(vma, addr, pte);
834 if (page)
835 goto found;
836 if ((flags & FW_ZEROPAGE) &&
837 is_zero_pfn(pte_pfn(pte))) {
838 page = pfn_to_page(pte_pfn(pte));
839 expose_page = false;
840 goto found;
841 }
842 } else if (!pte_none(pte)) {
843 swp_entry_t entry = pte_to_swp_entry(pte);
844
845 if ((flags & FW_MIGRATION) &&
846 is_migration_entry(entry)) {
847 page = pfn_swap_entry_to_page(entry);
848 expose_page = false;
849 goto found;
850 }
851 }
852 pte_unmap_unlock(ptep, ptl);
853 not_found:
854 vma_pgtable_walk_end(vma);
855 return NULL;
856 found:
857 if (expose_page)
858 /* Note: Offset from the mapped page, not the folio start. */
859 fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT);
860 else
861 fw->page = NULL;
862 fw->ptl = ptl;
863 return page_folio(page);
864 }
865